BIROn - Birkbeck Institutional Research Online

Gabor texture in active appearance models

Gao, X. and Su, Y. and Li, Xuelong and Tao, D. (2009) Gabor texture in active appearance models. Neurocomputing 72 (13-15), pp. 3174-3181. ISSN 0925-2312.

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1016/j.neucom.2009.03.003

Abstract

In computer vision applications, Active Appearance Models (AAMs) is usually used to model the shape and the gray-level appearance of an object of interest using statistical methods, such as PCA. However, intensity values used in standard AAMs cannot provide enough information for image alignment. In this paper, we firstly propose to utilize Gabor filters to represent the image texture. The benefit of Gabor-based representation is that it can express local structures of an image. As a result, this representation can lead to more accurate matching when condition changes. Given the problem of the excessive storage and computational complexity of the Gabor, three different Gabor-based image representations are used in AAMs: (1) GaborD is the sum of Gabor filter responses over directions, (2) GaborS is the sum of Gabor filter responses over scales, and (3) GaborSD is the sum of Gabor filter responses over scales and directions. Through a large number of experiments, we show that the proposed Gabor representations lead to more accurate and robust matching between model and images.

Item Type: Article
Keyword(s) / Subject(s): Computer vision, active appearance models (AAMs), Gabor, texture representation
School or Research Centre: Birkbeck Schools and Research Centres > School of Business, Economics & Informatics > Computer Science and Information Systems
Depositing User: Administrator
Date Deposited: 07 Feb 2011 12:12
Last Modified: 17 Apr 2013 12:18
URI: http://eprints.bbk.ac.uk/id/eprint/1856

Archive Staff Only (login required)

Edit/View Item Edit/View Item