BIROn - Birkbeck Institutional Research Online

    Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk

    Slack, C. and Werz, C. and Wieser, D. and Alic, N. and Foley, A. and Stocker, H. and Withers, D.J. and Thornton, Janet M. and Hafen, E. and Partridge, L. (2010) Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk. PLoS Genetics 6 (3), n/a-n/a. ISSN 1553-7404.

    Full text not available from this repository.

    Abstract

    Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein–protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK) signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the functioning and role of the IIS pathway in ageing and metabolism.

    Metadata

    Item Type: Article
    School: Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences
    Depositing User: Administrator
    Date Deposited: 04 Aug 2010 14:09
    Last Modified: 02 Aug 2023 16:49
    URI: https://eprints.bbk.ac.uk/id/eprint/1133

    Statistics

    Activity Overview
    6 month trend
    0Downloads
    6 month trend
    277Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item