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Highlights  

 Two samples of developmental prosopagnosics (DPs) completed composite face tasks  

 The groups completed complementary simultaneous and sequential matching 

procedures 

 In both experiments, the DPs exhibited composite effects comparable with controls 

 The whole-face processing indexed by the composite effect seems to be intact in DP 
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Abstract  

Upright face perception is thought to involve holistic processing, whereby local features 

are integrated into a unified whole. Consistent with this view, the top half of one face 

appears to fuse perceptually with the bottom half of another, when aligned spatially and 

presented upright. This ‘composite face effect’ reveals a tendency to integrate information 

from disparate regions when faces are presented canonically. In recent years, the 

relationship between susceptibility to the composite effect and face recognition ability has 

received extensive attention both in participants with normal face recognition and 

participants with developmental prosopagnosia. Previous results suggest that individuals 

with developmental prosopagnosia may show reduced susceptibility to the effect 

suggestive of diminished holistic face processing. Here we describe two studies that 

examine whether developmental prosopagnosia is associated with reduced composite face 

effects. Despite using independent samples of developmental prosopagnosics and different 

composite procedures, we find no evidence for reduced composite face effects. The 

experiments yielded similar results; highly significant composite effects in both 

prosopagnosic groups that were similar in magnitude to the effects found in participants 

with normal face processing. The composite face effects exhibited by both samples and 

the controls were greatly diminished when stimulus arrangements were inverted. Our 

finding that the whole-face binding process indexed by the composite effect is intact in 

developmental prosopagnosia indicates that other factors are responsible for 

developmental prosopagnosia. These results are also inconsistent with suggestions that 

susceptibility to the composite face effect and face recognition ability are tightly linked. 

While the holistic process revealed by the composite face effect may be necessary for 

typical face perception, it is not sufficient; individual differences in face recognition 

ability likely reflect variability in multiple sequential processes.   

 

Key words:  

Developmental prosopagnosia; Composite face effect; Holistic face processing  
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Introduction 

In recent years, research has revealed substantial individual differences in face processing 

ability. Whilst ‘super-recognisers’ make up the upper tail (Russell, Duchaine, & 

Nakayama, 2009), the lower-end of the distribution is composed of individuals with 

developmental prosopagnosia
1
 (DP). DP is a neurodevelopmental condition characterised 

by difficulties recognising facial identity, despite normal intelligence, typical low level 

vision, and no history of brain damage (Behrmann & Avidan, 2005; Cook & Biotti, 2016; 

Duchaine & Nakayama, 2006b). DP was once thought to be extremely rare (McConachie, 

1976), but one in every 50 people are now thought to experience lifelong face recognition 

difficulties severe enough to disrupt their daily lives (Kennerknecht et al., 2006; 

Kennerknecht, Ho, & Wong, 2008). Individuals with DP typically utilise non-face cues 

including voice, gait, and hairstyle to recognise others. Consequently, they often 

experience great difficulties when non-face cues are unavailable or changed, or when 

familiar people are encountered out of context.  

 

Numerous papers have suggested that diminished holistic face processing may underlie 

the difficulties seen in DP (Avidan, Tanzer, & Behrmann, 2011; Carbon, Grüter, Weber, 

& Lueschow, 2007; DeGutis, Cohan, Mercado, Wilmer, & Nakayama, 2012; DeGutis, 

Cohan, & Nakayama, 2014; Liu & Behrmann, 2014; Lobmaier, Bölte, Mast, & Dobel, 

2010; Palermo et al., 2011). Typical face perception appears to involve a rapid parallel 

analysis, whereby local features are integrated into a unified whole (Farah, Wilson, Drain, 

& Tanaka, 1998; Maurer, Le Grand, & Mondloch, 2002; McKone & Yovel, 2009; Piepers 

& Robbins, 2013). Evidence of holistic face perception is provided by the composite face 

effect, where the top half of one face appears to fuse perceptually with the bottom half of 

another, when the two halves are aligned and presented upright (Hole, 1994; Young, 

Hellawell, & Hay, 1987). The resulting illusion-induced interference disrupts observers’ 

ability to judge the identity (Young et al., 1987), physical resemblance (Hole, 1994), age 

(Hole & George, 2011), gender (Baudouin & Humphreys, 2006), and attractiveness 

(Abbas & Duchaine, 2008) of constituent face halves (for reviews see Murphy, Gray, & 

Cook, 2017; Rossion, 2013). When face halves are inverted, observers show little or no 

interference (McKone et al., 2013; Susilo, Rezlescu, & Duchaine, 2013). Importantly, the 

composite effect reveals a tendency to integrate feature information from disparate regions 

when faces are presented canonically, consistent with holistic theories of face perception 
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(Farah et al., 1998; Maurer et al., 2002; McKone & Yovel, 2009; Piepers & Robbins, 

2013).  

 

The suggestion that DP results from disrupted holistic processing is closely related to the 

view that the whole-face binding process measured by the composite face effect 

contributes to face recognition ability (DeGutis, Wilmer, Mercado, & Cohan, 2013; Farah 

et al., 1998; Maurer et al., 2002; Piepers & Robbins, 2013). However, studies comparing 

observers’ susceptibility to the composite face effect and their face recognition ability 

have yielded mixed results (Murphy et al., 2017). In cases of acquired prosopagnosia 

(AP), individuals are left with face recognition difficulties following brain injury. While 

some APs exhibit reduced composite face effects relative to matched controls (Busigny, 

Joubert, Felician, Ceccaldi, & Rossion, 2010; Ramon, Busigny, & Rossion, 2009), others 

exhibit typical susceptibility to the original matching procedure (Finzi, Susilo, Barton, & 

Duchaine, 2016; Rezlescu, Pitcher, & Duchaine, 2012). Where composite face effects and 

face recognition ability have been compared in samples drawn from the general 

population, some authors have observed positive associations (DeGutis et al., 2013; 

Engfors, Jeffery, Gignac, & Palermo, 2017; Richler, Cheung, & Gauthier, 2011), whilst 

others have found little or no correlation (Konar, Bennett, & Sekuler, 2010; Rezlescu, 

Susilo, Wilmer, & Caramazza, 2017; Wang, Li, Fang, Tian, & Liu, 2012).  

 

The literature is also inconsistent with respect to the relationship between individuals’ 

susceptibility to the composite face effect and other putative markers of holistic 

representation, including the part-whole (Tanaka & Farah, 1993) and face-inversion 

effects (Yin, 1969). For example, some authors have found associations between 

susceptibility to the composite face effect and the part-whole effect (DeGutis et al., 2013). 

However, other studies have found no association between susceptibility to the composite 

face effect and the part-whole effect (Rezlescu et al., 2017; Wang et al., 2012), or between 

composite face effects and perceptual decrements induced by face inversion (Rezlescu et 

al., 2017). These findings cast doubt on the view that a unitary process underlies holistic 

face processing. Where different measures of holistic processing are unrelated or weakly 

correlated in the typical population, neuropsychological dissociations might also be seen 

in the DP population. 

 



6 

 

Although studies have described a number of individuals with DP who exhibit composite 

effects comparable with those of matched controls (Le Grand et al., 2006; Schmalzl, 

Palermo, & Coltheart, 2008; Susilo et al., 2010), three studies have concluded that DP is 

associated with reduced susceptibility to the composite face effect at the group level 

(Avidan et al., 2011; Liu & Behrmann, 2014; Palermo et al., 2011). Nevertheless, the case 

for diminished composite effects in DP remains unconvincing. In at least one study, 

inspection of single-case data suggests that previously reported group results have been 

strongly influenced by the presence of outliers in DP samples (Palermo et al., 2011). In 

other studies, DP samples perform poorly in the baseline ‘misaligned’ condition making it 

hard to interpret putative differences in composite effect susceptibility (Liu & Behrmann, 

2014).  

 

Given the uncertainty about the functional significance of the holistic processes revealed 

by the composite face effect (Finzi et al., 2016; Konar et al., 2010; Rezlescu et al., 2017; 

Wang et al., 2012) and the popular view that DP may be caused by diminished holistic 

representation (Carbon et al., 2007; DeGutis et al., 2012; DeGutis et al., 2014; Lobmaier 

et al., 2010), obtaining a better understanding of composite face effects in DP is 

theoretically important. It may also have implications for interventions aimed at 

improving face recognition in DP (e.g., DeGutis et al., 2014). The present study therefore 

sought to confirm that DP is associated with reduced composite face effects at the group 

level. We describe two experiments employing independent samples of DP participants 

collected in the UK and the USA (N = 16 and N = 24) and complementary paradigms 

(simultaneous and sequential matching). Contrary to previous group studies (Avidan et al., 

2011; Liu & Behrmann, 2014; Palermo et al., 2011), we find no evidence for diminished 

composite face effects in DP.  

 

Experiment 1 

In our first experiment we compared the composite face effects of DPs and matched 

controls using a simultaneous matching procedure (Hole, 1994). Composite effects seen 

with upright faces were compared with those seen with inverted faces. Whereas strong 

effects of alignment are seen when composite faces are presented upright, interference is 

greatly reduced when composites are constructed from inverted faces (Susilo et al., 2013). 

This comparison is useful as it addresses the possibility that effects of misalignment found 
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with upright faces are due to general factors rather than face-specific processes (McKone 

et al., 2013; Rossion, 2013). We also examined composite effects for pseudo-words which 

resemble the effects found for upright faces (Anstis, 2005). For the sake of brevity, 

however, details of the procedure and results for pseudo-words are provided as 

supplementary material.   

 

Methods  

Participants  

Two groups of observers completed the procedure; 16 individuals with DP (Mage = 43.56 

years, SDage = 15.09 years, 3 males), and a control group comprising 16 neurotypical 

adults (Mage = 39.81 years, SDage = 12.95 years, 10 males). All observers were resident in 

the UK. Ethical approval was granted by the local ethics committee and the study was 

conducted in line with the Declaration of Helsinki. All participants provided informed 

consent prior to testing. 

 

Diagnostic testing 

DP participants were recruited through www.troublewithfaces.org. All members of the DP 

sample described lifelong face recognition difficulties that affected their daily lives. None 

of the DPs had a history of brain injury or psychiatric disorder (e.g., Schizophrenia, 

Autism Spectrum Disorder). Diagnostic evidence for the presence of DP was collected 

using the Cambridge Face Memory Test (CFMT; Duchaine & Nakayama, 2006a) the 

Twenty-Item Prosopagnosia Index (PI20; Gray, Bird, & Cook, 2017; Shah, Gaule, 

Sowden, Bird, & Cook, 2015), and a Famous Face Test suitable for use with UK residents 

(FFTUK). Scores on the CFMT were compared against data from 50 typical observers 

reported by Duchaine & Nakayama (2006a). Participants also completed the Cambridge 

Face Perception Test (CFPT; Duchaine, Germine, & Nakayama, 2007) to determine 

whether face recognition deficits had an apperceptive origin (De Renzi, Faglioni, Grossi, 

& Nichelli, 1991). While participants were not selected on the basis of these scores, the 

DP sample was impaired at the group level [t(22) = 2.34, p = .029].  Scores on the CFPT 

and PI20 were compared with a group of 56 controls (Mage = 40.25 years, SDage = 13.71 

years, 24 males). Comparison data for the FFTUK was collected from a sample of 20 

controls (Mage = 30.4 years, SDage = 10.27 years, 9 males). When tested on the CFMT, all 

DPs scored at least 1.53 standard deviations below the mean performance of the 

http://www.troublewithfaces.org/
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comparison sample. All DPs tested
2
 also scored at least 2 standard deviations below the 

mean of the comparison samples on the FFTUK and the PI20. Diagnostic information is 

presented in Table 1.  

 

Table-1 

 

The composite task 

Face composites were constructed from images of emotionally neutral faces taken from 

the Karolinska Directed Emotional Faces database (Lundqvist, Flykt, & Öhman, 1998). 

Faces were cropped to exclude external facial features (e.g. ears, hairline). Face halves 

containing the eyes were used as target regions. Face composites subtended 8° of visual 

angle, vertically. The to-be-judged regions subtended 4°. In the misaligned conditions, the 

horizontal offset corresponded to approximately 25% the width of a face.  

 

In total, 40 face composites were employed. Each composite was allocated a partner 

arrangement of the same type with which it would be presented simultaneously. For half 

the composite pairs, the target regions were identical, for half the pairs the target regions 

differed. Following the standard composite design (also referred to as the original design; 

Murphy et al., 2017; Rossion, 2013), the distractor regions within each pair were always 

different. The two target regions appeared at the same vertical position in the display (the 

lower edge of each target region was aligned to the vertical midpoint of the display). Two 

dashed guidelines were imposed over the arrangements to clearly delineate the stimulus 

regions to be judged. Example displays are presented in Figure 1a. 

 

Figure-1 

 

Testing took place at City, University of London. Participants judged whether the regions 

shown within the guidelines were identical or not. Composite displays were presented 

until a response was registered. Participants were asked to respond with both speed and 

accuracy. Each pair was presented twice in each alignment condition with side (left or 

right) counterbalanced, yielding 120 ‘same’ trials and 120 ‘different’ trials (10 pairs × 2 

presentations × 2 levels of alignment × 3 composite types). Composite type (upright faces, 

inverted faces, pseudo-words) was interleaved randomly within blocks of 60 trials. Six 
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practice trials were provided. The experiment was programmed in MATLAB (The 

MathWorks, Natick, MA) using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997). 

 

Prior to testing the DPs and age-matched controls, we piloted our novel procedure on a 

group of 25 young neurotypical adults (Mage = 18.92 years, SDage = 1.42 years, 3 males) to 

ensure the tasks yielded the expected results. These data are provided in the 

supplementary material. The sample exhibited a clear composite effect for upright faces 

that accords closely with the existing literature. Reassuringly, we found disproportionate 

effects of Alignment on ‘same’ trials, where the presence of the illusion makes it harder to 

detect that target regions are identical, consistent with previous reports (e.g., Le Grand, 

Mondloch, Maurer, & Brent, 2004). As expected, composite effects were greatly 

diminished when arrangements were constructed from inverted faces.  

 

Results  

Where stimulus displays are visible until participants respond, there is a trade-off between 

response speed and response accuracy; slower responding allows observers to collect more 

perceptual evidence, and thereby reduce errors. Under these conditions, many observers 

approach ceiling on accuracy measures (e.g., Calder, Young, Keane, & Dean, 2000; 

Palermo et al., 2011). To facilitate clear interpretation we therefore present both the 

response speed and accuracy data (Table 2). 

 

Table-2 

 

Accuracy 

First, we compared the composite face effects exhibited by the groups in their accuracy 

data. Our analyses revealed evidence of clear composite effects for upright faces. As 

expected, we observed a significant main effect of Alignment [F(1,30) = 19.04, p  < .001, 

η
2
 = .388], a main effect of Trial Type [F(1,30) = 5.91, p = .021, η

2
 = .165], and an 

Alignment × Trial Type interaction [F(1,30) = 36.72, p < .001, η
2
 = .550]. The analysis 

indicated that the composite effects exhibited by the controls and DPs did not differ. We 

observed no main effect of Group [F(1,30) = .145, p = .706, η
2
 = .005], and the effects of 

Alignment [F(1,30) = .1.35, p = .254, η
2
 = .043], Trial Type [F(1,30) = 1.41, p = .245, η

2
 

= .045], and the Alignment × Trial Type interaction [F(1,30) = 2.99, p = .094, η
2
 = .091], 
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did not interact with Group. We also note that the Alignment × Group interaction failed to 

reach significance when the analysis was restricted to ‘same’ trials [F(1,30) = 2.61, p = 

.117]. When considered separately, the neurotypical controls showed effects of Alignment 

[F(1,15) = 12.187, p = .003, η
2
 = .448] and an Alignment × Trial Type interaction [F(1,15) 

= 35.161, p < .001, η
2
 = .701]. Clear effects of Alignment [F(1,15) = 6.855, p = .019, η

2
 = 

.314] and an Alignment × Trial Type interaction [F(1,15) = 8.238, p = .012, η
2
 = .355] 

were also seen in the DP group.  

 

Neither group showed evidence of composite effects for inverted faces. The analysis 

revealed a significant effect of Trial Type [F(1,30) = 23.43, p < .001, η
2
 = .439], but the 

effects of Alignment [F(1,30) = 1.29, p = .264, η
2
 = .041], and the Alignment × Trial Type 

interaction [F(1,30) = .41, p = .527, η
2
 = .013] failed to reach significance. As expected, 

the main effects of Trial Type [F(1,30) = 60.96, p = .000, η
2
 = .670] and Alignment 

[F(1,30) = 16.71, p = .000, η
2
 = .358] both varied significantly as a function of Composite 

Type (upright face, inverted face). We observed no main effect of Group [F(1,30) = .09, p 

= .763, η
2
 = .003], and none of the other main effects or interactions varied as a function 

of group [all F’s < 0.9, p’s > .35].  

 

Response times 

Next, we compared the composite face effects exhibited by the groups in their response 

time data. Analysis of response latencies for the upright faces revealed main effects of 

Alignment [F(1,30) = 56.339, p < .001, η
2
 = .653], and Trial Type [F(1,30) = 28.80, p < 

.001, η
2
 = .490], and an Alignment × Trial Type interaction [F(1,30) = 32.219, p < .001, η

2
 

= .518]. The analysis indicated that similar composite face effects were seen for controls 

and DPs. No effect of Group was observed [F(1,30) = 1.496, p = .231, η
2
 = .048], and the 

effects of Alignment [F(1,30) = .101, p = .753, η
2
 = .003], Trial Type [F(1,30) = .101, p = 

.753, η
2
 = .003], and the Alignment × Trial Type interaction [F(1,30) = .424, p = .520, η

2
 

= .014], did not vary as a function of Group. Once again, the Alignment × Group 

interaction failed to reach significance when the analysis was restricted to ‘same’ trials 

[F(1,30) = .043, p = .838]. The neurotypical controls showed effects of Alignment 

[F(1,15) = 25.108, p < .001, η
2
 = .626] and an Alignment × Trial Type interaction [F(1,15) 

= 14.720, p = .002, η
2
 = .495]. Highly significant effects of Alignment [F(1,15) = 31.517, 
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p < .001, η
2
 = .678] and an Alignment × Trial Type interaction [F(1,15) = 19.722, p < 

.001, η
2
 = .568] were also seen in the DP group.  

 

Neither group showed evidence of a composite face effect for inverted faces in their 

response time data. The main effects of Trial Type [F(1,30) = 3.421, p = .075, η
2
 = .102] 

and Alignment [F(1,30) = 2.831, p = .103, η
2
 = .086], and the Alignment × Trial Type 

interaction [F(1,30) = 2.808, p = .104, η
2
 = .086], all failed to reach significance. The main 

effect of Alignment [F(1,30) = 20.646, p < .001, η
2
 = .408] and the Alignment × Trial 

Type interaction [F(1,30) = 10.638, p = .003, η
2
 = .262] varied significantly as a function 

of Composite Type (upright faces, inverted faces). No main effect of Group was observed 

[F(1,30) = 1.459, p = .236, η
2
 = .046] and none of the effects or interactions varied as a 

function of Group [all F’s < 0.8, p’s > .38].  

 

Figure-2 

 

Individual differences 

Next we sought to determine how susceptibility to the composite face effect related to 

individual differences in face processing ability in our sample of 16 DPs. Scores on the 

CFMT (r = -.186, p =.491) and the upright CFPT (r = .219, p =.416) failed to correlate 

with a measure of the composite effect based on accuracy (Δaccuracy = %Correctaligned - 

%Correctmisaligned). Similarly, composite effects based on response time (Δlatency = 

RTaligned - RTmisaligned), failed to correlate with performance on the CFMT (r = .194, p 

=.471) or the upright CFPT (r = -.072, p =.792). Finally, we sought to derive a single 

measure of performance that combined response times and accuracy. We therefore 

computed Inverse Efficiency Scores (IES; Figure 3) by adjusting participants’ response 

times (RTs) upwards in proportion to their error rate [IES = RT / % correct] (Townsend & 

Ashby, 1978). No correlation was observed between composite face effects (ΔIES = 

IESaligned - IESmisaligned) and their performance on the CFMT (r = .216, p =.422) or their 

CFPT scores (r = -.176, p = .514).  

 

Figure-3 
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Experiment 2 

In our first experiment, we examined whether 16 individuals with DP exhibited 

diminished composite face effects using a simultaneous matching paradigm. Contrary to 

previous reports (Avidan et al., 2011; Liu & Behrmann, 2014; Palermo et al., 2011), we 

found that the DPs and controls exhibited comparable composite face effects. However, 

DP is known to be a heterogeneous condition (Eimer, Gosling, & Duchaine, 2012; 

Stollhoff, Jost, Elze, & Kennerknecht, 2011; Susilo & Duchaine, 2013). For example, 

some individuals appear to perceive facial expressions normally, whereas others exhibit 

impaired expression recognition (Biotti & Cook, 2016; Duchaine, Parker, & Nakayama, 

2003; Duchaine, Yovel, Butterworth, & Nakayama, 2006; Humphreys, Avidan, & 

Behrmann, 2007). Similarly, some individuals with DP recognize objects normally, while 

others exhibit broader object recognition deficits (Behrmann, Avidan, Marotta, & Kimchi, 

2005; Biotti, Gray, & Cook, 2017; Dalrymple, Elison, & Duchaine, 2017; Duchaine, 

Germine et al., 2007). In light of this heterogeneity, it is possible that a subgroup of the 

DP population exhibits diminished composite effects, but is under-represented in our first 

sample. Moreover, the use of simultaneous matching in Experiment 1 differs from the 

sequential matching tasks employed in the previous studies that have reported group 

differences (Avidan et al., 2011; Liu & Behrmann, 2014; Palermo et al., 2011). In our 

second experiment, we therefore tested a different group of DPs with a sequential 

matching composite task.  

 

Methods  

Participants 

Twenty-four individuals with DP (Mage = 40.1 years, SDage = 13.2 years, 6 males) 

participated in the study. The performance of the DPs was compared to a control group 

comprising 22 neurotypical adults (Mage = 45.8 years, SDage = 13.9 years, 5 males). All 

observers were US residents. Ethical approval was granted by the local ethics committee 

and the study was conducted in line with the Declaration of Helsinki. All participants 

provided informed consent prior to testing. 

 

Diagnostic testing 

DP participants were recruited through the Dartmouth/Harvard/UCL Prosopagnosia 

Research Center website (www.faceblind.org). All complained of lifelong face 

http://www.faceblind.org/
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recognition difficulties that affected their daily lives. Convergent diagnostic evidence for 

the presence of DP was collected using the CFMT, the Old-New Face Recognition Test 

(ONFRT; Duchaine & Nakayama, 2005), and a Famous Faces Test suitable for use with 

US residents (FFTUS; Duchaine & Nakayama, 2005). When tested on the CFMT, all DPs 

scored at least 1.7 standard deviations below the mean performance of the comparison 

sample described by Duchaine and Nakayama (2006a). All DPs tested
2
 also scored at least 

2 standard deviations below the mean of the controls on the FFTUS and the ONFRT 

(comparison data taken from Duchaine, Yovel, & Nakayama, 2007; Susilo, Wright, Tree, 

& Duchaine, 2015). DPs also completed the CFPT and the Leuven Perceptual 

Organization Screening Test (L-POST; Torfs, Vancleef, Lafosse, Wagemans, & de-Wit, 

2014). All DPs scored within the normal range on the L-POST, suggesting typical mid-

level vision. Detailed diagnostic results are provided in Table 3. 

 

Table-3 

 

Composite task  

The stimuli and procedure were adapted from the composite task employed by Susilo et al.  

(2013; Experiment 3). Face composites were constructed from greyscale photographs of 

Caucasian male children posing neutral expressions (Figure 1b). The children were 

photographed wearing a black ski-cap to occlude their hairline. When viewed from 40 cm, 

aligned faces subtended 10 vertically and 6.5 horizontally, and misaligned faces 10 × 

9. All subjects were tested remotely via www.testable.org, a platform that enables precise 

control of experiments conducted online
3
. Participants were asked to do the task in an 

environment in which they would not be disturbed and to employ a viewing distance of 

around 40 cm.  

 

Experimental trials presented two face composites sequentially for 200 ms each, with an 

inter-stimulus interval of 400 ms during which a black display was presented. Composites 

were either both aligned or both misaligned, both upright or both inverted (Figure 1b). 

Participants were asked to indicate with a keypress whether the target regions (the face 

halves containing the eyes) were the “same” (identical) or “different” (not identical) while 

ignoring the distractor regions, which were always different. There were 90 trials per 

orientation; 60 in which the target regions were the same (30 aligned, 30 misaligned) and 

http://www.testable.org/
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30 where the target regions were different (15 aligned, 15 misaligned), making 180 trials 

in total. Orientation (upright, inverted), Alignment (aligned, misaligned), and Trial Type 

(same, different) were randomly interleaved. Six practice trials were provided.  

 

Results 

Matching procedures that present composites sequentially for pre-determined intervals (in 

this case 200 ms) afford less opportunity for a trade-off between speed and accuracy, 

because participants cannot accumulate more perceptual evidence by responding slowly. 

In Experiment 2, our primary analyses focus on accuracy (% correct). Descriptive 

statistics for accuracy scores and RTs achieved by the two groups are presented in Table 

4.  

 

Table-4 

Accuracy 

The combined dataset was subjected to ANOVA with Alignment (misaligned, aligned) 

and Orientation (upright, inverted) as within-subjects factors, and Group (DP, NT) as a 

between-subjects factor (Figure 4). The analysis revealed main effects of Orientation 

[F(1,44) = 30.96, p < .001, η
2
 = .413] and Alignment [F(1,44) = 84.33, p < .001, η

2
 = .65], 

as well as a highly significant Alignment × Orientation interaction [F(1,44) = 75.21, p < 

.001, η
2
 = .63], reflecting a larger difference between aligned and misaligned trials when 

composites were shown upright. The main effect of Group was not significant [F(1,44) = 

0.20, p = .65], and neither the Group × Orientation interaction [F(1,44) = 0.07, p = 0.79], 

nor the Group × Alignment interaction [F(1,44) = 0.61, p = .44] reached significance. 

Most critically, however, the Orientation × Alignment interaction did not vary as a 

function of Group [F(1,44) = 0.75, p = .39]. As expected, controls’ ability to discriminate 

the misaligned target regions exceeded their discrimination of the aligned targets when the 

faces were upright [t(21) = 6.95, p < .001, Cohen’s d = 1.48], but not when arrangements 

were inverted [t(21) = .33, p = .75]. The DPs exhibited a similar pattern, but their ability to 

discriminate the misaligned target regions exceeded their discrimination of the aligned 

targets in both the upright [t(23) = 7.78, p < .001, Cohen’s d = 1.59] and inverted [t(23) = 

2.70, p = .013, Cohen’s d = .55] conditions.  
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Unlike controls, DPs showed an effect of alignment for inverted trials. Nevertheless, we 

do not believe this difference is indicative of qualitatively differently face processing. 

First, the Alignment × Orientation interaction did not vary as a function of Group; both the 

DP and NT controls showed much larger alignment effects for upright faces than for 

inverted faces. Second, it is not uncommon for typical observers to show small but 

significant composite effects for inverted faces
4
. For example, Susilo and colleagues 

(2013) used the same inverted composite task used here and found a significant alignment 

effect in a large sample of typical observers (N = 242) with a magnitude similar to that 

exhibited by the DPs in this experiment (Typical observers: 4.0%, DPs: 5.0% 

respectively).  

 

Figure-4 

 

Response times 

The response latency data was analysed using a mixed-model ANOVA with Orientation 

(upright, inverted) and Alignment (aligned, misaligned) as within-subjects factors, and 

Group (DP, NT) as a between-subjects factor. Main effects of Orientation [F(1,44) = 

12.71, p = .001, η
2
 = .22] and Alignment [F(1,44) = 22.04, p < .001, η

2
 = .32] were 

observed, as well as a significant Orientation × Alignment interaction [F(1,44) = 21.80, p 

< .001, η
2
 = .32]. However, no main effect of Group was observed [F(1,44) = .46 p = .50]. 

The effects of Orientation [F(1,44) = .60, p =.44], Alignment [F(1,44) = 2.58, p = .12], 

and the Orientation × Alignment interaction failed to interact with Group [F(1,44) = .88, p 

= .35].  

 

Individual differences 

Once again, no correlation was observed between the DPs’ composite face effects 

(Δaccuracy = %Correctaligned - %Correctmisaligned) seen in the upright condition and their 

scores on the CFMT (r = -.05, p = .81) or CFPT (r = -.07, p = .77). We present the 

individual effects seen for the DPs and age-matched controls (Figure 4) to illustrate that 

the failure to find a group difference is not due to the presence of outliers.  

 

Some cases of developmental prosopagnosia appear to have an apperceptive profile – 

whereby individuals have problems forming perceptual descriptions of faces – while other 

cases may have selective problems with face learning or face memory (De Renzi et al., 
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1991). Insofar as the whole-face binding revealed by composite face effect has been 

characterised as a face encoding process (Murphy et al., 2017; Rossion, 2013), it is 

possible that susceptibility to the composite face effect is reduced only in apperceptive 

cases of DP. We took advantage of the large sample size employed in Experiment 2 to 

examine this possibility in more detail. The DPs were split into apperceptive (N = 12) and 

non-apperceptive (N = 12) subgroups. Members of the apperceptive subgroup performed 

at least 2 SDs below the mean of the comparison sample on the CFPT. Contrary to the 

foregoing speculation, however, we found no difference in the size of the composite 

effects (Δaccuracy) exhibited by the subgroups in the upright [t(22) = .324, p = .749] or 

inverted [t(22) = .273, p = .787] conditions. The lack of relationship between scores on the 

CFPT and composite effect sizes accords with previous findings with typical observers 

(Rezlescu et al., 2017) and DPs (Palermo et al., 2011).  

 

Discussion 

The present study assessed whether individuals with DP exhibit diminished composite 

face effects at the group level. Across two experiments conducted on separate samples and 

using different paradigms, we find no evidence for diminished composite-face effects in 

this population. In our first experiment, a group of 16 DPs showed typical composite face 

effects when tested on a simultaneous matching procedure. In our second experiment, a 

separate group of 24 DPs also showed typical composite face effects when tested on a 

sequential matching procedure. Contrary to previous reports (Avidan et al., 2011; Liu & 

Behrmann, 2014; Palermo et al., 2011), these findings indicate that diminished composite 

face effects are not a characteristic feature of DP. These results have important 

implications, both for our understanding of DP and for our interpretation of the composite 

face effect.   

 

Composite face effects in developmental prosopagnosia 

Our results accord with findings from previous case studies that have described typical 

composite face effects in individual DPs (Le Grand et al., 2006; Schmalzl et al., 2008; 

Susilo et al., 2010). In particular, Le Grand and colleagues (2006) described typical 

composite effects in seven out of eight DPs tested. Similarly, having tested seven family 

members with DP, Schmalzl et al. (2008) found typical composite effects in the four 

youngest cases (aged 4-40 years) and atypical composite effects only in the three oldest 
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cases (aged 66-87 years). Interestingly, we note recent findings from typical observers 

suggesting that composite face effects may behave differently in samples of older adults; 

for example, the composite processing of older observers may be less efficient (Wiese, 

Kachel, & Schweinberger, 2013) and be more susceptible to general factors (Meinhardt, 

Persike, & Meinhardt-Injac, 2016). In contrast, our results are inconsistent with previous 

reports of reduced composite face effects in DP at the group level (Avidan et al., 2011; 

Liu & Behrmann, 2014; Palermo et al., 2011). Having examined the processing of upright 

and inverted face composites in 40 individuals with DP (aged 21-63 years), our results 

suggest most members of this population exhibit normal composite face effects. On the 

other hand, close examination of the previous group studies calls their conclusions into 

doubt.  

 

In their first experiment, Palermo and colleagues (2011) found that a sample of 12 DPs 

were slower to name the emotion of a target region when aligned with a distractor region 

expressing an incongruous emotion. However, inspection of the distribution suggests this 

difference was strongly influenced by the results from a single DP whose aligned RTs 

were considerably faster than their misaligned RTs - a reversed composite effect (see 

Palermo et al., 2011, Figure 5). Further complicating interpretation, neither the DPs nor 

the controls showed composite effects in their error rates. In their second experiment, 

controls and nine DPs were required to match the top halves of face composites presented 

sequentially for 200 ms each. Given the short presentations, accuracy is the most critical 

measure of composite effects, and the DPs and controls showed clear and nearly identical 

composite effects in their accuracy data. The evidence for atypical composite effects cited 

by the authors is derived from RTs. However, the Alignment × Group interaction seen in 

the RT data failed to reach significance when analysed in the standard manner (p > .3). 

The group difference was only significant when adjusted for performance in the baseline 

misaligned condition, a point we discuss further below.  

 

Avidan and colleagues (2011) reported that a sample of 14 individuals with DP showed 

diminished effects of alignment both in their RTs and error rates, when matching upright 

composites presented sequentially. The age of the DP sample is older than is typical in this 

literature; half the DP participants were aged 60 years or older (mean age = 52.5 years; 

range 31-79 years). Inspection of the single-case data is further complicated by the fact 
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that aligned and misaligned trials were blocked, and completed in a different order by 

different DPs. Whilst this treatment may have little effect on the performance of typical 

observers (e.g., Le Grand et al., 2004), DPs may be prone to order effects resulting from 

practice, fatigue, or test anxiety. Within their DP sample, those individuals who showed 

weaker composite face effects showed greater local bias (r = .52) on a compound letter 

task (Navon, 1977). Where observed, weaker composite face effects therefore seem to be 

related to wider global processing difficulties. It is possible that a subgroup exists within 

the DP population characterized by a global processing deficit affecting performance on 

composite face and compound letter tasks. However, the present results together with 

previous reports, suggest that this profile is relatively uncommon. For example, many DPs 

exhibit typical perception of global motion and Glass patterns (Le Grand et al., 2006), 

typical Gestalt completion (Duchaine, 2000; Duchaine et al., 2006), and process 

compound ‘Navon’ stimuli typically (Duchaine, Germine et al., 2007; Duchaine, Yovel et 

al., 2007; Schmalzl et al., 2008).  

 

Lastly, Liu & Behrmann (2014) reported that eight DPs showed reduced composite effects 

for left and right face halves when tested using the complete design. However, several 

factors undermine our confidence in these findings. First, the three DPs with the lowest 

holistic processing index, exhibited surprisingly normal performance on the diagnostic 

tests (e.g. MN and SH had CFMT scores of 73.6% and 79.2%, and WA exhibited above 

average famous face recognition). Second, inspection of the composite results indicates 

that the DPs performed much worse in the baseline misaligned condition than the matched 

controls. This feature of the data suggests that the reduced composite effects described 

reflect problems encoding local regions rather than aberrant integration processes. 

Distractor halves perceived as homogenous or nondescript by prosopagnosics may afford 

weaker perceptual prediction, and thereby exert less illusory bias in the aligned condition, 

than distractor halves perceived as distinctive. In an attempt to factor in baseline 

differences, the authors computed a holistic processing index, where modulation in the 

aligned condition is expressed relative to misaligned performance. Crucially, this measure 

and similar indices (see Avidan et al., 2011; Palermo et al., 2011) make unfounded 

assumptions about the relationship between performance in misaligned conditions and 

susceptibility to the composite effect; it is not clear what constitutes a “typical” composite 

effect where observers exhibit atypical misaligned performance.   



19 

 

 

Traditionally, it has been assumed that the face inversion (Yin, 1969), composite face 

(Young et al., 1987), and part-whole effects (Tanaka & Farah, 1993), reflect the operation 

of a single process or mechanism (Farah et al., 1998; Maurer et al., 2002; McKone & 

Yovel, 2009; Piepers & Robbins, 2013). However, mounting evidence suggests that 

individuals’ susceptibility to the composite face effect not only fails to correlate with their 

face recognition ability, but also appears weakly related to other putative measures of 

holistic face processing (Rezlescu et al., 2017; Wang et al., 2012; but see DeGutis, Wilmer 

et al., 2013). As a result, we do not wish to claim that every facet of holistic face 

processing is typical in DP. Given that different measures of holistic processing are 

unrelated or weakly correlated in the typical population, neuropsychological dissociations 

might also be seen in the DP population. While DPs may show typical susceptibility to the 

composite face effect, other effects attributed to holistic face processing may be aberrant; 

for example, many DPs may show diminished face inversion effects (Duchaine et al., 

2006; Shah, Gaule, Gaigg, Bird, & Cook, 2015; Tree & Wilkie, 2010), absent part-whole 

effects for the eye region (DeGutis et al., 2012), and commonly report excessive reliance 

on local features for identity recognition (DeGutis et al., 2012; Shah, Gaule, Sowden et al., 

2015).  

 

It is worth noting an interesting inconsistency in the DP literature highlighted by our 

findings. In both experiments, our DPs showed large composite effects with upright faces 

yet little or no composite effects with inverted faces (see also Susilo et al., 2010). Most 

DPs also show better performance with upright faces than inverted faces when tasks are 

sensitive and performance is not affected by restrictions of range (Duchaine, Germine et 

al., 2007; Duchaine, Yovel et al., 2007; Garrido, Duchaine, & Nakayama, 2008).  

Similarly, a study comparing event-related potentials (ERPs) indicated upright and 

inverted Mooney faces were processed differently by DPs (Towler, Gosling, Duchaine, & 

Eimer, 2016). These results indicate that DPs process upright and inverted faces 

differently, however they are inconsistent with findings from an ERP study of face 

processing in DP (Towler, Gosling, Duchaine, & Eimer, 2012). In typical observers, 

inverted faces reliably elicit larger N170 potentials than upright faces (Bentin, Allison, 

Puce, Perez, & McCarthy, 1996; Eimer, 2000; Rossion et al., 1999). A group of 16 DPs, 

however, showed no difference in their N170s to upright and inverted faces at the group 
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level (Towler, Fisher, & Eimer, 2017; Towler et al., 2012). While the reason for the 

discrepancy between these findings is unclear, it appears that behavioural inversion effects 

and the N170 inversion effect are measuring different aspects of face processing.   

 

Composite face effect and face recognition ability 

The view that individual differences in holistic face processing, inferred from 

susceptibility to the composite face effect, predict face recognition ability is widespread 

(DeGutis et al., 2013; Farah et al., 1998; Maurer et al., 2002; Piepers & Robbins, 2013; 

Richler et al., 2011). This interpretation owes much to the correlated observations that 

orientation inversion renders faces harder to recognise (Yin, 1969) and greatly reduces the 

composite face effect (Young et al., 1987). Consistent with this view, composite studies 

employing the congruency design have found a positive correlation between composite 

effects and face recognition ability (DeGutis et al., 2013; Richler et al., 2011). However, 

the functional significance of the composite face effect has been called into question by 

other studies that have found little or no correlation between typical observers’ composite 

face effects – measured using the standard design – and their face recognition ability 

(Konar et al., 2010; Rezlescu et al., 2017; Wang et al., 2012). Reports of diminished 

composite face effects in DP (Avidan et al., 2011; Liu & Behrmann, 2014; Palermo et al., 

2011) have been cited as evidence that the process responsible for the composite face 

effect makes a necessary contribution to face recognition ability (Murphy et al., 2017). 

Our findings suggest this inference is potentially misleading.  

 

Typical composite effects in the DPs tested here, and in other cases described previously 

(Le Grand et al., 2006; Schmalzl et al., 2008; Susilo et al., 2010), as well as evidence that 

some acquired prosopagnosics exhibit normal face composite effects (Finzi et al., 2016), 

suggest a complex relationship between susceptibility to the composite face effect and 

face recognition ability. Face recognition is thought to depend on a processing stream that 

can be fractionated at several stages (Bruce & Young, 1986). The whole-face binding 

indexed by the composite effect appears to be intact in individuals with DP suggesting that 

the locus of their impairment lies elsewhere in the face processing stream. However, the 

binding process revealed by the composite effect may still make a causal contribution to 

face recognition ability; i.e., the composite process may be necessary, but not sufficient, 

for typical face perception. Cases of acquired prosopagnosia have been described where 
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face recognition deficits are associated with aberrant composite effects (e.g., Busigny et 

al., 2010; Busigny et al., 2014; Ramon et al., 2009), and no neuropsychological cases have 

been described who show no evidence of a composite effect but normal performance on 

tests of face perception and face recognition.  

 

Typical composite face effects in DP and in some cases of acquired prosopagnosia (Finzi 

et al., 2016; Rezlescu et al., 2012), accord with other evidence that the processes 

underlying the composite effect are difficult to disrupt. Photographic negation disrupts 

observers’ ability to encode 3D face shape (Kemp, Pike, White, & Musselman, 1996), but 

has little effect on the strength of the composite face effect (Hole, George, & Dunsmore, 

1999; Taubert & Alais, 2011). Similarly, composite effects can be seen with abstract 

cartoon faces that contain only schematic facial features, but bear little resemblance to 

naturalistic faces (Murphy et al., 2017). Moreover, several markers of face processing, 

notably the ability to use the internal features (Ellis, Shepherd, & Davies, 1979; Osborne 

& Stevenage, 2008; Young, Hay, McWeeny, Flude, & Ellis, 1985) and achieve view-point 

invariance (Longmore, Liu, & Young, 2008), are strongly modulated by facial familiarity. 

In contrast, compelling composite effects can be seen with entirely unfamiliar faces (Hole, 

1994). Together with the findings from prosopagnosia, insensitivity to negation, 

abstraction, and familiarity, suggest that the composite face effect is resilient and 

disrupted only by gross changes to the faciotopy (e.g., misalignment, inversion) or 

catastrophic damage to the face processing stream.  

 

Face composite designs 

Like most previous studies of composite effects in DP (e.g., Avidan et al., 2011; Le Grand 

et al., 2006; Palermo et al., 2011; Schmalzl et al., 2008), we employed the standard design 

in both experiments, where the distractor regions always differ. There has been 

considerable debate about the merits of an alternate congruency design, employing a full 

factorial combination of target regions (same, different) and distractor regions (same, 

different) (Richler & Gauthier, 2014; Rossion, 2013). Some authors have suggested that 

congruency designs mitigate the effects of response bias (for discussion see Richler & 

Gauthier, 2014). However, congruency designs have been criticized because the predicted 

effect on congruent-different trials – where different distractor halves are paired with 

different target halves – is unclear (Robbins & McKone, 2007), and because the 
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congruency design produces composite effects for stimuli that do not yield demonstrable 

composite illusions (Rossion, 2013). The additional trials may induce domain-general 

facilitation / interference effects that differ from the illusory interference seen for upright-

aligned face composites (Murphy et al., 2017; Rossion, 2013). Crucially, because the 

standard design is thought to limit the domain-general effects of congruency, the present 

findings represent a conservative test of the hypothesis that composite face effects are 

diminished in DP. Where observed, domain-general congruency effects may be expected 

to attenuate a group difference arising from a face-specific deficit.  

 

Conclusion 

In summary, we have described two experiments that sought to compare the composite 

face effects seen in typical observers and those with DP. Having employed 

complementary procedures and independent samples we find convergent results: evidence 

of highly significant composite effects in typical controls and DP groups that were 

indistinguishable. Contrary to previous reports, these results suggest that the whole-face 

binding process indexed by the composite face effect is intact in DP, indicating that the 

locus of this condition lies elsewhere in the face processing stream.   
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Footnotes 

1
We use the term developmental prosopagnosia instead of congenital prosopagnosia to 

indicate the possibility that in some cases the disorder may not be present at birth. 

2
In Experiment 1, two DPs did not complete FFTUK. In Experiment 2, two DPs did not 

complete the FFTUS and two did not complete the ONFRT. 

3
One DP had technical difficulties, but a switch to another browser resolved the issue. 

This individual completed approximately one third of the trials before the task crashed, at 

which point the individual switched browsers and did the full task on the new browser. 

4
Composite face stimuli that include a gap of a few pixels between the target and 

distractor regions may be less likely to produce composite effects when arrangements are 

inverted (Rossion & Retter, 2015). It remains unknown how the presence or absence of 

this feature affects composite face processing in observers with DP. Addressing this issue 

in future studies of the composite effect in DP may prove worthwhile.  
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Figures 

Figure 1 

 
Figure 1: (a) In our first experiment, trials presented pairs of composite arrangements simultaneously. 

Composites were visible until a response was registered. (b) In our second experiment, trials presented pairs 

of face composites sequentially. Composites were presented for 200 ms each, with an inter-stimulus-interval 

of 400 ms during which a black display was presented.   
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Figure 2 

 
Figure 2: Results from Experiment 1 for composite arrangements constructed from upright faces (top) and 

inverted faces (bottom). Error bars represent ± 1 standard error of the mean. 
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Figure 3 

 

 
Figure 3: Inverse efficiency scores (IES) for aligned composites plotted against those seen for misaligned 

composites, for upright faces (left), inverted faces (middle), and pseudo-words (right). Points lying to the left 

of the dashed line are indicative of typical composite effects (performance misaligned > performance 

aligned).   
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Figure 4 

 
 
Figure 4: Results of Experiment 2. Top panels present accuracy scores for the two groups on the upright 

(left) and inverted composites (right). Error bars represent ± 1 standard error of the mean. Bottom panels 

show accuracy scores seen for aligned composites plotted against those seen for misaligned composites, for 

upright faces (left) and inverted faces (right). Points lying to the right of the dashed line are indicative of 

typical composite effects (performance misaligned > performance aligned).   
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Tables 

 
Table 1: Scores of each DP in Experiment 1 on the 20-Item Prosopagnosia Index (PI20), the Cambridge 

Face Memory Test (CFMT), the Cambridge Face Perception Test (CFPT), and the Famous Faces Test 

(FFTUK). Z-scores are shown in parentheses. Negative z-scores denote performance worse than the typical 

mean. The mean and standard deviation of the comparison samples are provided below. 

Participant Age PI20 FFTUK % CFMT % 
CFPT Upright 

[Errors] 

F1 21 59 (-2.3) 25 (-4.2) 62.50 (-1.6) 30 (-0.0) 

F2 22 89 (-5.6) - 50.00 (-2.8) 30 (-0.0) 

F3 25 87 (-5.4) 41 (-2.9) 63.89 (-1.5) 44 (-1.6) 

F4 28 68 (-3.3) 48 (-2.3) 61.11 (-1.8) 32 (-0.3) 

F5 35 85 (-5.2) 34 (-3.4) 43.06 (-3.4) 46 (-1.8) 

F6 42 92 (-5.9) 18 (-4.8) 45.83 (-3.1) 62 (-3.5) 

F7 50 78 (-4.4) 30 (-3.8) 58.33 (-2.0) 34 (-0.5) 

F8 53 85 (-5.2) 42 (-2.8) 45.83 (-3.1) 74 (-4.8) 

F9 55 85 (-5.2) - 58.33 (-2.0) 36 (-0.7) 

F10 65 79 (-4.5) 14 (-5.1) 61.11 (-1.8) 40 (-1.1) 

F11 65 81 (-4.7) 25 (-4.2) 59.72 (-1.9) 44 (-1.6) 

F12 48 78 (-4.4) 45 (-2.5) 58.33 (-2.0) 26 (+0.4) 

F13 48 85 (-5.2) 37 (-3.2) 63.89 (-1.5) 60 (-3.3) 

M1 28 62 (-2.6) 44 (-2.6) 62.50 (-1.6) 46 (-1.8) 

M2 54 88 (-5.5) 48 (-2.3) 58.33 (-2.0) 66 (-3.9) 

M3 58 92 (-5.9) 5 (-5.9) 44.44 (-3.3) 68 (-4.2) 

DP mean 

DP SD 

 

Comparison mean 

80.81 

9.97 

 

37.75 

32.57 

13.53 

 

75.35 

56.26 

7.66 

 

80.4 

46.12 

15.31 

 

36.7 

Comparison SD 9.16 12.00 11.0 12.2 
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Table 2: Mean accuracy and response time measures from Experiment 1. Standard deviations are shown in 

parentheses.   

 
 

  

Aligned  

Same 

Misaligned 

same 

Aligned 

different 

Misaligned 

different 

Upright faces        

 Accuracy (%) NT 73.8 (20.0) 95.3 (7.2) 95.9 (6.6) 92.2 (9.3) 

 
 

DP 80.6 (15.2) 92.8 (8.0) 90.9 (9.5) 89.1 (14.3) 

 RT (ms) NT 2840 (1228) 1964 (711) 1937 (992) 1925 (1006) 

 
 

DP 3257 (1241) 2430 (981) 2383 (945) 2243 (974) 

Inverted faces        

 Accuracy (%) NT 94.1 (6.4) 95.3 (5.9) 86.9 (14.6) 95.3 (14.8) 

 
 

DP 96.9 (4.0) 94.1 (12.3) 84.7 (12.3) 82.2 (10.6) 

 RT (ms) NT 2028 (741) 1882 (661) 2095 (990) 1882 (909) 

 
 

DP 2323 (969) 2120 (753) 2438 (787) 2522 (1068) 
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Table 3: Scores for each developmental prosopagnosic in Experiment 2 on the Cambridge Face Memory 

Test (CFMT), The Famous Faces Test (FFTUS), and the Old-New Faces Test (ONFT). Z-scores are shown in 

parentheses. Negative z-scores denote performance worse than the typical mean. The mean and standard 

deviation of the comparison samples are provided below.  

Participant Age FFTUS % ONFT A’ CFMT % 
CFPT Upright 

[Errors] 

F1 23 8 (-7.2) 0.87 (-4.5) 45.83 (-3.1) 54 (-1.4) 

F2 26 23 (-5.9) - 58.33 (-2.0) - 

F3 27 27 (-5.5) 0.81 (-7.5) 51.39 (-2.6) 54 (-1.4) 

F4 27 -  0.83 (-6.5) 55.56 (-2.3) 66 (-2.4) 

F5 29 63 (-2.2) 0.69 (-13.5) 50.00 (-2.8) 54 (-1.4) 

F6 31 61 (-2.4) 0.98 (1.0) 56.94 (-2.1) 52 (-1.3) 

F7 32 51 (-3.3) 0.89 (-3.5) 54.17 (-2.4) 78 (-3.4) 

F8 34 - 0.77 (-9.5) 56.94 (-2.1) 48 (-0.9) 

F9 38 58 (-2.7) 0.87 (-4.5) 61.11 (-1.8) 62 (-2.1) 

F10 38 36 (-4.7) 0.77 (-9.5) 47.22 (-3.0) 56 (-1.6) 

F11 41 28 (-5.4) 0.87 (-4.5) 38.89 (-3.8) 92 (-4.5) 

F12 41 40 (-4.3) 0.91 (-2.5) 47.22 (-3.0) 42 (-0.4) 

F13 44 61 (-2.4) 0.82 (-7.0) 52.78 (-2.5) - 

F14 44 40 (-4.3) 0.90 (-3.0) 51.39 (-2.6) 34 (+0.2) 

F15 46 50 (-3.4) 0.81 (-7.5) 58.33 (-2.0) 62 (-2.1) 

F16 51 45 (-3.9) 0.91 (-2.5) 61.11 (-1.8) 42 (-0.4) 

F17 60 33 (-5.0) 0.75 (-10.5) 51.39 (-2.6) 70 (-2.7) 

F18 62 48 (-3.6) 0.81 (-7.5) 50.00 (-2.8) 70 (-2.7) 

M1 23 26 (-5.6) 0.90 (-3.0) 47.22 (-3.0) 92 (-4.5) 

M2 28 24 (-5.8) 0.94 (-1.0) 51.39 (-2.6) 62 (-2.1) 

M3 34 56 (-2.9) - 45.83 (-3.1) 80 (-3.5) 

M4 58 33 (-5.0) 0.81 (-7.5) 50.00 (-2.8) 78 (-3.4) 

M5 62 43 (-4.0) 0.93 (-1.5) 56.94 (-2.1) 62 (-2.1) 

M6 63 40 (-4.3) 0.87 (-4.5) 56.94 (-2.1) 50 (-1.1) 

DP mean 

DP SD 

 

Comparison mean 

40.64 

14.63 

 

87.5 

0.85 

0.07 

 

0.96 

52.37 

5.47 

 

80.4 

61.82 

15.48 

 

36.7 

Comparison SD 11.0 0.02 11.0 12.2 
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Table 4: Mean accuracy and response time measures from Experiment 2. Standard deviations are shown in 

parentheses.   

   
Aligned Misaligned 

Upright faces       

 
Accuracy (%) NT 65.9 (16.5) 92.0 (9.4) 

  
DP 67.6 (16.9) 91.2 (8.0) 

       

 
RT (ms) NT 1105 (362) 874 (234) 

  
DP 1090 (277) 978 (255) 

              

Inverted faces 
   

 
Accuracy (%) NT 88.0 (12.9) 88.8 (13.8) 

  
DP 86.7 (11.2) 91.7 (8.6) 

       

 
RT (ms) NT 928 (247) 889 (215) 

  
DP 991 (260) 999 (303) 
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Supplementary material for: 

Normal composite face effects in developmental prosopagnosia 

Federica Biotti, Esther Wu, Hua Yang, Jiahui Guo, Bradley Duchaine, & Richard Cook 

 

1. Pseudo-word composite task 

In addition to the upright and inverted composite face conditions employed in Experiment 

1, we also examined composite effects for pseudo-words, because they resemble the 

effects found for upright faces (Anstis, 2005). By employing an additional comparison 

with a non-face composite effect we hoped to determine whether any diminished 

composite effects result from a face-specific deficit or from a non-specific problem 

affecting global processing of configurations. We elected to use pseudo-words in light of 

recent suggestions that the visual processing of words and faces may recruit similar 

neurocognitive mechanisms (Behrmann & Plaut, 2013; Hills, Pancaroglu, Duchaine, & 

Barton, 2015; Ipser, Ring, Murphy, Gaigg, & Cook, 2016). 

 

Figure S1: trials presented pairs of composite arrangements simultaneously. Composites were visible until a 

response was registered. 

 

Four-letter pseudo-words written in lower-case Juice ITC font were used to create the 

composites following the procedure described by Anstis (2005). Pseudo-word composites 

subtended 8° of visual angle, vertically. The to-be-judged regions subtended 4°. In the 

misaligned conditions, the horizontal offset corresponded to approximately 25% the width 

of pseudo-word. 40 pseudo-word composites were employed. Each composite was 

allocated a partner arrangement of the same type with which it would be presented 

simultaneously. For half the composites pairs, the target regions were identical, for half 

the pairs the target regions differed. The distractor regions within each pair were always 

different. The two target regions appeared at the same vertical position in the display (the 

lower edge of each target region was aligned to the vertical midpoint of the display). Two 
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dashed guidelines were imposed over the arrangements to clearly delineate the stimulus 

regions to be judged. Example displays are presented in Figure S1. Participants judged 

whether the regions shown within the guidelines were or were not identical. Composite 

displays were presented until a response was registered. Participants were asked to 

respond with both speed and accuracy. Arrangements were shown until a response was 

registered. Each pair was presented twice in each alignment condition with side (left or 

right) counterbalanced. Composite type (upright faces, inverted faces, pseudo-words) was 

interleaved randomly within blocks of 80 trials. 

 

2. Pilot testing of composite tasks for upright faces, inverted faces, and pseudo-words 

Before testing the simultaneous matching task on the sample of DPs and age-matched 

controls, we piloted the task on a sample of 25 young neurotypical adults (Mage = 18.92 

years, SDage = 1.42 years, 3 males). We describe the results here (see Table S1 and Figure 

S2).  

 

Table S1: descriptive statistics for the piloting conducted with young neurotypical controls. Standard 

deviations are shown in parentheses.   

 
 

Aligned 

same 

Misaligned 

same 

Aligned 

different 

Misaligned 

different 

Accuracy (% correct)        

 Upright faces 68.2 (22.5) 94.2 (8.5) 97.8 (3.3) 95.4 (7.2) 

 Inverted faces 93.2 (6.8) 95.0 (6.1) 87.8 (8.8) 86.2 (9.9) 

 Pseudo-words 84.8 (21.2) 93.8 (9.2) 84.6 (14.2) 80.0 (18.7) 

RT (ms)        

 Upright faces 2148 (1080) 1402 (475) 1348 (427) 1280 (356) 

 Inverted faces 1555 (538) 1427 (423) 1481 (471) 1538 (508) 

 Pseudo-words 3014 (1134) 2335 (999) 2574 (868) 2181 (675) 

 

Accuracy 

Analysis of the accuracy data (% correct) for the upright face composites revealed a main 

effect of Alignment [F(1,24) = 29.12, p = .000, η
2
 = .548]. Target regions were harder to 

discriminate in the aligned than in the misaligned condition. We also observed a main 

effect of Trial Type [F(1,24) = 28.62, p = .000, η
2
 = .544] and a significant Trial Type × 

Alignment interaction [F(1,24) = 45.93, p = .000, η
2
 = .657], whereby aligned distractors 

were particularly detrimental when targets were the same. 
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No composite effect was observed for the inverted face arrangements. We did not see a 

main effect of Alignment [F(1,24) = .01, p = .922, η
2
 = .000], nor an Alignment × Trial 

Type interaction [F(1,24) = 2.36, p = .137, η
2
 = .09]. We observed a main effect of Trial 

Type [F(1,24) = 12.12, p = .002, η
2
 = .336], whereby participants made more errors when 

the target regions differed  than when they were identical.  

 

Analyses suggested only a weak pseudo-word composite effect in the accuracy data of the 

young adults. While we found a main effect of Trial Type [F(1,24) = 9.15, p = .006, η
2
 = 

.276] and an Alignment × Trial Type interaction [F(1,24) = 5.74, p = .025, η
2
 = .193], the 

critical main effect of Alignment failed to reach significance [F(1,24) = 1.25, p = .274, η
2
 

= .05].  

 

Response times 

Analysis of response latencies (ms) revealed a main effect of Alignment for upright face 

composites [F(1,24) = 21.41, p = .000, η
2
 = .471]. Participants were slower to discriminate 

target regions when the distractors were aligned than when distractors were misaligned. 

We also found a main effect of Trial Type [F(1,24) = 31.08, p = .000, η
2
 = .564], which 

interacted significantly with Alignment [F(1,24) = 16.04, p = .001, η
2
 = .401]. When 

distractor and target regions were aligned, we observed a disproportionate interference 

effect on same trials.  

 

The response latency analysis revealed little evidence of a composite effect for inverted 

faces. While we observed a significant Alignment × Trial Type interaction [F(1,24) = 

5.42, p = .029, η
2
 = .184], we found no main effects for either Alignment [F(1,24) = .83, p 

= .371, η
2
 = .034], nor Trial Type [F(1,24) = .14, p = .707, η

2
 = .006]. 

 

The response latency analysis revealed a strong composite effect for pseudo-words. We 

observed a significant main effect of Alignment [F(1,24) = 71.30, p = .000, η
2
 = .748], 

whereby participants took longer to discriminate target regions in the aligned condition. 

We also observed a significant main effect of Trial Type [F(1,24) = 8.97, p = .006, η
2
 = 

.272] and a significant Alignment × Trial Type interaction [F(1,24) = 15.68, p = .001, η
2
 = 
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.395]. Overall participants responded slower on same trials, but this effect was particularly 

pronounced in the aligned condition.   

 

Figure S2: Mean accuracy and RTs exhibited by the young NT controls during the piloting procedure.  

 

3. Group comparison: pseudo-words 

Group analyses for the upright and inverted face composites are reported in the main text 

of the paper. Here we describe additional comparison of the pseudo-word composite 

effects exhibited by the two groups (see Table S2 and Figure S3).  

 

Table S2: Mean accuracy and RTs exhibited by the NT and DP groups in the pseudo-word condition.  

  

Aligned 

Same 

Misaligned 

same 

Aligned 

different 

Misaligned 

different 

Accuracy (%) NT 93.1 (10.6) 95.3 (8.7) 85.0 (15.1) 88.4 (12.2) 

 
DP 94.7 (5.3) 95.9 (6.6) 90.3 (14.0) 95.6 (4.4) 

          RT (ms) NT 3954 (1314) 2891 (962) 3107 (971) 2684 (777) 

 
DP 4136 (1369) 3342 (1109) 3511 (1217) 2739 (808) 

 



47 

 

Accuracy 

We observed a significant effect of Alignment [F(1,30) = 8.33, p = .007, η
2
 = .217], 

whereby participants made more errors in the aligned condition. The main effect of Trial 

Type was also significant [F(1,30) = 4.446, p = .043, η
2
 = .129], but the Alignment × Trial 

Type interaction did not reach significance [F(1,30) = 1.078, p = .308, η
2
 = .035]. The 

pseudo-word composite effects were comparable for the two groups: No main effect of 

Group was observed [F(1,30) = 2.651, p = .114, η
2
 = .081], and neither the main effect of 

Alignment [F(1,30) = .049, p = .826, η
2
 = .002], the main effect of Trial Type [F(1,30) = 

1.220, p = .278, η
2
 = .039], nor Alignment × Trial Type interaction [F(1,30) = .302, p = 

.587, η
2
 = .010] varied as a function of Group.  

 

Response latencies 

Both groups showed evidence of pseudo-word composite effects in their response latency 

data. Main effects of Trial Type [F(1,30) = 51.765, p = .000, η
2
 = .633] and Alignment 

[F(1,30) = 95.193, p = .000, η
2
 = .760] were observed, as well as a significant Alignment 

× Trial Type interaction [F(1,30) = 15.495, p = .000, η
2
 = .341]. No main effect of Group 

was observed [F(1,30) = .560, p = .460, η
2
 = .018]. Neither the effects of Alignment 

[F(1,30) = .065, p = .801, η
2
 = .002], Trial Type [F(1,30) = .297, p = .590, η

2
 = .010], nor 

Alignment × Trial Type interaction [F(1,30) = 1.220, p = .001, η
2
 = .310], varied as a 

function of Group.  

 

 

Figure S3: Mean accuracy and RTs exhibited by the DPs and aged-matched NT controls during the piloting 

procedure. 
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