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Abstract 
 

We examine a popular practitioner methodology used in the construction of linear factor models 

whereby particular factors are increased/decreased in relative importance within the model. This 

allows model builders to customise models and, as such, reflect those factors that the 

client/modeller may think important. We call this process Pragmatic Bayesianism (or prag-Bayes 

for short) and we provide analysis which shows when such a procedure is likely to be successful. 
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1. Introduction 

 The purpose of this paper is to investigate statistical procedures frequently used by 

practitioners to build factor models. In particular we are interested in the variable selection 

methodologies that are used to give a particular returns model a particular style and nature. For 

example, in the context of global models one may wish the model to depend more/less upon 

domestic factors such as country’s indices rather than, say, global factors such as currency or 

world equity/bond markets. Likewise at the domestic level, one may want one’s model to be 

built around styles (value, growth etc.) rather than industries or sectors – alternatively, the 

opposite may be preferred. The literature on this topic is very sparse. We present a brief survey 

of alternative approaches. The problem can be viewed as a practical alternative to well-known 

Bayesian procedures, such as Jorion’s (1986) Bayes Stein adjustment and Black-Litterman’s BL 

model (1991, 1992). These models are both examples of Bayesian adjustment which effectively 

updates currently held opinions with data to form new opinions. Satchell and Scowcroft (2000) 

also present details of Bayesian portfolio construction procedures based on Black-Litterman 

models. The essential idea in this process is to have a prior distribution over expected returns or 

over the regression Betas. In either case, one needs to specify hyperparameters which are, in 

practice, very troublesome. The procedure we advocate, and which is used by practitioners, is to 

convert beliefs about the magnitude of betas into procedures of sequential regression.  

 

In section two we shall describe how this is done in practice and how it could be analysed in 

theory. In section 3 we shall present conditions under which these methodologies should work. 
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Section 4 presents some empirical results. Conclusions and further discussion are presented in 

section 5. 

 

2. Section 2 

 There are a number of procedures that can be used to facilitate one factor being preferred 

to another. Here we shall assume that our return series is denoted by the nൈ 1 vector y and the 

two factors over which we may have preferences are denoted by 1X  and 2X  respectively, both  

nൈ 1 vectors.  

Letting  [ ]1 22n
X X , X
×
= , we will facilitate calculations later by making the following 

assumption: 

1
1

X X
ρ

ρ
′ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

Our “true” model is 

(1)  1 1 2 2y X X uβ β= + +  

where y and u are nൈ 1 vectors, β1 and β2 scalars and ( )20 Nu ~ N , I .σ  

 This is obviously a simplification of the general case but little is lost in so doing and it 

allows us to focus on the essential features of the problem. We now define the sequential 

variable selection method (SVSM), which is the essential component of the prag-Bayes 

approach. 

 Definition: The SVSM is defined by the following procedure. If you want variable 1 to 

“explain” more of y asset returns than variable 2 you regress variable 1 first in a univariate 

regression. The coefficient for variable 2 is then calculated by regressing the residual of y on 

variable 1 upon the residual of variable 2 on variable 1. 
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 The question we wish to ask is: under what circumstances will this procedure lead to a 

larger estimated exposure ( 1β̂ ) of variable 1 versus that of variable 2, ( 2β̂ ). A closely related 

question is the conditions under which the new slope estimates will be bigger/smaller than those 

calculated from conventional ordinary least-squares, (OLS). 

 It is worth discussing a variant on these procedures which concerns testing. Rather than 

just focusing on the magnitude of β̂ : we could also/alternatively make inclusion/exclusion 

decisions based on t-statistics. Our results can be tilted in the desired direction by simply moving 

the critical values of our tests. 

 In terms of the equation (1), we do not wish to impose β1>β2 for all stocks. This is 

because we recognise that particular stocks may not be modelled subject to such a constraint. To 

illustrate, in the case of factor 1 being a global factor and factor 2 being a domestic factor, we 

can imagine cases of multinationals where β1>β2 but there will also be Japanese railway stocks, 

for example, where the opposite is true. Accordingly a Bayesian approach where β1 and β2 are 

variable allows us to approach this q estion in a theoretically appealing way. u

 We may have a prior, that P(β1൒β2) ൒d where d is some threshold probability, and P() 

denotes the probability of the event in brackets. This can be easily imposed by an adroit choice 

of hyper-parameters in the prior joint distribution of β1 and β2. Then we can compute the 

likelihood in the usual way, and finally, the posterior distribution of β1 and β2 where the 

posterior probability of β1൒β2 can be computed in a straightforward manner. However, 

implementation of hierarchical Bayes models required a number of ancillary assumptions that are 

not particularly transparent, see Gelman(2004) for example. We shall not detail how a Bayesian 

might proceed but return to our SVSM method to see if it can achieve similar results and now 
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address the second question as to whether the SVSM method will increase the magnitude, 

relative to OLS, of estimated β1 . 

 

With the above model we now consider the two estimators of β1 

 a. 1β̂  from y = X1β1 + ߱ where ߱ = X2β2 + u 

  1
1 1 1

ˆ ( X X ) yβ −
1X′ ′= = 1

1 1 1 2 2( X X ) X ( X u )−′ ′
1β β+ +  

 b.         1β%  from y = X1β1 + X2β2 + u i.e. 

  1β% = 
2

1
1 1 1x( X P X ) X P

2x y−′ , where 
2

1
2 2 2( )xP I X X X X−

2′ ′= −  

With the assumption on ( X  we have immediately that X )′

1 1
ˆ X yβ ′=  

   2 1
1 11( ) ( X y Xβ ρ ρ− ′ ′= − −%

2 y )

and since 

   u ~ N(0, σ2I). 

This implies 

   y ~ N(Xβ, σ2I) 

and 

  11
2 1 2 1

21

1 0
1 1

ˆ X y
X y( ) ( )

β
ρ ρ ρβ − −

′⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ′−

    ~ N(µ, σ2Σ) 

− −⎝ ⎠⎝ ⎠⎝ ⎠%
 

where 

1 2

1

β ρβ
μ

β
+⎛ ⎞

= ⎜ ⎟
⎝ ⎠

and  2 1

1 1
1 1( )ρ −

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

∑
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We now calculate the following probability illustrated in the following diagram where the 

horizontal axis gives values of 1β̂  while the vertical gives values of 1β%  

1 1
ˆP(| | | |)β β> % = +  1 1 1 10 0ˆ ˆP( , , )β β β β> > >% %

1 1 1 10 0ˆ ˆP( , , )β β β β> − > <% %

  + + 1 1 1 10 0ˆ ˆP( , , )β β β β< − < >% %
1 1 1 10 0ˆ ˆP( , , )β β β β< < <% %  

 

 

 

The result is stated in the following Theorem. 

Theorem 

Under the SVSM estimation procedure we have the following probability 

When ρ > 0 

2

2

02

1 1 1 1 1
0

2

ˆP(| | | |) g( r ) f ( r )dr g( r ) f ( r )dr g( r ) f ( r )dr

ρβ

ρβ

β β
∞

−∞

> = + +∫ ∫ ∫%  
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For ρ < 0 

2

2

02

1 1 1 1 1
0

2

ˆ ˆP(| | | |) h( r ) f ( r )dr h( r ) f ( r )dr h( r ) f ( r )dr

ρβ

ρβ

β β

−
∞

−−∞

> = + +∫ ∫ ∫  

where  g(r) = 
2

22
2

1
1 2( ) ( ( r ) )

ρβΦ ρ Φ ρβ
σ ρ

−
− − − −

σ
 

h(r) =    
2 2

2
2

1 1
2(( r ) ) ( )

ρ β ρ
Φ ρβ Φ

σρ σ
− −

+ −  

2
1 122

1 1
22

2f ( r ) exp ( r ( ))β ρβ
σπσ

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

 

and 2
2 122

1 1
22

2f ( r ) exp ( r ( ))β ρβ
σπσ

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠

 

Proof:  See Appendix 
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  To illustrate our calculations, we carried out some numerical calculations; we calculated the 

probability that exceeds  for different values of σ and ρ; we also computed the R2 of the 

regression. The values of σ were .1, .2, .5, 1.0, and 2.0 whilst the values of ρ were -.8, -.5, -.2, .2, 

.5 and .8. Different combinations of  and  were used, namely (.8, .4), (.5, .4), (.4, .4), (.3, .4), 

and (.1, .4). The output constitutes Tables 1A to 1E. 

. Section 3 

1

∧

β 1
~β

1

∧

β 1
~β

 The results show that if the regression was a high R2 and if the two variables are positively 

correlated then this procedure leads to a high probability that  exceeds  not just when 1

∧

β 1
~β
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1

∧

β exceeds  but even when is less than  (see Tables 1C to 1E). In the case when R2 is 

low or when the returns are negatively correlated the methodology is less successful. 

1
~β 1

∧

β 1
~β

∧

β

 

Table 1A 

Probability for  .80 and  = .40 1=

ૉ 

1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .008198 .000266 .000044 .999956 .999734 .991802 

2 .117701 .042598 .025148 .974964 .958360 .884898 

5 .279114 .267746 .248766 .751119 .721594 .632659 

1.0 .305628 .367917 .395136 .570189 .528138 .436008 

2.0 .311146 .399377 .448025 .496190 .443837 .347957 

 

R-squared for  .80 and  = .40 1

∧

β =

ૉ 

1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .966443 .979592 .985337 .989339 .991150 .992436 

2 .878049 .923077 .943820 .958678 .965517 .970414 

5 .535316 .657534 .728850 .787776 .817518 .839949 

1.0 .223602 .324324 .401914 .481328 .528302 .567474 

2.0 .067164 .107143 .143836 .188312 .218750 .246988 
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Table 1B 

 

Probability for  .50 and  = .40 1

∧

β =

ૉ 

1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .041297 .001569 .000057 .999956 .999734 .991802 

2 .196088 .089434 .039651 .971446 .956407 .881919 

5 .292002 .318466 .308932 .690551 .660531 .563587 

1.0 .307585 .385128 .421232 .536673 .490127 .393426 

2.0 .311519 .404026 .455544 .485904 .431795 .334440 

 

R-squared for  .50 and  = .40 1

∧

β =

ૉ 

1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .900000 .954545 .970588 .980000 .983871 .986486 

2 .692308 .840000 .891892 .924528 .938462 .948052 

5 .264706 .456522 .568966 .662162 .709302 .744898 

1.0 .082569 .173554 .248120 .328859 .378882 .421965 

2.0 .022005 .049881 .076212 .109131 .132321 .154334 
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Table 1C 

 

Probability for  .40 and  = .40 1=

ૉ 

∧

β 1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .196464 .021743 .000680 .999950 .999733 .991801 

2 .273772 .156281 .070600 .961037 .950293 .875036 

5 .305567 .345069 .339541 .659712 .630060 .532287 

1.0 .310969 .392804 .431375 .524599 .477063 .379741 

2.0 .312364 .406016 .458267 .482522 .428049 .330487 

 

R-squared for  .40 and  = .40 1

∧

β =

ૉ 

1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .864865 .941176 .962406 .974619 .979592 .982935 

2 .615385 .800000 .864865 .905660 .923077 .935065 

5 .203822 .390244 .505929 .605678 .657534 .697337 

1.0 .060150 .137931 .203822 .277457 .324324 .365482 

2.0 .015748 .038462 .060150 .087591 .107143 .125874 
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Table 1D 

 

Probability for  .30 and  = .40 1=

ૉ 

∧

β 1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .490914 .145394 .012818 .999596 .999673 .991738 

2 .376203 .268794 .139910 .930899 .931419 .857201 

5 .324386 .376531 .375308 .623671 .594845 .497748 

1.0 .315780 .401432 .442149 .512258 .464063 .366637 

2.0 .313574 .408225 .461091 .479180 .424459 .326839 

 

R-squared for  .30 and  = .40 1

∧

β =

ૉ 

1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .852941 .928571 .952830 .967532 .973684 .977876 

2 .591837 .764706 .834711 .881657 .902439 .917012 

5 .188312 .342105 .446903 .543796 .596774 .638728 

1.0 .054820 .115044 .168053 .229584 .270073 .306519 

2.0 .014293 .031477 .048072 .069335 .084668 .099505 
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Table 1E 

 

Probability for  .10 and  = .40 1=

ૉ 

∧

β 1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .815601 .751707 .393672 .918113 .972403 .976545 

2 .599814 .586064 .431205 .740597 .794515 .747375 

5 .376591 .451091 .458812 .539563 .514171 .423813 

1.0 .329611 .421336 .465250 .487285 .438907 .342919 

2.0 .317082 .413286 .467019 .472654 .417802 .320514 

 

R-squared for  .10 and  = .40 1

∧

β =

ૉ 

1
~β

sig -.8 -.5 -.2 .2 .5 .8 

1 .913793 .928571 .939024 .948980 .954545 .959016 

2 .726027 .764706 .793814 .823009 .840000 .854015 

5 .297753 .342105 .381188 .426606 .456522 .483471 

1.0 095841 .115044 .133449 .156830 .173554 .189627 

2.0 .025816 .031477 .037073 .044434 .049881 .055267m 

 

 

4. Empirical Examples 
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For illustrative purposes, we use six Fama-French style based portfolios formed on size and 

book-to-market1.These are: Small Growth (SG), Small Neutral (SN), Small Value (SV), Big 

Growth (BG), Big Neutral (BN), Big Value (BV). There are two return factors, the first, SMB 

(Small Minus Big) is the return difference between the average of three small portfolios and the 

average of three large portfolios, Likewise, the second factor, HML (High Minus Low) is the 

return difference between the average of two value portfolios and the average of two growth 

portfolios. 

 

We choose two different sample periods, where SMB and HML are either positively or 

negatively correlated. Table 2A lists the regression results for the period from 1935 Jan to 1954 

Dec, where SMB and HML are positively correlated with ρൌ0.529; table 2B lists the regression 

results for the period from 1992 Jan to 2011 Dec with ρൌ‐0.348.  In our sequential variable 

selection model, SMB is variable 1 and HML is variable 2. 1

∧

β is the estimated coefficient from 

the univariate regression of y on SMB;  is the coefficient on SMB from the multiple 

regression of y on SMB and HML;   is the coefficient on HML and calculated by regressing 

the residual of y on SMB upon the residual of HML on SMB. 

1
~β

2

∧

β

 

We are interested in the following question. Under what circumstances will there be a larger 

estimated exposure  than ? The results show that when the two variables are positively 

correlated as in table 2A, this procedure always generates higher  than . When the two 

variables are negatively correlated as in table 2B, we identify higher  than only for two 

portfolios SG and BG; for the other four portfolios, 1

∧

β  is lower than 1
~β .  Therefore comparing 

the two different cases, we find out that the  methodology  is  more  successful  when ρ  is 

positively correlated. This confirms our finding in section 3. 

1

∧

β 1
~β

1

∧

β 1
~β

1

∧

β 1
~β

                                                 
1

 The stocks are ranked based on two independent criteria: size (market capitalization) and book-to-price(the ratio of 
book value to market value). The median NYSE market equity is chosen to divide the stocks into two groups: big 
and small; the 30th and 70th percentiles of book-to-price ratio are used to split the stocks into three groups: growth, 
neutral and value. Six portfolios are formed from the intersection of these independent sorts. Six portfolios are 
formed from the intersection of these independent sorts. 
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Table 2A: regression results for six portfolios when ρൌ0.529 
 
 
 SG SN SV BG BN BV 

1

∧

β  1.8919 1.8433 2.426 0.76693 0.89019 1.5041
2

indiR  0.57378 0.54156 0.62007 0.19987 0.25477 0.31972

1
~β  1.6684 1.4202 1.6543 0.61075 0.50736 0.6249

2

∧

β  0.35162 0.66562 1.2141 0.24572 0.60229 1.3832
2

multiR  0.59437 0.61492 0.78141 0.22119 0.37594 0.60065
 

 

Table 2B: regression results for six portfolios when ρൌ‐0.348 
 
 

SG SN SV BG BN BV 

1

∧

β  1.4183 0.93986 0.90215 0.18208 0.047672 0.030638
2

indiR  0.50081 0.39152 0.32264 0.02081 0.001394 0.000484

1
~β  1.2584 1.0111 1.0787 0.027752 0.11295 0.20748

2

∧

β  -0.47902 0.21332 0.5288 -0.46232 0.19554 0.52974
2

multiR  0.5471 0.40787 0.41246 0.12952 0.020397 0.11761
 
 
 

 

Conclusion 

Bayesian methods are notoriously difficult to implement and practitioners often use tricks to 
allow their models to reflect their beliefs. We discuss such a procedure, and show analytically 
conditions when it will work .The particular procedure we discuss is used by practitioners to 
build factor models. We are interested in the variable selection methodologies that are used to 
give a particular returns model a particular style and nature. For example, in the context of global 
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models one may wish the model to depend more/less upon domestic factors such as country 
indices rather than, say, global factors such as currency or world equity/bond markets. The 
method we discuss allows for favorable selection of a variable  by specifying the order in which 
variables enter a regression.. 

We strip the problem down to its bare essentials by considering bivariate situations.We evaluate 
these conditions using numerical integration and further confirm their relevance by looking at an 
empirical example. The examples used US equity data over 20 year periods. These illustrate the 
efficacy  of the procedure. 
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Appendix: Proof of Theorem. 
 
 

Diagrammatically we need to calculate the two areas in figure 1 on either side of the origin. 

  
0

r

r

RHS( diagram ) f ( r ,s )dsdr
∞

−

= ∫ ∫  

   
0 r

r

LHS( diagram ) f ( r ,s )dsdr
−∞ −

= ∫ ∫

Now 

  f(r, s) = f(s| r) f1(r). 

where 

  
2 2

2 21
s r ~ N r ,

( )
ρ σρβ

ρ
⎛ ⎞

| −⎜ ⎟−⎝ ⎠
 

and 2
1 2( ,r N )β ρβ σ+�     

First we shall calculate RHS. 

  1
0

r

r

RHS f ( s r )ds f ( r )dr
∞

−

⎛ ⎞
= |⎜ ⎟

⎝ ⎠
∫ ∫  

Transforming from s to ω, s
2

2
1

( s ( r ))
ρ

ω ρβ
ρσ
−

→ = − −  

we have ds
21

d ,givingρσ ω
ρ

=
−

 

  RHS = 
22

2

2

2

1

2
1

0 1
2

1
2

/

( r )

e d f ( r )d

β
ρ

σ
ω

ρ
ρβ

ρσ

ω
π

−
∞

−

−
− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫ r  
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For 

  
2 2

2
2 2

1 1
0 2 0 2r / ( r )

ρ β ρ
ρβ ρβ

ρσ σ
− −

< ≤ ⇒ < − − <  

  RHS =
22

2
2

2

2

12
2

1
0 1

2

1
2

/
/

( r )

e d f ( r )d

β
ρρβ σ

ω

ρ
ρβ

ρσ

ω
π

−

−

−
− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫ r  

                    +
22

2

22
2

1

2
1

2 1
2

1
2

/

/
( r )

e d f ( r )d

β
ρ

σ
ω

ρβ ρ
ρβ

ρσ

ω
π

−
∞

−

−
− −

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫ r  

Letting g(r) = 

22

2

2

2

1
2

2 22
2

1
2

11 1 2
2

/

( r )

e d ( ) ( ( r ) )

β ρ
σ

ω

ρ
ρβ

ρσ

ρβω Φ ρ Φ ρβ
σ ρπ

−

−

−
− −

−
= − − − −∫ σ

  

where ( )xΦ is the cumulative distribution function of the standard normal distribution we have: 

                        RHS = 

2

2

2

1 1
0

2

( ) ( ) ( ) ( )g r f r dr g r f r dr

ρβ

ρβ

∞

+∫ ∫  

 

   

  Having completed the calculation of RHS, we now turn to LHS. 

   
0 r

r

LHS f ( r,s )dsdr
−∞ −

= ∫ ∫

 =  
0

1( ) ( )g r f r dr
−∞
∫
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We can make further simplifications depending upon the sign of ρ. 

For ρ > 0 

 

2

2

02

1 1 1 1 1
0

2

ˆP(| | | |) g( r ) f ( r )dr g( r ) f ( r )dr g( r ) f ( r )dr

ρβ

ρβ

β β
∞

−∞

> = + +∫ ∫ ∫%  

where 

  2
1 122

1 1
22

2f ( r ) exp ( r ( ))β ρβ
σπσ

When ρ< 0 rewrite using –ρ and then let ρ > 0. Thus we now have: 

⎛ ⎞= − − +⎜ ⎟
⎝ ⎠

)

 

  1 2 2
2 1

1

1 1
1 1

r
~ N ,

s (
β ρβ

σ
β ρ −

⎛ ⎞+⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

 
2 2

2 21
s r ~ N r ,

( )
ρ σρβ

ρ
⎛ ⎞

| +⎜ ⎟−⎝ ⎠
 

 r ~ 2
1 2N( , )β ρβ σ−  

Now, 

 RHS = 2
0

r

r

f ( s | r ) f ( r )dsdr
∞

−
∫ ∫  

and again transforming from s to ω,  
2

2
1

s ( s r )
ρ

ω ρβ
σρ
−

→ = − −  with ds 
21

dσρ ω
ρ

=
−

  

  RHS = 

2
2

2

2

2

1

2
2

0 1
2

1
2

/

( r )

e d f ( r )d

β ρ
σ

ω

ρ
ρβ

σρ

ω
π

− −
∞

−

−
− +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫ r  

Letting 
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h(r) =  

2
2

2

2

2

1
2 2

2 2
2

1
2

1 11 2
2

/

( r )

e d ( ) ( ( r ) )

β ρ
σ

ω

ρ
ρβ

σρ

β ρ ρ
ω Φ Φ ρβ

σ σπ

− −

−

−
− +

− − −
= − − +∫ ρ

 

                   =    
2 2

2
2

1 1
2(( r ) ) ( )

ρ β ρ
Φ ρβ Φ

σρ σ
− −

+ −  

            RHS =     2
0

( ) ( )h r f r dr
∞

∫

For 22
2

22 1( r )r / ρβρβ ρ
ρσ
+

−∞ < < − ⇒ −∞ < −  

and 

          LHS =    

2

2

0 02

2 2

2

( ) ( ) ( ) ( ) ( ) ( )h r f r dr h r f r dr h r f r dr

ρβ

ρβ

−

−−∞ −∞

= +∫ ∫ ∫ 2  

   

 Thus for ρ < 0. 

 

2

2

02

1 1 2 2 2
0

2

ˆ ˆP(| | | |) h( r ) f ( r )dr h( r ) f ( r )dr h( r ) f ( r )dr

ρβ

ρβ

β β

−
∞

−−∞

> = + +∫ ∫ ∫  

 where 

  2
2 122

1 1
22

2f ( r ) exp ( r ( ))β ρβ
σπσ

⎛ ⎞= − − −⎜ ⎟
⎝ ⎠
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