BIROn - Birkbeck Institutional Research Online

    On kernel engineering via Paley–Wiener

    Baxter, Brad J.C. (2010) On kernel engineering via Paley–Wiener. Calcolo 48 (1), pp. 21-31. ISSN 0008-0624.

    [img]
    Preview
    Text (Post-print (Refereed))
    3041.pdf

    Download (429kB) | Preview

    Abstract

    A radial basis function approximation takes the form $$s(x)=\sum_{k=1}^na_k\phi(x-b_k),\quad x\in {\mathbb{R}}^d,$$ where the coefficients a 1,…,a n are real numbers, the centres b 1,…,b n are distinct points in ℝ d , and the function φ:ℝ d →ℝ is radially symmetric. Such functions are highly useful in practice and enjoy many beautiful theoretical properties. In particular, much work has been devoted to the polyharmonic radial basis functions, for which φ is the fundamental solution of some iterate of the Laplacian. In this note, we consider the construction of a rotation-invariant signed (Borel) measure μ for which the convolution ψ=μ φ is a function of compact support, and when φ is polyharmonic. The novelty of this construction is its use of the Paley–Wiener theorem to identify compact support via analysis of the Fourier transform of the new kernel ψ, so providing a new form of kernel engineering.

    Metadata

    Item Type: Article
    Additional Information: The original publication is available at www.springerlink.com
    Keyword(s) / Subject(s): Radial basis functions, spherical average, compact support, Paley–Wiener
    School: Birkbeck Schools and Departments > School of Business, Economics & Informatics > Economics, Mathematics and Statistics
    Depositing User: Administrator
    Date Deposited: 07 Feb 2011 09:40
    Last Modified: 17 Apr 2013 12:33
    URI: http://eprints.bbk.ac.uk/id/eprint/3041

    Statistics

    Downloads
    Activity Overview
    139Downloads
    130Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item