BIROn - Birkbeck Institutional Research Online

    An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1-antitrypsin upon ligand binding

    Nyon, M.P. and Prentice, T. and Day, J. and Kirkpatrick, J. and Sivalingam, G.N. and Levy, G. and Haq, I. and Irving, J.A. and Lomas, D.A. and Christodoulou, John and Gooptu, Bibek and Thalassinos, Konstantinos (2015) An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1-antitrypsin upon ligand binding. Protein Science 24 (8), pp. 1301-1312. ISSN 0961-8368.

    [img]
    Preview
    Text
    15687.pdf - Published Version of Record
    Available under License Creative Commons Attribution.

    Download (808kB) | Preview

    Abstract

    Native mass spectrometry (MS) methods permit the study of multiple protein species within solution equilibria, whereas ion mobility (IM)-MS can report on conformational behavior of specific states. We used IM-MS to study a conformationally labile protein (α1-antitrypsin) that undergoes pathological polymerization in the context of point mutations. The folded, native state of the Z-variant remains highly polymerogenic in physiological conditions despite only minor thermodynamic destabilization relative to the wild-type variant. Various data implicate kinetic instability (conformational lability within a native state ensemble) as the basis of Z α1-antitrypsin polymerogenicity. We show the ability of IM-MS to track such disease-relevant conformational behavior in detail by studying the effects of peptide binding on α1-antitrypsin conformation and dynamics. IM-MS is, therefore, an ideal platform for the screening of compounds that result in therapeutically beneficial kinetic stabilization of native α1-antitrypsin. Our findings are confirmed with high-resolution X-ray crystallographic and nuclear magnetic resonance spectroscopic studies of the same event, which together dissect structural changes from dynamic effects caused by peptide binding at a residue-specific level. IM-MS methods, therefore, have great potential for further study of biologically relevant thermodynamic and kinetic instability of proteins and provide rapid and multidimensional characterization of ligand interactions of therapeutic interest.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): ion mobility mass spectrometry, protein dynamics, drug discovery, α1-antitrypsin, protein unfolding, mass spectrometry/methods, nuclear magnetic resonance;biomolecular, X-ray crystallography
    School: Birkbeck Schools and Departments > School of Science > Biological Sciences
    Research Centre: Structural Molecular Biology, Institute of (ISMB)
    Depositing User: Administrator
    Date Deposited: 05 Jul 2016 10:40
    Last Modified: 30 Jul 2019 06:43
    URI: http://eprints.bbk.ac.uk/id/eprint/15687

    Statistics

    Downloads
    Activity Overview
    93Downloads
    90Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item