DL-lite with attributes and datatypes

Book chapter (Published Version)

http://eprints.bbk.ac.uk/5784

Citation:

© 2012 IOS Press

Publisher version
DL-Lite with Attributes and Datatypes

Alessandro Artale and Vladislav Ryzhikov and Roman Kontchakov

Abstract.

We extend the DL-Lite languages by means of attributes and datatypes. Attributes—a notion borrowed from data models—associate concrete values from datatypes to abstract objects and in this way complement roles, which describe relationships between abstract objects. The extended languages remain tractable (with a notable exception) even though they contain both existential and (a limited form of) universal quantification. We present complexity results for two most important reasoning problems in DL-Lite: combined complexity of knowledge base satisfiability and data complexity of positive existential query answering.

1 Introduction

The DL-Lite family of description logics has recently been proposed and investigated in [7, 8] and later extended in [2, 15, 3]. The relevance of the DL-Lite family is witnessed by the fact that it forms the basis of OWL 2 QL, one of the three profiles of the Web Ontology Language, OWL 2 (www.w3.org/TR/owl2-profiles). According to the official W3C profiles document, the purpose of OWL 2 QL is to be the language of choice for applications that use very large amounts of data.

This paper extends the DL-Lite languages of [3] with so-called attributes (A), which associate concrete values from datatypes with abstract objects. These extensions will be formalized in a new family of languages, DL-Lite\((A^{\alpha})\) with \(\alpha\in\{\text{core, krom, horn, bool}\}\), which contain role and attribute inclusions with both (unqualified) existential and (a limited form of) universal quantification. Original and tight complexity results for both knowledge base satisfiability and query answering will be presented in this paper.

The notion of attributes, borrowed from conceptual modelling formalisms, introduces a distinction between (abstract) objects and concrete values (integers, reals, strings, etc.) and, consequently, between concepts (sets of objects) and datatypes (sets of values), and between roles (relating objects to objects) and attributes (relating objects to values). The language DL-Lite\((A)\) [15] was introduced with the aim of capturing the notion of attributes in DL-Lite in the setting of ontology-based data access (OBDA). The datatypes of DL-Lite\((A)\) are modelled as pairwise disjoint sets of values (which are also disjoint from concepts); a similar choice is made by various DLs encoding conceptual models [9, 6, 1]. Furthermore, datatypes of DL-Lite\((A)\) are used for typing attributes globally, e.g., the concept inclusion \(\exists \text{salary} \subseteq \text{Real}\) can be used to constrain the range of attribute salary to the type Real. However, this means that even if associated

\[\exists \text{salary} \subseteq \text{Real}\]

\[\text{Local attributes are strictly more expressive than global attributes: for example, the concept inclusion } \top \subseteq \exists \text{salary}.\text{Real} \text{ is equivalent to } \exists \text{salary} \subseteq \text{Real} \text{ mentioned above and implies that every value of salary is a Real, independently from the type of the employee. Using local attributes we can infer concept disjointness from datatype disjointness for the same (existentially qualified) attribute. For example, assume that in the scenario of Fig. 1 we add the concept of ForeignEmployee as having at-least one salary that must be a String (to take account of the currency). Then Employee and ForeignEmployee become disjoint concepts—i.e., Employee \(\cap\) ForeignEmployee \(\subseteq\) \(\bot\) will be implied—because of disjointness of the respective datatypes and restrictions on the salary attribute. We also allow more general datatype inclusions, which, for instance, can express that the intersection of a number of datatypes is empty.

Our work lies between the DL-Lite\((A)\) proposal and the extensions

1 KRDB Research Centre, Free University of Bozen-Bolzano, Italy, email: {lastname}@inf.unibz.it
2 Dept. of Comp. Science and Inf. Sys., Birkbeck, University of London, UK, email: roman@dcs.bbk.ac.uk
of DLs with concrete domains (see [13] for an overview). According to the concrete domain terminology, we consider a path-free extension with unary predicates—predicates coincide with datatypes with a fixed interpretation, as in DL-LiteA. Differently from the concrete domain approach, we do not require attributes to be functional; instead, we can specify generic number restrictions over them, similarly to extensions of ELC with datatypes [5, 11] and the notion of datatype properties in OWL 2 [14, 10]. Our approach works as far as datatypes are safe, i.e., unbounded—query answering is CONP-hard in presence of datatypes of specific cardinalities [12, 16]—and no covering constraints hold between them—query answering becomes CONP-hard again in the presence of a datatype, whose extension is a subset of (is covered by) the union of two other datatypes (cf. Theorem 2).

We provide tight complexity results showing that for the Bool, Horn and core languages addition of local and safe range restrictions on attributes does not change the complexity of knowledge base satisfiability. On the other hand, surprisingly, for the Krom language complexity increases from NLOGSPACE to NP. These results reflect the intuition that universal restrictions on attributes—as studied in this paper—cannot introduce cyclic dependencies between concepts; on the other hand, unrestricted use of universal restrictions (∀R.C) together with sub-roles, by which qualified existential restrictions (∃R.C) can be encoded, results in EXPSPACE-completeness [8].

We complete our complexity results by showing that positive existential query answering (and so, conjunctive query answering) over core and Horn knowledge bases with attributes, local range restrictions and safe datatypes is still FO-rewritable and so, is in AC0 for data complexity.

The paper is organized as follows. Section 2 presents DL-Lite and its fragments. Section 3 discusses the notion of safe datatypes used in this paper. Sections 4 and 5 study combined complexity of KB restrictions and safe datatypes is still FO-rewritable and so, is in AC0 for data complexity.

We standardly abbreviate \(\geq 1 R \) and \(\geq 1 U \) by \(3R \) and \(3U \), respectively. Taken together, a TBox \(T \) and an ABox \(A \) constitute the knowledge base (KB) \(K = (T, A) \).

It is known [3] that reasoning with role inclusions and number restrictions (even in core TBoxes without attributes) is already rather costly, EXPTIME-complete. Thus we impose the following syntactic restriction on sub-roles and sub-attributes [3]:

- \(\text{inter}_{P_q} \) if \(P_q \) has a proper sub-role in \(T \) then it contains no negative occurrences\(^3\) of \(\geq q R \) or \(\geq q R^* \) for \(q \geq 2 \);
- \(\text{inter}_{U_q} \) if \(U_q \) has a proper sub-attribute in \(T \) then it contains no negative occurrences of \(\geq q U \) for \(q \geq 2 \).

Semantics. As usual in description logic, an interpretation, \(I = (\Delta^X, \cdot) \), consists of a nonempty domain \(\Delta^X \) and an interpretation function \(\cdot \). The interpretation domain \(\Delta^X \) is the union of two nonempty disjoint sets: the domain of objects \(\Delta^O \) and the domain of values \(\Delta^T \). We assume that all interpretations agree on the semantics of datatypes and values: \(\frac{1}{\Delta^O} = \emptyset \) and \(\Delta^T = \text{val}(T_1) \subseteq \Delta^T \) is the set of values of each datatype \(T_1 \) (which does not depend on a particular interpretation) and \(v^T_j = \text{val}(v_j) \in \Delta^T_j \) is the value of each name \(v_j \) (which, again, does not depend on \(I \)). Note that the datatypes do not have to be mutually disjoint—instead, we assume that datatype constraints can be captured by Horn clauses—we will clarify the assumptions in Section 3.

The interpretation function \(\cdot \) assigns an element \(\alpha^X_i \in \Delta^O \) to each object name \(a_i \), a subset \(\alpha^X_i \subseteq \Delta^O \) of the domain of objects to each concept name \(A_k \), a binary relation \(P^X_k \subseteq \Delta^O \times \Delta^O \) over the domain of objects to each role name \(P_k \), and a binary relation \(U^X_k \subseteq \Delta^O \times \Delta^T \) to each attribute name \(U_k \). We adopt the unique name assumption (UNA): \(\alpha^X_i \neq \alpha^X_j \) for all \(i \neq j \). It is known [3] that not adopting the UNA in DL-Lite languages with number restrictions leads to a significant increase in the complexity of reasoning: KB satisfiability goes from NLOGSPACE to PTIME-hard with functionality constraints and even to NP-hard with arbitrary number restrictions; query answering loses the AC0 data complexity. Complex roles and concept are interpreted in \(I \) in the standard way:

\[
(P_k^X)^I = \{ (w', w) \in \Delta^O \times \Delta^O \mid (w, w') \in P_k^X \},
\]

\[
(t^X)^I = \Delta^O, \quad \bot^X = \emptyset,
\]

\[
(C_1 \cap C_2)^X = C_1^X \cap C_2^X, \quad (\neg C)^X = \Delta^O \setminus C^X,
\]

\[
(\geq q R)^X = \{ w \in \Delta^O \mid \exists (w', w) \in R^X \geq q \},
\]

\[
(\geq q U)^X = \{ w \in \Delta^O \mid \exists (v, w, v) \in U^X \geq q \},
\]

\[
(\forall U)^X T^X = \{ w \in \Delta^O \mid \forall v. (v, w) \in U^X \rightarrow v \in T^X \},
\]

where \(\Delta X \) is the cardinality of \(X \). The satisfaction relation \(\models \) is also standard:

\[
I \models C_1 \subseteq C_2 \text{ iff } C_1^X \subseteq C_2^X, \quad I \models R_1 \subseteq R_2 \text{ iff } R_1^X \subseteq R_2^X,
\]

\[
I \models U_1 \subseteq U_2 \text{ iff } U_1^X \subseteq U_2^X, \quad I \models U_k(a, v_j) \text{ iff } (a^X, v_j^X) \in U_k^X.
\]

A KB \(K = (T, A) \) is said to be satisfiable (or consistent) if there is an interpretation, \(I \), satisfying all the members of \(T \) and \(A \). In this case we write \(I \models K \) (as well as \(I \models T \) and \(I \models A \)) and say that \(I \) is a model of \(K \) (\(T \) and \(A \)).

A positive existential query \(q(x_1, \ldots, x_n) \) is a first-order formula \(\varphi(x_1, \ldots, x_n) \) constructed by means of conjunction, disjunction and existential quantification starting from atoms of the from \(A_k(t_1), T_k(t_1), P_k(t_1, t_2) \) and \(U_k(t_1, t_2) \), where \(A_k \) is a concept name, \(T_k \) a datatype name, \(P_k \) a role name, \(U_k \) an attribute name.

\(^3\) An occurrence of a concept on the right-hand (left-hand) side of a concept inclusion is called negative if it is in the scope of an odd (even) number of negations \(\neg \); otherwise it is called positive.
and \(t_1, t_2 \) are terms taken from the list of variables \(y_0, y_1, \ldots \), object names \(a_0, a_1, \ldots \) and value names \(v_0, v_1, \ldots \); object names and value names will be called constants. We write \(q(\vec{x}) \) for a query with free variables \(\vec{x} = x_1, \ldots, x_n \) and \(q(\vec{a}) \) for the result of replacing every occurrence of \(x_i \) in \(q(\vec{x}) \) with the righthand component \(a_i \) of a vector of constants \(\vec{a} = a_1, \ldots, a_n \). We will equivocate between DL and first-order interpretations and write \(I \models q(\vec{a}) \) to say that \(q(\vec{a}) \) is true in \(I \). A conjunctive query is a positive existential query without disjunctions.

For a KB \(K = (T, A) \), we say that a tuple \(\vec{a} \) of constants from \(A \) is a certain answer to \(q(\vec{x}) \) with respect to \(K \), and write \(K \models q(\vec{a}) \), if \(I \models q(\vec{a}) \) whenever \(I \models K \). The query answering problem is given a KB \(K = (T, A) \), a query \(q(\vec{x}) \) and a tuple \(\vec{a} \) of constants from \(A \), decide whether \(K \models q(\vec{a}) \).

Theorem 2. Conjunctive query answering in DL-Lite\(_{core}\) with covering constraints on datatypes is \(\text{coNP} \)-hard (even without sub-roles, sub-attributes and number restrictions).

Proof. We prove the result by reduction of the complement of \(2+2 \text{CNF} \) (similar to instance checking in \(ACE \) [17]). Suppose we are given a \(\text{CNF} \) \(\psi \) in which every clause contains two positive and two negative literals (including the constants \(true, false \)). Let \(T \) be a datatype covered by non-empty disjoint \(T_0 \) and \(T_1 \). Let \(T \) contain the following concept inclusion for an attribute \(U \) and concepts \(B \) and \(C \): \(B \subseteq \exists U \cdot B \subseteq \forall U \cdot T \subseteq \forall U \cdot T \), and consider the following conjunctive query:

\[
q = \exists y, \vec{t}, \vec{u} \left(P_1(y, t_1) \land P_2(y, t_2) \land N_1(y, t_3) \land N_2(y, t_4) \land U(t_1, u_1) \land U(t_2, u_2) \land U(t_3, u_3) \land U(t_4, u_4) \land T_0(u_1) \land T_1(u_2) \land T_2(u_3) \land T_3(u_4) \right)
\]

with roles \(P_1, P_2, N_1 \) and \(N_2 \). We construct an ABox \(A_\psi \) with individuals \(true \) and \(false \) for the propositional constants, an individual \(x_i \), for each propositional variable \(x_i \) in \(\psi \), and an individual \(c_i \), for each clause of \(\psi \). Let \(A_\psi \) contain assertion \(B(x_i) \), for each propositional variable \(x_i \) in \(\psi \), assertions \(C(\text{false}), U(\text{true}, v_1) \), for a value \(v_1 \) of datatype \(T_1 \), and the following assertions, for each clause \(x_{i_1} \land x_{i_2} \land \neg x_{i_3} \land \neg x_{i_4} \) of \(\psi \):

\[
P_i(c_i, x_{j_1}), P_2(c_i, x_{j_2}), N_1(c_i, x_{j_3}), N_2(c_i, x_{j_4})
\]

(here the \(x_j \) may include propositional constants). It is readily checked that \((T, A_\psi) \not\models q \iff \psi \) is satisfiable. Indeed, if \(\psi \) is satisfiable we construct \(I \) by ‘extending’ \(A_\psi \) by \(U(x_1, v_0) \) if \(x_i \) is false in the satisfying assignment and by \(U(x_i, v_1) \) otherwise, where \(v_0 \) is in \(T_0 \) and \(v_1 \) in \(T_1 \) (recall that these datatypes are non-empty and disjoint). Conversely, if \((T, A_\psi) \not\models q \) then there is a model \(I \) of \((T, A_\psi) \) in which \(q \) is false. Then the satisfying assignment can be defined as follows: a propositional variable \(x_i \) is true if one of the attribute values of \(x_i \) belongs to datatype \(T_i \)—it does not matter whether other values belong to \(T_0 \) or not, the negative answer to the query \(q \) guarantees that \(\psi \) is true under such an assignment.

The following theorem shows that without condition (i) we lose FO-rewritability of conjunctive queries in the presence of number restrictions.

Theorem 3. Conjunctive query answering in DL-Lite\(_{core}\) with datatypes not respecting condition (i) of Definition 1 is \(\text{coNP} \)-hard (even without sub-roles and sub-attributes).

Proof. We modify the proof of Theorem 2. Assume that the difference between a datatype, \(T \), and a union of two datatypes, \(T_0 \) and \(T_1 \), has a finite cardinality, say \(k \). We replace the concept inclusion \(B \subseteq \exists U \cdot B \subseteq \{(k + 1) \cdot U \} \), which forces a choice of at least

<table>
<thead>
<tr>
<th>language</th>
<th>KB satisfiability</th>
<th>query answering</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL-Lite(_{core})</td>
<td>NLogSpace [Th.4]</td>
<td>(\text{AC}^0) [Th.6]</td>
</tr>
<tr>
<td>DL-Lite(_{core})</td>
<td>PTIME [Th.4]</td>
<td>(\text{AC}^0) [Th.6]</td>
</tr>
<tr>
<td>DL-Lite(_{core})</td>
<td>NP [Th.5]</td>
<td>(\text{coNP} [3])</td>
</tr>
<tr>
<td>DL-Lite(_{core})</td>
<td>NP [Th.4]</td>
<td>(\text{coNP} [3])</td>
</tr>
</tbody>
</table>

3 Safe Datatypes

In this section we define the notion of safe datatypes and show that such restrictions are required for preserving data complexity of query answering.

Definition 1. A set of datatypes \(\mathcal{D} = \{ T_1, \ldots, T_n \} \) is called safe if (i) the difference between an arbitrary intersection of datatypes and an arbitrary union of datatypes is either empty or unbounded; (ii) all constraints between datatypes are in the form of Horn clauses \(T_{i_1} \land \cdots \land T_{i_k} \subseteq D \cdot T_{j_0} \).

A set of datatypes \(\mathcal{D} \) is called weakly safe if (i') arbitrary intersections of datatypes are either empty or unbounded and (ii) holds.

Restriction (i) has been independently introduced by Savkovic [16].
one U attribute value to be in either T_0 or T_1. In the former case, as before, we assume that the propositional variable gets value $false$, while in the latter case it gets value $true$. □

Thus, the safe condition essentially disallows the use of enumerations and any datatypes, whose non-empty intersection or difference has a finite number of elements. From now on we consider only (weakly) safe datatypes.

4 Complexity of KB Satisfiability in DL-Lite$_{a}^{(HN,A)}$

We first introduce the encoding of a DL-Lite$_{a}^{(HN,A)}$ KB $K = (T, A)$ into a first-order sentence $K_{1^{sa}}$ with one variable, adopting the technique introduced in [3]. We denote by role$^\subseteq(K)$ the set of role names in K and their inverses, by att(K) and dt(K) the sets of attribute and datatype names in K, respectively, and by obi(A) and val(A) the set of all object and value names in A, respectively. To simplify the presentation, we will assume that $(R^-)^*$ is the same as R and will often use H for a role R or an attribute name U. We will also assume that all number restrictions are of the form $\exists H$ and $\exists' H$ (i.e., only $q = 1$ is allowed) and that the ABox contains no assertions of the form $\neg A_i(a_i)$ and $\neg P_k(a_i, a_j)$—see the full version [4] for the treatment of the full language.

Every $a_i \in$ obi(A) is associated with the individual constant a_i, and every concept name A_i with the unary predicate $A_i(x)$. For each concept $\exists R$, we take a fresh unary predicate $ER(x)$. Intuitively, for a role name P_k, the predicate EP_k represents the objects with a P_k-successor—the domain of P_k—and EP_k^* the range of P_k. We also introduce individual constants, as representatives of the objects in the domain (dp_k) and the range (dp^*_k) of each role P_k. Similarly, for each attribute name U, we take a unary predicate $EU_U(x)$, representing the objects with at least one value of the attribute U. We also need, for each attribute name U, and each datatype name T_j, a unary predicate $U_jT_j(x)$, representing the objects such that all their U attribute values belong to the datatype T_j (as usual, if they have attribute U values at all).

The encoding C^* of a concept C is then defined inductively:

\[\bot^* = \bot, \quad (A_i)^* = A_i(x), \quad (\neg C)^* = \neg C^*(x), \quad (\exists H)^* = E_H(x), \quad (C_1 \cap C_2)^* = C_1^*(x) \land C_2^*(x), \quad (\forall U, \bot)^* = \neg E_1 U(x), \quad (\forall U, T)^* = U_T(x).\]

The following sentence then encodes the knowledge base K:

\[K_{1^{sa}} = \forall x \left[T^*(x) \land \beta(x) \land \bigwedge_{R \in \text{role}(K)} \epsilon_R(x) \land \bigwedge_{U \in \text{att}(K)} \theta_U(x) \right] \land A_{1^{sa}},\]

where

\[T^*(x) = \bigwedge_{c_1 \subseteq c_2 \in T} (C_2^*(x) \rightarrow C_1^*(x)) \land \bigwedge_{H \subseteq H'} ((\exists H)^*(x) \rightarrow (\exists H')^*(x)),\]

\[A_{1^{sa}} = \bigwedge_{A_i \in A} A_i^*(a_i) \land \bigwedge_{P(a, a_i) \in A} (\exists P)^*(a) \land (\exists P')^*(a_i)) \land \bigwedge_{U(a_i, a_j) \in A} U^*(a_i), \land \bigwedge_{V \in \text{att}(K)} \neg \epsilon_V(x), \land \bigwedge_{\forall U, T} \theta_U(x),\]

and \subseteq^T is the reflexive and transitive closure of the subrole and sub-attribute relations of the TBox, i.e., of the union \{(R, R'), (R', R') | R \subseteq R' \in T\} \cup \{(U, U') | U \subseteq U' \in T\}.

Roles are interpreted as binary predicates in a DL interpretation and so, the range of a role R is not empty whenever its domain contains an element. So, in order to capture this intuition, in $K_{1^{sa}}$ we include the following formula, for each $R \in \text{role}(K)$:

\[\epsilon_R(x) = ER(x) \rightarrow ER^*(dr^-).\]

Attributes are involved both in existential and universal quantification.

So, the second conjunct of T^* reflects the fact that if an object has a U value (existential quantifier $\exists U$) then it also has a U' value, for each U' with $U \subseteq U' \in T$; universal quantification propagates the datatypes in the opposite direction:

\[\theta_U(x) = \bigwedge_{T_1 \cap \cdots \cap T_k \subseteq T} \left((\forall U, T_1)^* \land \cdots \land (\forall U, T_k)^* \rightarrow (\forall U, T)^* \right).\]

We also need a formula that captures the relationships between datatypes, as defined by the Horn clauses in D, for all attributes U:

\[\theta_U(x) = \bigwedge_{T_1 \cap \cdots \cap T_k \subseteq T} \left((\forall U, T_1)^* \land \cdots \land (\forall U, T_k)^* \rightarrow (\forall U, T)^* \right).\]

We note that the formula $\theta_U(x)$, in particular for disjoint datatypes, e.g., with $T_1 \cap T_2 \subseteq T$, demonstrates a subtle interaction between attribute range constraints, $\forall U, T$, and minimal cardinality constraints, $\exists U$.

We now show that for the Bool, Horn, and core languages the addition of attributes to DL-Lite$_{a}^{(HN,A)}$ of [3] does not change the combined complexity of KB satisfiability:

Theorem 4. Checking KB satisfiability with weakly safe datatypes is NP-complete in DL-Lite$_{a}^{(HN,A)}$, PTIME-complete in DL-Lite$_{horn}^{(HN,A)}$ and NLOGSPACE-complete in DL-Lite$_{core}^{(HN,A)}$.

Proof. (Sketch) We show that a given KB K is satisfiable iff the universal first-order sentence $K_{1^{sa}}$ is satisfiable. One direction is straightforward: if there is a model of K then the model of $K_{1^{sa}}$ can be defined on the same domain by taking, say, C^* to be C^2. The key ingredient of the converse direction is the unravelling construction: every model of $K_{1^{sa}}$ can be unravelled into a DL interpretation—in essence, the points dp_k and dp^*_k are copied to recover the structure of roles as binary relations, while recovering attributes requires more subtlety; see [4] for more details.

It is of interest to note that the complexity of KB satisfiability increases in the case of Krom TBoxes:

Theorem 5. Satisfiability of DL-Lite$_{krom}^{(HN,A)}$ KBs is NP-hard with a single pair of disjoint datatypes even without role and attribute inclusions nor cardinalities (and so, for DL-Lite$_{krom}^{A}$).

Proof. The proof is by reduction of 3SAT. It exploits the structure of the formula $\theta_U(x)$ in $K_{1^{sa}}$: if datatypes T and T' are disjoint then the concept inclusion

\[\forall U, T \land \forall U, T' \land \exists U \subseteq \bot,\]

although not in the syntax of DL-Lite$_{krom}^{(HN,A)}$, is a logical consequence of T. Using such ternary intersections with the full negation of the Krom fragment one can encode 3SAT. Let $\varphi = \bigwedge_{i=1}^{m} C_i$ be a 3CNF, where the C_i are ternary clauses over variables p_1, \ldots, p_n. Now, suppose $p_{i_1} \lor \neg p_{i_2} \lor \neg p_{i_3}$ is the ith clause of φ. It is equivalent to $\neg p_{i_1} \land \neg p_{i_2} \land \neg p_{i_3} \rightarrow \bot$ and so, can be encoded as follows:

\[\neg A_{i_1} \subseteq \forall U, T, \quad A_{i_2} \subseteq \forall U, T', \quad \neg A_{i_3} \subseteq \exists U,\]
where A_1,\ldots,A_n are concept names for variables p_1,\ldots, p_n, and U_i is an attribute for the ith clause (note that Krom concept inclusions of the form $\neg B \sqsubseteq B'$ are required, which is not available in core TBoxes). Let \mathcal{T} consist of all such inclusions for clauses in φ. It can be seen that φ is satisfiable iff \mathcal{T} is satisfiable.

5 Query Answering: Data Complexity

In this section we study the data complexity of answering positive existential queries over a KB expressed in languages with attributes and datatypes. As follows from the proof of Theorem 4, for a DL-Lite$_{\text{horn}}^{(\mathcal{N}, \mathcal{A})}$ KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, every model \mathcal{M} of the first-order sentence $\mathcal{K}^+\mathcal{A}$ induces a forest-shaped model \mathcal{M}_0 of \mathcal{K} with the following properties:

(1) The names $a \in ob(A) \cup val(A)$ induce a partitioning of the domain Δ_0 into disjoint labelled trees $\mathcal{T}_a = (T_a, E_a, \ell_a)$ with nodes T_a, edges E_a, root a, and a labelling function ℓ_a that assigns a role or an attribute name to each edge (indicating a minimal, w.r.t. \sqsubseteq_T, role or attribute name that required a fresh successor due to an existential quantifier); the trees for $v \in val(A)$ consist of a single node, v.

(2) There is a map $cp_\mathcal{K}: \Delta_0 \to ob(A) \cup val(A) \cup \{d \mid d \in \mathcal{D}, \exists R \sqsubseteq \mathcal{K}\}$, such that $cp_\mathcal{K}(a) = a$, if $a \in ob(A) \cup val(A)$, and $cp_\mathcal{K}(w) = dr$, it $\ell_a(w',w) = R^*$, for $(w',w) \in E_a$.

For every role (attribute name) R, $H'_{\Delta_0} \equiv \{(a_i,a_j) \mid H'(a_i,a_j) \in \mathcal{A}, H' \sqsubseteq_T H\} \cup \{(w,w') \in E_a \mid \ell_a(w',w) = H', H' \sqsubseteq_T H, a \in ob(A)\}$.

THEOREM 6. The positive existential query answering problem for DL-Lite$_{\text{horn}}^{(\mathcal{N}, \mathcal{A})}$ and DL-Lite$_{\text{core}}^{(\mathcal{N}, \mathcal{A})}$ is in AC0 for data complexity.

Proof. We adopt the technique of the proof of Theorem 7.1 [3]. Suppose that we have a consistent DL-Lite$_{\text{horn}}^{(\mathcal{N}, \mathcal{A})}$ KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ and a positive existential query in prefix form $\exists \mathcal{Q}(\mathcal{X})$, such that $\mathcal{Q}(\mathcal{X})$ is the canonical model of \mathcal{K}, i.e., the model induced by \mathcal{M}_0 (see its construction in the full version [4]). The following properties hold, for all basic concepts B and datatypes \mathcal{T}:

$\begin{align*}
A_i \in B_{\Delta_0} & \iff \mathcal{K} \models B(a_i), \text{ for } a_i \in ob(A), \\
w \in B_{\Delta_0} & \iff \mathcal{K} \models \exists R \sqsubseteq B, \text{ for } w \text{ with } cp_\mathcal{K}(w) = dr, \\
v_i \in T_{\Delta_0} & \iff \text{val}(v_i) \in \text{val}(T), \text{ for } v_i \in \mathcal{M}(A), \\
v \in T_{\Delta_0} & \iff w \in B_1^+\ldots B_k^+ T = B_1 \sqcap \ldots \sqcap B_k \sqsubseteq \mathcal{U} \mathcal{T}, \text{ for } (w,v) \in U_{\Delta_0} \text{ and } v \notin \text{val}(A).
\end{align*}$

Formula (1) describes conditions when a named object, a_i, belongs to a basic concept, B, in the canonical model \mathcal{M}_0—we say it describes the type of a_i. Similarly, (2) describes types of unnamed objects, which are copies of the dr, for roles R; it is worth pointing out that those types are determined by a single concept, $\exists R$. The same two properties were used in the proof of the proof of Theorem 7.1 [3]. The other two properties are specific to datatypes: (3) describes the type of a named datatype value and (4) the type of an unnamed datatype value. We note that (4) holds only for safe datatypes, and even weakly safe datatypes cannot guarantee that in the process of unravelling it is always possible, for every $w \in (\mathcal{U} U)^{\Delta_0}$, to pick a fresh attribute U value of the ‘minimal type’—i.e., a datatype value that belongs only to datatypes T with $w \in (\mathcal{U} U)^{\Delta_0}$.

It is straightforward to check that the canonical model \mathcal{M}_0 provides correct answers to all queries.

LEMMA 7. $\mathcal{K} \models q(\bar{a})$ if and only if $\mathcal{I}_0 \models q(\bar{a})$, for all tuples \bar{a}.

The depth of a point $w \in \Delta_0$ is the length of the shortest path in the respective tree to its root. Denote by w_m the set of points of depth $\leq m$ (including all values $v \in \Delta_0$) that were taken to satisfy existential quantifiers for objects in W_{m-1}. Our next lemma shows that to check whether $\mathcal{I}_0 \models q(\bar{a})$ it suffices to consider points of depth $\leq m_0$ in Δ_0, for some m_0 that does not depend on $|\mathcal{A}|$.

LEMMA 8. If $\mathcal{I}_0 \models \exists y \varphi(\bar{a},y)$ then there is an assignment a_0 in W_{m_0} such that $\mathcal{I}_0 \models \mathcal{I}_0 \models \varphi(\bar{a},y)$ and $a_0(y_i) \in W_{m_0}$, for all $y_i \in Y$, where $m_0 = |\mathcal{I}_0| + |\mathcal{D}| + 1$.

To complete the proof of Theorem 6, we encode the problem $\exists \mathcal{Q}(\mathcal{X})$ as a model checking problem for first-order formulas over the ABox \mathcal{A} as considered in first-order models, denoted by A, with domain $ob(A) \cup val(A)$; we assume that this first-order model also contains all datatype extensions. Now we define a first-order formula $\varphi_T(\bar{x})$ in the signature of \mathcal{T} and q such that $\varphi_T(\bar{x})) \in \mathcal{T} \models \varphi_T(\bar{x})$ and $\varphi_T(\bar{x})$ does not hold but not on A, and (ii) $A \models \varphi_T(\bar{x})$ if $\mathcal{I}_0 \models q(\bar{a})$.

Denote by $\text{con}(\mathcal{K})$ the set of basic concepts in \mathcal{K} together with all concepts of the form $\forall U.T$, for attribute names U and datatypes T from \mathcal{K}. We begin by defining formulas $\psi_T(x)$, for $B \in \text{con}(\mathcal{K})$, that describe the types of named objects (cf. (1)): for all $a_i \in ob(A)$,

$$A \models \psi_T(a_i) \iff a_i \in B_{T_0}, \text{ if } B \text{ is a basic concept, } \forall U.T \models \psi_T(a_i) \iff a_i \in B_1^+ \ldots B_k^+ \text{ and } T \models B_1 \sqcap \ldots \sqcap B_k \sqsubseteq \mathcal{U} \mathcal{T}.$$

These formulas are defined as the ‘fixed-points’ of sequences $\psi_T^{(0)}(x), \psi_T^{(1)}(x), \ldots$ by defining $\psi_T^{(0)}(x) = \psi_T^{(0)}(x)$, and $\psi_T^{(i)}(x) = \psi_T^{(i-1)}(x)$.

We again assume that all number restrictions are of the form $\exists R$, for all U; the full version [4] treats arbitrary number restrictions). It should be clear that there is N with $\psi_T^{(N)}(x) \equiv \psi_T^{(N+1)}(x)$, for all B at the same time, and that N does not exceed the cardinality of $\text{con}(\mathcal{K})$.

We set $\psi_T^{(0)}(x) \equiv \psi_T^{(N)}(x)$.

Next we define sentences $\theta_{B,dr}$, for $B \in \text{con}(\mathcal{K})$ and $dr \in \mathcal{D}$, that describe types of the unnamed objects, i.e., copies of the dr (cf. (2)): for all w with $cp_\mathcal{K}(w) = dr$,

$$A \models \theta_{B,dr} \iff w \in B_{T_0}, \text{ if } B \text{ is a basic concept, } \forall U.T \models \theta_{B,dr} \iff T \models \exists R \sqsubseteq \mathcal{U} \mathcal{T}.$$

Note that the type of copies of dr is determined by a single concept, $\exists R$, and therefore, there is no need to consider conjunctions in (8); see also (6). We inductively define a sequence $\theta_{B,dr}^{(0)}, \theta_{B,dr}^{(1)}, \ldots$ by taking $\theta_{B,dr}^{(0)} = \mathcal{T}$ if $B \models \exists R$ and $\theta_{B,dr}^{(0)} = \mathcal{T}$ otherwise, with $\theta_{B,dr}^{(i+1)}$ defined similarly to $\psi_T^{(i)}$ above. As with the ψ_T, set $\theta_{B,dr} = \theta_{B,dr}^{(0)}$.

Now, suppose $\mathcal{I}_0 \models \exists y \varphi(\bar{a},y)$ and $a_0(y_i) \in W_{m_0}$, for every $y_i \in Y$, where m_0 is as in Lemma 8. Recall that our aim is to compute
the answer to this query in the first-order model \mathcal{A} representing the ABox. This model, however, does not contain points in $W_{m_0} \setminus W_0$, and to represent them, we use the following ‘trick.’ By (forest), every $w \in W_{m_0}$ is uniquely determined by a pair (a, σ), where a is the root of the tree T_a containing w and σ is the sequence of labels $\ell_\alpha(u, v)$ on the path from a to w. Not every such pair, however, corresponds to an element in W_{m_0}. In order to identify points in W_{m_0}, we consider the following directed graph $G_T = (V_T, E_T)$, where V_T is the set of equivalence classes $[H] = \{H' \mid H \subseteq_T H' \text{ and } H' \subseteq_T H\}$ and E_T is the set of all pairs $([H], [H])$ such that $T \models \exists R \subseteq \Sigma H \text{ and } R \subseteq_T H$, and H has no proper sub-role/attribute satisfying this property. Let Σ_{T,m_0} be the set of all paths in the graph G_T of length $\leq m_0$; more precisely,

$$\Sigma_{T,m_0} = \{\varepsilon\} \cup V_T \cup \{([H_1], \ldots, [H_n]) \mid 2 \leq n \leq m_0 \text{ and } ([H_j], [H_{j+1}]) \in E_T, \text{ for } 1 \leq j < n\}.$$

By the unravelling procedure, we have $\sigma \in \Sigma_{T,m_0}$, for all pairs (a, σ) representing elements of W_{m_0}. We note, however, that a pair (a, σ) with $\sigma = ([H_1], \ldots) \in \Sigma_{T,m_0}$ corresponds to a $w \in W_{m_0}$ only if a has not enough H-witnesses in \mathcal{A}.

In the first-order rewriting φ_T we are about to define we assume that the bound variable y_i range over W_0 and represent the first component of the pairs (a, σ) (these y_i should not be confused with the y_i in the original query φ, which range over W_{m_0}), whereas the second component is encoded in the ith member σ_i of a vector $\tilde{\sigma}$. Note that constants and free variables need no second component, σ, and, to unify the notation, for each term t we denote its σ-component by t^σ, which is defined as follows: $t^\sigma = \varepsilon$ if t is a constant or free variable and $t^\sigma = \sigma_i$ if $t = \ell_\alpha(u, v)$.

Let k be the number of bound variables y_i and let Σ_{T,m_0} be the set of k-tuples $\tilde{\sigma} = (\sigma_1, \ldots, \sigma_k)$ with $\sigma_i \in \Sigma_{T,m_0}$. Given an assignment a_0 in W_{m_0}, we denote by $split(a_0)$ the pair $(a, \tilde{\sigma})$ made of an assignment a in \mathcal{A} and $\tilde{\sigma} \in \Sigma_{T,m_0}$ such that $t^\sigma = ([H_1], \ldots, [H_n])$, for a sequence H_1, \ldots, H_n of ℓ_α-labels on the path from a to $a_0(t)$. We define now, for every $\tilde{\sigma} \in \Sigma_{T,m_0}$, concept name A, role or attribute name H and datatype name T:

$$A^\sigma(t) = \begin{cases} \psi_A(t), & \text{if } t^\sigma = \varepsilon, \\ \theta_A(\text{split}(t), \sigma), & \text{if } t^\sigma = \sigma_i[S], \end{cases}$$

$$H^\sigma(t_1, t_2) = \begin{cases} t^\sigma = \varepsilon, & \text{if } t_1^\sigma = t_2^\sigma = \varepsilon, \\ t^\sigma = t_1^\sigma[S] = t_2^\sigma, & \text{for } S \subseteq_T H, \\ \bot, & \text{otherwise}, \end{cases}$$

$$T^\sigma(t) = \begin{cases} t^\sigma = \varepsilon, & \text{if } t^\sigma = U, \\ \psi_{\mathcal{U}, T}(t), & \text{if } t^\sigma = \sigma_i[S], \end{cases}$$

Let a_0 in W_{m_0} with $split(a_0) = (a, \sigma)$. φ_T is a finite conjunction of $\varphi_T(\tilde{x}, \tilde{y})$:

$$\varphi_T(\tilde{x}, \tilde{y}) \equiv \bigwedge_{\tilde{\sigma} \in \Sigma_{T,m_0}} \bigwedge_{\sigma_i = ([H_1], \ldots) \neq \varepsilon} \bigwedge_{1 \leq i \leq k} (\neg \varphi^\tilde{\sigma}_H(y_i) \land \varphi^\tilde{\sigma}_H(y_i)),$$

where $\varphi^\tilde{\sigma}(\tilde{x}, \tilde{y})$ is the result of attaching the superscript $\tilde{\sigma}$ to each atom of φ; the last conjunct ensures that each pair (a, σ_i) corresponds to an element of $w \in W_{m_0}$. Correctness of this rewriting follows from Lemma 9, see the full version [4].

6 Conclusions

We extended DL-Lite with local attributes—allowing the use of the same attribute associated to different concepts—and safe datatypes where datatype constraints can be expressed with Horn-like clauses. Notably, this is the first time that DL-Lite is equipped with a form of the universal restriction $\forall U.T$. We showed that such an extension is harmless with the only exception of the Krom fragment, where the complexity rises from NLOGSPACE to NP. We studied also the problem of answering positive existential queries and showed that for the Horn and core extensions the problem remains in AC^0(i.e., FO-rewritable).

As a future work we are interested in relaxing the safe condition for datatypes, in particular we conjecture that the restriction on the boundedness of datatype difference can be relaxed for particular concrete domains.

REFERENCES

[16] O. Savković, Managing Datatypes in Ontology-Based Data Access, MSc dissertation, European Master in Computational Logic, Faculty of Computer Science, Free University of Bozen-Bolzano, October 2011.