BIROn - Birkbeck Institutional Research Online

A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite

Peroos, S. and du, Zhimei and de Leeuw, Nora Henriette (2006) A computer modelling study of the uptake, structure and distribution of carbonate defects in hydroxy-apatite. Biomaterials 27 (9), pp. 2150-2161. ISSN 0142-9612.

Full text not available from this repository.
Official URL: http://dx.doi.org/10.1016/j.biomaterials.2005.09.0...

Abstract

Computer modelling techniques have been employed to qualitatively and quantitatively investigate the uptake and distribution of carbonate groups in the hydroxyapatite lattice. Two substitutional defects are considered: the type-A defect, where the carbonate group is located in the hydroxy channel, and the type-B defect, where the carbonate group is located at the position of a phosphate group. A combined type A–B defect is also considered and different charge compensations have been taken into account. The lowest energy configuration of the A-type carbonate has the O–C–O axis aligned with the channel in the c-direction of the apatite lattice and the third oxygen atom lying in the a/b plane. The orientation of the carbonate of the B-type defect is strongly affected by the composition of the apatite material, varying from a position (almost) flat in the a/b plane to being orientated with its plane in the b/c plane. However, Ca–O interactions are always maximised and charge compensating ions are located near the carbonate ion. When we make a direct comparison of the energies per substitutional carbonate group, the results of the different defect simulations show that the type-A defect where two hydroxy groups are replaced by one carbonate group is energetically preferred View the MathML source, followed by the combined A–B defect, where both a phosphate and a hydroxy group are replaced by two carbonate groups View the MathML source. The type-B defect, where we have replaced a phosphate group by both a carbonate group and another hydroxy group in the same location is energetically neutral View the MathML source, but when the replacement of the phosphate group by a carbonate is charge compensated by the substitution of a sodium or potassium ion for a calcium ion, the resulting type-B defect is energetically favourable View the MathML source and its formation is also promoted by A-type defects present in the lattice. Our simulations suggest that it is energetically possible for all substitutions to occur, which are calculated as ion-exchange reactions from aqueous solution. Carbonate defects are widely found in biological hydroxy-apatite and our simulations, showing that incorporation of carbonate from solution into the hydroxyapatite lattice is thermodynamically feasible, hence agree with experiment.

Item Type: Article
Keyword(s) / Subject(s): Hydroxyapatite, apatite structure, calcium carbonate, molecular modelling, carbonate defects
School or Research Centre: Birkbeck Schools and Research Centres > School of Science > Biological Sciences
Depositing User: Administrator
Date Deposited: 18 Aug 2011 10:34
Last Modified: 17 Apr 2013 12:21
URI: http://eprints.bbk.ac.uk/id/eprint/4018

Archive Staff Only (login required)

Edit/View Item Edit/View Item