BIROn - Birkbeck Institutional Research Online

Statistical model comparison applied to common network motifs

Domedel Puig, N. and Pournara, Iosifina and Wernisch, Lorenz (2010) Statistical model comparison applied to common network motifs. BMC Systems Biology 4 (1), ISSN 1752-0509.

[img]
Preview
Text
3121.pdf - Published Version
Available under License Creative Commons Attribution.

Download (947Kb) | Preview
Official URL: http://dx.doi.org/10.1186/1752-0509-4-18

Abstract

Background: Network motifs are small modules that show interesting functional and dynamic properties, and are believed to be the building blocks of complex cellular processes. However, the mechanistic details of such modules are often unknown: there is uncertainty about the motif architecture as well as the functional form and parameter values when converted to ordinary differential equations (ODEs). This translates into a number of candidate models being compatible with the system under study. A variety of statistical methods exist for ranking models including maximum likelihood-based and Bayesian methods. Our objective is to show how such methods can be applied in a typical systems biology setting. Results: We focus on four commonly occurring network motif structures and show that it is possible to differentiate between them using simulated data and any of the model comparison methods tested. We expand one of the motifs, the feed forward (FF) motif, for several possible parameterizations and apply model selection on simulated data. We then use experimental data on three biosynthetic pathways in Escherichia coli to formally assess how current knowledge matches the time series available. Our analysis confirms two of them as FF motifs. Only an expanded set of FF motif parameterisations using time delays is able to fit the third pathway, indicating that the true mechanism might be more complex in this case. Conclusions: Maximum likelihood as well as Bayesian model comparison methods are suitable for selecting a plausible motif model among a set of candidate models. Our work shows that it is practical to apply model comparison to test ideas about underlying mechanisms of biological pathways in a formal and quantitative way.

Item Type: Article
Additional Information: Author Pournara was a research assistant, left April 2008, no staff ID (PR 23.2.11)
Keyword(s) / Subject(s): Escherichia-coli, dynamics, system, cells
School or Research Centre: Birkbeck Schools and Research Centres > School of Science > Biological Sciences
Depositing User: Administrator
Date Deposited: 23 Feb 2011 12:51
Last Modified: 17 Apr 2013 12:33
URI: http://eprints.bbk.ac.uk/id/eprint/3121

Archive Staff Only (login required)

Edit/View Item Edit/View Item