BIROn - Birkbeck Institutional Research Online

    Deformation and mantle flow beneath the Sangihe subduction zone from seismic anisotropy

    Di Leo, J.F. and Wookey, J. and Hammond, James O.S. and Kendall, J.-M. and Kaneshima, S. and Inoue, H. and Yamashina, T. and Harjadi, P. (2012) Deformation and mantle flow beneath the Sangihe subduction zone from seismic anisotropy. Physics of the Earth and Planetary Interiors 194 , pp. 38-54. ISSN 0031-9201.

    Full text not available from this repository.

    Abstract

    Subduction of oceanic lithosphere is the most direct feedback between the Earth’s surface and deep interior. However, the detail of its interaction with the broader convecting mantle is still unclear. Mantle flow around subduction zones can be constrained using seismic anisotropy, but despite many such studies, a simple global picture is lacking. The Sangihe subduction zone (where the Molucca Sea microplate is subducting westward beneath the Eurasian plate) is part of the tectonically complex Sulawesi–Philippine region, and an ideal natural laboratory to study complex subduction processes. We investigate the anisotropic structure of the Sangihe subduction zone with shear wave splitting measurements of local S and SKS phases at two stations (MNI in Sulawesi, DAV in the Philippines), as well as downgoing S phases at five stations at teleseismic distances. Combining different phases allows a better vertical resolution of anisotropic fabrics than is possible with a single phase. The broad depth distribution of local events (∼60–630 km) allows us to observe a change in splitting behaviour at ∼380 km depth: above, fast directions (ϕ) are trench-parallel and delay times (δt) are ∼0.34–0.53 s with no increase with depth. We suggest this anisotropy is caused by aligned cracks, possibly melt-filled beneath the volcanic arc, and fossil anisotropy in the overriding plate. Below ∼380 km, ϕ is predominantly trench-normal and δt are slightly higher (∼0.53–0.65 s). As no correlation is observed with inferred distance travelled inside the slab, we attribute this anisotropy to shear layers atop the slab, which are coherent from ∼200 to 400 km depth and perhaps extend into the transition zone. SKS and source-side measurements show larger δt (∼1.53 and 1.33 s, respectively) and trench-parallel ϕ. Since these phases predominantly sample sub-slab mantle, we consider along-strike lateral flow associated with the double-sided subduction of the Molucca Sea microplate to be the most likely explanation. We thus infer three dominant regions of anisotropy at the Sangihe subduction zone: one within the overriding lithosphere, one along the slab–wedge interface, and one below the subducting Molucca Sea slab. The mantle wedge above 200 km depth and the slab itself do not seem to contribute notably to the measured anisotropy. This study demonstrates the insight seismic anisotropy can provide into mantle dynamics even in tectonically complex subduction systems.

    Metadata

    Item Type: Article
    School: Birkbeck Schools and Departments > School of Science > Earth and Planetary Sciences
    Depositing User: Sarah Hall
    Date Deposited: 19 May 2016 16:01
    Last Modified: 17 Nov 2017 15:54
    URI: http://eprints.bbk.ac.uk/id/eprint/15247

    Statistics

    Downloads
    Activity Overview
    0Downloads
    94Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item