BIROn - Birkbeck Institutional Research Online

    Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs

    Badman, S.V. and Achilleos, Nick and Arridge, Chris S. and Baines, K.H. and Brown, R.H. and Bunce, E.J. and Coates, Andrew J. and Cowley, S.W.H. and Dougherty, M.K. and Fujimoto, M. and Hospodarsky, G. and Kasahara, S. and Kimura, T. and Melin, H. and Mitchell, D.G. and Stallard, T. and Tao, C. (2012) Cassini observations of ion and electron beams at Saturn and their relationship to infrared auroral arcs. Journal of Geophysical Research: Space Physics 117 (A1), ISSN 0148-0227.

    Full text not available from this repository.

    Abstract

    [1] We present Cassini Visual and Infrared Mapping Spectrometer observations of infrared auroral emissions from the noon sector of Saturn's ionosphere revealing multiple intense auroral arcs separated by dark regions poleward of the main oval. The arcs are interpreted as the ionospheric signatures of bursts of reconnection occurring at the dayside magnetopause. The auroral arcs were associated with upward field-aligned currents, the magnetic signatures of which were detected by Cassini at high planetary latitudes. Magnetic field and particle observations in the adjacent downward current regions showed upward bursts of 100–360 keV light ions in addition to energetic (hundreds of keV) electrons, which may have been scattered from upward accelerated beams carrying the downward currents. Broadband, upward propagating whistler waves were detected simultaneously with the ion beams. The acceleration of the light ions from low altitudes is attributed to wave-particle interactions in the downward current regions. Energetic (600 keV) oxygen ions were also detected, suggesting the presence of ambient oxygen at altitudes within the acceleration region. These simultaneous in situ and remote observations reveal the highly energetic magnetospheric dynamics driving some of Saturn's unusual auroral features. This is the first in situ identification of transient reconnection events at regions magnetically conjugate to Saturn's magnetopause.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): Saturn, aurora, magnetosphere
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences
    Depositing User: Administrator
    Date Deposited: 28 Nov 2014 11:15
    Last Modified: 02 Aug 2023 17:14
    URI: https://eprints.bbk.ac.uk/id/eprint/11165

    Statistics

    Activity Overview
    6 month trend
    0Downloads
    6 month trend
    230Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item