BIROn - Birkbeck Institutional Research Online

The extent of enthalpy-entropy compensation in protein-ligand interactions

Olsson, T.S.G. and Pitt, W.R. and Ladbury, J.E. and Williams, Mark A. (2011) The extent of enthalpy-entropy compensation in protein-ligand interactions. Protein Science 20 (9), pp. 1607-1618. ISSN 0961-8368.

[img] Text (Refereed)
Olsson_etal_2011_revised.pdf - Accepted Version
Restricted to Repository staff only

Download (1MB) | Request a copy
Official URL:


The extent of enthalpy–entropy compensation in protein–ligand interactions has long been disputed because negatively correlated enthalpy (ΔH) and entropy (TΔS) changes can arise from constraints imposed by experimental and analytical procedures as well as through a physical compensation mechanism. To distinguish these possibilities, we have created quantitative models of the effects of experimental constraints on isothermal titration calorimetry (ITC) measurements. These constraints are found to obscure any compensation that may be present in common data representations and regression analyses (e.g., in ΔH vs. –TΔS plots). However, transforming the thermodynamic data into ΔΔ-plots of the differences between all pairs of ligands that bind each protein diminishes the influence of experimental constraints and representational bias. Statistical analysis of data from 32 diverse proteins shows a significant and widespread tendency to compensation. ΔΔH versus ΔΔG plots reveal a wide variation in the extent of compensation for different ligand modifications. While strong compensation (ΔΔH and −TΔΔS opposed and differing by < 20% in magnitude) is observed for 22% of modifications (twice that expected without compensation), 15% of modifications result in reinforcement (ΔΔH and −TΔΔS of the same sign). Because both enthalpy and entropy changes arise from changes to the distribution of energy states on binding, there is a general theoretical expectation of compensated behavior. However, prior theoretical studies have focussed on explaining a stronger tendency to compensation than actually found here. These results, showing strong but imperfect compensation, will act as a benchmark for future theoretical models of the thermodynamic consequences of ligand modification.

Item Type: Article
School or Research Centre: Birkbeck Schools and Research Centres > School of Science > Biological Sciences
Depositing User: Mark Williams
Date Deposited: 07 Dec 2012 17:11
Last Modified: 17 Apr 2013 12:33

Archive Staff Only (login required)

Edit/View Item Edit/View Item