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Abstract

We examine a popular practitioner methodology used in the construction of linear factor models
whereby particular factors are increased/decreased in relative importance within the model. This
allows model builders to customise models and, as such, reflect those factors that the
client/modeller may think important. We call this process Pragmatic Bayesianism (or prag-Bayes

for short) and we provide analysis which shows when such a procedure is likely to be successful.
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1. Introduction

The purpose of this paper is to investigate statistical procedures frequently used by
practitioners to build factor models. In particular we are interested in the variable selection
methodologies that are used to give a particular returns model a particular style and nature. For
example, in the context of global models one may wish the model to depend more/less upon
domestic factors such as country’s indices rather than, say, global factors such as currency or
world equity/bond markets. Likewise at the domestic level, one may want one’s model to be
built around styles (value, growth etc.) rather than industries or sectors — alternatively, the
opposite may be preferred. The literature on this topic is very sparse. We present a brief survey
of alternative approaches. The problem can be viewed as a practical alternative to well-known
Bayesian procedures, such as Jorion’s (1986) Bayes Stein adjustment and Black-Litterman’s BL
model (1991, 1992). These models are both examples of Bayesian adjustment which effectively
updates currently held opinions with data to form new opinions. Satchell and Scowcroft (2000)
also present details of Bayesian portfolio construction procedures based on Black-Litterman
models. The essential idea in this process is to have a prior distribution over expected returns or
over the regression Betas. In either case, one needs to specify hyperparameters which are, in
practice, very troublesome. The procedure we advocate, and which is used by practitioners, is to

convert beliefs about the magnitude of betas into procedures of sequential regression.

In section two we shall describe how this is done in practice and how it could be analysed in

theory. In section 3 we shall present conditions under which these methodologies should work.



Section 4 presents some empirical results. Conclusions and further discussion are presented in

section 5.

2. Section 2

There are a number of procedures that can be used to facilitate one factor being preferred
to another. Here we shall assume that our return series is denoted by the nX 1 vector y and the

two factors over which we may have preferences are denoted by X, and X, respectively, both

nXx 1 vectors.

Letting )(; = [X L X 2] , we will facilitate calculations later by making the following
assumption:
, 1
XX = ( P j
p 1

Our “true” model is
(1) yv=Xp+X,B,+u
where y and u are nX 1 vectors, ; and B, scalars andu ~ N (0,021 N )

This is obviously a simplification of the general case but little is lost in so doing and it
allows us to focus on the essential features of the problem. We now define the sequential
variable selection method (SVSM), which is the essential component of the prag-Bayes
approach.

Definition: The SVSM is defined by the following procedure. If you want variable 1 to
“explain” more of y asset returns than variable 2 you regress variable 1 first in a univariate
regression. The coefficient for variable 2 is then calculated by regressing the residual of y on

variable 1 upon the residual of variable 2 on variable 1.
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The question we wish to ask is: under what circumstances will this procedure lead to a
larger estimated exposure ( ,él) of variable 1 versus that of variable 2, ( ﬁ’z ). A closely related

question is the conditions under which the new slope estimates will be bigger/smaller than those
calculated from conventional ordinary least-squares, (OLS).

It is worth discussing a variant on these procedures which concerns testing. Rather than
just focusing on the magnitude of ﬁ : we could also/alternatively make inclusion/exclusion
decisions based on t-statistics. Our results can be tilted in the desired direction by simply moving
the critical values of our tests.

In terms of the equation (1), we do not wish to impose 3;>[3; for all stocks. This is
because we recognise that particular stocks may not be modelled subject to such a constraint. To
illustrate, in the case of factor 1 being a global factor and factor 2 being a domestic factor, we
can imagine cases of multinationals where [3;>[3; but there will also be Japanese railway stocks,
for example, where the opposite is true. Accordingly a Bayesian approach where (3; and [3; are
variable allows us to approach this question in a theoretically appealing way.

We may have a prior, that P($,>,) >d where d is some threshold probability, and P()
denotes the probability of the event in brackets. This can be easily imposed by an adroit choice
of hyper-parameters in the prior joint distribution of 3; and [3,. Then we can compute the
likelihood in the usual way, and finally, the posterior distribution of 3; and (3, where the
posterior probability of 3;=[3, can be computed in a straightforward manner. However,
implementation of hierarchical Bayes models required a number of ancillary assumptions that are
not particularly transparent, see Gelman(2004) for example. We shall not detail how a Bayesian

might proceed but return to our SVSM method to see if it can achieve similar results and now



address the second question as to whether the SVSM method will increase the magnitude,

relative to OLS, of estimated f3; .

With the above model we now consider the two estimators of 3;
a. ﬁlfromy=)(1[31+a)wherew=X282+u
Bi=(X1X,) Xy = B+ (XX )" X/ (X, B, +u)
b. B, fromy=X\B, + Xofy + uie.
B=(X'P X )" X,P y,where P_=1-X,(X,X,)" X,

With the assumption on ( X' X ) we have immediately that

A

pi=Xy
Bi=1-p ) (Xly-pXiy)
and since
u ~ N(0, a1).
This implies
v ~N(XB, 0°I)
and
B miar
B) \(1=p)" —p(1-p* )" \ Xy
~N(y, 6°%)
where

(B+pB, N
’““( B j"mdz‘(l (1—p2)*J



We now calculate the following probability illustrated in the following diagram where the

horizontal axis gives values of ,é] while the vertical gives values of ,[5’1
PAB 1>\ BU=P(S> BB >0.8,>0)+P(B> =B, 5 >0, f,<0)

+P(ﬁl< —,6~’l,ﬂAl<0, ,6~’1>0)+ P(ﬁA’l< ,ﬁl,ﬁAQ<0, ,51<0)

Area defining the probability
4 —

The result is stated in the following Theorem.
Theorem
Under the SVSM estimation procedure we have the following probability

When p >0

PO > 5=

O C— O ‘;&

g(r)fi(rydr+ [ g(r)fi(rodr+ [ g(r)fi(r)dr
by —o



Forp <0

—-pps
POB > 1B V=[h(r)fi(r)dr+ [ h(r)fi(r)dr+ [ h(r)fi(r)dr
0 —o PBy

where g(r) = @(%«/I—pz)—@(—(zr—pﬂz) lp_o_p )
o= o2 pp )V 2o

fi(r)=—t exp(—%(r—(mpﬁz)fj
2no 20

2

andﬁ(r):\/zlizexp(— —(ﬂl—Pﬁz))zJ
o

Proof: See Appendix

3. Section 3

To illustrate our calculations, we carried out some numerical calculations; we calculated the

probability that & ,exceeds ,51 for different values of o and p; we also computed the A2 of the

regression. The values of o were .1, .2, .5, 1.0, and 2.0 whilst the values of p were -.8, -.5, -.2, .2,

.5 and .8. Different combinations of,g1 and,g1 were used, namely (.8, .4), (.5, .4), (4, .4), (.3, 4),

and (.1, .4). The output constitutes Tables 1A to 1E.

The results show that if the regression was a high A2 and if the two variables are positively

correlated then this procedure leads to a high probability that & , exceeds ,51 not just when



B exceeds B, but even when f,is less than S, (see Tables 1C to 1E). In the case when A2 is

low or when the returns are negatively correlated the methodology is less successful.

Table 1A

Probability for ,g’lz .80 and ,51 =.40

p
sig -8 -5 -2 2 5 8
1 .008198 .000266 .000044 .999956 999734 991802
2 117701 .042598 025148 974964 958360 .884898
5 279114 267746 248766 751119 721594 .632659
1.0 305628 367917 395136 .570189 528138 436008
2.0 311146 399377 448025 496190 443837 347957
R-squared for % =.80and S, = .40
p
sig -8 -5 -2 2 5 8
1 966443 979592 985337 .989339 991150 .992436
2 .878049 923077 943820 958678 965517 970414
5 535316 657534 728850 787776 817518 .839949
1.0 223602 324324 401914 481328 .528302 567474
2.0 067164 107143 .143836 188312 218750 .246988




Table 1B

Probability for #,= .50 and J, = .40

p
sig -8 -5 -2 2 5 8
1 .041297 .001569 .000057 999956 999734 991802
2 .196088 .089434 .039651 971446 .956407 .881919
5 292002 318466 .308932 .690551 .660531 .563587
1.0 307585 385128 421232 536673 490127 393426
2.0 311519 404026 455544 485904 431795 .334440

R-squared for ,%12 .50 and ,51 =40

p
sig -.8 -5 -2 2 5 8
1 .900000 954545 970588 .980000 983871 .986486
2 692308 .840000 .891892 924528 938462 .948052
5 264706 456522 .568966 662162 709302 744898
1.0 .082569 173554 248120 .328859 378882 421965
2.0 .022005 .049881 076212 109131 132321 154334




Table 1C

Probability for /3,= .40 and 7, = .40

p
sig -8 -5 -2 2 5 8
1 196464 021743 .000680 999950 .999733 991801
2 273772 156281 .070600 961037 .950293 .875036
5 305567 .345069 .339541 659712 .630060 .532287
1.0 .310969 392804 431375 .524599 477063 379741
2.0 312364 406016 458267 482522 428049 330487

R-squared for ,%12 40 and ,51 =40

p
sig -8 -5 -2 2 5 8
1 .864865 941176 962406 974619 979592 982935
2 615385 .800000 .864865 905660 923077 935065
5 203822 390244 .505929 605678 657534 .697337
1.0 .060150 137931 203822 277457 324324 365482
2.0 015748 .038462 .060150 .087591 .107143 125874




Table 1D

Probability for #,= .30 and 7, = .40

p
sig -8 -5 -2 2 5 8
1 490914 .145394 .012818 999596 999673 991738
2 376203 268794 139910 .930899 931419 .857201
5 324386 376531 375308 623671 .594845 497748
1.0 315780 401432 442149 512258 464063 366637
2.0 313574 408225 461091 479180 424459 .326839

R-squared for ,%12 .30 and ,51 =40

p
sig -8 -5 -2 2 5 8
1 .852941 928571 952830 967532 973684 977876
2 591837 764706 .834711 .881657 .902439 917012
5 188312 342105 446903 .543796 596774 .638728
1.0 .054820 115044 .168053 .229584 270073 306519
2.0 .014293 .031477 .048072 .069335 .084668 .099505
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Table 1E

Probability for #,=.10 and 7, = .40

p
sig -8 -5 -2 2 5 8
1 .815601 151707 393672 918113 .972403 976545
2 .599814 .586064 431205 740597 794515 7147375
5 376591 451091 458812 .539563 514171 423813
1.0 329611 421336 465250 487285 438907 342919
2.0 317082 413286 467019 472654 417802 320514
R-squared for ,%12 .10 and ,51 =40
p
sig -.8 -5 -2 2 5 8
1 913793 928571 939024 948980 954545 959016
2 726027 764706 793814 .823009 .840000 .854015
5 297753 342105 381188 426606 456522 483471
1.0 095841 115044 133449 156830 173554 189627
2.0 .025816 .031477 .037073 .044434 .049881 .055267m

Empirical Examples
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For illustrative purposes, we use six Fama-French style based portfolios formed on size and

book-to-marketl.These are: Small Growth (SG), Small Neutral (SN), Small Value (SV), Big
Growth (BG), Big Neutral (BN), Big Value (BV). There are two return factors, the first, SMB
(Small Minus Big) is the return difference between the average of three small portfolios and the
average of three large portfolios, Likewise, the second factor, HML (High Minus Low) is the
return difference between the average of two value portfolios and the average of two growth

portfolios.

We choose two different sample periods, where SMB and HML are either positively or
negatively correlated. Table 2A lists the regression results for the period from 1935 Jan to 1954
Dec, where SMB and HML are positively correlated with p=0.529; table 2B lists the regression
results for the period from 1992 Jan to 2011 Dec with p=-0.348. In our sequential variable

selection model, SMB is variable 1 and HML is variable 2. ,g’ ,1s the estimated coefficient from

the univariate regression of y on SMB; ﬁl is the coefficient on SMB from the multiple

regression of y on SMB and HML; f, is the coefficient on HML and calculated by regressing
the residual of y on SMB upon the residual of HML on SMB.

We are interested in the following question. Under what circumstances will there be a larger

estimated exposure £, than ,51? The results show that when the two variables are positively
correlated as in table 2A, this procedure always generates higher A, than ,El. When the two
variables are negatively correlated as in table 2B, we identify higher A, than ﬁl only for two

portfolios SG and BG; for the other four portfolios, & , 1s lower than ﬁ] . Therefore comparing

the two different cases, we find out that the methodology is more successful when p is

positively correlated. This confirms our finding in section 3.

The stocks are ranked based on two independent criteria: size (market capitalization) and book-to-price(the ratio of
book value to market value). The median NYSE market equity is chosen to divide the stocks into two groups: big
and small; the 30" and 70™ percentiles of book-to-price ratio are used to split the stocks into three groups: growth,
neutral and value. Six portfolios are formed from the intersection of these independent sorts. Six portfolios are
formed from the intersection of these independent sorts.
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Table 2A: regression results for six portfolios when p=0.529

SG SN SV BG BN BV
B 1.8919 1.8433 2.426 0.76693 0.89019 1.5041
2
Rindi 0.57378 0.54156 0.62007 0.19987 0.25477 0.31972
ﬁl 1.6684 1.4202 1.6543 0.61075 0.50736 0.6249
ﬁz 0.35162 0.66562 1.2141 0.24572 0.60229 1.3832
2
R, 0.59437 0.61492 0.78141 0.22119 0.37594 0.60065
Table 2B: regression results for six portfolios when p=-0.348
SG SN SV BG BN BV
B 1.4183 0.93986 0.90215 0.18208 0.047672 0.030638
2
R 0.50081 0.39152 0.32264 0.02081 0.001394 0.000484
B 1.2584 1.0111 1.0787 0.027752 0.11295 0.20748
ﬁz -0.47902 0.21332 0.5288 -0.46232 0.19554 0.52974
2
R, 0.5471 0.40787 0.41246 0.12952 0.020397 0.11761
Conclusion

Bayesian methods are notoriously difficult to implement and practitioners often use tricks to
allow their models to reflect their beliefs. We discuss such a procedure, and show analytically
conditions when it will work .The particular procedure we discuss is used by practitioners to
build factor models. We are interested in the variable selection methodologies that are used to
give a particular returns model a particular style and nature. For example, in the context of global
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models one may wish the model to depend more/less upon domestic factors such as country
indices rather than, say, global factors such as currency or world equity/bond markets. The
method we discuss allows for favorable selection of a variable by specifying the order in which
variables enter a regression..

We strip the problem down to its bare essentials by considering bivariate situations.We evaluate

these conditions using numerical integration and further confirm their relevance by looking at an
empirical example. The examples used US equity data over 20 year periods. These illustrate the

efficacy of the procedure.

14



Appendix: Proof of Theorem.

Diagrammatically we need to calculate the two areas in figure 1 on either side of the origin.

RHS(diagram ) = J- I f(r,s)dsdr
0-r

LHS(diagram) = .[ jf(r,s)dsdr

—o0 —r

Now

S, s) =fis| 1) [i().

where

20_2
S|r~N[r_pﬂ2’(lp—Tj

andr 0 N(B, + pB,.0°)

First we shall calculate RHS.

RHS:TU-f(SV)dSJfI(r)dr

2

1—
Transforming from s to ®, s> o =(s—(r—pp,)) P
podw . .
we have ds= ,giving
J1-p°
[ 25
RHS = .[ J- Le_a'z/zd&) Su(r)dr
0 =27
_(2,_,%)@

po
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For

0<r<pfB,/2=0<—(2r- pﬁz)\/ '82\/1
yolos o

e
RHS = ! | \/_ e daw | fi(r)dr
—=(2r-pp, ) \/7
B N
+ [ [ L e daw | fi(r)dr
1
P2 g, )F

N sy / 2
Letting g(r) = .f % o= Cp(ﬂz VI=p* )=@(—~(2r-ppB,) )
e re

—(2r-pp, )

where ®@(x) is the cumulative distribution function of the standard normal distribution we have:

RHS= [ g(r)fi(r)dr+ | g(r)fi(r)dr

b
2

O O ‘;%

Having completed the calculation of RHS, we now turn to LHS.

LHS = j. jf(r,s)dsdr

—0 —=r

= [ g f(r)r
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We can make further simplifications depending upon the sign of p.

Forp>0
PBy
PABI|>1B D= | g(r)fi(r)dr+ j g(r)fi(r)dr+ j g(r)fi(r)dr
0 pﬁz
where

fi(r)=—2 exp(—%(r—(ﬂﬁpﬂz)f)
2no 20

2

When p< 0 rewrite using —p and then let p > 0. Thus we now have:

[erN((ﬂl+pﬂzj,62 (1 12 _1)]
s B 1 (1-p7)

r~N|r ,pO'
s | (+pﬂ2( ,O)J

r NN(ﬂl—pﬂz,Gz)

Now,
RHS = j j f(s|r)f,(r)dsdr
0-r
. : JiI-p° . opdw
and again transforming fromsto o, s >w=(s—r—pp,) with ds = ——
op J1-p°
*ﬁz\/ﬁ
RHS = | | J_ e dw | f,(r)dr
"\ ~2reom) J_
Letting
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~prfi=p®
o= [ e o= oo pp ) L)
J_ c op

—(2r+ppy )"——

- @((2r+pﬂ2ﬂ L @(ﬂ”l iy

RHS = Th(r)f2 (r)dr

For —oo<r<—pﬂ2/2:>—oo<(2’:;;%\/1—,02

and

—Pb
LHS= [ h()f,(dr= | k) f,()dr+ [ h() f,(r)dr

—0 -pbs
2

Thus for p <0.

- Pﬁz

PAB 1> 1)= j h(r)fy(r)dr+ j h(r)fy(r)dr + j h(r)f(r )dr
-pB

where

filr)= le—zexp(—z; —(ﬂl—pﬂz»zj
o
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