BIROn - Birkbeck Institutional Research Online

    Multi-prover proof-of-retrievability

    Paterson, Maura B. and Stinson, D.R. and Upadhyay, J. (2016) Multi-prover proof-of-retrievability. Working Paper. Birkbeck, University of London, London, UK.

    [img]
    Preview
    Text
    26744.pdf - Draft Version

    Download (1MB) | Preview

    Abstract

    There has been considerable recent interest in “cloud storage” wherein a user asks a server to store a large file. One issue is whether the user can verify that the server is actually storing the file, and typically a challenge-response protocol is employed to convince the user that the file is indeed being stored correctly. The security of these schemes is phrased in terms of an extractor which will recover the file given any “proving algorithm” that has a sufficiently high success probability. This forms the basis of proof-of-retrievability (PoR) systems. In this paper, we study multiple server PoR systems. Our contribution in multiple-server PoR systems is as follows. 1. We formalize security definitions for two possible scenarios: (i) when a threshold of servers succeed with high enough probability (worst-case) and (ii) when the average of the success probability of all the servers is above a threshold (average-case). We also motivate the study of confidentiality of the outsourced message. 2. We give MPoR schemes which are secure under both these security definitions and provide reasonable confidentiality guarantees even when there is no restriction on the computational power of the servers. We also show how classical statistical techniques used by Paterson, Stinson and Upadhyay (Journal of Mathematical Cryptology: 7(3)) can be extended to evaluate whether the responses of the provers are accurate enough to permit successful extraction. 3. We also look at one specific instantiation of our construction when instantiated with the unconditionally secure version of the Shacham-Waters scheme (Asiacrypt, 2008). This scheme gives reasonable security and privacy guarantee. We show that, in the multi-server setting with computationally unbounded provers, one can overcome the limitation that the verifier needs to store as much secret information as the provers.

    Metadata

    Item Type: Monograph (Working Paper)
    Additional Information: Birkbeck Pure Mathematics Preprint Series #18
    School: Birkbeck Schools and Departments > School of Business, Economics & Informatics > Economics, Mathematics and Statistics
    Research Centre: Applied Macroeconomics, Birkbeck Centre for
    Depositing User: Administrator
    Date Deposited: 22 Mar 2019 13:17
    Last Modified: 27 Jul 2019 17:29
    URI: http://eprints.bbk.ac.uk/id/eprint/26744

    Statistics

    Downloads
    Activity Overview
    29Downloads
    31Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item