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Fitting of atomic components into electron cryo-microscopy (cryoEM) density maps is routinely used to
understand the structure and function of macromolecular machines. Many fitting methods have been
developed, but a standard protocol for successful fitting and assessment of fitted models has yet to be
agreed upon among the experts in the field. Here, we created and tested a protocol that highlights impor-
tant issues related to homology modelling, density map segmentation, rigid and flexible fitting, as well as
the assessment of fits. As part of it, we use two different flexible fitting methods (Flex-EM and iMODfit)
and demonstrate how combining the analysis of multiple fits and model assessment could result in an
improved model. The protocol is applied to the case of the mature and empty capsids of Coxsackievirus
A7 (CAV7) by flexibly fitting homology models into the corresponding cryoEM density maps at 8.2 and
6.1 A resolution. As a result, and due to the improved homology models (derived from recently solved
crystal structures of a close homolog - EV71 capsid - in mature and empty forms), the final models pres-
ent an improvement over previously published models. In close agreement with the capsid expansion
observed in the EV71 structures, the new CAV7 models reveal that the expansion is accompanied by
~5° counterclockwise rotation of the asymmetric unit, predominantly contributed by the capsid protein
VP1. The protocol could be applied not only to viral capsids but also to many other complexes character-
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ised by a combination of atomic structure modelling and cryoEM density fitting.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

In recent years, electron cryo-microscopy (cryoEM) has become
one of the most prominent techniques for visualising macromolec-
ular assemblies (Orlova and Saibil, 2011; Sali et al., 2003). How-
ever, the vast majority of density maps resulting from the
various cryoEM reconstruction techniques are not of atomic or
near-atomic resolution (even for icosahedral viruses) but rather
belong to the so-called intermediate resolution zone (~5-20A)
(Baker et al., 1999; Beck et al., 2011), where a detailed interpreta-
tion of the map can only be achieved by docking (or fitting) into it
an atomic model. Docking of atomic models (from X-ray crystallog-
raphy, NMR or structure prediction methods) into EM maps has
become common practice with a rapidly increasing number of
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atomic models associated with EM maps deposited in the PDB
(currently over 460) (Lawson et al., 2011; Patwardhan et al., 2012).

Due to the differences between the conformations of the atomic
model being fitted and the EM map, modifying the conformation of
the atomic structure during the fitting process, referred to as flex-
ible fitting, is often needed (Beck et al., 2011). The variety of flex-
ible fitting approaches is currently large. Common to all is the
limited sampling of conformational degrees of freedom. Therefore,
they are usually applied to components that are first placed into
the density map by rigid fitting, whereby a global search of the
fit is performed on the atomic model as a single component in
six translation/rotation degrees of freedom (Ahmed et al., 2012;
Beck et al., 2011). Both rigid and flexible fitting result in a “pseu-
do-atomic” model for which the quality assessment is not trivial.
Approaches that begin to address this issue include the use of con-
fidence intervals and quantifying the best-fitting model relative to
a distribution of different fits (Henderson et al., 2012; Tung et al.,
2010; Volkmann, 2009; Roseman, 2000; Rossmann et al., 2005;
Vasishtan and Topf, 2011). Additionally, if the models are calcu-
lated by different methods a question arises regarding their con-
sensus. A recent paper pioneered the issue of consensus among
different flexible fitting approaches and proposed to use this

1047-8477/$ - see front matter © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
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information to improve the quality of the fitted models (Ahmed
et al,, 2012).

Here, we developed a protocol to aid flexible fitting and assess-
ment of virus capsids into cryoEM maps at sub-nanometer resolu-
tion. The protocol is designed to use multiple flexible fitting
programs, compare and assess the quality of the fit locally, at the
level of individual secondary structure elements (SSEs). It also
highlights the possibility of producing an improved fit guided by
the comparison of multiple independent programs. The protocol
is generic and could also be used for systems other than virus
capsids.

First, in order to demonstrate the effects of modelling errors on
flexible fitting we fitted a homology model of an actin subunit into
a density map simulated from a known actin crystal structure in
different conformation. Second, to address the challenge of fitting
a structure in one conformation into a corresponding EM map in
a different conformation, we fitted the crystal structure of EV71
mature (full) capsid into the procapsid map of EV71 strain 1095
(Cifuente et al., 2013). Finally, we applied the protocol to charac-
terise the conformational states of the mature (full) and empty
capsid of Coxsackievirus A7 (CAV7). We had previously calculated
homology models of the same virus and fitted them into the sub-
nanometer resolution cryoEM maps representing the empty
(6.09 A) and full (8.23 A) CAV7 capsids (Seitsonen et al., 2012).

CAV7 belongs to the Human enterovirus A species within the
Picornaviridae family (Oberste et al., 2004). It is an important
pathogen with different strains varying in their pathogenicity and
tropism (Seitsonen et al., 2012). The CAV7-USSR strain is associated
with flaccid paralysis (Voroshilova and Chumakov, 1959) whereas
CAV7-275/58 causes aseptic meningitis (Richter et al., 1971). Our
original models were based on remote homologs to the virus
(Seitsonen et al., 2012) and were refined within the corresponding
cryoEM maps using a single flexible fitting method (Flex-EM) (Topf
et al., 2008). Here, to improve our original models, we used as tem-
plates, recently published crystal structures of the empty and full
capsids of the much closer homolog, EV71 (Plevka et al., 2012;
Wang et al., 2012) with capsid protein sequence identity of 60%
for VP1, 84% for VP2, and 76% for VP3. This time we refined the
homology models using two flexible fitting programs, Flex-EM
(Topf et al., 2008) and iMODfit (Lopez-Blanco and Chacon, 2013).
The different fits were assessed and compared, and new hybrid
pseudo-atomic models were generated using the results from both
programs. Finally, the conformational changes between the empty
and full capsids were characterised based on the new models.

2. Methods

We describe a protocol for modelling and fitting of virus capsids
into the cryoEM maps at intermediate resolution using two different
flexible fitting programs (Fig. 1). The main feature of the protocol is
its ability to compare and assess the quality of the fits produced by
independent programs. This approach allows the identification of
reliable local fits as well as those that could be further improved
by additional stages of refinement. The assessment/refinement pro-
tocol can also be applied to systems other than virus capsids. Below
we describe the various steps involved in the protocol.

2.1. Data preparation

2.1.1. Density map segmentation

The capsid of a mature CAV7 and EV71 virion (full) is made of
icosahedrally-arranged viral proteins VP1, VP2, VP3 and VP4 with
encapsidated RNA. The empty capsid is also icosahedral but lacks
VP4 and RNA. The five-fold vertex is composed of VP1 whereas
the three- and the two-fold symmetry axes are made of alternating

VP2 and VP3. VP4, a small protein characterised by an extended
chain (possibly with a small helix in the middle), is present below
the shell of VP1, VP2 and VP3. To help the initial rigid fitting of the
asymmetric unit of CAV7 we used the manually segmented maps
of the individual viral proteins VP1-VP3 from the density of
both empty and full capsids, as described in our previous study
(Seitsonen et al., 2012). In the CAV7 full map, VP4 could not be seg-
mented unambiguously and therefore we decided that there were
not enough density features to accurately model it. For fitting the
EV71 full capsid, the procapsid map was segmented around the
asymmetric unit using the fit deposited in PDB (PDB ID: 3VBU;
EMD-5557) (Cifuente et al., 2013; Wang et al., 2012).

2.1.2. Homology modelling

CAV7 modelling: From the three target sequences of CAV7-
USSR, homology models of the capsid proteins (VP1-VP3) were
built using the I-TASSER server (Roy et al., 2010). For a given se-
quence, I-TASSER builds fragments of template proteins using
threading and/or ab initio techniques. The fragments are assembled
and refined into a complete model using replica-exchange Monte
Carlo simulation (Roy et al.,, 2010). The template structures used
for the modelling were the respective viral proteins in the entero-
virus 71 (EV71) crystal structures of empty (PDB ID: 3VBO) and full
(PDB ID: 3VBF) capsid forms (Wang et al., 2012). The server gener-
ated five different models for each of the two conformations of the
three capsid proteins (30 in total) and we selected the model with
the top I-TASSER score (out of the five) for further analysis (six
models in total). Additionally, the qualitative model energy analy-
sis (QMEAN) scores (Benkert et al., 2008) were used to evaluate
both the global and local quality of the selected models and were
compared with the previously published models (Seitsonen et al.,
2012). Briefly, the QMEAN score for a given protein model is calcu-
lated using a combination of the geometrical structural descriptors
that include the torsion angle, pairwise residue and solvation
potentials. The best I-TASSER models for the three capsid proteins
(VP1, VP2 and VP3) obtained using the template structure of the
empty capsid (PDB ID: 3VBO) were assembled into an empty cap-
sid asymmetric unit (“empty asymmetric unit”) by superposing
the individual VP proteins onto their respective VP proteins in
the template structures. Similarly, a full capsid asymmetric unit
(“full asymmetric unit”) was assembled using the I-TASSER model
(VP1, VP2 and VP3) obtained using the full capsid (mature virus) as
the template (PDB ID: 3VBF). The superposition was done using the
superpose command in Chimera (Pettersen et al., 2004).

Actin modelling: a homology model of actin was generated
from the actin sequence (UniProt: P68135) with MODELLER (Sali
and Blundell, 1993) based on the crystal structure of actin-related
protein 3 from the Arp2/3 complex, (PDB ID: 1K8K: A) (Robinson
et al., 2001). The two proteins share sequence identity of ~38%.

Below, we describe the general procedure we used for fitting
the models into the density maps.

2.2. Rigid fitting and re-segmentation

The actin model was rigidly fitted into the simulated map of the
native structure with the Chimera fit_in_map tool (Goddard et al.,
2007). For EV71 test case, the initial rigid fit was obtained by
superposing the asymmetric unit onto the asymmetric fit depos-
ited in PDB (PDB ID: 3VBU; EMD-5557).

In real-case scenarios of virus capsids, however, a rigid fit can be
obtained by fitting individual subunits or the whole asymmetric
unit into the density (either of the whole virus or segmented
around the asymmetric unit). The former approach is followed
when the arrangements of the subunits within the asymmetric
unit is unknown. The latter approach is more appropriate when
the knowledge of the intra-subunit interactions within the
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Fig.1. Protocol describing various stages involved in the modelling of viral capsids in the context of cryoEM data. The protocol starts with the data preparation step, which involves
segmenting the asymmetric unit density from the virus capsid map and obtaining the atomic model derived using comparative modelling (in case there is no model available from
an experimental technique). The rigid fitting and re-segmentation step provides a good starting fit for flexible fitting, which is performed in the next step by two independent
methods (here Flex-EM (Topf et al., 2008) and iMODfit (Lopez-Blanco and Chacon, 2013). The final step involves the local assessment of fits produced by the two different methods,
further refinement of identified regions needing improvement, and generation of the whole capsid model (including the identification and removal of clashes). In general, for a

given input map and a rigid fit, except for the capsid assembly generation, the steps in the protocol can also be applied to non-viral capsid systems.

asymmetric unit is already available, for example, from the crystal
structure of a homologous virus. The latter approach also helps to
minimise rigid and flexible fitting issues arising due to segmenta-
tion error/bias within the densities of the asymmetric units. In con-
trast to our previous study where we used the first approach, here,
we adopted the second approach to perform the initial fit in the
CAV7 capsids using a recent homologous crystal structure (EV71)
describing the entire asymmetric unit (Wang et al., 2012). The
empty and full asymmetric units were manually placed on the
respective segmented densities.

All initial rigid fits were assessed using an independent global
cross-correlation coefficient (CCC) score as described previously
and implemented in our in-house code, TEMPy (Vasishtan and
Topf, 2011; Vasishtan, Farabella, Pandurangan, and Topf, in
preparation). TEMPy code is based on Python and standard

Numpy (http://www.numpy.org/) and Scipy (http://www.scipy.
org/) python libraries.

For both CAV7 and EV71, following rigid fitting, segmentation of
the density map was performed using the zone tool in Chimera
(Pettersen et al., 2004), by using the whole map (empty and full)
and zoning 9 A around the asymmetric unit.

2.3. Flexible fitting

2.3.1. Flex-EM/RIBFIND

Next, we employed Flex-EM to optimise the conformation of
the atomic structure in a cryoEM map using real-space refinement
(Topf et al., 2008). The method is flexible, allowing the optimisa-
tion procedures (a conjugate-gradients minimisation and simu-
lated annealing molecular dynamics) to be applied to any groups
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of rigid bodies, including user-defined rigid bodies (for example,
based on prior knowledge of the structure or visual inspection in
the context of the density). However, in a recent paper we showed
that Flex-EM refinement could be considerably improved using a
careful selection of clustered sets of rigid bodies obtained by RIB-
FIND (Pandurangan and Topf, 2012a). For a given atomic model,
RIBFIND clusters the o-helices and B-sheets (set of B-strands)
denoting the individual SSEs into a set of rigid bodies. The SSE def-
initions are obtained using DSSP (Kabsch and Sander, 1983) and
the clustering is done based on parameters defining the spatial
proximity between SSEs (Pandurangan and Topf, 2012a).

In the current study, the asymmetric unit proteins (VP1-VP3) of
each of the CAV7 comparative models as well as the asymmetric
unit proteins of the full EV71 crystal structure were submitted sep-
arately to the RIBFIND server (Pandurangan and Topf, 2012b) to
calculate sets of rigid bodies. Next, a two-stage refinement protocol
was employed (Pandurangan and Topf, 2012a) during flexible
fitting of each of the asymmetric units in the respective re-
segmented (zoned) maps (empty, full and procapsid at 6.09, 8.23,
and 8.78 A resolution, respectively). In the first stage of refinement,
the RIBFIND rigid body set with maximal number of rigid bodies
was given as an input to Flex-EM. In the second stage, the fits were
further “relaxed” by keeping only the SSEs (and some interface
loops) as rigid bodies. In both stages Flex-EM refinement cycles
were carried out until the CCC values converged. Similarly for
actin, the RIBFIND rigid bodies were obtained for the homology
model and flexibly fitted into a simulated map at 9 A resolution
using the same two-stage refinement protocol. This protocol had
been shown to significantly improve flexible fitting (Pandurangan
and Topf, 2012a,b).

2.3.2. iMODfit

To increase the confidence in our results, we also employed a
different flexible fitting method - iMODfit (Lopez-Blanco and
Chacon, 2013). The method works on the principle of normal mode
analysis using internal coordinates (Lopez-Blanco et al., 2011). In
general, internal coordinates are used to describe the molecular
geometry using the properties including the bond length, bond an-
gle and dihedral angles. In iMODfit, the ¢ and s dihedral angles are
used to explore the internal coordinate space. Fixing some of the
dihedral angles (for instance in a-helices and B-sheets) can reduce
the search space. The main advantage of iMODfit is the computa-
tional speed. The speed depends on the number of normal modes
taken into account during fitting and the percentage of fixed dihe-
dral angles.

Here, fitting was performed on the asymmetric units (VP1-VP3)
of CAV7 models (empty and full), EV71 full and the actin homology
model into their respective density maps using the default setting
given on the program’s web page (http://chaconlab.org/methods/
fitting/imodfit). The dihedral coordinates of o-helices and B-sheets
were fixed during fitting. The following input density cutoff values
(threshold) were used: 2.7 for CAV7 empty map, 2.5 for CAV7 full
map, 3.0 for EV71 procapsid map and 0.005 for simulated actin
map. All density levels below the threshold were not considered
in the calculations. The thresholds were selected by visual inspec-
tion of the atomic models in the EM maps using Chimera to best
describe the EM density.

2.4. Model assessment and final model generation

2.4.1. Segment-based CCC

To quantify and compare the local quality of fits, a segment-
based cross correlation score (SCCC) was calculated between the
simulated map of each selected local segment of the fit and its cor-
responding target map using TEMPy. The simulated map of each
selected local segment was obtained by convoluting its atomic

coordinates into a grid using a Gaussian function. The resolution,
box size and the voxel size of the simulated map were kept similar
to the target map. Only grid points in the simulated map with
values above its lowest threshold value were included in the SCCC
calculation. The lowest threshold values represent the lowest
positive density value among all the map grid points. A score based
on a similar principle has been used previously to dock domains of
GroEL into the cryoEM map (Roseman, 2000). SCCC was calculated
for two different kind of local segments, one representing individ-
ual SSEs and the other representing the individual proteins in the
asymmetric unit for the case of virus capsid. In addition, we calcu-
lated the global CCC score for the entire asymmetric unit (including
all SSEs and loops).

2.4.2. Generation of an improved fit

The fits from the two different programs and the corresponding
SSEs’ SCCC scores were used to generate an improved fit. To obtain
the improved fit, the likely best fit between the two programs was
selected based on the analysis of the global CCC and SCCC score.
Starting from the selected fit from one program, an additional
round of refinement was performed in Flex-EM by relaxing every
SSE that was shown to have a poor fit (in terms of SCCC score) rel-
ative to the fit produced by the other program while the rest of the
structure was kept rigid.

2.4.3. Final model generation for a whole virus capsid

For the case of virus capsids (CAV7 and EV71), the asymmetric
unit of the improved fit was used to generate a 60-mer containing
the whole capsid with the oligomer generator utility in VIPERdb
(Carrillo-Tripp et al., 2009). From these capsid models, three adja-
cent asymmetric units were selected with one unit sharing two un-
ique interfaces. Using backbone atoms only, the selected
asymmetric units were inspected for clashes on the interface loops
using the Find Clashes/Contacts tool in Chimera. The identified
clashes were resolved using the Flex-EM CG refinement protocol.
The complete refined asymmetric unit was used to construct a final
whole virus capsid with VIPERdb.

3. Results

We have outlined a general modelling and fitting protocol for
inserting atomic models into intermediate resolution EM maps.
The modelling and fitting protocol was tested on two different case
studies for which the target fits were known. The first test case was
fitting of actin homology model into the simulated map from a
known actin crystal structure (PDB ID: 2A40) (Chereau et al.,
2005). The idea was to try and separate modelling errors from er-
rors resulting from conformational differences. The second case
was the fitting of the crystal structure of EV71 full capsid (PDB
ID: 3VBF) into the EV71 strain 1095 procapsid map (EMD-5557).
Here the effects of conformational difference in flexible fitting
were addressed. The tested protocol was then applied to generate
new and improved models of the full and empty capsid of Coxsac-
kievirus A7 (CAV7) and the two conformational states were charac-
terised. The results of the studies are discussed below.

3.1. Homology modelling and fitting of actin

The actin homology model was flexibly fitted using Flex-EM and
iMODfit into a 9 A simulated map from actin crystal structure
(Target fit PDB ID: 2A40, chain A). The map was generated using
the Chimera molmap command (Pettersen et al.,, 2004). The Co
RMSD and the global CCC between the rigidly fitted model and
the target fit (2A40) are 5.0 A and 0.89 respectively (Table 1). After
flexible fitting, the global CCC values for Flex-EM and iMODfit
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improved to 0.94 and 0.93 respectively (Table 1). The SCCC scores
of individual SSEs were calculated for the Flex-EM and iMODfit and
represented on the respective fits (Fig. 2a). In the case of Flex-EM
fit, for 84% (16/19) of SSEs, the SCCC values are higher or equal
to iMODfit (Table S1). The average SCCC values of SSEs are 0.49
and 0.47 for Flex-EM and iMODfit, respectively.

Fig. 3a shows the Ca RMSD between Flex-EM and iMODfit for
individual SSEs. The figure also shows the Co. RMSDs of Flex-EM
and iMODfit with respect to the target fit (2A40). The average Ca
RMSD of all SSEs of Flex-EM and iMODfit with respect to the target
fit is 3.6 and 3.7 A, respectively (Table 2).

Overall the Co. RMSD from the target fit decreased from 5.0 to
4.0 A with both Flex-EM and iMODfit (Table 2). The difficulty in
convergence may be due to the inherent modelling errors in the
starting homology model. To understand the effects of modelling
errors on the quality of the fit, the QMEAN server was used to cal-
culate the local residue error for the initial homology model. Resi-
dues with an estimated error above 3.5 A were considered to be
unreliable (Benkert et al., 2008). Accordingly, six loop segments
in the homology model were identified to be unreliable (residues
37-44, 57-62, 194-200, 228-232, 264-268 and 371-372)
(Fig. 3b). All the four SSEs (Helices 53-56, 76-88 and 202-213;
sheet 32-34, 50-51, 63-65) with low consensus fits (Cot RMSD be-
tween Flex-EM and iMODfit >2.50 A) were linked to the loop seg-
ments identified to be unreliable (Fig. 3a and ¢) demonstrating
how errors in the model can impose limitations on the fitting pro-
grams to converge to the target fit.

In order to emphasise the usefulness of the step involved in
generating the hybrid final model, we took the fit obtained from
iMODfit and refined it using Flex-EM by relaxing all the SSEs that
had lower SCCC values compared to Flex-EM fit (Table S1). In the
hybrid final model obtained, the SCCC values remained either the
same or improved for 84% of the cases with an average SCCC value
of 0.48 (Fig. 2a and Table S1). The all-atom Cot RMSD and the Co
RMSD averaged over all SSEs between the final model and the tar-
get fit decreased to 3.7 and 3.6 A respectively (Table 2). Particu-
larly, the SCCC values of SSE 76-88 improved from 0.51 to 0.54
(Table S1). This improvement in the SCCC score corresponds to
conformational changes leading to an improved fit in the final
model (after refinement, the Coo RMSD of the SSE to the target
structure decreased by 0.7 A) (Fig. 2a).

3.2. Fitting the crystal structure of mature EV71 into procapsid map

The full asymmetric unit of EV71 was rigidly fitted into the
zoned density map and flexible fitting was performed using Flex-
EM and iMODfit. The global CCC values for the initial rigid fit and
the two flexible fits were 0.67 (Chimera), 0.73 (Flex-EM) and 0.73
(iMODfit) (Table 1). For both Flex-EM and iMODfit, the SCCC scores
for VP1 improved when compared to the corresponding rigid fit
(Table 1). The average Co RMSD over all SSEs between initial rigid
fit, Flex-EM and iMODfit with respect to the target fit was 5.0, 2.9

and 6.3 A, respectively (Table 2). iMODfit refinement resulted in
the fit that has the largest deviation from the target fit. The average
SCCC score of all SSEs is similar between Flex-EM and iMODfit,
with values of 0.56 and 0.55, respectively (Table S2). However, fur-
ther analysis shows that the Coo RMSD of the individual SSEs be-
tween Flex-EM and iMODfit showed considerable differences
(with average and standard deviation over all SSEs is 6.7 and
4.1 A respectively) (Fig. S1) making the choice of the better fit
based on cross correlation scores only particularly challenging. In
the case of Flex-EM fit, for 69% (18/26) of SSEs, the SCCC values
are higher or equal to iMODfit (Table S2). A direct one to one com-
parison of the SSEs’ SCCC scores between two different fits may act
as an indicator to access the quality of the local fit relative to one
another. For example, overall the B-sheets forming part of the core
B-sandwich in VP1 (S6 and S4), VP2 (S9 and S10) and VP3 (S7 and
S8) have higher SCCC values for Flex-EM fit than iMODfit
(Table S2). It is interesting to note that for VP1 and VP2, the Ca
RMSD between the core B-sheets (VP1 residues 106-110, 150-
156, 178-182, 232-237 and VP2 residues 101-102, 133-140,
168-180, 259-264, 301-317) and their corresponding B-sheets in
the target fit (4GMP) are considerable lower for Flex-EM than
iMODfit (Fig. S1) suggesting that the core of the VP proteins are fit-
ted better by Flex-EM (which is also correlated with the higher
SCCC values).

Comparing fits from two or more different programs may result
in the identification of the regions of similar fits (consensus) as
well as those of different fits (non-consensus) and hence their reli-
ability (Ahmed and Tama, 2013). The lower the Ca. RMSD values
between the corresponding SSEs refined by Flex-EM and iMODfit
the better the consensus between two fits. In Fig. S1 for most of
the SSEs showing good consensus fit (<5 A) between Flex-EM and
iMODfit, the corresponding Cot RMSD from the target fit is signifi-
cantly lower (in both Flex-EM and iMODfit) compared to SSEs with
non-consensus fit. The SSEs with non-consensus fits indicate possi-
ble spurious fits. For example, for the SSEs in VP1 (H:169-172) and
VP2 (H:126-128 and H:159-167), Flex-EM and iMODfit produced
non-consensus fits (Coo RMSD between Flex-EM and iMODfit
>10 A) (Fig. S1). After constructing the whole capsid with VIPERdb
oligomer generator tool using the fit produced by iMODfit, the
above mentioned SSEs were found to be involved in the interface
clashes between the asymmetric unit. Additionally, for the
B-hairpin found in VP2 (S:83-87, 90-94), both Flex-EM and iMOD-
fit did not produce a consensus fit. The SCCC score for the B-hairpin
using Flex-EM (0.56) was slightly lower than iMODfit (0.58). How-
ever, Coo RMSD of the B-hairpin with the target fit by Flex-EM
(4.1 A) was considerably lower than iMODfit (11.0 A), which dem-
onstrates a situation of over-fitting. Thus, the knowledge about the
variations of individual local fits with the model (consensus as well
as non consensus) produced by multiple programs can be used as a
tool for validating fits (Ahmed and Tama, 2013). In conjunction
with the comparison of SCCC values of individual SSEs, the fits
could possibly be improved using a further hybrid refinement.

Table 1
Comparison of cross correlation scores for actin and EV71.
Test case Cross correlation score Rigid fit Flex-EM iMODfit Final *
Actin cceb 0.89 0.94 0.93 0.94
EV71
VP1 sccce 0.75 0.81 0.80 0.82
VP2 0.83 0.85 0.83 0.85
VP3 0.84 0.84 0.83 0.84
VP1, VP2, VP3 cceP 0.67 0.73 0.73 0.73

a

“Final” refers to the model resulting from a final refinement step of Flex-EM using information from the assessment of fits by Flex-EM and iMODfit.

> CCC is the global CCC calculated for the asymmetric unit composing VP1, VP2 and VP3.

€ SCCC is the segment-based CCC calculated separately for VP1, VP2 and VP3.
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Fig.2. Comparison of fits obtained using Flex-EM, iMODfit and the final refined model. (a) Fits of the homology model of actin into the simulated map obtained using Flex-EM
(left) and iMODfit (middle), and the final refined model (shown in yellow) in comparison with the target fit (PDB ID: 2A40, shown in grey) (right). (b) Fits of the asymmetric
unit of EV71 mature capsid into the procapsid map of EV71 obtained using Flex-EM (left), iMODfit (middle) and the final refined model (shown in yellow) in comparison with
the target fit (PDB ID: 4GMP, shown in grey) (right). In (a) and (b) the Flex-EM and iMODfits models are coloured based on their respective segment-based cross correlation
score of individual SSEs (SCCC, see Methods). The colour gradient for each SSE was selected based on its respective SCCC score using the Render by Attribute function in
Chimera (Pettersen et al., 2004). The averaged SCCC score over all SSEs is indicated below each fit. The colour gradient scales in panel (a) and (b) are shown as vertical bars. In
(a), the arrow points to the fit (helix residues 76-88) that improved during the refinement of the final model.

Starting from the Flex-EM fit, we tried to generate a hybrid final
model (using Flex-EM) by further refining only the SSEs that have
lower SCCC values compared to the corresponding SSEs in the
iMODfit fit. Following this step, SCCC values either marginally in-
creased or remained unchanged for 22 out of 24 cases. However,
the average SCCC value remained the same (0.56) before and after
the final refinement (Table S2 and Fig. 2b) and the marginal
improvements in the individual SCCC values after refinement sug-
gested possible convergence.

From the final model of the asymmetric unit, the whole capsid
was constructed using VIPERdb. It is worth noting that the pro-
posed hybrid refinement step will be more advantageous when
the individual SSEs undergoing refinement have significantly
worse local fits.

3.3. Modelling and characterising the conformational states of CAV7

We have previously modelled three of the proteins of CAV7 cap-
sid (VP1-VP3) using I-TASSER in two conformations with (full) and
without RNA (empty) icosahedral reconstructions at sub-nanome-
ter resolution (Seitsonen et al., 2012). One comparative model for
each of the three proteins was generated based on remotely-
related templates (Seitsonen et al., 2012). All the templates used
were mature (full) capsid forms except for one empty capsid tem-
plate (PDB: 1POV). The best sequence identity of those templates is
42% (VP1), 58% (VP2) and 52% (VP3) to the respective CAV7 se-
quences. Since then, crystal structures for empty (PDB: 3VBO)
and full states (PDB: 3VBF) of a Human enterovirus A species,
EV71, became available (Wang et al., 2012) with significantly high-
er sequence identity to CAV7 of 60% (VP1), 84% (VP2) and 76%
(VP3). Using the latter structures as templates in the current work
gave more reliable CAV7 comparative models for refinement in the
maps. The I-TASSER score (C-score) for all the six comparative

models were considered good except for the empty model of VP3
(Table 3). Additionally, we calculated the QMEAN scores to access
the quality of the models. For all six comparative models the
QMEAN scores were higher than the corresponding previous mod-
els (Table 3). The QMEAN error values for individual residues in the
new models were compared with the previous models. Overall, the
local residue error is similar between the old and new models.
However, the average of residue error of the residues in the core
B-sandwich of VP1, VP2 and VP3 show lower residue error in the
new models than the old ones. In addition, there are more errors
in the C-terminal regions of the old homology models compared
to new ones. Among the three proteins, the most improved models
were of VP1. We still considered the N-terminal (1-73) and
C-terminal residues (278-296) in VP1 as well as the N-terminal
residues (1-40) in VP3 as unreliable and therefore removed them,
but the models contained 47 more amino acids in VP1 and 12 more
in VP3 than previously (Seitsonen et al., 2012).

3.3.1. Assessment of fits

The starting rigid fits of the comparative models of both empty
and full maps optimised in Chimera were assessed using the global
CCC (Vasishtan and Topf, 2011). The global CCC values for the
asymmetric unit of the empty and full maps were 0.59 and 0.60,
respectively. These values are higher than the corresponding asym-
metric unit rigid fits of the previously published models using the
current segmented maps (0.56 and 0.54, respectively).

The results of the flexible fitting of the individual CAV7 capsid
proteins (VP1-VP3) starting from the asymmetric unit rigid fits
were compared between Flex-EM and iMODfit. The SCCC scores
of the fits of the individual VP proteins are comparable between
Flex-EM and iMODfit for both empty and full maps (Table 4). The
global CCC score for the asymmetric unit is 0.72 in the empty
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Fig.3. Analysis of Co RMSDs for individual SSEs and modelling errors for the case of flexible fitting of actin subunit homology model into the simulated map. In (a) three
different RMSD comparisons are shown (Flex-EM vs. iMODfit, Flex-EM vs. target fit and iMODfit vs. target fit). The target fit corresponds to the PDB ID 2A40. (b) The actin
homology model coloured using the QMEAN local residue error values (in A) from the lowest (blue) to the highest (red). The range of local residue error values and its
corresponding colour gradient is shown below (b). Error values above 3.5 A that are considered unreliable are labelled. (c) Comparison of flexible fits obtained using Flex-EM
(cyan), iMODfit (magenta) and the target fit (PDB ID 2A40) (grey). The arrows in (c) shows SSEs (helices 53-56, 76-88 and 202-213, and the sheet 32-34, 50-51, 63-65) with
low consensus fit (Co. RMSD between Flex-EM and iMODfit >2.50 A). The four SSEs are directly linked to the unreliable loops shown in (b).

Zg?r::azrison of Cot RMSDs of rigid, Flex-EM, iMODfit and final fits with the target fit for actin and EV71.
Test case Co. RMSD (A)
All-atom Average over all SSEs
Rigid fit Flex-EM iMODfit Final® Rigid fit Flex-EM iMODfit Final®
Actin 5.0 4.0 4.0 3.7 338 3.6 3.7 3.6
EV71 5.6 3.5 7.8 3.5 5.0 2.9 6.3 2.8

2 “Final” refers to the model resulting from a final refinement step of Flex-EM using information from the assessment of fits by Flex-EM and iMODfit.
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Table 3
Assessment scores for previous and current comparative models of CAV7 proteins.

Protein name  Previous model’ Current model

Full Empty
C-score  QMEAN C-score QMEAN C-score QMEAN
VP1 0.60 0.33 1.93 0.42 1.87 0.47
VP2 1.08 0.42 0.91 0.53 1.49 0.52
VP3 1.33 0.50 1.36 0.54 1.31 0.51

Descriptions for the items are: C-score: a confidence score to estimate the quality of
the predicted I-TASSER models (C-score of higher value signifies a model with a
high confidence and vice-versa); QMEAN: a model quality estimation score based
on a single model (It ranges from O to 1 with higher values indicating reliable
models); “Full” and “Empty” refer to models based on the EV71 template proteins
from the full (PDB ID: 3vbf) and empty capsids (PDB ID: 3vbo), respectively.

2 The previous models for VP1, VP2 and VP3 were obtained from I-TASSER using
multiple template structure before the availability of the crystal structure of EV71
empty and full capsid.

map using both Flex-EM and iMODfit, whereas in the full map the
corresponding scores are 0.72 and 0.73, respectively (Table 4).

3.3.2. Comparison of pairs of corresponding SSEs in multiple fits

The results of the flexible fitting of the CAV7 capsid proteins
(VP1-VP3) were also assessed using the SCCC score of the individ-
ual SSEs (see Methods). Fig. 4 shows the comparison of iMODfit
and Flex-EM fits in the empty and full asymmetric maps. In all
three proteins (VP1-VP3), the largest fraction of the SSEs in each
protein corresponds to the core B-sandwich fold composed of eight
strands (which is the fold common to the Picornaviridae-like VP
family, SCOP entry: 88634).

3.3.2.1. Empty map. Comparison of the fits in the empty map indi-
cated that on average the B-sandwich fitted equally well using both
methods in the cases of VP2 and VP3 (similar gradient colouring
based on SCCC, Fig. 4a and b). However in the case of VP1, the
Flex-EM fit of one of the two sheets of the B-sandwich was better
than the iMODfit fit (strands 87-90, 133-136, 187-190, 250-253;
Fig. 4a (left) in blue and Fig. 4b (left) in light blue) with respective
SCCC values of 0.62 and 0.58. The Ca RMSD between the Flex-EM
and iMODfit fits for VP1 in the empty map is the highest among
the three VP proteins (4.6 A). There are some additional helices
and sheets in all three proteins (VP1, 2 and 3) that were not well
fitted using either Flex-EM or iMODfit. For instance, in Flex-EM,
helices 216-222, 92-98, 43-48 and sheet 14-17/22-25 have a
low SCCC relative to their respective iMODfit results (Table S3).
Their corresponding SCCC values with Flex-EM are 0.32, 0.42,
0.39 and 0.42 and with iMOD(fit are 0.44, 0.45, 0.44 and 0.49. Sim-
ilarly, with iMODfit, helices 79-83, 117-123, 146-149 and sheet
108-112/178-179/225-229 have a low SCCC relatively to their
respective Flex-EM results. The corresponding SCCC values with
iMODfit are 0.40, 0.39, 0.38 and 0.61 and with Flex-EM are 0.43,
0.44, 0.41 and 0.64.
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3.3.2.2. Full map. In the full map, the fitting results of Flex-EM and
iMODfit are more consistent in general, except for VP2. Although
the fit of the B-sandwich of VP2 is very similar in both methods,
the fit of a B-hairpin present in the C-terminus at the interface be-
tween the asymmetric units (residues 14-25) is very different
resulting in a relatively higher Coo RMSD between the two fits
(4.9 A) (Fig. 4a and b). The SCCC values of the hairpin for Flex-EM
and iMODfit are 0.43 and 0.48, respectively. However, it is worth
noting that even though the B-hairpin fit using iMODfit appears
to be better with a higher SCCC, overfitting of the hairpin may be
inferred from the low consensus between the fits (higher Cot RMSD
between them) (see Discussion). Similar overfitting by iMODfit for
the hairpin was observed while fitting the EV71 full asymmetric
unit into the procapsid map.

Interestingly, the average SCCC for overall SSEs is very similar
between Flex-EM and iMODfit (0.46 £0.13 for the empty map
and 0.54 + 0.09 for the full map) suggesting that the quality of fits
from the two programs is similar. The average Co. RMSD of all SSEs
between the fits obtained by the two methods is 2.83 A for the
empty and 2.37 A for the full map.

3.3.3. Conformational changes observed between empty and full fits

Examining the refined models within both empty and full maps
allowed us to observe conformational changes between the two
states at the level of individual SSEs (Fig. 4c). In 16 out of 26 SSEs,
Flex-EM showed more conformational variability between the
empty and full fits relative to iMODfit. Out of these 16 SSEs, 14
showed higher SCCC in Flex-EM for both empty and full fits
(Table S3). With iMODfit, out of the 10 SSEs that showed more var-
iability, only 7 had higher SCCC for both empty and full fits
(Table S3).

In the case of the B-hairpin mentioned above (strands 14-17,
22-25), the Co. RMSD between the empty and full fits obtained
using Flex-EM and iMODfit was 4.4 and 18.0A, respectively
(Fig. 4c). Interestingly, the homologous B-hairpin found in the crys-
tal structure of EV71 virus showed a deviation of 4.4 A RMSD be-
tween the two forms.

3.3.4. Generation of final models of the whole virus capsid

To generate an improved final fit, we used the two final fits
(empty and full) of Flex-EM and refined every SSE that was shown
to have a worse fit than the corresponding iMODfit fit, while keep-
ing all the loops connecting all the SSEs flexible. The resulting fits
were used to generate the whole capsid models with VIPERdb
(Carrillo-Tripp et al., 2009). Clashes between the asymmetric units
were identified using Chimera (see Methods).

For the empty capsid model, interface loop residues of VP1
(141-148 and 236-245), VP2 (37-63 and 219-231) and VP3
(170-192 and 204-210) were found to have clashes. For the full
capsid model, clashes were only observed in the interface loop res-
idues of VP1 (141-148 and 236-245). For each of the empty and
full capsids, all the interface clashes were resolved (see Methods)
and the final capsid model was generated using VIPERdb (Fig. 5a

Table 4

Comparison of cross correlation scores calculated for CAV7.
Protein name Cross correlation score Empty Full

Flex-EM iMODfit Final * Flex-EM iMODfit Final *

VP1 sccch 0.74 0.72 0.75 0.77 0.78 0.78
VP2 0.75 0.76 0.75 0.77 0.79 0.79
VP3 0.78 0.77 0.79 0.81 0.80 0.82
VP1,VP2,VP3 ccce 0.72 0.72 0.72 0.73 0.74 0.73

2 “Final” refers to the model resulting from a final refinement step of Flex-EM using information from the assessment of fits by Flex-EM and iMODfit.

b SCCC is the segment-based CCC calculated separately for VP1, VP2 and VP3.

¢ CCC is the global CCC calculated for the asymmetric unit composing VP1, VP2 and VP3.
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Fig.4. Comparison of Flex-EM and iMODfit based model fitting in asymmetric maps of CAV7 empty and full capsid. (a) Fitting of VP1, 2 and 3 models into the asymmetric unit
of empty and full maps using Flex-EM. Each protein is shown within a circle (left). (b) Fitting of VP1, 2 and 3 models into the asymmetric unit of empty and full map using
iMODfit. The individual SSEs within the fitted models are coloured based on their segment-based cross correlation score (SCCC, see Methods). The averaged SCCC score of all
SSEs is indicated below each fit. The colour gradient for each SSE was selected based on its respective SCCC score using the Render by Attribute function in Chimera and its scale
is described below the figure. Black arrows indicate a B-sheet (strands 87-90, 133-136, 187-190, 250-253), which is fitted better using Flex-EM. Blue arrows indicate the B-
hairpin (residues 14-17, 22-25) that is likely to be overfitted by iMODfit. (c) Comparison of Coat RMSDs for individual SSEs between the CAV7 empty and full fits of Flex-EM
and iMODfit. X-axis indicates the SSE residue range with prefix indicating the type of SSE (H: for helix and S: for pB-sheet). The arrow highlights the large conformational
change observed by iMODfit for B-hairpin (residues 14-17, 22-25), which is likely to be a result of overfitting (see also in (a) and (b)).
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and b). The new updated coordinates have been deposited in the
PDB with the accession codes 4BIP and 4BIQ for full and empty
capsid, respectively.

The global CCCs of the final fits of both empty and full asym-
metric units were similar to the original respective Flex-EM and
iMODfit fits (Table 4 and Fig. S2). The SCCC scores of the individual
proteins VP1-3, in both empty and full for the final fit is shown in
Table 4. Among 26 SSE elements of the empty asymmetric unit, 19
had equal or higher SCCC in the final fit compared to the iMODfit fit
and 14 compared to the Flex-EM fit. In the full capsid, 18 SSEs had
equal or higher SCCC compared to the iMODfit fit and 14 compared
to the Flex-EM fit (Table S3). The average SCCCs of all SSE fits for
the empty and full asymmetric units remained unchanged in com-
parison to the Flex-EM fit (0.46 and 0.54, respectively). However,
further analysis of the SCCC scores in the improved final fit shows
that while most of the individual SSE fits remained approximately
the same (either improved by 40% or worsened by 20%, relative to
the models refined by each method individually) there was one fit
in VP1, of helix 216-222, which was improved more significantly,
especially for the empty case (40% for empty and 9% for full).

Based on the improved final models of empty and full capsids,
the capsid expansion seems to be accompanied by a ~4.8° counter
clockwise rotation of the asymmetric unit (viewed perpendicular

to the plane of Fig. 5¢). This change is in close agreement with
the 5.4° rotation observed in EV71 crystal structures (Wang
et al., 2012). The component placement scores (CPS) for the indi-
vidual viral proteins VP1, 2 and 3 (Seitsonen et al., 2012; Zhang
et al., 2010) and the Ca RMSDs between the full and empty capsids
indicate that the largest conformational change during capsid
expansion corresponds to VP1 (44A RMSD, CPS: 3.8A, 1.8°)
(Table 5 and Fig. 5d). This observation is in agreement with the
analysis of the EV71 crystal structures, where the capsid protein
VP1 was found to be predominantly associated with capsid expan-
sion (Wang et al., 2012). Additionally, the area-based component
placement score (ACPS, (Pandurangan and Topf, 2012a)) indicates
that the conformational changes observed between empty and full
capsids for VP1 are almost two-fold larger than those observed for
VP2 and VP3 (Table 5).

4. Discussion

Like in the fitting of many structures of assembly components
into the lower-resolution density map of their assembly, fitting
into a virus capsid map can be quite challenging, particularly when
the crystal structures of the components are not available and an
atomic model has to be predicted prior to the fitting. Additionally,

Fig.5. Pseudo atomic models of CAV7 empty and full capsids. (a and b) Fitted model for the complete full and the empty capsids, respectively. EM density for one asymmetric
unit is shown as transparent surface in the background in both. (c) Conformational changes at an asymmetric unit level between full (coloured grey) and empty (non-grey)
capsids shown by superposing the final models of the full and empty asymmetric unit. (d) Structural differences mapped onto the empty asymmetric unit using the worm
representation. The thickness of the worm from smallest to largest reflects the local deviation (per-residue backbone RMSD) from smallest to largest between the empty and
full asymmetric units. The backbone RMSD ranges between 0.46 and 12.45 A. In (a-d) VP1, 2 and 3 are coloured as blue, green and red, respectively.
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Table 5

Comparison of Coa RMSDs, component placement score (CPS) and area based CPS (ACPS) for the individual CAV7 proteins.

Protein name Flex-EM vs. iMODfit (Co. RMSD in A)

Final empty model vs. final full model

Empty Full Cot RMSD (A) CPS* (A, ©) ACPS® (A2)
VP1 46 3.8 44 38,18 023
VP2 40 49 33 14,76 0.13
vP3 3.5 40 2.6 15,5.0 0.10

3 CPS is the component placement score (Seitsonen et al., 2012; Zhang et al., 2010). The pair of values in the CPS score (A, °) corresponds to the component’s translation in

Angstrom and rotation in degrees respectively.

b ACPS score combines the values of translation and rotation into a net score by calculating the area of the sector whose radius and angle correspond to the translation and

rotation values, respectively (Pandurangan and Topf, 2012a).

due to conformational changes occurring in the virus morphology,
the resulting maps often represent multiple conformations. To
accurately model these conformations, flexible fitting of the atomic
models into EM maps is necessary. Although, there are many dif-
ferent methods available to perform flexible fitting (Beck et al.,
2011; Esquivel-Rodriguez and Kihara, 2013), a general approach
for assessment of fits produced from such methods is lacking in
the field. In this paper, we proposed a protocol for comparative
modelling, multi-step hybrid flexible fitting and assessment of
pseudo-atomic models within intermediate-resolution EM maps.
We tested it on two model cases - one virus capsid (EV71) and
one non-viral protein (actin), and applied it to the experimental
case of CAV7 virus capsid expansion. The protocol can be extended
to other assemblies including, clearly, those cases where compara-
tive modelling is not required. Additionally, it is not restricted to
the fitting methods used here (Flex-EM and iMODfit) but could
be applied to any combination of flexible fitting methods (Ahmed
and Tama, 2013).

In the following sections, we have attempted to point out vari-
ous technical issues that might arise during model building, fitting
and assessment as well as emphasise the advantages of using a hy-
brid approach such as the one adopted in this paper.

4.1. Model truncation

In virus capsid proteins that form icosahedrally-symmetric
capsids, the terminals are highly flexible so that they can easily
interact with the encapsidated genome, can perform protein-pro-
tein interactions spanning across the capsid, and conformational
switching required for quasi-equivalent interactions (Abrescia
et al., 2004; Seitsonen et al., 2010; Stehle et al., 1996; Williams
et al,, 2004; Xing et al., 2004). Such flexible ends are not easily
resolved as the chains are often in an extended conformation
(Seitsonen et al., 2012), which is likely to lead to low confidence
in their fit. A successful attempt to include flexible termini strongly
depends on the resolution of the density map. However, even
with a sub-nanometer resolution map (5-10A), this remains a
challenge. Due to the above reasons, we removed the highly
flexible terminal loops of the models of CAV7 and EV71 capsid
proteins prior to fitting.

4.2. Segmentation issues

There are a number of automated segmentation methods avail-
able, which are predominantly based on watershed (Pintilie et al.,
2010; Volkmann, 2002) or fast-marching algorithms (Bajaj et al.,
2003; Zhang et al., 2012). However, the accuracy of these methods
depends on various factors including the resolution, parameters
inherent to the segmentations methods as well as manual inter-
vention in specific cases (Pintilie et al., 2010). Unguided manual
segmentation is time-consuming but can be more accurate when
carried out iteratively. For example, for a cryoEM map of the whole

virus capsid, manual segmentation relies on the knowledge of the
icosahedrally-arranged protein subunits in the capsid.

Regions that are difficult to segment often lie at the interfaces of
the subunits spanning between and within the asymmetric units.
This challenge comes from the fact that flexible terminal regions
of one subunit often intertwine with other subunits (Jddlinoja
et al., 2007; Seitsonen et al., 2012). Here, we were able to manually
segment out unambiguously all the capsid proteins of CAV7 except
VP4 (which is highly unstructured and lies close to the flexible VP1
N-terminal) and the termini of VP1 and VP3. Rigid fitting guided by
this initial segmentation allowed us to re-zone around the asym-
metric unit (Seitsonen et al., 2012), thereby reducing some inter-
face errors between subunits, and allowing identification of some
of the segmentation errors on the interfaces between adjacent
asymmetric units.

4.3. A hybrid approach for flexible fitting

Comparing fits obtained from independent programs can be
ideally used as a tool for identifying spurious local fits and to aid
the generation of an improved model. Recently, the idea of com-
bining different fitting programs in order to identify a consensus
fit and measure its local reliability using root mean square fluctu-
ations (RMSF) has been introduced (Ahmed and Tama, 2013;
Ahmed et al., 2012). Here, we applied the principle of consensus
between fits based on multiple methods in a different way. First,
we calculated a different local reliability measure - the SCCC score
- for each pair of corresponding SSE fits generated by two methods
(Flex-EM and iMODfit) and identified local variations between
them. The scores became even more informative when mapped
onto the structure and used as a comparison tool within Chimera
(Pettersen et al., 2004). Based on the comparison, we selected
one of the fits and improved it by only refining the SSEs that had
low SCCC values compared with the other fit. Although we used
only two methods, ideally our approach can potentially be ex-
panded to multiple methods and combined with the RMSF mea-
sure described in Ahmed et al. (Ahmed and Tama, 2013; Ahmed
et al.,, 2012) to achieve even better results.

4.4. Modelling errors and fitting

Flexible fitting of atomic models into the density map provides
insight into the function and the dynamics of the system under
study. The interpretation becomes more challenging as the number
of errors in the atomic model increases. Identifying those errors
and their potential effect on the outcome of the flexible fitting pro-
cedure can be helpful in fit assessment. In the actin homology
model we identified six loops with modelling errors (identified
by QMEAN local residue score) and showed that Flex-EM and
iMODfit could not produce consensus fit for most of the SSEs at-
tached to those loops. The study not only suggests the possibility
of incorporating the information about modelling errors to im-
prove flexible fitting, but also demonstrates how useful this
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information can be in combination with the use of multiple flexible
fitting programs.

4.5. Over-fitting

In general, overfitting can occur when the fit that is being opti-
mised has neighbourhood densities that are not well resolved (for
example, in virus capsids this could occur on the interface between
asymmetric units if the proteins are fitted into a map segmented
around the asymmetric unit). In this situation, the fit may be opti-
mised into an incorrect position in the density which is termed
overfitting. Using Flex-EM in conjunction with multiple sets of ri-
gid bodies (assigned by RIBFIND), we previously showed that a
two-stage refinement protocol can reduce over-fitting and thereby
improve flexibly fitted models (Pandurangan and Topf, 2012a).
This idea has shown to be useful in the current study as well.
Although, on average both Flex-EM and iMODfit produced similar
fits, the use of a two-stage refinement protocol helped avoiding
over-fitting in Flex-EM, for example in fitting the B-hairpin found
in VP2 protein of CAV7 and EV71. Additionally, here we show that
using a “local” score, such as the SCCC, in combination with struc-
tural comparison of fits from different programs can help in iden-
tifying regions that might raise ambiguity (such as the B-hairpin).
Additionally, by refining the fit of the asymmetric unit as a whole
rather than the individual proteins we avoided fitting errors within
the interfaces (compared to our previous study) (Seitsonen et al.,
2012).

4.6. Capsid asymmetric unit interface

Refining loops at the interface between the asymmetric units is
challenging as they can often clash. Here, clashes were identified
when we constructed the whole capsid from the asymmetric unit.
The loops were refined considering only the symmetrically-related
neighbouring asymmetric units. Symmetry-based refinement pro-
grams may be a better solution to avoid such problems (Chan et al.,
2011) at sub-nanometer resolution. However, for intermediate to
low-resolution maps, the refinement of asymmetric unit interface
(especially flexible loops) remains a challenge.

4.7. Current vs. previous CAV7 models

It is interesting to observe that the improved final fits obtained
using the new models for the empty and full asymmetric units
were quite similar to their respective initial rigid fits. As the new
models were more complete, there was less ambiguity for move-
ment of subunits within the densities. As a result, the overall
changes now seen between the two states are more moderate than
previously reported (Seitsonen et al., 2012) and the interaction
interfaces are better defined. These new findings are significant
if, for example, one tries to inhibit the interaction with neutralising
antibodies that would recognise one of the states. Nevertheless, the
conclusions about the important regions for the release of RNA are
still in agreement with the previous report and with the movement
seen in the case of EV71 when it goes from an immature state
to a mature, RNA-filled state (Seitsonen et al., 2012; Wang et al.,
2012).

5. Conclusion

In this paper we describe a protocol for comparative modelling,
fitting and assessment of atomic structures into sub-nanometer
resolution cryoEM density maps and highlighted various important
issues pertaining to it. We applied the protocol in order to improve
the modelling of CAV7 virus capsids in two conformations, which

resulted in better agreement between the model and the experi-
mental data of both CAV7 and its homolog EV71. Ideally, the pro-
tocol could be applied to any system and is not restricted to
capsid modelling (as demonstrated for the actin test case). We
showed that the refinement process is worth addressing in multi-
ple progressive steps combined with model and local fit assess-
ment. Such an approach would provide more control and allow
the check of model quality at various steps leading to more accu-
rate and complete pseudo-atomic models.
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