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1 Introduction

The transport of natural gas has received significant attention in the last months with the
large price spikes in the UK facing sudden cold weather and the flow stop from Russia to
Ukraine. Transport is a necessity in a world where gas sources are far removed from the gas
demand, and in which a gas portfolio easily spans several countries. Meanwhile, the range
of options within a gas portfolio is growing with an increasing number of instruments and
increasing international gas trading. This has led to a situation where decisions have become
non-trivial. The objective of this article is to describe the construction of an integrated
approach for gas portfolio and transport optimization.

In general an energy company with a gas portfolio is faced with gas deliveries at various
locations, gas consumers at other locations and a grid of pipelines connecting them. While
the supplies and demands change over time, the energy company must balance the flows at
all times. In practice, the energy company has many instruments available in order to make
the flows balance and should decide which ones to choose and how to utilize them. In this
article we put an emphasis on costs and consider the central question of how to balance the
gas network such that the operational costs are kept as low as possible.

In the next section we first identify the different instruments constituting a gas portfolio
and transport system. Then we describe the costs associated with the utilization of these
instruments, and consider a basic optimization model. Next we give an example of how the
model works, and address the complexity of the model. Finally we discuss how the model can
be used in practice by traders and other professionals, and conclude with some directions for
future research.

2 Instruments in a gas network

To illustrate our problem setting we provide in Figure 1 a schematic overview of the Northwest
European gas market. The figure shows that the gas network consists of an interacting system
of source locations (where gas is supplied), demand locations (where gas is to be delivered),
markets (where gas is traded), storages (where gas can be stored for future use), LNG (where
gas is liquefied) and gas pipes connecting one location to another.
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Figure 1: Northwest European gas market

A crucial constraint in a gas portfolio is that the network should be balanced in every hour
of each day of the year. There are several market instruments that can be used for balancing,
for example trading, swing and storage. We will discuss these in more detail below. Other
instruments include line packing, tolerance and LNG. Line packing means that, in the order
of a day, the volume in a gas pipe is increased. A gas pipe then acts like a small storage.
Tolerance is a service that allows one to have small volumetric deviations from a pre-agreed
schedule and is mainly used for real-time balancing. An upcoming instrument is LNG, which
can be seen as a special type of supply. On the one hand an LNG ship can change its course,
creating an optionality in delivery place. On the other hand LNG can be stored, creating an
optionality in delivery time.

Trading

Trading is only possible at major hubs. In Northwest Europe we distinguish three of such
hubs: NBP in the UK, Zeebrugge in Belgium, and TTF in The Netherlands. At these markets,
only flat daily profiles can be attained; the hourly gas market is quite illiquid. This means
that for each day, the hourly positions within that day are all equal. There are other trading
locations, but those are very illiquid.

Gas can be bought or sold day-ahead, but also forward in weekly, monthly and yearly blocks.
For our model we will assume there exists a daily forward curve, which provides us with a
price for each specific day in the future. The price curve is typically highly volatile. This is
illustrated by Figure 2, which shows the historic spot price at the three hubs during Q2 of
2004. The high volatility indicates that there are possibly arbitrage opportunities in time:
buy gas now, store it, and sell it later at a higher price.

In Figure 2 we also see potential arbitrage opportunities in location. For example, it may
be profitable to buy gas at TTF and then transport it to Zeebrugge to sell it there. In this
article we focus on physical transport, i.e., we do not consider paper trading between hubs.
The extent to which a potential arbitrage possibility can be exploited is naturally restricted
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Figure 2: Historic day-ahead spot prices

by the depth of the market. Above certain volumes the market will react unfavorably to the
executed trades.

Swing

In conjunction with trading, swing contracts can be purchased. These are flexible supply
contracts that can be used for daily as well as hourly balancing. Furthermore, they can be
optimized dependent on price levels: if prices go up, more gas can be taken, which can be
sold at the market at a higher price than the contract price. Besides the price per unit of gas
taken, swing contracts typically consist of a pre-agreed base profile with rights and limitations
as regards the actual annual, daily and hourly amounts of gas taken, which should fall within
some pre-determined bandwidth.

Storage

Another instrument that can be used for daily and hourly balancing is storage. In physical
storage facilities gas can be stored in large quantities for future use. They also serve an
economic purpose: storage allows us to buy gas in the summer, store it until winter, and then
sell it at a higher price, either at the market or to customers. The main advantage of storage
is that it is more flexible than swing; storage limitations are commonly less rigid than swing
contract limitations. But there are also drawbacks. First, there are physical limitations, such
as limited injection and withdrawal rates, which can be both time-dependent and volume-
dependent. Second, storages are subject to outages and maintenance, restricting their use.
Financial storage contracts contain less physical limitations.

Pipeline system

Finally, to be able to make use of the instruments described above, and hence to actually
physically transport gas across the network, sufficient amounts of capacity are required for
each of the pipes used for transport. Usually, the energy company will have already acquired



capacity on several pipelines, but could purchase additional capacity for balancing or arbitrage
purposes. This renders pipeline capacity a market instrument as well.

There are several problems with capacity. First, there are different transport systems: entry-
exit in the UK and The Netherlands, and point-to-point in Belgium and Germany. Second,
there are different price formation mechanisms: bilateral in Belgium and Germany, auction
in the UK, and standard tariff according to the first-come-first-serve principle in The Nether-
lands. Furthermore, capacity contracts can have different durations and there are different
types of gas: it can be of low and high caloric value. Finally, there can be non-availability of
capacity due to a variety of reasons such as not being able to buy more capacity on a particular
pipeline or interruption of a pipeline because of an outage or scheduled maintenance.

3 Profits and costs

The operational costs in the network consist of factors associated with the different ways of
balancing the network. The main profits and costs are related to the selling or buying of gas
at one of the hubs and the costs of buying gas pipe capacity, tolerance and LNG. Besides,
there are costs related to the utilization of swing contracts and to injection and withdrawal
of gas into and from storage.

Another type of costs is related to real-time imbalance. If we are not able to ship the correct
amount of gas to or from each of the locations in the network in real-time, penalties will be
incurred. These penalties can occur due to a mismatch in the long term planning or due to
short-term uncertainty surrounding, e.g., customer demand. In our model we optimize under
the constraint that for each location and for each hour demand must equal supply. We do
not explicitly consider short-term uncertainty, although a kind of reserve margin could be
included.

4 Model choice

Given the network structure and the different instruments available to balance the network, let
us now focus on the central question of keeping the total operational costs as low as possible.
It is not straightforward to decide how to set up a formal approach for this problem. Our
main idea is to formulate the problem in terms of a Linear Program (LP). This is a standard
mathematical technique, which offers a high degree of flexibility to incorporate additional
model features. It allows for a large number of decision variables, and there is a wide range
of industrial solvers available to compute the optimal solution. This reduces the development
and calculation time considerably. For an introduction to linear programming and related
algorithms, we refer to, e.g., Bazaraa et al. [1].

The main drawback of an LP formulation is that the optimization is carried out based on
one scenario (usually a prediction) of future prices and demand curves. In fact, all input is
assumed to be constant and known in advance. This means that the influence of uncertainty
is not captured and that robustness might be an issue. However, some degree of uncertainty
can be incorporated by implementing several input sets each occurring with a certain preset



probability. This approach has been shown to work in Doege et al. [2] in the case of a
hydro storage. Furthermore, we see that solving the problem can be time-consuming and
potentially even impossible due to memory constraints. However, other techniques that aim
for an accurate solution would suffer from this as well.

An alternative approach would be to carry out a sequential optimization. In a first step we
would optimize the individual building blocks like storage and swing. These can be described
well in a stochastic framework, and allow for a careful valuation on a stand-alone basis. In
the next step we would take the flows from these building blocks as given, and optimize over
the remaining model parts. It is hard to estimate the accuracy of the solution obtained from
this approach, compared to the optimal solution. For example, economic exercise of a swing
contract might lead to a situation where we require extra transport capacity. If this capacity
is highly expensive, the fancied profit on the swing contract could vaporize.

A related field is the pricing of electricity in integrated networks (see, e.g., Kristiansen [3]).
This field focuses on the pricing of transmission capacity, and congestion plays an important
role. The main differences are due to the storability of gas (non-storability of electricity) and
the diversity of market structures (uniform in integrated electricity networks).

5 LP optimization

In this section we give a generic formulation of our optimization problem in terms of an LP.
We will consider the optimization problem to be a cost minimization problem, where revenues
are considered to be negative costs. Revenues are made when gas is sold at a hub.

An LP is composed of a cost function and a set of constraints. Both the cost function and the
constraints are functions of input data and decision variables. To achieve a linear program,
these functions should all be linear. Constraints arise because of physical or economical lim-
itations. Together, the constraints form a polyhedron from which the values of the decision
variables are to be selected. Including all instruments involves setting up many sets of con-
straints, each containing many individual equations. In this article we will restrict ourselves
to some key ingredients to explain how the LP is set up.

Cost function and decision variables

Our objective is to keep the costs as low as possible. More formally, we want to minimize the
total operational costs over the entire planning period by taking optimal decisions. There are
essentially two types of decisions that can be made:

1. which capacity contracts to engage in;
2. in each hour, the amount of gas we send from one location to another.

It is easily seen that a third decision, the daily amounts of gas we buy/sell at any of the
markets, is implied by the hourly flows through the network.



Generic LP

One may state the LP in the following generic form:

minimize
Z capacity costs  + Z Z (purchasing costs — revenues) +
gas pipes time \ hubs
Z swing costs  + Z (injection costs + withdrawal costs)
swing storages
such that

o the network is balanced in each hour

e daily positions at the hubs meet the hourly flows

e amounts of gas sent through a gas pipe do not exceed the contracted capacity
e swing contract rules are followed

e physical storage and gas pipe limitations are not violated

The constraints are all equations made up of input data and decision variables. As an example,
we will focus on the constraint that gas pipes have maximum capacities which may not be
exceeded, and demonstrate how to formulate the equations corresponding to this constraint.
To do this, we first need some notation.

The network consists of locations (such as hubs and demand locations) and gas pipes. Let
(i,7) denote the gas pipe between locations i and j, if one exists, and let N denote the set of all
gas pipes in the network. Let decision variable f;;(t) denote the flow through pipe (,j) € N
in hour t¢. For simplicity, let us assume that for each pipe there is only one type of capacity
contract, which is valid for the entire duration of the planning horizon. The costs of buying
capacity on (Z,j) are -;; per unit per hour, and decision variable ¢;; denotes the amount of
capacity bought on (4, 7). If one has a capacity of u on a certain pipe, then one is entitled to
send up to w units of gas through that pipe in each hour. Besides contracted capacity also
physical capacity restricts the amount of gas one may send through a pipe. Events such as
scheduled maintenance cause the physical capacity to be time-dependent. Let ¢;;(t) denote
the physical capacity of pipe (7, ) in hour ¢.

Now we can make the capacity costs and gas pipe constraints explicit. First, the costs of
buying capacity are equal to

Z capacity costs = Z YijCij
gas pipes (i.5)EN

Second, in each hour the flow through a pipe may not exceed the contracted capacity nor the
physical capacity of that pipe, nor may it be negative, which also holds for the amounts of



capacity bought, i.e.,
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Incorporating multiple capacity contracts requires some more effort, but is very well possible.
In that case there is an extra summation, over all possible contracts one can engage in with
respect to a certain pipe. Note that the gas pipe constraints, which are fairly straightforward,
already require quite a lot of equations to be fully expressed.

The example above shows how cost elements and constraints can be incorporated in the model.
Each cost element or constraint is a building block, which interacts with other building blocks,
which together form the optimization problem. Sometimes linearization poses a problem, but
this can often be avoided by introducing step functions to closely approximate non-linear
expressions by linear functions.

6 Numerical example

To give an example of how the algorithm works in practice, consider the network shown in
Figure 3. We took a relatively small problem size of 2 hubs (locations 1 and 2), 1 hourly swing
contract (location 3), 5 supply /demand locations (locations 4 to 8), and 2 storages (locations
9 and 10). There are also 3 artificial connectors, which have an hourly demand/supply of 0.

demand 300
supply 12.5 O
720.85 6 3
% 407.80
buy 708.35 107.80
demand 900
150 900
527.40
demand 150
352.60
151.25
372.60
demand 150
supply 20
demand 1.25

1.25
buy/sell 0.00

Figure 3: Sample network

The results shown correspond to the first hour of an optimization period of 5 days. We can
make several observations, for example:

e [t is easily verified that the network is completely balanced in hour 1.



e Apparently, it is optimal to buy an amount of 17000.40 at hub 1 on the first day, or
17000.40/24 = 708.35 per hour. Hub 1 has a supply of 300 on day 1, or 300/24 = 12.5
per hour. So an amount of 708.35 + 12.5 = 720.85 is shipped out of the hub in hour 1.

e To fulfill the demands in hour 1, gas is brought in from hub 1, the hourly swing contract,
source location 8, and one of the two storages. The other storage is not used in hour 1.

With our model one can also run what-if scenarios. For example, suppose storage 9 is suddenly
out of order. Then we can rerun the optimization to find an adjusted solution that takes this
effect into account. The algorithm will then come up with an alternative transport scheme
that satisfies all the constraints.

7 Complexity

An important aspect of the implementation of the LP is the complexity of the problem.
Clearly, the algorithm should be able to cope with realistically sized gas networks and planning
horizons. For example, for a realistic network with 80 locations and a planning horizon of
a year, the number of variables in our model already reaches roughly 1.5 million, and the
number of constraints reaches roughly 2 million. This illustrates that the problem size can
grow very large in practice. We have carried out several tests to see how the performance of
the algorithm depends on the length of the planning horizon. As input we took the network
of Figure 3, with random price and demand curves. All calculations were performed on a 2.8
GHz machine with 2 GB of memory, and the results are shows in Figure 4.
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Figure 4: Performance test

The solution time, indicated by the left-hand side vertical axis, is the total time needed to read
the data, generate the LP model in memory, and then solve it. We found that the number
of iterations needed to find the optimal solution increases linearly, whereas the solution time
grows slightly more than quadratically. If we increase the planning horizon further than 800
days, the algorithm runs into memory difficulties. This means we can optimize our network
up to two years on an hourly granularity.



8 Implementation and usage of the model

Following its development, as well as a sequence of fine-tuning steps to enhance its perfor-
mance, the model was implemented in an integrated Decision Support System to serve as its
mathematical core. Based on market data that is renewed on a daily granularity, this system
allows for daily decision-making. It supports traders by providing trading advice on physi-
cal arbitrage possibilities given the current portfolio and transport limitations, and proposes
which positions to take. Furthermore, from a risk management perspective it is important to
know which contracts are needed to at least be able to serve the demand. To this end, the
system shows detailed flow information and will detect any future capacity problems, such as
bottlenecks in the network. The model can also be used to run what-if scenarios. For exam-
ple, one can evaluate the impact of network extensions or determine the value of transmission
capacity from a portfolio perspective. As such, the system can be used to confirm, from a
quantitative point of view, a trader’s vision of the market. All in all, it offers valuable insight
into the dynamics of a gas portfolio and transport system.

9 Future directions

In this article we have shown a method to integrate gas portfolio and transport optimization.
Besides the fact that the presented model has immediate practical use, it can also serve as
a generic building block for even more sophisticated optimization problems encountered in
gas networks. We see various ways to move on from here. One direction is to extend the
structure of the network, e.g., to include different instruments, such as LNG. Another direction
is the modelling and integration of stochastic input parameters, so that we can incorporate
‘true’ uncertainty into our decision model. In any case, for all implementations we want to
stress the importance of coping with complexity as the problem scale increases, since the
model is clearly of little practical use if the optimization does not run. As the network, time
horizon or availability of market instruments grows, the algorithm will eventually fail because
the problem grows too large to solve or even too large to keep in memory. Consequently,
intelligent modelling and fine-tuning are required to ensure that the algorithm will continue
to produce good solutions in reasonable time.
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