BIROn - Birkbeck Institutional Research Online

Long- and short-term variability of Saturn's ionic radiation belts

Roussos, E. and Krupp, N. and Paranicas, C.P. and Kollmann, P. and Mitchell, D.G. and Krimigis, S.M. and Armstrong, T.P. and Went, D.R. and Dougherty, M.K. and Jones, Geraint H. (2011) Long- and short-term variability of Saturn's ionic radiation belts. Journal of Geophysical Research: Space Physics 116 , ISSN 0148-0227.

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1029/2010JA015954

Abstract

Earlier studies of Saturn's inner ionic radiation belts revealed that their content was surprisingly constant while their evolution appeared decoupled from dynamics of the Saturnian magnetosphere. Saturn's icy moons in combination with the neutral gas and dust that surround the planet seem to effectively restrict radial transport of energetic ions and are responsible for all these unusual characteristics. A possible process through which MeV ions may be populating the regions between the icy moons is cosmic ray albedo neutron decay (CRAND). While some circumstantial evidence suggests that this process actually occurs, the concept of CRAND has only been applied to the proton energy spectrum above similar to 10 MeV; the source of ions below 10 MeV is not yet obvious. Additional hints about the nature of this source are now becoming evident by monitoring Saturn's radiation belts about half a solar cycle (from the declining phase of the solar maximum to solar minimum). Using Cassini's magnetosphere imaging instrument and low-energy magnetospheric measurement system (MIMI/LEMMS) data from June 2004 to June 2010, we detect a weak intensification of the trapped proton component that probably originates from CRAND (> 10 MeV). This anticipated enhancement, due to the solar cycle modulation of the galactic cosmic ray influx at Saturn, is closely followed by ions in the 1-10 MeV range. This observation sets constraints on the nature of those ions' source: this source should be connected (directly or indirectly) to the access of galactic cosmic rays in the Saturnian system. We also find evidence indicating that the ionic belts experience short-term variability following the occurrence of solar energetic particle events at Saturn's distance, probably associated with coronal mass ejections that propagate in the heliosphere. LEMMS data contain clear evidence of Earth-like Forbush decreases following such events. These decreases may explain the lack of an (expected) ionic belt intensification between 2004 and 2006.

Item Type: Article
School or Research Centre: Birkbeck Schools and Research Centres > School of Science > Earth and Planetary Sciences > UCL/Birkbeck Centre for Planetary Sciences
Depositing User: Administrator
Date Deposited: 20 Jun 2011 09:34
Last Modified: 17 Apr 2013 12:20
URI: http://eprints.bbk.ac.uk/id/eprint/3707

Archive Staff Only (login required)

Edit/View Item Edit/View Item