BIROn - Birkbeck Institutional Research Online

    An ancient dental gene network regulates development and continuous regeneration of teeth in sharks

    Rasch, L. and Cooper, R. and Martin, K. and Metscher, B. and Underwood, Charlie J. and Fraser, G. (2016) An ancient dental gene network regulates development and continuous regeneration of teeth in sharks. Developmental Biology 415 (2), pp. 347-370. ISSN 0012-1606.

    [img]
    Preview
    Text
    Rasch et al developmental biology.pdf - Author's Accepted Manuscript
    Available under License Creative Commons Attribution.

    Download (4MB) | Preview
    [img]
    Preview
    Text
    15350.pdf - Published Version of Record
    Available under License Creative Commons Attribution.

    Download (12MB) | Preview

    Abstract

    The appearance of toothed vertebrates has proven a major determinant of the overall success of this lineage. This is most apparent in sharks and rays (elasmobranchs), which further retain the capacity for life-long tooth regeneration. Given their comparatively basal phylogenetic position, elasmobranchs therefore offer the opportunity for crucial insights into putative ancestral characters of tooth development, yet despite their evolutionary significance this remains poorly understood. Using the established chondrichthyan model, the catshark (Scyliorhinus sp.), we identified the expression of genes representative of conserved signaling pathways during stages of early dental competence, tooth initiation and regeneration. The expression patterns of β-catenin, shh, bmp4, pax9, pitx1/2, and the stem cell marker Sox2, characterise an ancestrally conserved gene set deployed during initiation of the elasmobranch dentition, suggesting that all vertebrate dentitions are defined by the expression of this core set of genes. These findings provide novel evidence to support the conservation in deep evolutionary time of a core set of dental patterning genes, therefore further defining the evolutionary trajectory of tooth development. We show how these genes facilitate the emergence of the shark dentition and offer insights into their deployment during development of the dental lamina, a sheet of dental epithelial cells that are responsible for continuous tooth regeneration. This study further promotes a specific experimental agenda to further characterise the roles of these core developmental genes during vertebrate tooth development, and importantly dental regeneration.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): Shark dentition, Tooth development, Dental regeneration, Dental lamina, Evo-devo, Vertebrate evolution
    School: Birkbeck Schools and Departments > School of Science > Earth and Planetary Sciences
    Depositing User: Charles Underwood
    Date Deposited: 31 May 2016 12:49
    Last Modified: 17 Oct 2019 06:15
    URI: http://eprints.bbk.ac.uk/id/eprint/15350

    Statistics

    Downloads
    Activity Overview
    186Downloads
    107Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item