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Abstract 16	
Extracellular macromolecules, pathogens and cell surface proteins rely on endocytosis to enter cells. Key 17	
steps of endocytic carrier formation are cargo molecule selection, plasma membrane folding and detachment 18	
from the cell surface. While dedicated proteins mediate each step, the actin cytoskeleton contributes to all. 19	
However, its role can be indirect to the actual molecular events driving endocytosis. Here, we review our 20	
understanding of the molecular steps mediating local actin polymerization during the formation of endocytic 21	
carriers. Clathrin-mediated endocytosis (CME) is the least reliant on local actin polymerization, as it is only 22	
engaged to counter forces induced by membrane tension or cytoplasmic pressure. Two opposite situations 23	
are coated pit formation in yeast and at the basolateral surface of polarized mammalian cells which are 24	
respectively dependent and independent on actin polymerization. Conversely, Clathrin-independent 25	
endocytosis (CIE) forming both nanometer (CLIC/GEEC, caveolae, FEME, IL2β uptake) and micrometer 26	
carriers (macropinocytosis) are dependent on actin polymerization to power local membrane deformation 27	
and carrier budding. A variety of endocytic adaptors can recruit and activate the Cdc42/N-WASP or 28	
Rac1/WAVE complexes, which in turn engage the Arp2/3 complex, thereby mediating local actin 29	
polymerization at the membrane. However, the molecular steps for RhoA and formin-mediated actin bundling 30	
during endocytic pit formation remains unclear. 31	
 32	
Introduction 33	
Extracellular macromolecules and transmembrane cell surface proteins cannot diffuse across the plasma 34	
membrane and require transport by endocytic carriers to enter cells. Such carriers are formed upon wrapping 35	
of the plasma membrane around the material to be internalized, generically named ‘cargoes’. Clathrin-36	
mediated endocytosis (henceforth, CME) is the best-characterized endocytic route and the dominant uptake 37	
pathway to sustain housekeeping functions in cells (1-3). Several Clathrin-independent endocytosis (CIE) 38	
mechanisms exist in parallel to CME to mediate bulk protein and lipid uptake and removal of specific 39	
receptors from the plasma membrane (4,5). Beside ligand and protein uptake, endocytosis controls cell 40	
spreading, polarization and migration. Consistently, endocytosis is involved in several diseases such as 41	
cancer, neurodegeneration, lysosomal storage disease and atherosclerosis. It is also hijacked by many 42	
bacteria, viruses, prions and bacterial toxins to mediate their cellular entry	(6).  43	

Once detached from the surface, endocytic carriers have three broad shapes: small spherical 44	
vesicles (50-200 nm diameter), tubules (50-500 nm diameter and up to 1-5 µm in length) and large endocytic 45	
vacuoles called macropinosomes (0.5 to >10 µm). To date, we know of three main molecular mechanisms 46	
by which endocytic carriers form: i) cargo capture and local membrane bending by cytosolic proteins; ii) 47	
extracellular lipid or cargo clustering according to the Glycolipid-Lectin (GL-Lect) hypothesis; and iii) acute 48	
signaling-induced membrane protrusions folding back onto the plasma membrane (5). Both CME and CIE 49	
processes, such as fast Endophilin-mediated endocytosis (FEME) or Interleukin-2 receptor β (IL2Rβ) uptake, 50	
rely on cytosolic proteins such as Clathrin or BAR domain-containing proteins that bend membrane upon 51	
local recruitment and polymerization. Bin1/Amphiphysin/Rvs167 (BAR) domains are dimeric curved 52	



structures with a positively charged concave surface that senses, stabilizes and induces membrane 53	
curvature (7). Extracellular lipid or cargo clustering drives the formation of Clathrin-independent carriers / 54	
Glycosylphosphatidylinositol (GPI)-anchored protein enriched endocytic compartments (CLIC/GEEC, 55	
hereafter CLIC) and the uptake of Shiga and cholera toxins	 (8). Membrane protrusions folding back onto the 56	
plasma membrane create large carriers during macropinocytosis and activity-dependent bulk endocytosis 57	
(ADBE) at synapses	(9,10).  58	

The energetic cost of deforming a membrane depends mainly on its rigidity. Thus, the energy 59	
required to form an endocytic carrier is not dependent on its size but is instead the result of the local 60	
membrane rigidity. In the case of a biological membrane that has a typical bending modulus of 10-20 kBT 61	
(where kB is the Boltzmann constant and T the temperature), about 250-500 kBT (being the energy produced 62	
by the hydrolysis of 10-20 ATP molecules) must be produced to form a vesicle (11). Although Clathrin and its 63	
adaptor proteins can bend the plasma membrane locally to produce coated vesicles, additional forces 64	
provided by the actin cytoskeleton are required in some physiological contexts to counter membrane tension 65	
or internal cytoplasmic pressure. Two opposite situations are coated pit formation at the basolateral surface 66	
of polarized mammalian cells (independent of actin) and endocytosis in yeast (dependent of actin)	 (12-14). 67	
Perhaps because of their larger sizes, their speed of formation or the absence of dense and rigid 68	
proteinaceous coats around CIE carriers, their formations rely on actin polymerization (15). 69	
Actin transitions between a monomeric globular form (G-actin) and a polymeric filamentous form (F-actin) 70	
upon ATP loading. Actin polymerizes into helical, two-stranded filaments, the slow- and fast-growing ends of 71	
which are named ‘pointed’ and ‘barbed’ ends, respectively. Actin filaments can be crosslinked (e.g. cortical 72	
actin), bundled together (e.g. filopodia) or branch into extended network (e.g. lamellipodia) (16). This network 73	
of filaments forms the actin cytoskeleton, performing multiple functions in cells, from providing structural 74	
support to membranes to propelling organelles (17). As actin monomers are in vast excess in cells, the 75	
availability of uncapped (free) barbed ends is rate limiting for the growth of actin filaments. While actin 76	
filament capping, cross-linking (e.g. Fimbrin, Fascin, α-actinin, Spectrin, Filamin and Myosin), elongating 77	
(e.g. ENA/VASP), severing and depolymerizing proteins (e.g. Gelsolin, Severin, ADF/Cofilin) are all 78	
important regulators, the growth of the actin network is stimulated by regulated nucleation (18-20). Formins 79	
and the Arp2/3 complex are the main actin assembly-promoting factors. Branched filaments can only be 80	
nucleated by the Arp2/3 complex, which serves as a template to trigger the polymerization of a new filament 81	
at a 70 degree angle from the original one (21). As Arp2/3 has minimal basal activity, nucleation-promoting 82	
factors (NPF) such as the WASP/N-WASP and the SCAR/WAVE complexes are required to induce strong 83	
branching and nucleation (18,19,22). In the cytosol, N-WASP is auto-inhibited, while WAVE is constitutively 84	
active but inhibited in trans by the WAVE-regulatory complex (WRC). Both complexes need to be recruited 85	
and activated by additional proteins to induce local actin polymerization. RhoA, Rac1 and Cdc42 are 86	
membrane-bound GTPases that trigger local actin polymerization upon recruitment and activation. GTP-87	
bound Rac1 and Cdc42 activate Arp2/3-mediated actin branching through the WASP/N-WASP and 88	
SCAR/WAVE complexes, respectively. RhoA activates formins such as mDia.   89	

While many publications have reported a requirement for actin in endocytosis, the evidence was 90	
often limited to its perturbation upon actin depolymerization or stabilization (Cytochalasin D, Latrunculin or 91	
Jasplakinolide treatments). The effects of actin cytoskeleton perturbation on endocytosis could be very 92	
indirect (e.g. changes in membrane tension, receptor clustering and lateral diffusion or membrane fluidity). 93	
Thus, this review will focus on the discrete molecular events driving local actin polymerization during 94	
endocytic carrier formation. 95	
 96	
Localized actin polymerization during nanometer carrier budding.  97	
Clathrin-mediated endocytosis. Even though a functional actin cytoskeleton is present at each stage of 98	
clathrin coated pit (CCP) formation in mammalian cells(1), its function is dispensable upon low membrane 99	
tension (12,23-26). In such cases, forces generated by the polymerization of the clathrin coat, aided by 100	
membrane bending activity of adaptors such as Epsin, AP180 or BAR-domain proteins, are sufficient to form 101	
clathrin-coated vesicles (CCVs) without the assistance of local actin polymerization (1,2). However, actin is 102	
required to counteract high membrane tension at apical or adherent surfaces of cells (where the membrane 103	
is stretched by the underlying cytoskeleton), during mitosis, in hypo-osmotic environments or because of 104	
mechanical stress (12,27,28). Actin polymerization is also required for the internalization of large cargoes 105	
into CCVs, such as elongated VSV viruses (29). Finally, it is crucial for CME in yeast, as inward budding 106	



needs to overcome the outwardly directed turgor pressure of ∼1,000 pN and the stiff, ergosterol-rich, 107	
membrane (30). Actin is even more important than Clathrin for receptor-mediated endocytosis in yeast as 108	
uptake continues, albeit at reduced rate, even in the absence of Clathrin (31,32). This is not the case in 109	
mammals, where Clathrin and AP2 are obligatory for CME (33,34). 110	

Actin is consistently found both at the periphery of the clathrin lattice during budding and at the neck 111	
of constricted CCPs, forming a ring-like collar (26,35). Thereby, local actin polymerization is believed to push 112	
budding vesicles away from the cell cortex and to assist invagination and membrane fission. Actin networks 113	
at endocytic sites are rapidly turned over (every 3-4 seconds), being assembled and dissembled 114	
concurrently upon actin nucleation, elongation, severing and depolymerisation (14,36). Although the 115	
mechanisms of carrier formation are different during yeast and mammalian CME, that of local actin 116	
polymerization around CCPs shares similarities. Complete and recent accounts of actin nucleation at yeast 117	
endocytic patches are available in excellent reviews (14,37); we focus instead on summarising the 118	
commonalities and differences in mechanisms in fungi and mammals.  119	

In yeast, Las17 (WASP in mammals) and Pan1 (Intersectin), are kept inhibited locally by proteins 120	
arriving at early sites of CCPs, such as the F-BAR domain protein Syp1 (FCHo1 and 2), Sla1 (also related to 121	
Intersectin) and Sla2 (Hip1/Hip1R) (Figure 1a) (38-41). Syp1 disappears from CCPs just before the onset of 122	
actin assembly, at a time when Bzz1 (Syndapin/PACSIN) is recruited (40,42-44). Bzz1 competes with Sla1 123	
to bind and activate Las17 (45). Ent1 (Epsin) can also activate Las17 and Pan1 to recruit Arp2/3 and initiate 124	
local actin branching and nucleation (46). Actin polymerisation emanates from a Las17 ring around the 125	
center of the budding vesicle (47). Cdc15 (PSTPIP1) assembles with Myo1 (Myosin) and remains close to 126	
the cell surface at the base of the forming tube, whereas Bzz1 and Las17 move away from the plasma 127	
membrane with the invaginating tubule (48). Thereby, Cdc15 and Bzz1 create two distinct actin 128	
polymerisation sites at CCPs.  129	

In mammals, less is known about actin polymerization during the initiation stage, but N-WASP, 130	
Arp2/3, actin and Syndapin 2 levels at CCPs increase when that of FCHo1/2 decreases (44,49). Intersectin 1 131	
and 2 may assume the functions of both Pan1 and Sla1 by recruiting N-WASP via their SH3 domains, in 132	
addition to acting as a guanine-nucleotide exchange factor (GEF) towards the Rho family GTPase Cdc42 133	
(Figure 1a) (50,51). The SH3 domains of intersectin can also interact with the basic rich (BR) domain of 134	
Cdc42 GTPase activating proteins (GAPs) thereby inhibiting their GAP activity (Figure 1a) (52). Active 135	
Cdc42 recruits FBP17, CIP4 and TOCA-1, which in turn activate N-WASP via their SH3 domains (53,54) . 136	
However, as these F-BAR proteins have been detected after vesicle scission, this suggests that they may 137	
activate actin polymerization involved in the propulsion of budded CCV (44).  138	

In both yeast and mammals, Sla2 and Hip1 proteins do not promote actin polymerisation but instead 139	
regulate the association of the actin cytoskeleton to budding CCPs (55-57). Their N-terminal ANTH domain 140	
associates with the Epsin ENTH domain at the plasma membrane, whereas their central coil-coiled region 141	
binds to clathrin light chains (CLCs) (58,59). Clathrin binding causes a conformational switch of Hip1/R, 142	
which blocks its binding to actin (Figure 1b) (60, 61). In addition, Hip1R (but not Hip1) associates to 143	
Cortactin via its C-terminal PR domain and inhibits local actin assembly by blocking the elongation of barbed 144	
ends (57,62,63). This suggests a mechanism whereby actin is excluded from the coat and restricted to the 145	
rim and neck of the budding vesicle, where Hip1/R is not recruited by Clathrin (Figure 1b) (61,64). 146	

At the last stages, Epsin and the BAR domain proteins Amphiphysin, Endophilin (Rvs161 and 147	
Rvs167 in yeast) and SNX9 mediate the constriction of the neck by membrane curvature via their ENTH and 148	
BAR domains respectively, and local actin polymerization through their recruitment of N-WASP (Figure 1c) 149	
(65-69). These BAR domain proteins also concentrate Dynamin (Vps1 in yeast) at the neck, which 150	
polymerizes into ring-like structures to mediate vesicle fission upon GTP hydrolysis (70-72). Dynamin 151	
assembly is facilitated by short, gelsolin-capped actin-filaments and its polymerisation in turn enhances its 152	
GTPase activity, which removes gelsolin from barbed actin ends and allows elongation of F-actin filaments 153	
(73-75). F-actin polymerisation also stimulates dynamin binding to Cortactin in an Arp2/3-dependent manner, 154	
which allows for dynamin GTPase-mediated local actin cytoskeleton remodelling (76,77). In yeast, however, 155	
Vps1 may be less crucial for scission than Dynamin is in mammals, as actin-generated forces, Rvs161/167 156	
and local lipid modifications appear sufficient (14). Finally, unconventional Type I Myosin motors - such as 157	
Myo3/5 in yeast and Myosin 1E and VI in mammals - generate local forces which push coated pits into the 158	
cytosol (42,44,78). 159	

The orientation of the actin filaments around CCPs is not yet clear. Consistent with the location of 160	
the nucleating machinery, polymerization is constrained at the membrane (26,35,79-81). Electron 161	



tomography and local actin bleaching experiments revealed that actin filaments grow towards the yeast cell 162	
cortex (Figure 1b-c), forming a roughly spherical 3D network at the bottom of the invagination (26,31,81). 163	
However, Las17 was also reported to move in with the membrane invagination (79,82), consistent with the 164	
late arrival of N-WASP-binding proteins in mammals, and with the branching of actin filaments transitioning 165	
towards constricted CCPs at later stages (Figure 1c-d) (26). Thus, actin polymerization occurs at several 166	
locations on budding CCVs and the precise details are still unclear. 167	
 168	
Clathrin-independent endocytosis. Actin polymerization is key to the formation and budding of many 169	
nanometer-scale CIE carriers including CLICs, caveolae, FEME and IL-2Rβ-containing vesicles. 170	
Extracellular clustering of lipids and proteins by the GL-Lect mechanism drives initial CLIC formation without 171	
the need for actin polymerization (8). Instead, Arf1 recruits ARHGAP10 to disactivate Cdc42 (Figure 2a) 172	
(83), perhaps to release the local membrane tension that could be imposed by the underlying actin 173	
cytoskeleton. Nascent CLICs are then recognized by the cytosolic BAR domain containing proteins GRAF1 174	
or Endophilin (84,85). Precise spatio-temporal regulation of Cdc42/N-WASP/Arp2/3-mediated actin 175	
polymerization during CLIC formation is mediated by the GAP domain of GRAF1 (Figure 2a) (84). Additional 176	
mechanisms may be involved in actin polymerization around Shiga and cholera toxin-containing CLICs (that 177	
are less dependent on GRAF1), as Endophilin can bind to N-WASP and to additional Cdc42 GAPs such as 178	
Oligophrenin, BPGAP1 and RICH1	 (86-88). Finally, forces generated by actin polymerization (84,89,90) and 179	
by friction-driven scission generated by BAR proteins (85,91) mediate the scission of CLICs and detachment 180	
from the cell surface.  181	

Cholesterol-binding and membrane inserted proteins Caveolin-1 to 3 associate with cytosolic 182	
proteins Cavin 1-4 to form a coat which shape caveolae into their characteristic 50-100 nm cave-like 183	
invaginations (92, 93). Caveolae bud from the plasma membrane at low frequency and traffic back and forth 184	
to early endosomes. They also function as mechano-sensing domains, whereby membrane stretching 185	
induces their flattening and buffers mechanical stress (94,95). Consistent with this, caveolae are often found 186	
aligned with some actin stress fibers (96). The molecular links are still unclear but RhoA, filamin A (which 187	
binds to Caveolin 1 (97)), Myosin 1c (which interacts with Cavin 3 (98)) and perhaps EHD2 and Pacsin 2 188	
(99) are all required. Furthermore, reduction of actin stress fibers by Cytochalasin D or mDia1 and Abl 189	
kinases silencing decreases their association to caveolae (100).  190	

In the case of FEME, actin-dependent initiation sites pre-exist receptor activation and carrier 191	
formation. Lamellipodin recruits and concentrates Endophilin into distinct patches on the plasma membrane 192	
(101, 102). In the absence of receptor activation, these patches disassemble after 5-10 seconds and new 193	
ones form nearby, constantly probing the membrane. It appears that active actin remodeling is required as 194	
very low doses of actin poisons (one or two orders of magnitude less than the concentration required to 195	
block CME), applied for few seconds only, are sufficient to disrupt the formation of Lamellipodin-Endophilin 196	
patches and to inhibit FEME (101). PI3K, Rac1, Cdc42, N-WASP and PAK1 and 2 all regulate the formation 197	
of FEME carriers. However, details of the coordination of membrane bending and actin polymerization are so 198	
far missing (Figure 2b). The N-BAR domain of Endophilin induces extensive membrane tubulation and 199	
vesicle formation at high local concentration as it contains two amphipathic helices, thereby combining 200	
protein scaffolding with hydrophobic insertion (67,103). A synergy between: (i) actin polymerization; (ii) 201	
dynein-mediated traction on microtubules; (iii) Dynamin; and (iv) friction-driven scission generated by the 202	
BAR domain or Endophilin, is required for FEME carrier scission (85,91,104).  203	

IL-2Rβ or γc chains expressed ectopically in non-immune cells are constitutively internalized in small 204	
(200-500 nm) clathrin-independent carriers (105,106). Unlike FEME, where cytosolic adaptors recruit 205	
activated receptors, IL-2Rβ  recruits the actin-nucleating complex WAVE1. Similar to several other receptors, 206	
IL-2Rβ has a WIRS motif in its cytoplasmic tail that binds to a surface composed of Sra1 and Abi2 in the 207	
WAVE1 complex (Figure 2c) (107,108). Clustering of IL-2Rβ chains during their concentration into nascent 208	
pits might therefore recruit enough copies of WAVE1, followed by N-WASP, to induce Arp2/3-mediated actin 209	
protrusions that fall back onto the membrane to form endocytic pits around them (Figure 2c) (107). PI3K 210	
recruitment by clustered IL-2Rβ, local PI(3,4,5)P3 production and Rac1-mediated WAVE and PAK-1 and -2 211	
activation are also important for local actin polymerization and endocytic carrier formation (Figure 2c)	212	
(109,110). Although reminiscent of macropinocytosis, actin polymerization and membrane projections 213	



around IL-2Rβ remain localized, creating small and spherical carriers. The molecular basis for this 214	
confinement and the absence of extended actin polymerization is not yet understood. 215	

Finally, other CIE processes that rely on RhoA- and formin-dependent actin polymerization exist 216	
both in yeast and mammalian cells (111,112). However, how linear actin cables power endocytic carrier 217	
formation remains unknown.  218	
 219	
Local actin polymerization during micrometer carrier formation 220	
Macropinocytosis relies critically on actin polymerization to power membrane ruffles, which then form micron-221	
wide vacuoles. It mediates the bulk intake of extracellular fluids and molecules, as well as sizable portions of 222	
the cell surface (9,113). At highly stimulated synapses, activity-dependent bulk endocytosis (ADBE) is the 223	
dominant mode of endocytosis and shares features with macropinocytosis (10,114). In both cases, elevated 224	
and sustained signaling emanating from activated receptors induces the localized actin polymerization 225	
underneath large membrane ruffles. These fold back onto the cell surface to produce large (0.5 to >10 µm) 226	
endocytic carriers. The formation of membrane extensions relies exclusively on constant actin remodeling 227	
and low doses of actin poisons are sufficient to hinder endocytosis.   228	
Initially, activated receptors and Ras (Ras-GTP) both recruit and activate phosphoinositides 3-kinases 229	
(PI3Ks) that produce localized patches of PI(3,4,5)P3 upon phosphorylation of PI(4,5)P2 (Figure 3) (115). 230	
PI(3,4,5)P3 has a central role in triggering actin polymerization. First, electrostatic interactions between the 231	
negative charges of PI(3,4,5)P3 and polybasic motifs within Rac1 and Cdc42 recruit and activate them at 232	
precise locations on the plasma membrane. Consistently, inhibiting PI3K or accumulating cytosolic H+ (by 233	
preventing Na+/H+ transfer across the plasma membrane using amiloride, or its 5-(N-Ethyl-N-isopropyl) 234	
amiloride (EIPA) derivative) neutralizes negative charges of the inner membrane leaflet and blocks ruffling 235	
and macropinocytosis (116). Active Rac and Cdc42 also stimulate PAK family kinases, which support 236	
sustained actin reorganization and membrane ruffling (Figure 3), mostly by inactivating MLC kinase (which 237	
activates Myosin) and activating LIMK kinase (which inactivates the actin depolymerization factor Cofilin) 238	
(117). Formins (mDia) and myosins are also involved in bundling actin and forming finger-like protrusions 239	
(filopodia) at the edge of macropinocytic cups (9, 113). Second, PI(3,4,5)P3 recruits phospholipases (PLC) 240	
that hydrolyze PI(4,5)P2 locally into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) (Figure 3). IP3 241	
and DAG then activate protein kinase C (PKC) (Figure 3), which is a potent activator of actin polymerization 242	
(118). It does so mainly by activating Src, which in turn activates p190RhoGAP and thus downregulates 243	
RhoA, thereby promoting Cdc42 and Rac1 activities (119). Third, local dephosphorylation of PI(3,4,5)P3 into 244	
PI(3,4)P2 by SHIP1 or 2 recruits actin remodeling proteins such as Lamellipodin and the BAR domain-245	
containing SNX9 (Figure 3)(120,121). SNX9 locally recruits and activates Cdc42 and N-WASP promoting 246	
actin branching (122). Lamellipodin recruits the actin elongation factors ENA/VASP to mediate the extension 247	
of the branched filaments (120), thereby supporting the expansion of the actin network underneath 248	
membrane ruffles (Figure 3). GTP-loaded Rac1 and Cdc42 are switched off by several GTPase activating 249	
proteins (GAPs), including ARHGAP12, ARHGAP25 and SH3BP1 (123), thereby terminating actin 250	
polymerization. Thus, during macropinocytosis, local actin polymerization is propagated, generating 251	
membrane ruffles that form micrometer size endocytic carriers.  252	
 253	
Perspectives and remaining challenges 254	
Actin polymerization powers endocytic carriers that form either rapidly, under high membrane tension or 255	
without the aid of dense and rigid proteinaceous coats. The actin branching complex Arp2/3, recruited either 256	
by Cdc42/N-WASP or Rac1/WAVE, is locally recruited by a variety of endocytic adaptors, thereby linking 257	
membrane bending and actin polymerization. Upstream events such as the local recruitment and activation 258	
of Cdc42 and Rac1 by GEFs (such as the ones of the Intersectin, ELMO, VAV, DOCK families) are not well 259	
known. Arf1 and Arf6 proteins, known to take part in CME and CIE, might be involved (124). The molecular 260	
steps for RhoA- and formin-mediated actin bundling during endocytic pit formation are also not well 261	
understood. An outstanding question remains how actin polymerization is confined during nanometer 262	
endocytic carrier formation and propagated laterally on the membrane during macropinocytosis. The precise 263	
spatio-temporal mapping of actin polymerization is still missing, in particular during nanometer CIE carrier 264	
formation. It is evident that the actin networks assembled are very dynamic and turn over multiple times over 265	
the lifetime of the carrier formation. However, the mechanisms of actin network dissolution and local filament 266	



dynamics are not well understood. The polarity of actin filaments and any potential transition from pushing to 267	
propelling forces during carrier budding are also not clear. Another important issue for further study will be to 268	
understand how endocytic carriers move in the opposite orientation to the existing actin network. Dense 269	
cross-linked cortical actin or branched extended network underlay most, if not all, of the plasma membrane 270	
and exert forces pushing towards the cell surface. Hence, any endocytic vesicle must either form at spots 271	
with no such pre-existing networks or be coupled with local actin depolymerization, to make way for the 272	
carrier to move into the cytoplasm.    273	
 274	
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Figure Legends 278	
Figure 1. Local actin polymerization during Clathrin-mediated endocytosis. 279	
a, Early arriving protein FCHo1/2 (Syp1 in yeast), Eps15 and Intersectin (Pan1 and Sla1) recruit and activate 280	
AP2 and inactivate N-WASP (Las17), thereby inhibiting actin polymerization.   281	
b, N-WASP is recruited and activated by Epsin (Ent1) and other adaptors at the rim of the clathrin coat. The 282	
binding of Hip1/Hip1R (Sla2) to Clathrin light chain and to Cortactin reduce its capacity to bind to F-actin and 283	
may trigger local actin depolymerization, facilitating the coat formation.   284	
c, Epsin, N-BAR domain proteins Amphiphysin, Endophilin and SNX9 and possibly F-BAR proteins such as 285	
Syndapin, mediate Dynamin recruitment and induce neck constriction upon local membrane bending and 286	
actin polymerization.  287	
d, N-WASP-mediated actin polymerization at the back of Clathrin-mediated vesicle and local actin 288	
depolymerization at the front mediate vesicle budding, and movement into the cytosol.  289	
 290	
Figure 2. Local actin polymerization during Clathrin-independent endocytosis. 291	
a, Extracellularly-clustered cargoes (e.g. CD44 by Galectin-3, GM1 by Shiga toxin or GPI-anchored protein 292	
clustered into cholesterol-rich nanodomains) induce the initial inward membrane bending into the cytosol. 293	
Local and timely Cdc42 inactivation is mediated by ARHGAP10 recruited by Arf1 to the plasma membrane 294	
(likely at initial stages) and then by Cdc42-GAP activity of GRAF1 (at later stages). Local Cdc42/N-WASP-295	
induced actin polymerization mediate CLIC formation but the precise molecular links to the invaginations are 296	
still unknown.  297	
b, Fast Endophilin-mediated endocytosis (FEME) requires local PI(3,4)P2 production by SHIP2 and the 298	
recruitment of Lamellipodin (Lpd) and Endophilin. N-WASP and Arp2/3-mediated actin polymerization as well 299	
as Rac1/WAVE and PAK1/2 activities, are required for local actin assembly but the details are missing so 300	
far. N-WASP may be recruited and activated by the SH3 domain of Endophilin.  301	
c, IL2Rβ clustering stimulates WAVE recruitment to WIRS motifs present in the cytoplasmic tails of IL2Rβ. 302	
IL2Rβ also recruit PI3K to produce locally PI(3,4,5)P3, which recruits Rac1, thereby activating WAVE and 303	
PAK1. N-WASP, Cortactin and Dynamin are then mediating IL2Rβ endocytic pit closure and detachment 304	
from the cell surface.  305	
 306	
Figure 3. Local actin polymerization during macropinocytosis. 307	
Sustained and/or elevated receptor signaling trigger intense local Ras and PI3K signaling, which produce 308	
PI(3,4,5)P3 and recruit Cdc42-N-WASP and Rac1-WAVE complexes as well as PAK1, thereby promoting 309	
actin polymerization-induced membrane ruffling and protrusions. PI(3,4,5)P3 activates and recruits PLC, 310	
which hydrolyzes PI(4,5)P2 into IP3 and DAG, which in turn activate PKC, thus stimulating further actin 311	
polymerization. SHIP1 and 2 dephosphorylate PI(3,4,5)P3 into PI(3,4)P2, thereby recruiting SNX9 (which 312	
activates N-WASP) and Lamellipodin (Lpd), which mediates actin filament elongation through ENA/VASP.  313	
 314	
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Figure 1. Local actin polymerization during Clathrin-mediated endocytosis 
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Figure 2. Local actin polymerization during Clathrin-independent endocytosis
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Figure 3. Local actin polymerization during macropinocytosis
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