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ABSTRACT 

 

The laminated marine mudstones of the Late Jurassic of Kimmeridge, southern 

England, yield two exceptionally well-preserved partial skeletons of a previously 

unrecognised species of early batoid. These are described as a new genus and species, 

Kimmerobatis etchesi gen. et sp. nov. which has a general “guitarfish” bauplan as in 

all other batoids known from the Jurassic. This species possesses a combination of 

primitive characters such as centra present within the majority of the synarcual and 

antorbital cartilages that fail to reach the pectoral skeleton along with more derived 

characters, such as the lack of fin spines. Until now, little study has been carried out 

on the affinities of Jurassic batoids, despite their key role in understanding batoid 

evolution. Results from parsimony and likelihood phylogenetic reconstruction 

indicates that the whole-bodied Jurassic batoids Spathobatis, Belemnobatis, and 

Kimmerobatis gen. nov. form their own clade, Spathobatidae, and do not lend support 

to a monophyletic “Rhinobatidae”. Among Jurassic batoids, Kimmerobatis gen. nov. 

is most derived, but with derived characters being independently acquired compared 

to modern batoids (e.g., presence of a postpelvic process). The inclusion of whole 

bodied Jurassic fossils have generated a more resolved hypothesis of batoid evolution 

throughout the Cretaceous and into the Cenozoic. 

 

Key Words: Kimmeridgian, phylogeny, ray, guitarfish, evolution 
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1. Introduction 

 

The Batoidea (skates, stingrays, electric rays, and sawfish) comprise over half 

of living chondrichthyans (cartilaginous fishes) and are present in virtually all marine, 

and some freshwater, environments. All of the main clades of batoids are known, or 

predicted, to have appeared prior to the end of the Cretaceous (e.g. Claeson et al., 

2013). Despite their variations of body form, the batoids are clearly monophyletic 

(e.g. Aschliman et al., 2012 a, b) and are united by a number of unambiguous 

characters such as a unique (Euhyostylic) jaw suspension, pectoral fins attached to the 

head anterior of the gill openings, and a synarcual (an elongate tube of continuous 

crust of tessellated cartilage on the anterior part of the vertebral column). Although 

fossil batoids are known largely from isolated teeth, several species of batoids are 

known from the Late Jurassic on the basis of well preserved skeletons within 

Lagerstätten such as Solnhofen (e.g. Kriwet and Klug, 2004). Unlike the batoids of 

the Cretaceous and Cenozoic, these Jurassic forms are morphologically conservative 

and all fit within the “guitarfish” or “rhinobatid” body plan. The relationship between 

these Jurassic “guitarfish” and modern forms, as well as with each other, is poorly 

understood. Modern and Cretaceous “guitarfish” are now recognised as polyphyletic 

(Aschliman et al. 2012, a, b; Claeson et al., 2013), but to date no one has tested 

whether or not Jurassic taxa belong within one or more of the extant clades, form a 

basal sister clade to all other batoids, or represent a paraphyletic group of basal 

batoids sharing plesiomorphic characters.  

 Whilst the Late Jurassic was evidently an important time in batoid evolution, 

with a well-represented fossil record, until now batoid fossils from the Kimmeridge 

Clay of the UK have been limited to isolated teeth (Underwood, 2002). Thus, the 

discovery of two exceptionally well preserved partial batoid specimens from the 
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Kimmeridge Clay Formation (Kimmeridgian to Lower Tithonian) of Kimmeridge, 

southern England represents the first examples of non-dental Mesozoic batoid fossils 

from Britain, and also the first Late Jurassic batoid skeletons worldwide from 

offshore mudstone facies. The specimens represent a previously unknown taxon and 

have allowed us to test the hypothesis that Late Jurassic batoids are more closely 

related to one another than modern batoids, and to investigate their relationship to 

other batoids, both extinct and extant. 

 

 2. Geological Setting 

 

Late Jurassic sediments are well exposed along the coast of Dorset, southern 

England.  Both of the specimens described here were collected from the Upper 

Kimmeridge Clay Formation (Early Tithonian) East of Kimmeridge Bay. The 

holotype specimen was collected from foreshore ledges of the Pectinatus Zone at 

Encombe, whilst the paratype was recovered from a fallen block originating from the 

Hudlestoni Zone near Rope Lake Head. Both specimens are from dark laminated 

mudstones, typical of the mid part of the Kimmeridge Clay. See Morgans-Bell et al., 

(2001) for a summary of the stratigraphy of the Kimmeridge Clay Type area. The 

facies and associated faunas of the Kimmeridge Bay succession are rather different 

from the silty, shallower water mudstones of the lowest part of the Kimmeridge Clay, 

which have yielded batoid teeth in the past (Underwood, 2002).  

 

 

3. Material and Methods 
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The two specimens described here were collected and prepared by Steve 

Etches from the Kimmeridge Clay Type area, and form part of the extensive 

collection now housed in the Etches Collection, Kimmeridge, UK. Both specimens 

are in dark laminated mudstones without obvious signs of associated benthos. The 

mudstones are hard and contain no significant carbonate content, and as a result both 

fossils have been prepared using mechanical methods and air abrasion. The mudstone 

matrix is unsuitable for isolating individual small elements such as teeth and denticles 

and so these are not as readily studied as they are in approximately coeval batoid 

skeletons from Plattenkalk facies (e.g. Thies and Leidner, 2011). 

 

4. Systematic palaeontology 

 

The  morphological  terminology used here follows that of Cappetta, (1987) and 

Nelson, Grande, and Wilson, (2016). 

 

Euselachii Hay, 1902 

Neoselachii Compagno, 1977 

Batomorphii Cappetta, 1980 

Spathobatidae Underwood, 2006 

 

4.1. Remarks 

 

Jurassic genera were referred to the extant “Rhinobatidae” by Cappetta (1987; 

2012), despite noting the “primitive characteristics of their skeletons”. In contrast, 

Underwood et al., (1999) considered Spathobatis, Belemnobatis, and probably 

Squatirhina to form a clade of stem group batoids, later informally considering them 
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as forming the ‘Spathobatidae’ due to shared (presumed primitive) characters of an 

incomplete synarcual (segmented basiventral cartilages) and possession of fin spines 

(Underwood, 2006). Cione, (1999) considered a Jurassic ray from Argentina, as 

Batomorphii indet., noting differences from modern clades. Based on the results of 

the present phylogenetic analyses, which included direct accounts of Spathobatis, 

Belemnobatis and the new Kimmeridgian taxon, the family Spathobatidae is 

formalised. The Argentinian specimen could not be analysed at present.     

 

5. Genus Kimmerobatis gen. nov. 

 

5.1. Derivation of name. 

 

From the type, and as yet only, locality at Kimmeridge, Dorset. 

 

5.2. Type species.  

 

Kimmerobatis etchesi gen. et sp. nov. from the Upper Jurassic of the UK. 

 

5.3. Apomorphy based differential diagnosis. 

Batoid like Spathobatis (Thiollère, 1854) and Belemnobatis (Thiollère, 1854) 

characterised by “guitarfish” like form. Kimmerobatis possesses a depressed body, 

caudal region large in proportion to disk, tail distinct from disk, fins aplesodic; 

hyomandibula with broad medial articulation with chondrocranium; unsegmented 

propterygia; no pectoral radials that articulate directly with scapulocoracoid between 

mesopterygium and metapterygium; synarcual short with vertebral centra nearly 

reaching neurocranium. Unlike Spathobatis, but like Belemnobatis, in having pectoral 
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fins not extending to overlap pelvic fins and lacking enlarged placoid scales. Unlike 

Spathobatis and Belemnobatis in having subtriangular rostrum that fails to reach end 

of snout; no rostral appendix; incipient lingual uvula on teeth; post-pelvic process; 

neural spines of caudal region longer than centra; no fin spines; rugose axial cartilage 

of clasper. 

 

5.4. Remarks 

There are a number of “guitarfish-like” batoid taxa known from well 

preserved skeletal remains from the Kimmeridgian and Tithonian, but all differ from 

Kimmerobatis gen. nov.. The best known of these are Belemnobatis sismondae 

Thiollère1854, Spathobatis bugesiacus Thiollère1854 and Asterodermus platypterus 

Agassiz, 1843 (sensu Kriwet and Klug, 2004) from the Kimmeridgian and Tithonian 

of France and Germany. All of these species have dorsal fin spines, which are 

especially large in B. sismondae, and robust rostral cartilages, which reach the end of 

the rostrum. In S. bugesiacus and A. platypterus the rostrum is far longer than in 

Kimmerobatis gen. nov., whereas in B. sismondae it is shorter and gives a convex 

leading edge to the pectoral fins. Teeth of A. platypterus and B. sismondae are wide 

and low, unlike those of Kimmerobatis gen. nov., (see Theis and Leidner, 2011), 

whereas the more equant teeth of S. bugesiacus (e.g. Cappetta, 1987) possess a strong 

occlusal ridge and are larger relative to body size than those of  Kimmerobatis gen. 

nov. 

“Spathobatis” morinicus (Sauvage, 1873) is known from a single partial 

skeleton from the French Tithonian. Reassigned to Belemnobatis by Cavin et al., 

(1995), this specimen differs from any named genus and is difficult to compare 

directly to Kimmerobatis gen. nov., because it is preserved in ventral view. That said, 

although similar to Kimmerobatis gen. nov. in general body shape, “S.” morinicus 
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differs in a number of ways. The rostral cartilage of “S.” morinicus is robust and 

reached the tip of the rostrum, the teeth are proportionately larger and have a well 

defined occlusal crest and small cusp, and the propterygium and metapterygium are 

of similar length to each other and are both far more gracile than in Kimmerobatis 

gen. nov. and exposed ventrally so there is relatively little character overlap with 

Kimmerobatis gen. nov. 

An unnamed batoid from the Tithonian of Argentina (Cione, 1999) has a 

longer synarcual than in Kimmerobatis gen. nov. within which centra are only present 

in the posterior half; this is the only Jurassic batoid known to show this character. In 

addition it has laterally projecting nasal capsules with an antorbital cartilage bearing a 

pointed termination, more gracile hyomandibula, larger and more flared 

mesopterygium and apparently at least one radial articulating directly with the 

scapulocoracoid.  

 

6. Kimmerobatis etchesi gen. et sp. nov. 

 

Figure 1-3. 

 

In press. Belemnobatis sp. Underwood.  

 

6.1. Material 

Two partial skeletons from the Kimmeridge Clay (Early Tithonian) of 

Kimmeridge. 

 

6.2. Derivation of name   

After Steve Etches, who collected and prepared the specimens. 
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6.3. Type material.  

Holotype, K874; paratype, K1894. 

 

6.4. Diagnosis 

See genus above 

 

6.5. Description 

Both specimens are highly compacted, however, there is some degree of relief 

preserved in the more robust parts of the skeleton such as neurocranium, vertebral 

column and pectoral girdle. The holotype specimen is exposed in dorsal aspect and 

preserves much of the head and trunk as well as parts of the pectoral fins. It is missing 

parts of the pectoral fins, much of the pelvic fins, and the mid to distal parts of the 

caudal region. Dorsal fins are not seen and some parts of the dorsal region of the 

pectoral girdle are missing. The paratype specimen is seen in ventral view and 

comprises the pelvic region and claspers as well as the midsection of the caudal 

region. Again, no dorsal fins are seen. 

 

6.5.1. General body form. 

Whilst the full body outline of this species is unknown, much information can 

be obtained from the specimens, especially the holotype. Note that the outline 

apparent on the specimen does not represent accurately the original outline, but has 

been prepared onto the rock as an approximate interpretation and does not form the 

basis of phylogenetic characters (Fig. 1A). The body shape is typically “guitarfish-

like”, with a pointed rostrum, each pectoral fin being anteroposteriorly longer than 

wide and a thick caudal (post-pelvic) region that is longer than the trunk (back of 



 10 

neurocranium to pelvis). Traces of soft tissue suggest that the proximal part of the 

caudal region is at least as wide as the neurocranium. Pectoral denticles on the 

leading edges of the pectoral fins and soft tissue traces suggest that the skin forming 

the leading edge of the head between the rostrum and pectoral fins formed a straight 

line and that the rostral tip was sharply angled (Fig. 1). Although the complete shape 

of the pectoral fins in uncertain, a part of the trailing edge is smoothly convex (Fig. 

1B), as are the pelvic fins, so it is likely that the pectoral fins had a curved profile. 

 

6.5.2. Neurocranium 

The neurocranium of the holotype is well preserved in dorsal view and is 

dorsoventrally compacted, but with little distortion. The rostrum is robust and an 

anterior fontanelle is present on the entire length of the preserved dorsal surface. The 

rostrum as preserved is longer than the remainder of the neurocranium. The 

mineralised rostrum does not reach the tip of the rostrum as indicated by the skin 

outline (Fig. 1A). Whilst it is possible that the tip of the mineralised rostrum has been 

removed during decay, the preserved cartilage becomes thinner distally, and the 

fidelity of the skin trace suggests that damage is minimal. It therefore is likely that the 

tip of the rostral cartilage was unmineralised in life. 

There is no posterior fontanelle and the roof of the neurocranium is flat, other 

than a faint semicircular ridge above the orbital area, representing a weak supraorbital 

crest (Fig. 1 and 2A). The nasal capsules are oval and somewhat inclined to the 

anterior. The width of the nasal capsules is less than that of the jaw cartilages. The 

anterior edge of the nasal capsules is smooth without the horn-like process seen in 

many other “guitarfish” taxa (see appendices 2 and 3). Antorbital cartilages are 

roughly triangular in shape and unbranching, with a broad articulation with the 

posterolateral part of the nasal capsule. The antorbital cartilages reach less than half 
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of the distance between the nasal capsules and the propterygium of the pectoral fin. 

The orbital region comprises about half of the length of the neurocranium excluding 

the rostrum. There is a prominent ridge along the anterior and lateral margins of this 

region – compression during fossilisation has enhanced the ridge so it appears more 

robust than when alive. The preorbital process merges into the posterior part of the 

nasal capsules, where it forms a robust posterior wall (Fig. 1B and 2A). The 

postorbital processes are short and poorly differentiated. The posterior part of the 

neurocranium gently widens at the otic region at the articulation with the 

hyomandibula laterally and synarcual posteriorly. The presence of the jugal arch is 

evident, but details are unclear (Fig. 2A). The articulation between the neurocranium 

and synarcual is weakly indented – details about the morphology of the ventral 

synarcual lip are obscured from view.  

 

6.5.3. Jaws and branchial skeleton 

The lateral parts of the jaw cartilages are clearly visible, but the medial region 

and symphysis are not clear because the jaw is largely concealed beneath the 

neurocranium. The Meckel’s cartilage is relatively robust and roughly equal to the 

palatoquadrate in anteroposterior depth. A moderate dorsal flange of the Meckel’s 

cartilage hooks around the lateralmost part of the palatoquadrate. That dorsal flange is 

anterolaterally directed, rather than anteriorly as it is in Cretaceous and modern 

“guitarfish” (Claeson et al., 2013: fig. 6 and MorphoBank Project 749). The 

mandibular knob is level with the dorsal flange and slightly obscures the articular 

condyle of the palatoquadrate. The palatoquadrates are robust and have a wide and 

smoothly tapering articulation with the Meckel’s cartilage. The tooth-bearing portion 

of the Meckel’s and palatoquadrate cartilages is broad and the central part of the 

palatoquatrates has a concave lingual face (Fig. 2A).  
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The hyomandibulae are short, somewhat plate-like (though not to the extreme 

as in the Torpedinidae), being less than one and a half times as long as wide, as in 

modern Rhinobatos (see Claeson, 2014). Hyomandibulae are triangular in profile, 

with a broad articulation to the neurocranium. The articulation with the Meckel’s 

cartilage is rounded and slightly reflexed anteriorly.  

The overall shape of the brachial region tapers from the width of the 

hyomandibulae proximally to about 70% of that width close to the pectoral girdle. 

Individual elements are not easy to recognise, but the epibranchials are wide and 

rectangular in shape. Laterally, the epibranchial and ceratobranchial elements 

articulate to give a “Y” shaped profile. A narrow element close to the hyomandibula 

appears to represent a pseudohyal cartilage. A robust and smooth, posterolaterally 

directed element represents the fifth ceratobranchial, which reached the 

scapulocoracoid, though details of the articulation are unclear. 

 

6.5.4. Vertebral column, synarcual and ribs 

The vertebral column comprises cyclospondylic centra that remain a constant 

size and shape along almost the entire preserved length of the holotype (Fig. 2A and 

B). Centra are not all readily distinguished due to partial concealment beneath 

probable soft tissue and neural arch cartilage, but the general shape of most can be 

broadly recognised. Centra are of slightly greater diameter than length, and have, in 

side view, thickened rims and a central concavity, each of similar length.   

  A large and conspicuous synarcual is present, comprising an unsegmented 

tube of tessellated cartilage, which flanks about 11 vertebral centra, considering the 

end of the synarcual as the first non-fused neural spine. The preserved synarcual is 

crushed, but drapes over the vertebral centra allowing their outline to be seen. Large 

and fully formed centra are present within the synarcual for most of its length, in 



 13 

contrast to modern batoids. At the anteriormost limit of the synarcual there is a 

depression, indicating that the centra did not reach the foramen magnum, but was 

separated by a lip of tessellated cartilage as it is in modern batoids (Fig. 2B). A 

narrow median crest is present on the dorsal midline of the anterior third of the 

draped centra. The lateral stays of the synarcual begin to expand laterally about half 

way down the posterior length of the synarcual and reach their maximum width at 

about two thirds the length of the synarcual. The lateral stays are posterolaterally 

directed, with small notches on their distalmost posterior margin. Posterior to the 

lateral stays, the synarcual flanks the remaining centra before transitioning into 

segmental neural arches and ribs. A direct articulation between the synarcual and 

pectoral girdle does not exist. The posterior flanges of the synarcual reach the 

coracoid bar of the scapulocoracoid; however, in the holotype, the first free neural 

spine lies anterior of the scapulocoracoid (Fig. 2B). 

Neural spines are not preserved in direct articulation with the precaudal 

vertebral centra, but rather to their left; it is likely that arch elements were poorly 

mineralised and these are not clear. The dorsal parts of the precaudal neural spines are 

anteroposteriorly broad and tab-like. The neural spines are caudally inclined and 

slightly higher than long. There is some variation in the length of adjacent neural 

spines which is not apparently mirrored in the centra. There are at least 19 precaudal, 

rib-bearing centra and 19 corresponding neural spines posterior to the synarcual (Fig. 

1). Articulated ribs are preserved for some of these precaudal centra. Among them, 

the posteriormost five of these rib-bearing centra are posterior to the ischiopubic bar 

of the pelvic girdle in the holotype and paratype (Figs. 1A and 3). From rostral to 

caudal, the precaudal centra remain relatively similar in size, whereas neural spines 

become more irregular, which is demonstrated in the caudal region of modern skate 

development (Criswell et al., 2017). The distalmost preserved neural spine on the 
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holotype is especially large and about as long as three centra. Among the caudal 

centra preserved in the holotype, there are 30 centra and 16 corresponding neural 

spines. Posterior to this point, neural spines are not preserved, but an additional 11 

centra are present that taper gradually towards the caudal peduncle.  

In the paratype specimen, five of the rib-bearing precaudal centra are posterior 

to the ischiopubic bar of the pelvic girdle and there are an additional 56 preserved 

caudal centra. As in the holotype, there are half as many neural spines as centra in the 

caudal skeleton. More distal neural spines are progressively shorter, and in the 

posteriormost position are about three times as anteroposteriorly elongate as tall. 

Hemal arches are present but not clear. They are considerably longer than high and of 

similar lengths to the neural spines.  

Ribs in the holotype and paratype are long and well developed. In the mid part 

of the thoracic region, only the tips of the ribs are mineralised, and these reach almost 

to the inner edge of the pectoral fin skeleton. More posterior ribs are completely 

mineralised and strongly curved posterolaterally. There is no distinction between ribs 

present anterior and posterior to the ischiopubic bar of the pelvic girdle. 

 

6.5.5. Pectoral skeleton 

The pectoral skeleton does not articulate directly with the vertebral column 

via a suprascapula, although a possible left-unfused suprascapula is present near the 

proximal point of the scapular process of the scapulocoracoid (Fig. 2B). The 

scapulocoracoid is largely preserved but dorsoventrally compressed. The scapular 

process is a short extension off of the posterior corner of the scapulocoracoid. The 

scapular process tapers and is rounded at its apex, unlike the condition in non-batoid 

elasmobranchs which is blunt (see Claeson, 2014), and unlike the condition in 

Cretaceous and extant “guitarfish” which is more angular and would articulate into a 
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slot-like scapulocoracoid (Aschliman et al., 2012a; Claeson et al., 2013). There is a 

wide gap in the position predicted to be occupied by the suprascapular cartilage. As in 

other Jurassic batoids there is no evidence for a point of suprascapular articulation on 

the synarcual or with the scapulocoracoid. It is unlikely to have been lost 

taphonomically or during preparation, thus we suggest it was never present or at least 

unmineralised. The lack of a high posterior part to the synarcual suggests a lack of 

articulation even if an unmineralised suprascapular cartilage were present. The 

coracoid bar of the scapulocoracoid is largely concealed but appears to be slender. 

The lateral aspect of the scapulocoracoid is medio-laterally wide and rather flat, with 

a faint ridge running across the anterior face. It is somewhat displaced posteriorly but 

does not flare appreciably. There is direct articulation with the three pterygial 

cartilages. 

The propterygium is broad, robust, and segmented. The first segment 

comprises over half of the anterior propterygial length and is considerably longer than 

the anteriormost radials. The mesopterygium is incompletely preserved distally, but is 

long and widens laterally from a short articulation with the scapulocoracoid. The 

propterygium has a suture with the mesopterygium that extends for over half of its 

length. The metapterygium is long and curved. The metapterygial articulation with 

the scapulocoracoid is longer than the articulation with the other two pterygial 

cartilages combined. Seven radials articulate with the first segment of the 

propterygium. About 22 radials articulate with the metapterygium. These radials 

exhibit crustal calcification (sensu Schaefer and Summers 2005). No radials articulate 

directly with the scapulocoracoid between the mesopterygium and metapterygium 

(Fig. 2B). Radial cartilages on the anterior part of the pectoral fin are wide and short. 

The majority of their length is composed of a single segment; the second segment is 

very short. Radials attached to the metapterygium are less clear, but the preserved 
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part, accounting for over three quarters of the width to the fin edge, is composed of a 

single segment.  

 

 6.5.6. Pelvic skeleton and claspers 

Although the pelvic skeleton is preserved in both specimens, it is more readily 

seen in the paratype. The holotype appears to be female and the paratype is male 

(Figs. 1 and 3). The pelvic fins are more than twice as long as wide (from the 

basipterygium and excluding the claspers). The ischiopubic bar is about six times as 

wide as long, straight, and appears to have a minute tab on its posterior margin; the 

curvature in the central part on the paratype is attributed to compaction. The lateral 

articular surfaces are not discernable (Fig. 3).  

The basipterygium is elongate and slender, straight in the anterior half and 

gently curved inwards in the posterior half. There are approximately 21 radials; in the   

paratype four of these are somewhat gracile and parallel to the direction of distal 

basipterygia the axial cartilage of the clasper. The posterior segments of the slender 

basipterygia are difficult to discern because they are obscured by the distal pelvic 

radials.  

Both claspers are exposed in ventral aspect of the paratype. The claspers are 

very long and slender, being about as long as 22 adjacent centra. Much of the exposed 

surface of the claspers comprises an elongate rugose axial cartilage, similar to the 

wrinkled surface seen in Rhinobatos productus (e.g., USNM 1009; KMC pers. obs.). 

The axial cartilage is about 10 times as long as wide. Along much of the outer edge of 

this axial cartilage is a narrow and smooth ventral marginal cartilage (Fig. 3B and C). 

Much of the terminal part of the clasper glans is covered by an oval ventral covering 

piece cartilage, with a smooth distal edge but irregular proximally. The homology of 

this is uncertain, but this may be a ventral extension of the dorsal marginal cartilage. 
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A small rounded dorsal terminal cartilage is also present, partly concealed beneath 

other structures, whilst an elongate structure alongside this is considered to represent 

the ventral terminal cartilage.  

 

6.5.7. Teeth and denticles 

The dermal skeleton is not readily observed, much being either removed from 

the upper surface of the specimens during decay or preparation, or concealed beneath 

other structures. The mudstone matrix precludes acid extraction of dermal elements as 

has been carried out in batoid specimens preserved in carbonates. Denticles are seen 

in relatively few places on the specimens, and there is no evidence of enlarged star-

shaped denticles present on some other Jurassic batoids (e.g. Thies and Leidner 

2011). Some of the body outline of the holotype is provided by a layer of very small 

denticles (Fig. 1A). This is especially clear around the rostrum and pectoral fins. 

These denticles are very small and their shape cannot be discerned. On the leading 

edges of the pectoral fins, rectangular areas of more prominent denticles are present. 

These are again small and not readily seen, but appear to be thorn-like, giving the 

areas a rough texture. Patches of denticles are also present overlying parts of the jaw 

cartilage and therefore represent the skin covering of the upper lateral parts of the 

head (Fig. 2C). The denticles are closely packed and irregularly polygonal. The face 

is smooth and gently domed.  

Teeth are seen in the lateral parts of the mouth, but their details are not clear 

Figs 1 and 2C-D). Teeth are very small, typically about 0.3-0.4 mm wide, deep, and 

high, being far smaller than adjacent tesserae in the jaw cartilages. Separate lingual 

and labial crown faces are seen, but there is no clear occlusal crest or cusp separating 

these. No teeth are preserved with a completely exposed root, but roots appear to be 

low and a similar width to the crown. 
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6.5.8. Unmineralised tissues 

Large areas of pale brown material are present on both of the specimens, 

especially in the caudal region (Figs. 1 and 3). This appears to have a vaguely striated 

texture to it, but lacks structural detail. This is clearly separate from the skin outline 

as evidenced by denticles, and in places partly overlies cartilages. This appears to be 

phosphatised muscle tissue, and in the caudal region apparently gives a good 

representation of original body outline.  

A dark area on the dorsal surface of the left palatoquadrate is interpreted as 

retinal pigment (Fig. 2C). This is in the approximate position and of typical size of 

the eye of a batoid of this body plan.  

 

7. Phylogeny of early batoids 

 

7.1 Taxonomic Sample 

 The fossils from Kimmeridge, which represent a new species, are examined 

and compared with the skeletons of 31 other elasmobranch taxa (12 extinct and 19 

extant). Two non-batoid elasmobranchs, Hexanchus and Pristiophorus, are included 

as outgroups. Ingroup taxa include the Jurassic batoids, †Spathobatis and 

†Belemnobatis, the Cretaceous “sawfish”, †Sclerorhynchus, and extant batoids 

Pristis, Torpedo, Narcine, Myliobatis, and Urolophus. The remaining ingroup taxa 

are guitarfishes or ‘rhinobatoids’ (sensu Compagno, 1973), which were analysed by 

Claeson et al. (2013). Most taxa were examined from original material (Appendix 1); 

however, original material could not be accessed for all characters. In those cases 

information was scored from the literature. 
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7.2 Character sample 

 The character matrix of 53 morphological characters is derived from the 

matrices published by McEachran et al. (1996), Brito and Dutheil (2004), Kriwet 

(2004), McEachran and Aschliman (2004), Aschliman et al. (2012a) and Claeson et 

al. (2013). The matrix (Appendix 2) was compiled using Mesquite 2.74 (Maddison 

and Maddison, 2010). No changes to the character matrix were made for the non-

Jurassic taxa included by Claeson et al. (2013), only new data were added for the 

additional Jurassic taxa Kimmeribatis n. gen, Spathobatis, and Belemnobatis. 

Characters and states for the entire matrix are listed in Appendix 3.  

 

7.3 Phylogenetic methods  

 We examined the matrix under both parsimony and Bayesian methods. For 

each method we examined the entire matrix, i.e., no characters were excluded a 

priori. In the parsimony analysis, we treated all characters as unordered and equally 

weighted. Multistate characters were treated as polymorphic. The character matrix 

was analysed using PAUP* 4.0b10 (Swofford, 2002) using the maximum parsimony 

optimality criterion. We employed heuristic searches with 1000 replicates of random 

stepwise addition (branch swapping: tree-bisection-reconnection) holding one tree at 

each step. Branches were collapsed to create soft polytomies if the minimum branch 

length was equal to zero (amb- option); afterwards, we explored agreement subtrees 

(Cole and Hariharan, 1996). We calculated Bremer support (Bremer, 1994) for nodes 

retained in the strict consensus tree. This was done manually in PAUP* using 

constraint trees generated in MacClade 4.08 for OS X (Maddison and Maddison, 

2005) from the Decay Index PAUP* File command. We report unambiguous 

optimizations for particular nodes of interest retained in the strict consensus 

(optimizations were performed on individual most parsimonious trees).  
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For the Bayesian analysis, the matrix was examined in MrBayes, with the 

following parameters: set autoclose=yes nowarn=yes; lset nst=6 rates=invgamma; 

unlink statefreq=(all) revmat=(all) shape=(all) pinvar=(all); prset applyto=(all) 

ratepr=variable; mcmcp ngen= 10000000 relburnin=yes burninfrac=0.25 

printfreq=1000  samplefreq=1000 nchains=4 savebrlens=yes; mcmc; sumt. 

 

7.4 Phylogenetic results 

There were 48 of 53 parsimony informative characters and the matrix had 

7.19% missing and 1.47% inapplicable data. The heuristic search retained eight trees 

with 156 steps (CI = 0.4872, HI = 0. 5128, RI = 0.7133, RC = 0.3475). The identical 

strict consensus and 50% majority rule trees were rooted with Hexanchidae and 

Pristiophorus and are presented in figure 4A. Character transformations are mapped 

for Jurassic taxa in 4A. The likelihood tree with branch lengths are provided in figure 

4B.  

The tree topology of the parsimony analysis and the Bayesian analysis are 

more resolved than the tree presented by Claeson et al. (2013). Relationships among 

Platyrhinidae and its immediate sister clades remains the same, however, there is 

more resolution among the sections of the tree where Cretaceous ‘guitarfishes’ are 

stem members to the skate and ray lineages. Furthermore, the monophyletic 

Torpediniformes are recovered as sister taxon to a clade formed by all other batoids 

including the Jurassic batoids. Jurassic batoids form their own clade, Spathobatidae, 

where Kimmerobatis etchesi gen et sp. nov. is more closely related to Belemnobatis 

than either is to Spathobatis.  

 

7.4 Phylogenetic discussion 
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The Late Jurassic (Kimmeridgian to Tithonian) represents the earliest 

occurrence of multiple batoid species preserved as articulated skeletons, with six 

known species, each potentially representing a different genus. The oldest known 

remains of batoids comprise isolated teeth assigned to several genera from the 

Toarcian (Early Jurassic), which were not included in the present analysis. Many of 

these earliest batoids have a tooth morphology very similar to the Late Jurassic 

genera Belemnobatis and Asterodermus and an affinity with these genera is 

considered likely (e.g. Underwood, 2006) while others are considered members of 

their own family Archaeobatidae (e.g., Delsate and Candoni, 2001). In addition, an as 

yet undescribed Early Jurassic skeleton from the Posidonia Shale near Holzmaden, 

Germany, suggests that at least some early batoids ha d a body form rather unlike 

later Jurassic taxa, particularly features of the axial and clasper skeleton (KMC pers. 

obs.).  

Middle Jurassic batoids also are known exclusively from isolated teeth and 

not included in this analysis, but a number of taxa have been recognised (e.g. 

Underwood and Ward, 2004). Occurrence of Middle Jurassic species within different 

facies suggest a strong palaeoenvironmental preference of different taxa (Underwood 

2004). Whilst isolated teeth have been recorded from Cretaceous rocks that may be 

assigned to genera known from the Jurassic (e.g. Underwood and Rees, 2002, 

Underwood et al., 1999), skeletal remains from the mid part (Aptian to Turonian) of 

the Cretaceous (Cappetta 1980, Claeson et al. 2013, Brito and Seret 1996, Brito et al. 

2013) all possess derived characters such as the absence of a fin spine, well 

developed synarcual and propterygium articulating with the antorbital cartilage. The 

Late Jurassic therefore represents a “window” into batoid evolution, and 

understanding the phylogeny and relationships of these Jurassic forms is critical to 

understanding the radiation of the batoids. Indeed, the inclusion of whole bodied 
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Jurassic fossils have generated a more resolved hypothesis of batoid evolution 

throughout the Cretaceous and into the Cenozoic.  

  Of note in the evolution of Batoidea is the morphological variation of the 

synarcual and the associated pectoral skeleton. The inclusion of Jurassic taxa seems 

to help explain the early evolution and radiation of batoids, which appears driven by 

the form and function relationship of the pectoral and axial skeleton. Batoids are 

diagnosed in part by the presence of a synarcual (see Aschliman et al., 2012a), and 

within each modern clade of batoids there is a distinct modification to the synarcual 

morphology (Claeson, 2011; Aschliman et al., 2012; Claeson, 2014).  

The Jurassic batoids exhibit a true synarcual, each presenting a short tube of 

tessellated cartilage. The Jurassic synarcuals present with multiple spinal nerve 

foramina correlating with multiple vertebral centra. Those centra are bounded 

anteriorly by tessellated synarcual cartilage and do not articulate directly with the 

chondrocranium. Outgroups lack this synarcual and centra articulate directly with the 

chondrocranium.  

Secondary to the appearance of a synarcual is the fusion of independent 

suprascapulae, which is consistent with the bifurcation of the tree between 

Torpediniformes and all remaining batoids. Torpediniformes have fused 

suprascapulae (Claeson, 2014), which appears to be an independent acquisition 

compared to the condition seen in other Cretaceous and Cenozoic taxa, because the 

suprascapulae in Torpediniformes do not articulate with the vertebral column. 

Jurassic taxa, distinguished as their own clade, Spathobatidae, are sister taxon to a 

clade of non-torpediniform Cretaceous and Cenozoic taxa batoids. Suprascapulae in 

Spathobatidae have never been definitively identified, though based on morphology 

of the scapular process of the pectoral girdle and the neural spines posterior to the 
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synarcual, there is no evidence that suprascapulae were fused to each other or 

articulated with the pectoral girdle, which is plesiomorphic among elasmobranchs.  

The clade of non-torpediniform Cretaceous and Cenozoic batoids (including 

†Sclerorhynchus) possesses a fused suprascapula that has a direct relationship to the 

vertebral column. At the base of this clade and among the stem taxa leading to the 

skates and stingrays, the suprascapula reflects the plesiomorphic “guitarfish-type” 

forked-morphology (Compagno, 1977; Claeson, 2011; Aschliman et al., 2012a; 

Claeson, 2014). This forked suprascapular cartilage articulates with the neural arches 

of more posterior vertebrae (Garman, 1913; Compagno, 1973; Miyake, 1988; 

Claeson, 2011; Aschliman et al., 2012a,b). In stingrays, the suprascapulae fuse to 

both the median crest and a distal component of the lateral stay. The pectoral arch in 

skates is the fused paired suprascapular cartilages that are incorporated directly into 

the synarcual (Garman, 1913; Compagno, 1973; Miyake, 1988; Claeson, 2008; 

Claeson, 2011). Given that the Cretaceous batoids are present at the base of the 

stingray, skate, and platyrhinid-guitarfish lineages, the fused suprascapulae appears to 

be the required step for the major radiation in batoid biodiversity.  
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 FIG. 1.  

A. Composite photograph of the more complete holotype specimen. Scale bar is 

100mm. 

B. Outline drawing of the same specimen; ac- antorbital cartilage, af- anterior 

fontanelle, bp- basipterygium, br- branchial arches, c- vertebral centra, c5- fifth 

ceratobranchial, co- coracoid bar, ha- haemal arch, hm- hyomandibula, ib- 

ischiopubic bar, ls- lateral stay, mc- median crest, mk- Meckel’s cartilage, ms- 

mesopterygium, mt- metapterygium, nc- nasal capsule, ns- neural spine, nse- neural 

spine, enlarged, pef- pelvic fin outline, pd- pectoral denticles, pf- pectoral fin outline, 

pm- phosphatised muscle, po- preorbital process, pp- propterygium, pq- 

palatoquadrate, r- ribs, ro- rostrum, ra- pectoral fin radials, rap- pelvic fin radials, rd- 

rostral denticle covering, rp- retinal pigment, sc- scapulocoracoid, sp- scapular 

process, syn-synarcual. Scale bar is 100mm. 

 

FIG. 2.  

A. Detail of the cranial region of the holotype. Scale bar is 100mm. 

B. Detail of the synarcual and pectoral skeleton of the holotype. Scale bar is 100mm. 

C. Part of the mouth of the holotype; de- denticles, rp- retinal pigment, t- tesserae of 

cartilage, te- teeth. Scale bar is 10mm. 

D. Close up view of mouth showing the very small teeth. Scale bar is 5mm. 

 

FIG 3. 

A. Photograph of referred specimen. Scale bar is 100mm. 
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B. Outline drawing of the same specimen; ax- axial cartilage, bp- basipterygium, c- 

vertebral centra, ha- haemal arch, ib- ischiopubic bar, pm- phosphatised muscle, r- 

ribs, rap- pelvic fin radials, vc- ventral cartilage plate, possibly dorsal marginal 

cartilage, vmc- ventral marginal cartilage, vtc- ventral terminal cartilage. Scale bar 

is 100mm. 

C. Detail of the claspers. Scale bar is 100mm. 

 

FIG. 4.  

A. Consensus tree based derived from eight most parsimonious trees (156 steps, CI = 

0.4872, HI = 0. 5128, RI = 0.7133, RC = 0.3475). B. Likelihood tree. Spathobatidae 

branches are bold. Apomorphies are mapped on consensus tree for Spathobatidae.   

 

Appendix 1. Materials examined 
 

Fossil Material     

     

†Asterodermus platypterus, NHM P10267; †Belemnobatis sismondus CM4408; 

†Rhinobatos hakelensis, NHM P4012 paratype; †Rhinobatos intermedius; NHM 

49516 holotype; †Rhinobatos maronita, NHM P10696, NHM P13861, NHM 49511, 

NHM 49512, NHM 49554, SMNS 12429; †Rhinobatos tenuirostris, NHM P4770 

holotype; †Rhinobatos whitfieldi, AMNH 3703, AMNH 3707, AMNH 3708, AMNH 

3709, NHM P9145, NHM P24965, NHM 47519; †Spathobatis bugesiacus, NHM 

P2099, NHM P10934, CM5396 

 

Recent Material  
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Aptycotrema, AMNH 98512; Myliobatis MCZ  1343-s; Narcine brasiliensis, AMNH 

218276, AMNH 90769, AMNH 92321.a, TNHC 18512_A-C; Platyrhinoides 

triseriata, MCZ  99000, MCZ  S895, MCZ  S750, MCZ  S749; Pristiophorus 

japonicus, MCZ 1045-s, MCZ 1283; Pristis, AMNH 55624, MCZ  S105; Raja 

inornata, FMNH 2754; Rhinobatos lentignosus, MCZ  57799; Torpedo, ZMB 33932, 

ZMB 33933; Urolophus, AMNH 214469; Zapteryx exasperata, SMF 26135; SMF 

30674 

 

Appendix 2. Character Matrix 

 

Appendix 3. Characters and states 

1. Rostral cartilage Shape (BD2004, char1)   

  0 stout   

  1 filamentous   

  2 absent   

  3 subtriangular: a tapered rostrum that fails to reach the anterior margin of the 

snout   

 

2. Rostral cartilage (MA2004, char24)   

  0 complete   

10 20 30 40 50

Hexanchidae 0 0 0 0 0 - - - 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pristiophorus 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 ? 1 0 1 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Spathobatis 0 0 0 0 1 0 0 0 0 0 ? ? ? 0 ? 1 1 0 0 ? 2 0 2 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
Belemnobatis 0 0 0 0 1 0 0 0 0 0 0 0 0 1 ? 1 1 0 ? ? 2 0 2 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 ?
Kimmerobatis 3 1 1 0 1 0 0 0 0 0 0 0 0 1 ? 1 1 0 ? ? 1 0 2 1 ? 1 ? 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
Sclerorhychus 0 0 0 1 1 0 0 0 0 0 0 0 0 ? ? 1 1 0 0 ? 1 0 2 1 0 0 ? ? 1 ? 1 1 0 0 0 0 ? 1 1 0 0 0 0 0 0 ? 0 0 0 0 0 0 ?
Pristis 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 2 2 1 2 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Torpedo 0 0 0 0 1 1 1 0 0 0 1 1 - 0 1 1 1 0 0 0 0 0 2 2 3 1 2 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0
Narcine 0 0 0 0 1 1 1 0 0 1 1 1 - 0 1 1 0 0 0 0 0 0 2 2 3 0 2 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 2 0 0
Narke 0 0 0 0 1 1 1 0 0 1 1 1 - 0 1 1 0 0 0 0 0 0 2 2 3 0 2 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 ? 0 0 0 0 2 0 0
Iansan 0 0 ? 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 ? 2 2 2 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 2 0 0 0 0 0 0 0 0 1 ?
Rhynchobatus 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 2 0 2 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1
Rhinobatos	tenuirostris 0 0 1 0 1 0 0 0 1 ? 0 0 0 ? ? 1 ? 0 ? ? 2 2 2 1 0 0 ? ? 1 1 1 1 0 0 ? 0 0 1 ? 1 0 0 ? ? ? ? 0 0 0 ? 0 1 ?
Rhinobatos	maronita 0 0 1 0 1 0 0 0 1 0 0 0 0 ? ? 1 ? 0 ? ? 1 0 2 1 ? 0 ? ? 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 ?
Aptychotrema 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 2 1 2 1 0 0 ? 1 1 1 1 1 0 1 1 0 ? 1 1 1 0 0 1 0 0 ? 1 0 0 0 0 1 ?
Zapteryx 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 2 2 1 2 1 0 0 0 1 1 1 1 1 1 2 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1
Trygonorrhina 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 ? 0 0 0 2 1 2 1 0 0 0 1 1 1 1 1 1 2 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1
Rhinobatos	hakelensis 0 0 1 0 1 0 0 1 0 0 0 0 0 1 ? 1 ? 0 0 ? 1 0 2 1 ? 0 ? ? 1 1 1 1 1 2 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 ?
Raja 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 2 1 3 0 0 1 1 1 1 1 1 2 1 0 0 1 1 2 0 0 1 0 0 0 1 1 0 0 1 1 1
Rhombopterygia 0 0 1 0 1 0 0 1 0 0 0 0 0 ? 1 1 ? 0 0 ? 1 0 2 1 ? 0 ? ? 1 1 1 1 1 2 1 0 0 1 ? 1 0 0 1 0 0 1 1 0 0 0 0 1 ?
Rhinobatos	whitfieldi 0 0 1 0 1 0 0 1 0 0 0 0 0 1 ? 1 ? 0 0 ? 1 0 2 1 ? 0 ? ? 1 1 1 1 1 2 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 ?
Zanobatos 2 2 0 0 1 0 0 1 0 0 0 0 0 1 1 1 ? 0 0 2 1 0 2 2 0 0 0 1 1 1 1 1 2 2 1 0 1 1 1 1 0 0 0 1 1 1 2 0 0 0 0 1 0
Myliobatis 2 2 0 0 1 0 0 1 0 1 0 0 3 0 1 1 1 0 2 3 0 0 3 2 3 0 2 1 1 1 1 1 2 2 0 0 0 1 0 2 0 1 3 1 1 2 2 0 0 1 2 0 0
Urolophus 2 2 0 0 1 0 0 1 0 1 0 0 2 0 1 1 1 0 0 1 0 0 2 2 3 0 0 1 1 1 1 1 2 2 0 0 0 1 0 2 0 1 2 1 1 1 0 0 0 1 2 0 0
Rhinobatos 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 2 1 0 2 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1
Rhinobatos	latus 0 0 1 0 1 0 0 1 1 0 0 0 0 ? ? 1 ? 0 ? ? 1 0 2 1 0 0 ? ? 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 ?
Rhinobatos	intermedius 0 0 1 0 1 0 0 1 1 ? 0 0 0 ? ? 1 ? 0 ? ? 2 0 2 1 0 0 ? ? 1 1 1 1 1 1 1 0 0 1 ? 1 0 0 0 0 0 0 0 0 0 0 0 1 ?
Britobatos	 0 0 1 0 1 0 0 1 1 0 0 0 0 0 ? 1 0 0 0 ? 2 2 2 1 0 0 ? ? 1 1 1 1 1 2 1 0 ? 1 0 1 0 0 1 1 0 0 0 0 1 0 0 1 ?
Tethybatis 3 1 ? ? ? - - - 0 0 ? 0 0 ? 1 1 ? 0 - - - - - - - 0 ? ? ? ? 1 1 2 2 1 0 0 1 0 1 ? 0 ? ? 0 0 0 0 0 0 0 1 1
Platyrhina 3 1 0 0 1 2 0 1 1 0 0 0 0 1 1 1 0 0 0 2 2 2 2 1 2 0 0 1 1 1 1 1 2 2 1 0 1 1 ? 1 0 0 0 1 0 0 0 0 1 0 0 1 1
Platyrhinoidis 3 1 0 0 1 2 0 1 1 0 0 0 0 1 1 1 1 0 0 2 2 1 2 1 2 0 0 1 1 1 1 1 2 2 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0
Tingitanius	 3 ? 0 0 1 2 0 ? 1 0 0 0 0 1 1 1 1 0 0 ? 2 1 2 1 1 0 - - 1 - - 1 - - - 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1
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  1 fails to reach tip of the snout   

  2 absent   

 

3. Rostral appendix (MA2004, char25)   

  0 absent   

  1 present   

 

4. Precerebral fossa (BD2004, char11)   

  0 present as a circular ovoid concavity   

  1 extending anteriorly and roofed to form a tube   

 

5. Antorbital cartilage (BD2004, char2)   

  0 absent   

  1 present   

 

6. Antorbital cartilage shape   

  0 unbranched and narrow, tapering distally   

  1 long and branched   

  2 plate-like   

 

7. Antorbital cartilage projection direction   

  0 postero-laterally   

  1 anteriorly   

 

8. Antorbital-propterygium connection (BD2004, char4; MA2004, char7)   

  0 free   
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  1 directly jointing   

 

9. Nasal capsules (BD2004, char5)   

  0 with a straight and or blunt anterior margin   

  1 witha horn-like anterior process   

 

10. Nasal capsule (MA2004, char27)   

  0 laterally expanded   

  1 ventrolaterally expanded   

 

11. Supraorbital crest (BD2004, char6; MA2004, char30)   

  0 present   

  1 absent   

 

12. Postorbital process (BD2004, char7; MA2004, char32)   

  0 present   

  1 absent   

 

13. Location of postorbital process (MA2004, char32)   

  0 narrow and in otic region   

  1 absent   

  2 broad and shelflike and in otic region   

  3 broad and shelf like in orbital region   

 

14. Jugal arch (MA2004, char35)   

  0 absent   
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  1 present   

 

15. Basal angle of neurocranium (BS1996, char 12; MA2004, char28)   

  0 present   

  1 absent   

 

16. Relation between palatoquadrate and neurocranium (BD2004, char8; MA2004, 

char2)   

  0 articulated   

  1 loss of orbital articulation   

 

17. Labial cartilages (MA2004, char38)   

  0 present   

  1 absent   

 

18. Jaw shape   

  0 straight   

  1 with sigmoidal curvature   

 

19. Osteodentine in tooth root (MA2004, char17)   

  0 absent   

  1 present in roots of large teeth only   

  2 widespread occurence in tooth roots   

 

20. Pulp cavity of tooth root (MA2004, char16)   

  0 large   
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  1 roots with large pulp cavities   

  2 tooth roots with small pulp cavities   

  3 roots that lack pulp cavities   

 

21. Lingual uvula on teeth   

  0 absent   

  1 incipient or poorly developed   

  2 well developed   

 

22. Differentiated lateral uvulae on teeth   

  0 absent   

  1 incipient   

  2 well developed   

 

23. Tooth root main vascularisation   

  0 multiple, irreular (anaulacorhizous)   

  1 single paired opening (hemiaulacorhizous)   

  2 open or secondarily roofed (holoaulacorhizous)   

  3 fused teeth that are polyaulacorhizous   

 

24. Lingual projection of root lobe median to paired lingual foramina   

  0 paired foramina absent   

  1 lingual projection present   

  2 lingual projection absent   

 

25. Dorsal groundmass denticles (Deynat 2005)   
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  0 ribbed   

  1 smooth, arrowhead shaped   

  2 smooth, oval   

  3 absent   

 

26. Medial part of hyomandibular (MA2004, char39)   

  0 narrow   

  1 expanded   

 

27. Basihyal and first hypobranchial (MA2004, char43)   

  0 both present and unsegmented   

  1 basihyal is segmented   

  2 basihyal is absent   

  3 basihyal and first hypobranchial cartilages are absent   

 

28. Ceratohyal (MA2004, char44)   

  0 fully developed   

  1 reduced or absent   

 

29. Distal tip of last ceratobranchial (BD2004, char9; MA2004 char4)   

  0 independent of scapulocoracoid   

  1 articulating with scapulocoracoid   

 

30. Pseudohyoid bar (BD2004, char10; MA2004, char3)   

  0 absent   

  1 present   
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31. Paired fins (BD2004, char13 and char19; MA2004, char60)   

  0 aplesodic   

  1 plesodic   

 

32. Form of pectoral fin (BD2004, char14)   

  0 not elongated anteriorly   

  1 anteriorly elongated   

 

33. Pectoral propterygium (BD2004, char15; MA2004, char55)   

  0 not reaching the nasal capsules   

  1 extending as far as the nasal capsules   

  2 extending far beyond the nasal capsules   

 

34. Pectoral radials (BD2004, char16)   

  0 not reaching the nasal capsules   

  1 extending as far as the nasal capsules   

  2 extending far beyond the nasal capsules   

 

35. Posterior corner of the pectoral fin (BD2004, char17)   

  0 not reaching the pelvic fin   

  1 extending to the pelvic fin origin   

 

36. Electric ampullae on the pectoral fins (BD2004, char18)   

  0 absent   

  1 present   
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37. Postpelvic process (BD2004, char20)   

  0 absent   

  1 present   

 

38. Synarcual (BD2004, char23;   

  0 absent   

  1 present   

 

39. Extent of Synarcual Lip (new)   

  0 short   

  1 long   

 

40. Suprascapulae (BD2004, char24+25; MA2004, char6; new observations)   

  0 free of vertebral column   

  1 articulated with vertebral column   

  2 Fused to vertebral column (new)   

 

41. Scapular process (BD2004, char26;MA2004, char49)   

  0 long   

  1 short   

 

42. Ball and socket articulation (MA2004, char46)   

  0 absent   

  1 present   
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43. Mesocondyle (MDM1996, char48)   

  0 equidistant   

  1 Scapulocoracoid is elongated between mesocondyle and metacondyle   

  2 Scapulocoracoid is elongated  between procondyle and mesocondyle   

  3 replaced with a ridge   

 

44. Posterior section of propterygium (MA2004, char56)   

  0 does not extend posterior to procondyle   

  1 extends behind procondyle   

 

45. Mesoptergium (MA2004, char58)   

  0 present and single   

  1 fragmented or absent   

 

46. Shape of puboischadic bar (MA2004, char62)   

  0 platelike   

  1 narrow and strongly arched without distinct prepelvic processes   

  2 narrow, strongly arched with a triangular medial prepelvic process   

  3 narrow, moderately arched with barlike medial prepelvic process   

 

47. Pectoral radials (BD2004, char28; MA2004, char57)   

  0 all articulating with the propterygium, mesopterygium, and metapterygium   

  1 some articulating directly withteh scapulocoracoid, between the meso and the 

metapterygium   

  2 many articulating iwth the scapulocoracoid due to the lack of mesopterygium   
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48. Alar thorns (BD2004, char21, MD1998)   

  0 absent   

  1 present   

 

49. Parallel rows of enlarged thorns over the posterior part of the disc and tail 

(BD2004, char22)   

  0 absent   

  1 present   

 

50. Serrated tail spine (MA2004, char13)   

  0 absent   

  1 present   

 

51. Placoid scales (MA2004, char14)   

  0 uniformly present   

  1 sparsly to densly covered with placoid scales on the dorsal surface only   

  2 free of denticles   

 

52. Large placoid scales or thorns (MA2004, char15)   

  0 absent   

  1 present   

 

53. Clasper length (MA2004, char64)   

  0 short   

  1 long   

 









10 20 30 40 50

Hexanchidae 0 0 0 0 0 - - - 0 0 0 0 0 0 0 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Pristiophorus 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 ? 1 0 1 0 0 0 0 ? 0 0 0 0 0 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Spathobatis 0 0 0 0 1 0 0 0 0 0 ? ? ? 0 ? 1 1 0 0 ? 2 0 2 1 0 1 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
Belemnobatis 0 0 0 0 1 0 0 0 0 0 0 0 0 1 ? 1 1 0 ? ? 2 0 2 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 ?
Kimmerobatis 3 1 1 0 1 0 0 0 0 0 0 0 0 1 ? 1 1 0 ? ? 1 0 2 1 ? 1 ? 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
Sclerorhychus 0 0 0 1 1 0 0 0 0 0 0 0 0 ? ? 1 1 0 0 ? 1 0 2 1 0 0 ? ? 1 ? 1 1 0 0 0 0 ? 1 1 0 0 0 0 0 0 ? 0 0 0 0 0 0 ?
Pristis 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 2 2 1 2 1 0 0 0 1 1 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
Torpedo 0 0 0 0 1 1 1 0 0 0 1 1 - 0 1 1 1 0 0 0 0 0 2 2 3 1 2 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 2 0 0
Narcine 0 0 0 0 1 1 1 0 0 1 1 1 - 0 1 1 0 0 0 0 0 0 2 2 3 0 2 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 2 0 0
Narke 0 0 0 0 1 1 1 0 0 1 1 1 - 0 1 1 0 0 0 0 0 0 2 2 3 0 2 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 0 0 ? 0 0 0 0 2 0 0
Iansan 0 0 ? 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 ? 2 2 2 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 2 0 0 0 0 0 0 0 0 1 ?
Rhynchobatus 0 0 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 2 0 2 1 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 1
Rhinobatos	tenuirostris 0 0 1 0 1 0 0 0 1 ? 0 0 0 ? ? 1 ? 0 ? ? 2 2 2 1 0 0 ? ? 1 1 1 1 0 0 ? 0 0 1 ? 1 0 0 ? ? ? ? 0 0 0 ? 0 1 ?
Rhinobatos	maronita 0 0 1 0 1 0 0 0 1 0 0 0 0 ? ? 1 ? 0 ? ? 1 0 2 1 ? 0 ? ? 1 1 1 1 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 ?
Aptychotrema 0 0 1 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 1 2 1 2 1 0 0 ? 1 1 1 1 1 0 1 1 0 ? 1 1 1 0 0 1 0 0 ? 1 0 0 0 0 1 ?
Zapteryx 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 0 2 2 1 2 1 0 0 0 1 1 1 1 1 1 2 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1
Trygonorrhina 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 ? 0 0 0 2 1 2 1 0 0 0 1 1 1 1 1 1 2 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1
Rhinobatos	hakelensis 0 0 1 0 1 0 0 1 0 0 0 0 0 1 ? 1 ? 0 0 ? 1 0 2 1 ? 0 ? ? 1 1 1 1 1 2 1 0 0 1 1 1 0 0 1 1 0 0 1 0 0 0 0 1 ?
Raja 1 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 2 1 3 0 0 1 1 1 1 1 1 2 1 0 0 1 1 2 0 0 1 0 0 0 1 1 0 0 1 1 1
Rhombopterygia 0 0 1 0 1 0 0 1 0 0 0 0 0 ? 1 1 ? 0 0 ? 1 0 2 1 ? 0 ? ? 1 1 1 1 1 2 1 0 0 1 ? 1 0 0 1 0 0 1 1 0 0 0 0 1 ?
Rhinobatos	whitfieldi 0 0 1 0 1 0 0 1 0 0 0 0 0 1 ? 1 ? 0 0 ? 1 0 2 1 ? 0 ? ? 1 1 1 1 1 2 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 ?
Zanobatos 2 2 0 0 1 0 0 1 0 0 0 0 0 1 1 1 ? 0 0 2 1 0 2 2 0 0 0 1 1 1 1 1 2 2 1 0 1 1 1 1 0 0 0 1 1 1 2 0 0 0 0 1 0
Myliobatis 2 2 0 0 1 0 0 1 0 1 0 0 3 0 1 1 1 0 2 3 0 0 3 2 3 0 2 1 1 1 1 1 2 2 0 0 0 1 0 2 0 1 3 1 1 2 2 0 0 1 2 0 0
Urolophus 2 2 0 0 1 0 0 1 0 1 0 0 2 0 1 1 1 0 0 1 0 0 2 2 3 0 0 1 1 1 1 1 2 2 0 0 0 1 0 2 0 1 2 1 1 1 0 0 0 1 2 0 0
Rhinobatos 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 1 0 2 1 0 2 1 0 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 0 1 1
Rhinobatos	latus 0 0 1 0 1 0 0 1 1 0 0 0 0 ? ? 1 ? 0 ? ? 1 0 2 1 0 0 ? ? 1 1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 ?
Rhinobatos	intermedius 0 0 1 0 1 0 0 1 1 ? 0 0 0 ? ? 1 ? 0 ? ? 2 0 2 1 0 0 ? ? 1 1 1 1 1 1 1 0 0 1 ? 1 0 0 0 0 0 0 0 0 0 0 0 1 ?
Britobatos	 0 0 1 0 1 0 0 1 1 0 0 0 0 0 ? 1 0 0 0 ? 2 2 2 1 0 0 ? ? 1 1 1 1 1 2 1 0 ? 1 0 1 0 0 1 1 0 0 0 0 1 0 0 1 ?
Tethybatis 3 1 ? ? ? - - - 0 0 ? 0 0 ? 1 1 ? 0 - - - - - - - 0 ? ? ? ? 1 1 2 2 1 0 0 1 0 1 ? 0 ? ? 0 0 0 0 0 0 0 1 1
Platyrhina 3 1 0 0 1 2 0 1 1 0 0 0 0 1 1 1 0 0 0 2 2 2 2 1 2 0 0 1 1 1 1 1 2 2 1 0 1 1 ? 1 0 0 0 1 0 0 0 0 1 0 0 1 1
Platyrhinoidis 3 1 0 0 1 2 0 1 1 0 0 0 0 1 1 1 1 0 0 2 2 1 2 1 2 0 0 1 1 1 1 1 2 2 1 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0
Tingitanius	 3 ? 0 0 1 2 0 ? 1 0 0 0 0 1 1 1 1 0 0 ? 2 1 2 1 1 0 - - 1 - - 1 - - - 0 1 1 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1


