BIROn - Birkbeck Institutional Research Online

On kernel engineering via Paley–Wiener

Baxter, Brad J.C. (2010) On kernel engineering via Paley–Wiener. Calcolo 48 (1), pp. 21-31. ISSN 0008-0624.

Text (Post-print (Refereed))

Download (429kB) | Preview
Official URL:


A radial basis function approximation takes the form $$s(x)=\sum_{k=1}^na_k\phi(x-b_k),\quad x\in {\mathbb{R}}^d,$$ where the coefficients a 1,…,a n are real numbers, the centres b 1,…,b n are distinct points in ℝ d , and the function φ:ℝ d →ℝ is radially symmetric. Such functions are highly useful in practice and enjoy many beautiful theoretical properties. In particular, much work has been devoted to the polyharmonic radial basis functions, for which φ is the fundamental solution of some iterate of the Laplacian. In this note, we consider the construction of a rotation-invariant signed (Borel) measure μ for which the convolution ψ=μ φ is a function of compact support, and when φ is polyharmonic. The novelty of this construction is its use of the Paley–Wiener theorem to identify compact support via analysis of the Fourier transform of the new kernel ψ, so providing a new form of kernel engineering.

Item Type: Article
Additional Information: The original publication is available at
Keyword(s) / Subject(s): Radial basis functions, spherical average, compact support, Paley–Wiener
School or Research Centre: Birkbeck Schools and Research Centres > School of Business, Economics & Informatics > Economics, Mathematics and Statistics
Depositing User: Administrator
Date Deposited: 07 Feb 2011 09:40
Last Modified: 17 Apr 2013 12:33

Archive Staff Only (login required)

Edit/View Item Edit/View Item