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Abstract 
The layer widths and repeat spacing of long-period polytypes (LPP’s) have been 
determined using synchrotron radiation source (SRS) X-ray diffraction topography 
(XRDT). This method has proved to be a powerful tool in investigating the spatial 
extent of one-dimensional disorder (1DD), long-period polytypes (LPP’s) and the 
boundaries of polytype layers in silicon carbide (SiC). The resulting neighbourhood 
coalescence models have confirmed the validity of the sandwich rule even in the limit 
of two arbitrarily long LPP’s, as well as the unique nature of the 6H polytype. A 
significant empirical trend is reported here that relates the thickness of LPP layers to 
the periodicity of the repeat stacking sequence measured on the topographs. A good 
correlation between the data suggests that this behaviour is governed by a simple 
mathematical expression t = kN n. Values for k and n have been determined that relate 
the polytype thickness (y in microns) to the number of hexagonal layers (x) in the 
polytype stacking repeat. 
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1. Introduction 
 
1.1. Modern semiconductor with an age-old stacking problem 
 
It is well known that silicon carbide is of great interest to the aerospace and power 

generation industries for opto-electronic, high-temperature, robust ambient and 

chemically aggressive environment applications Zimmermann 2002 [1], tCore 2002 

[2]. In fact the material constitutes a semiconductor family, Camassel et al. 2001[3] of 

different polytypes with the potential to significantly impact the wide band gap 

market, earning it the sobriquet “semiconductor of the 21st century”. Commercially 

the manufacture of large single wafers and devices is dogged by the presence of 

micropipe defects while academically the nature of the phenomenon of polytypism is 

still of interest. The ability of SiC to form so many polytypes is well documented 



Kelly et al. 2001 [4] and despite the discovery of the many (poly) different layer-

stacked types (typie) by Baumhauer 1912 [5] ninety years ago, which he christened 

polytypie, a full explanation for their existence still remains elusive today. 

The problem is essentially that the one-dimensional ordering arrangement in SiC has 

produced over 150 different layer periodicities based on the simple ABA… ABC… 

stacking sequences found in close packed structures, Trigunayat and Chadha 1991 [6]. 

This arises from the large number of possible repeat sequences, the largest reported 

spacing in SiC being 3015 Å, Mitchell 1954 [7]. Besides these long period ordered 

structures one-dimensional disorder, when there is no finite lattice repeat, is also a 

prevalent feature in silicon carbide.  

Recently there has been renewed interest in the interface between polytypes in 

syntactic coalescence; historically the term was first used by Ungemach 1935 [8]. The 

boundaries between polytypes have become a region of genuine interest since the 

discovery by Barnes et al.1991 [9] of thin (≤ 5 μm) one-dimensionally disordered 

(1DD) layers in silicon carbide (SiC) crystals. With the advent of synchrotron 

radiation source X-ray diffraction edge topography (SRS-XRDET) and the improved 

resolution available from later generation machines, it has become possible to unlock 

the secrets of polytype coalescence. 

 

2. Experimental 

2.1. Unlocking the secrets of polytype coalescence 

The methodology in producing polytype models, which retain morphological fidelity, 

is now routine and has resulted in a quite unprecedented database Kelly 2002 [10] 

detailing the spatial extent of polytypism in silicon carbide. Features, which are quite 

common in the models, include the presence of defect bands in central 52⎯70 



reflections, thin one-dimensionally disordered (1DD) layers and long-period 

polytypes (LPP’s) all of which have been previously discussed by the authors, Kelly 

et al. 1995 [11]. 

As an example of the determination of a long-period repeat Figure 1a shows a full 

plate topograph, with the closely spaced reflections reminiscent of a polytype with a 

large repeat spacing. Figure 1b shows a magnified section of the region in 1a with the 

LPP layers clearly marked A – B, while Figure 1c shows a model of the polytype 

content of the crystal. The LPP obeys the sandwich rule, Fisher and Barnes 1990 [13], 

in which LPP layers are found sandwiched between their shorter period (6H, 15R and 

4H) counterparts.  

 

3. Results 

3.1. The boundary of Long Period Polytype environments 

The width of the polytype layer shown in Figure 1b (which was determined to have a 

repeat spacing of 201H/603R) was measured as 20 μm, Kelly et al. 2001[4]. Similar 

results have been obtained in all for 25 LPP’s, where care was taken to note the 

immediate adjacent polytype layers on either side of the LPP. One can differentiate 

three different environments for any individual LPP layer:  

 

• one in which the adjoining layers are common low period polytypes, typically 

6H + LPP + 6H (or e.g. 15R/8H), 

• where one of these neighbouring layers is disordered an example such as 6H + 

LPP + 1DD is the usual model, 

• where the LPP abuts the outer edge surface of the crystal, the other neighbour 

being disordered e.g. 1DD + LPP + ---. 



All of the data, Kelly et al. 2001 [4], fit into one of these three regimes and 

subsequently a plot of the widths of the LPP layers (μm) against the number of layer 

repeats has produced an interesting trend. 

There is the same overall shape for the 3 different regimes. In each of the cases, 

shown in Figure 2 a-c, there is a decrease in the width of the LPP layer corresponding 

to an increasing period repeat of the number of layers in the polytype. Simply put, as 

the polytype repeat gets longer it cannot grow so much. This implies that the field of 

stable growth decreases sharply with polytype repeat order.  

 

4. Discussion 

4.1.  When does an LPP become a 1DD layer ? 

It is an easy matter to fit a trend line for each of these graphs, the result of which is 

that they can be described by the general equation t = kNn. Values have been 

determined for the constant k and exponent n and these are tabulated in Table 1. 

 

Table 1. Parameter values to fit t = kN n. 

LPP regime k n 
6H + LPP + 6H 645.5 − 0.73 

6H + LPP + 1DD 739.1 − 0.84 
1DD + LPP + --- 3903.1 − 0.95 

 

Combining these values leads to an expression that relates the LPP thickness (t in μm) 

to the polytype spacing (N in number of hexagonal layers) which can be generally 

written as: 

t = 700 N − 0.8                 1.1 



Is it possible that such a simple expression can herald the onset of the transition from 

an ordered (albeit a very long period) structure to disorder. It is an interesting thought 

to speculate on the width of a layer as the polytype spacing increases indefinitely.  

The indication from the data in Table 1 is that the constant k (measured in μm per 

hexagonal layer) increases as the LPP tends more towards a disordered environment. 

In the limit is it reasonable to assume that the LPP approaches a 1DD layer and if so 

an intriguing question still remains “When does a long-period polytype become a one-

dimensionally disordered layer?” As Mitchell 1954 [7] said “With the discovery of 

each new polymorph of silicon carbide it becomes more evident that there is no limit 

to the possible modifications of this substance…”.  It is now timely to revisit this 

statement in the light of the data presented here.  

 
4.2. Is there an ideal thickness for the ordered 6H structure?    
 
One might now speculate on the implications of the KFB equation. This equation can 

be viewed simply as an empirical statement of the optimum thickness for different 

polytypes, without giving any actual reasons for this (such as the balance of bulk and 

surface free energies).  The equation as stated will only be appropriate to the range of 

growth conditions encountered in the study: If other growth modes were included this 

would bias the equation towards different parameters and the scatter of data points 

would increase; conversely, more specific growth conditions would segment the 

dependency and reduce the scatter (as clearly occurs in Table 1; Fig.2;).  In this 

context the equation indicates that the growth rate for a given polytype will only be 

significant while its thickness approaches the value t (μm) and then one of two things 

happens: either (i) the growth rate slows down (or stops), or (ii) an alternative, faster 

growing, polytype growth becomes more favourable.  Our previous observations 

suggest that for (ii) to occur an intermediate transitional layer is required. 



Against this background one might ask the question, what are the limits on 

polytypism suggested by the KFB equation?  If we insert the value N=6 for the most 

common polytype, the 6H, the equation returns a thickness value of ~200 μm which 

naturally corresponds to the mean of our observations; this is as one would expect.  

But what do we get if we insert a value for N corresponding to the longest polytype 

encountered in this study? Kelly 2002 [10] has been able to measure an hexagonal 

repeat of 474H. Substituting this value into the KFB equation returns a thickness t of 

~5 μm, an intriguing result in view of the fact that 5 μm also corresponds to the 

thinnest 1DD layers observed previously, Barnes et al.1991 [9].  It is believed that 

highly defective 1DD (or very long repeat polytype) layers act as transitional layers to 

accommodate the discontinuity between two different adjacent polytypes.  Their 

fineness might be considered as a further expression of the trend given by the KFB 

equation.  That is, fine 1DD layers represent the extent of disorder required to 

accommodate the discontinuity between adjacent polytypes. 

 

5. Conclusion  
 
5.1. Is there a limit to polytypism in SiC? 

However the more intriguing question to pose is whether the KFB equation implies a 

limit to the number of polytypes that can exist in practice.  We can test this idea by 

asking what is the longest polytype period (i.e. largest N) that the equation predicts.  

As N increases the polytype width decreases, so if continued indefinitely there would 

come a point when the width approaches the unit cell c-dimension.  For the purpose of 

order of magnitude calculations we might put the limiting width value for this as two 

unit cells (t→2c), simply to represent the most basic, singly repeating, polytype 

"crystal".  However the unit cell c-spacing is also N times co, the SiC h.c.p. repeat 



distance (2.513 Å), so substituting these relations for t and c into the KFB equation 

gives: 

                               t = 2c = 2Nco = kNn

 

which re-arranges to give a solution for N:  

 

N = (2co/k)1/n-1 

 

and returns limiting values of N~2,600 and t~1.3 μm on inserting the above values for 

co, k and n.  This is consistent with observations so far: the longest hexagonal repeat 

reported to date is N=1,200 Mitchell, 1954 [7].  Presumably as N approaches the 1000 

region there is an increasingly smaller drive to form ordered polytypes over the 

disordered form.  Any ordered manifestation of longer polytypes would exist with 

thicknesses of ~1 μm or less, which would be on the limit of observation by X-ray 

topography with current third generation synchrotron sources.  Thus the prediction 

given here, that silicon carbide polytypes will not be found with c-repeats greater 

than, say, 2600 layers, is just within range of verification by experiment.    
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Figure Captions 
 
 
Figure 1 Sample J105 containing a long-period polytype 201H/603R that has been previously 
observed by Kuo Chang-Lin 1965 [12]. 

(a) Polytype contributions displaced along the diffraction row with LPP spacings and 1DD 
visible. 

(b) The region labelled A-B contains 6 LPP repeats corresponding to a period of 201H. The 6H 
period is shown for comparison. The section of reflections A-B is from the area labelled 
201H/603R. The area around this label represents the enlarged section shown in b. 
Measurements were made from several regions containing LPP reflections to improve the 
accuracy in the determination of the LPP repeat, like those shown in the section labelled 
LPP to the lower part of a. 

(c) A model to scale of the polytype content of the crystal. All long-period polytypes found in 
the survey are listed by Kelly et al. 2001 [4]. 

 
 
 
 
Figure 2 Long-period polytype layer widths (μm) displayed as a function of their corresponding 
repeat spacings.  The LPP widths were measured directly from the photographic plates under 
microscopic examination. The polytype period repeat was estimated by comparing the LPP repeat 
spacing to that of the standard 6H spacing. When the data in Table 1 is classified according to the 
neighbourhood environment of the LPP, three separate models can be identified which show the same 
trend. 
(a) The LPP can be identified as being sandwiched between the common basic 6H polytypes (or other 
short period repeat). 
(b) One of the two adjoining neighbours is a disordered layer (1DD), in this case there is a rich display 
of behaviour. 
(c) The LPP forms near the outer surface of the edge still clearly demonstrating behaviour similar to 
that in (a). In (a) the LPP forms in the bulk of the material as opposed to on the surface of the crystal as 
in c. 
 

 

 

 

 

 

 

 

 

 

 



 

 

                                  (a)                                                        (b)                                                            (c) 

Figure 1  
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Figure 2 
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