Inversion Produces Opposite Size Illusions for Faces and Bodies

Eamonn Walsh 1,2,*, Alexandra Vormberg 1,3,4 Josie Hannaford 1 Matthew R. Longo 1

UK
1 Department of Psychological Sciences, Birkbeck, University of London, UK
2 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, UK
3 Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany
4 Frankfurt Institute for Advanced Studies (FIAS), Germany
*Corresponding author

Address correspondence to:
Eamonn Walsh
Institute of Psychiatry, Psychology & Neuroscience
King’s College London
De Crespigny Park
Denmark Hill
LONDON SE5 8AF
United Kingdom
Tel: +44(0)20 7848 0374
Email: eamonn.walsh@kcl.ac.uk
Website: http://neuroscience.iop.kcl.ac.uk/msc
https://kclpure.kcl.ac.uk/portal/eamonn.walsh.html

Number of words
Abstract: 180
Article Body: 6127

Number of tables: 1
Number of figures: 7

Keywords: perception; face inversion effect; size illusion; body perception; holistic; configural; featural
Abstract

Faces are complex, multidimensional, and meaningful visual stimuli. Recently, Araragi and colleagues (Araragi, Aotani, & Kitaoka, 2012) demonstrated an intriguing face size illusion whereby an inverted face is perceived as larger than a physically identical upright face. Like the face, the human body is a highly familiar and important stimulus in our lives. Here, we investigated the specificity of the size underestimation of upright faces illusion, testing whether similar effects also hold for bodies, hands, and everyday objects. Experiments 1a and 1b replicated the face-size illusion. No size illusion was observed for hands or objects. Unexpectedly, a reverse size illusion was observed for bodies, so that upright bodies were perceived as larger than their inverted counterparts. Experiment 2 showed that the face and reverse body size illusions were maintained even when the photographic contrast polarity of the stimuli was reversed, indicating that the visual system driving the illusions relies on geometric featural information rather than image contrast. Our findings show that size illusions caused by inversion show a high level of category specificity, with opposite illusions for faces and bodies.
Introduction

Illusions and inversion effects provide an interesting window through which to study how the brain processes human faces and bodies, and whether they are processed by the brain in the same fashion. Recently, Araragi and colleagues (Araragi, et al., 2012) demonstrated an intriguing face size illusion whereby an inverted face is perceived as larger than an identical upright face. The size illusion was evident for photographic faces, cartoon faces, and for face outlines (Araragi, et al., 2012). Previous research has shown how inversion influences face processing, so that the recognition of inverted faces is more difficult than that of upright faces, suggesting that faces represent a “special” class of stimulus (Yin, 1969). Face inversion is believed to affect our ability to adopt configural processing, i.e. perception based on the relations between features, whilst leaving the ability to use featural processing intact (Carey & Diamond, 1977; Farah, Tanaka, & Drain, 1995; Maurer, Le Grand, & Mondloch, 2002; Tanaka & Farah, 2003; Young, Hellawell, & Hay, 2013), though the exact nature of the mechanisms behind these processes remains controversial (McKone & Yovel, 2009; J. E. Murray, 2004; Richler, Gauthier, Wenger, & Palmeri, 2008; Richler, Tanaka, Brown, & Gauthier, 2008; R. Robbins & McKone, 2007; Rossion, 2008; Sekuler, Gaspar, Gold, & Bennett, 2004).

Many behavioural studies show that a face is less well recognised when inverted. An upright face is thought to be perceived holistically while an inverted face is perceived more as a collection of features (Farah, Wilson, Drain, & Tanaka, 1998). Supporting the holistic view, behavioural studies have shown that a face section is better recognised if it is presented in a whole face context than if it is presented in isolation (Tanaka & Farah, 1993), or when it is aligned with a complementary section of another face (Rossion, 2013). These effects are substantially reduced if the face is presented upside-down, demonstrating the
so-called ‘face inversion effect’ (FIE), suggesting that such effects rely on internal representations derived from visual experience. While it is generally agreed that human faces undergo configural processing, a number of more recent studies have also described body inversion effects (BIE) for human bodies (Minnebusch, Suchan, & Daum, 2009; Reed, Stone, Bozova, & Tanaka, 2003; Reed, Stone, Grubb, & McGoldrick, 2006). The face inversion effect demonstrates that there is a larger inversion effect i.e. a greater cost to recognition, for faces than other objects with a canonical upright. This holds true even when a within class discrimination task is used (Yin, 1969), and even when people are experts with those non-face objects (Carey & Diamond, 1977).

As for faces, recognition of inverted human bodies is impaired relative to upright presented bodies (Reed, et al., 2003; Reed, et al., 2006). The ‘body inversion effect’ has been shown to be as large as the FIE and considerably larger than the inversion effect for other object categories (Reed, et al., 2003), such as everyday objects like houses or bottles (Minnebusch, Keune, Suchan, & Daum, 2010; Minnebusch, et al., 2009; Reed, et al., 2003; R. A. Robbins & Coltheart, 2012). Seitz (Seitz, 2002) reported better recognition performance for whole bodies compared to isolated body parts, suggesting a role for holistic processing in the perception of human bodies. Moreover, impaired face and body perception has been observed in people with prosopagnosia, providing further evidence that both stimulus types are processed configurally (Biotti, Gray, & Cook, 2017; Righart & de Gelder, 2007; Rivolta, Lawson, & Palermo, 2017).

Overall, measures of holistic processing suggest that not only faces but also bodies are “special”, i.e., processed differently to other objects (Moro, et al., 2012). Inversion impairs recognition and size perception for faces and at least recognition for bodies, and these inversion effects are generally thought to reflect holistic processes. The present study
investigates the specificity of the size underestimation illusion reported by Araragi and colleagues (Araragi, et al., 2012). Specifically, we were interested in whether the illusion results from the operation of configural processing in general, in which case it should also occur for body stimuli as well as faces, or whether it reflects the operation of face-specific mechanisms, in which case it should not occur for any other stimuli. We used the method of constant stimuli to measure the bias to perceive inverted stimuli as bigger than upright stimuli for faces, bodies, hands, and non-body everyday objects.

Experiment 1a

Experiment 1a, used a large sample (N=124) to investigate whether the size underestimation of upright faces reported by Araragi and colleagues (Araragi, et al., 2012) also holds for bodies and hands. Object stimuli were included to investigate the size of the illusion for inanimate objects.

Method

Participants

One hundred and forty six psychology undergraduate students at Birkbeck, University of London took part in an in-class experiment in a group setting as part of a research methods class. Ethical approval was obtained from the Departmental Research Ethics Committee prior to testing. The data for 22 participants whose goodness of fit (R^2) was less than a threshold (<0.2) for any condition (object, face, body, hand) were excluded from the dataset (see Analysis section below). The data for the remaining 124 participants (mean age 30.2 years, SD=8.2; 8 left-handed by self-report; 97 female) were included in the final analysis.
Stimuli

The stimulus set (16 stimuli) consisted of greyscale images of 4 frontal view headless bodies (2 male and 2 female) and 4 faces (2 male and 2 female), 4 hands faces (2 male and 2 female), and 4 inanimate objects (globe, jug, armchair, and coffee-pot), all of which have a canonical ‘upright’ orientation. The face stimuli (neutral emotional expression) were selected from the Karolinska Directed Emotional Faces (KDEF) database (Lundqvist, Flykt, & Öhman, 1998, http://www.emotionlab.se/resources/kdef).

Design

![Figure 1](image)

Figure 1: Schematic showing 3 typical trials from Experiments 1a and 1b. A fixation cross was presented centrally for 500 ms, followed by two images of the same object, face, body, or hand. One image was always inverted, while the other was always upright. One image was always a standard...
size, while the size of the other image could vary (see text for details). The participant judged which of the two stimuli appeared physically larger by pressing a left or right button, which also triggered the next trial.

Procedure

Participants were tested simultaneously in a large computer lab. Participants sat with their face approximately 40 cm in front of the monitor. In a two-alternative forced choice (2AFC) task, participants pressed either the ‘q’ or ‘p’ key on the computer keyboard with the index fingers of their left and right hands respectively, to indicate whether the left (‘q’) or right (‘p’) stimulus appeared to be physically larger. Participants were instructed to fixate on the central cross, and to judge which of two stimuli presented on either side of the cross appeared to be physically larger. Stimulus presentation and data collection were controlled by an E-Prime script (Psychology Software Tools, Sharpsburg, PA).

On each trial, the same stimulus (Figure 1) was presented 480 pixels (18.5° visual angle) on either side of the central fixation cross. Both images were identical except that one was always upright while the other was always inverted (i.e., rotated 180° in picture plane). One of the two images occupied a space 400 pixels square (standard size), while the other image maximally occupied a square space measuring either 380, 390, 400, 410, or 420 pixels per side, (14.7, 15.0, 15.4, 15.8, 16.2° visual angle, respectively), corresponding to a -5, -2.5, 0, 2.5, or +5% increase in the linear dimensions of the standard, respectively. The left and right placement of the stimuli was counterbalanced across trials.

There were 7 blocks of 112 trials each, resulting in 784 trials in total. Participants could rest after each block and commence the next block when ready. Prior to the experiment proper, participants completed a practice block of 6 trials. The total duration of the experiment was approximately 25 minutes.
Analysis

For each participant, psychometric curves were fitted for all conditions (i.e. a separate curve for the object, face, body and hand conditions). The proportion of responses for which the upright stimulus (object, face, body, hand) was judged larger was modelled as a function of the difference in size between the upright and inverted stimuli by fitting a cumulative Gaussian curve using maximum likelihood estimation with the Palamedes toolbox (Prins & Kingdon, 2009; http://www.palamedestoolbox.org/download.html) in MATLAB (Mathworks, Natick, MA). The point of subjective equality (PSE, i.e., the mean of the best-fitting Gaussian), slope (i.e., the inverse of the standard deviation), and goodness of fit (R^2) were calculated for each curve. The PSE estimates the difference in size between the upright and inverted stimuli (quantified as the difference in linear dimensions as a percentage of standard size) for which the participant perceived them as being the same size. Thus, if there is no perceptual bias, stimuli should be perceived as the same when they actually are the same, and PSEs should on average equal ‘0’. Positive PSEs indicate that participants judged the inverted stimulus to be larger than the upright counterpart, while negative PSEs indicate the opposite. Data for participants below the pre-set threshold ($R^2 < 0.2$) for any condition (object, face, body, hand) were removed, resulting in a final sample size for Experiment 1a of 124 people.

Results

Results are shown in the left panels of Figures 2 and 3. The mean R^2 was 0.854 ($SD = 0.169$; range 0.214 – 1), indicating good overall fit to the data. We first compared PSEs in each condition to 0 to test for overall biases. PSEs for faces were significantly greater than 0 (M:}
2.76%), \(t(123) = 9.57, p < 0.0001\), Cohen’s \(d = 1.73\), indicating a bias to perceive upright faces as smaller than inverted faces. This provides a clear replication of the basic illusion reported by Araragi and colleagues (2012). For bodies, there was a significant effect in the opposite direction (\(M: -1.39\%\)), \(t(123) = 3.79, p < 0.0001\), \(d = 0.68\), with upright bodies perceived as bigger than inverted bodies. No overall illusion was found for hands (\(M: 0.04\%\)), \(t(123) = 0.52, \text{n.s.}, d = 0.09\), nor objects (\(M: 0.32\%\)), \(t(123) = 1.52, \text{n.s.}, d = 0.27\).

To compare the illusion across conditions, an analysis of variance (ANOVA) was conducted on PSEs, revealing a significant difference across conditions, \(F(3, 369) = 28.53, p < 0.0001\), \(\eta_p^2 = 0.19\). The Holm–Bonferroni method was used to counteract multiple comparisons and to control for Familywise error rate. PSEs for the Body condition differed significantly from PSEs for the Face, Object and Hand conditions (all \(p < 0.014\)). Similarly, PSEs for the Face condition differed significantly from PSEs for the Object and Hand conditions (all \(p < 0.0001\)). There was no difference between the Hand and Object conditions; \(t(123) = 1.02; p = 0.31\) (Table 1).

An ANOVA on slopes revealed a significant difference across conditions, \(F(3,369) = 11.93, p < 0.0001\), \(\eta_p^2 = 0.09\), indicating that the precision of judgments differed across the different stimulus categories (Table 1). All follow-up comparisons (t-tests) between the four conditions were significant when corrected for multiple comparisons using the Bonferroni-Holm step-down test, except for hand versus object (\(p=0.64\)).
Table 1: The mean percentage (SD=standard deviation) of standard size PSE (point of subjective equality) for each of the 4 experimental stimulus categories (object, face, body, and hand) for Experiments 1a (N=124) and 1b (N=19). Positive PSE values indicate that the upright stimulus was judged larger than the same-sized inverted stimulus, while negative PSE values indicate the reverse. Bold font indicates significance at p < 0.05.

<table>
<thead>
<tr>
<th></th>
<th>Experiment 1a</th>
<th></th>
<th>Experiment 1b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>PSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object</td>
<td>0.32</td>
<td>2.21</td>
<td>-0.10</td>
<td>1.12</td>
</tr>
<tr>
<td>Face</td>
<td>2.76</td>
<td>3.81</td>
<td>2.34</td>
<td>2.26</td>
</tr>
<tr>
<td>Body</td>
<td>-1.39</td>
<td>6.87</td>
<td>-2.17</td>
<td>3.13</td>
</tr>
<tr>
<td>Hand</td>
<td>0.04</td>
<td>5.12</td>
<td>0.22</td>
<td>2.72</td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object</td>
<td>0.04</td>
<td>0.01</td>
<td>0.05</td>
<td>0.01</td>
</tr>
<tr>
<td>Face</td>
<td>0.05</td>
<td>0.01</td>
<td>0.06</td>
<td>0.02</td>
</tr>
<tr>
<td>Body</td>
<td>0.03</td>
<td>0.01</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Hand</td>
<td>0.03</td>
<td>0.01</td>
<td>0.04</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure 2: Mean PSEs for each of the stimulus categories (Object, Face, Body, and Hand) for Experiment 1a (N=124; left panel) and Experiment 1b (N=19; right panel). Positive PSE values indicate that the inverted stimulus was judged larger than the same-sized upright stimulus, negative values indicate the opposite. Error bars give the standard error of the mean (+/-SEM). Note: ** indicates p value < 0.001; and *** indicates p value < 0.0001

Discussion
Experiment 1a clearly replicated the finding of Araragi and colleagues (Araragi, et al., 2012) showing that upright faces are perceived as smaller than inverted faces. Unexpectedly, however, participants perceived upright bodies to be larger than their inverted counterparts, thereby demonstrating a novel reverse illusion for bodies relative to faces. Also, Experiment 1a demonstrated that hands and objects do not show any size illusion.

Experiment 1b

Experiment 1a was performed in an undergraduate class setting, with all participants tested simultaneously. This is clearly non-optimal for collecting psychophysical data, as evidenced by the comparatively large rate of participant exclusion. Thus, the aim of Experiment 1b was to replicate the pattern of results observed in Experiment 1a under controlled laboratory conditions. Additionally, we used an extended stimulus set which incorporated a broader range of stimulus sizes to allow better estimation of psychometric functions.

Method

Participants

Twenty participants were recruited. Data for one participant whose R^2 was under 0.2 for one condition was removed from the dataset. The data for the remaining 19 participants (mean age 31.0 years, SD = 9.0; 2 left-handed by self-report; 14 female) were included in the final analysis. All participants had normal or corrected-to-normal vision.

Stimuli
Stimuli were similar to Experiment 1a but used an expanded range of exemplars of each category and sizes. The stimulus set (32 stimuli) consisted of greyscale images of 8 frontal view headless bodies (4 male and 4 female) and 8 faces (4 male and 4 female), 8 hands (4 male and 4 female) and 8 inanimate everyday objects. Images were resized to 7 different sizes measuring 364, 376, 388, 400, 412, 424, 436 pixels square, (subtending 14.1, 14.5, 15.0, 15.4, 15.9, 16.3 and 16.8° visual angles, respectively), which correspond respectively to -9, -6, -3, 0, +3, +6, and +9% change in linear dimensions relative to the standard (400 pixels square). In addition to the 4 objects adopted in Experiment 1a, the stimulus set further included a camera, kettle, pail, and due to experimenter error, a basketball. Due to its round shape, a basketball does not have a canonical or upright orientation and should not have been included in the stimulus set. All results reported below are with the basketball stimulus removed. Significant results did not change when the analysis was performed with or without the basketball.

Procedure

Participants were seated one at a time, in a quiet, dimly-lit testing room facing a computer monitor at a distance of approximately 40 cm. There were 8 blocks of 112 trials each, resulting in 896 trials in total. Participants completed a short practice block of 6 trials before commencing. In all other respects, the procedure and design were identical to Experiment 1a.

Results
Results are shown in the right panels of Figures 2 and 3. Data analysis and psychometric curve fitting followed the same procedures as for Experiment 1a. The mean R^2 was 0.930 (SD = 0.094; range 0.322 – 1.0), indicating good overall fit. Overall, results were similar to Experiment 1a. Analysis of PSEs (compared to 0) revealed a significant bias to perceive upright faces as smaller than inverted faces (M: 2.34%), $t(18) = 4.52$, $p < 0.0001$, $d = 1.04$, providing further replication of the main result of Araragi and colleagues (Araragi, et al., 2012). Also as in Experiment 1a, there was a significant effect in the opposite direction for bodies (M: -2.17%), $t(18) = 3.01$, $p = 0.007$; $d = 0.69$, with upright bodies perceived as bigger than inverted bodies. There were again no significant perceptual biases for either hands (M: 0.23%), $t(18) = 0.36$, $p = 0.723$; $d = 0.08$, or objects (M: -0.10%), $t(18) = 0.38$, $p = 0.711$; $d = 0.09$.

As in Experiment 1a, an ANOVA conducted on PSEs, revealed a significant difference across conditions, $F(3, 54) = 10.24$; $p < 0.0001$; $\eta_p^2 = 0.36$. The Holm–Bonferroni method confirmed that PSEs for the Body condition differed significantly from PSEs for the Face, Object and Hand conditions (Table 1). Further, PSEs for the Face condition differed significantly from PSEs for the Object condition. However, the comparison between the Face and Hand conditions just failed to survive correction for multiple comparisons (non-significant; $p=0.03$).
Figure 3: Mean probability of trials where the upright stimulus (body, face, hand, and object) was judged larger than the same-sized inverted stimulus for Experiment 1a (N=124; left panel) and Experiment 1b (N=19; right panel). A comparison size of 0% (horizontal axis) indicates that the size of the upright and inverted stimuli was objectively equal. Size of standard image (400 pixels²) = 0% on the X ordinate. Error bars give standard error of the mean (+/-SEM).

Discussion

Experiment 1b performed in a controlled laboratory setting, replicated the results of Experiment 1a performed in an in-class group setting. Both experiments clearly replicated the finding that faces are judged to be larger when inverted than upright (Araragi, et al., 2012). Further, both studies found that human bodies showed a reverse size illusion, being perceived as larger when upright than inverted. There were no size illusions as a function of orientation for hand or object stimuli.

Experiment 2

Because the human face has a unique morphology, often comprising a large contrast between face and darker hair, it could be argued that a high contrast between face and hair
drove the size illusion. The size underestimation of upright faces (Araragi, et al., 2012) may therefore be due to differences in perceived depth between upright and inverted faces. When the contrast polarity of photographic images is reversed, the effects of illumination are also reversed: shadow areas such as the nostrils, become bright rather than dark, whereas directly illuminated regions are now dark instead of bright (Figure 4). Photographic negation disrupts observers' ability to use shading cues to infer facial structure and to discern patterns of pigmentation and colouration. Faces of negative contrast polarity are less recognisable than faces of positive polarity (Bruce & Langton, 1994; Bruce & Young, 1998; Galper, 1970; Galper & Hochberg, 1971; Kemp, Pike, White, & Musselman, 1996; Nederhouser, Yue, Mangini, & Biederman, 2007; Russell, Sinha, Biederman, & Nederhouser, 2006). If the illusion relies on contrast, then the illusion should reverse for negative images of faces. In contrast, if the visual system depends only on the geometric properties of faces, then the size illusion should remain even for negative images.

A further concern about the results from Experiments 1a and b is that the opposite effects seen for faces and for bodies could reflect an artefact of some low-level property of the stimuli (Tanca, Grossberg, & Pinna, 2010) which differs between faces and bodies. One such potential cue is luminance. The face stimuli in Experiments 1a and 1b tended to have hair which was darker than their skin. The bodies, in contrast, tended to have trousers in darker colours than shirts. Thus, a perceptual bias for objects to be perceived as bigger when they are lighter towards the top and darker towards the bottom could potentially account for the opposite results we find for faces and bodies (Tanca, et al., 2010). If this were the case, then reversing the contrast polarity of the stimuli by using negative photographic stimuli should flip the effects for faces and bodies. In contrast, contour and configuration of body and face
stimuli are preserved in negative images, which preserve all the geometric properties and spatial frequencies, of their positive counterpart images, but have the crucial difference that contrast luminance is reduced. If the effects we report above arise from the distribution of luminance across the image, then they should reverse for negative images, which will reverse these distributions. In contrast, if the illusions arise from category-specific perceptual mechanisms, then they should remain even for negative images.

Methods

Participants

Twenty people participated. Data from one participant was excluded because R^2 was less than the pre-set threshold (i.e. 0.2) for one condition. Of the remaining nineteen participants (12 females), the mean age was 31.8 (SD=13.7) years and 2 were left-handed. All had normal or corrected to normal vision.

Stimuli

The eight body and eight face stimuli from Experiment 1b were used to create reversed (negative) polarity stimuli, using Photoshop software (Adobe, San Jose, CA). As in Experiment 1b, images were saved to seven different sizes (measuring 364, to 436 pixels square; -9, to +9% change relative to the standard 400 pixel square size.
Figure 4: Schematic of stimuli from Experiment 2, showing examples of positive and negative polarity contrast trials. Only face and body stimuli were used.

Design

Trials consisted of either negative or positive polarity contrast stimuli, never both within the same trial. The positive and negative polarity contrast trials of faces and bodies were presented randomly within the same block (Figures 1 and 4). There were 8 blocks of 112 trials each, resulting in a total of 896 trials. All other procedures were identical to Experiment 1b.

Results

Mean R^2 was 0.914 (SD = 0.095; range 0.570 – 0.996), indicating good fit to the data. Analysis of PSEs indicated that upright faces were perceived as smaller than inverted faces for both positive (M: 3.25%), $t(18) = 6.86$, $p < 0.0001$, $d = 1.57$, and negative (M: 2.67%), $t(18) = 6.77$, $p < 0.0001$, $d = 1.55$, polarity. For bodies, there were effects in the same direction as the previous experiments, but these did not reach significance for either
positive ($M: -1.43\%$), $t(18) = 1.16$, $p = 0.310$, $d = 0.27$, or negative ($M: -1.22\%$), $t(18) = 1.04$, $p = 0.259$, $d = 0.24$.

To examine the effects of contrast, we ran a 2x2 ANOVA with factors category (face, body) and polarity (positive, negative). There was a significant main effect of category, $F(1, 18) = 14.59$; $p = 0.001$; $\eta^2_p = 0.41$. Critically, however, there was no main effect of polarity, $F(1, 18) = 0.42$; $p = 0.523$; $\eta^2_p = 0.02$, nor an interaction, $F(1, 18) = 1.01$; $p = 0.328$; $\eta^2_p = 0.05$.

![Figure 5](image)

Figure 5: PSEs from Experiment 2. Positive values indicate that the inverted stimulus was judged larger than the same-sized upright stimulus. Error bars give the standard error of the mean (+/-SEM). Note: *** indicates p value $<$ 0.0001.
Figure 6: Results from Experiment 2. Mean proportion of upright stimuli perceived as larger than the same stimulus inverted. Size of standard image = 0%. Error bars give standard error of the mean (+/-SEM).

Cross-Experiment Meta-Analysis

Both Experiment 1a and Experiment 1b found a size underestimation of upright faces relative to inverted faces, and a size underestimation for upright bodies relative to inverted bodies. However, in Experiment 2, only the size underestimation for faces reached significance; the effect for bodies was in the right direction, but failed to reach significance. Visual inspection of the data revealed that two participants showed an unexpected strong positive PSE (>7.77) for the body, accounting for the non-significant body overestimation effect observed in Experiment 2. In order to integrate the evidence from all three studies, a
meta-analysis (Cumming, 2013; http://www.latrobe.edu.au/psychology/research/research-areas/cognitive-and-developmental-psychology/esci/2001-to-2010) (N=162) was performed on the PSEs using ESCI software (Figure 7; Exploratory Software for Confidence Intervals; http://erin.sfn.org/resources/2012/04/16/exploratory-software-for-confidence-intervals-comma-esci). A random-effects model was selected to account for heterogeneity among the results from all experiments (Berkey, Hoaglin, Mosteller, & Colditz, 1995; S. G. Thompson & Higgins, 2002).

The meta-analysed PSE effect for Faces was 2.73 % \([t(162)= 11.50; \ p<0.0001'; \ I^2=0\%] \), providing a clear replication of the illusion reported by Araragi and colleagues (2012) for faces to be perceived as smaller when upright. The overall PSE for Bodies was -1.67% \([t(162)= -3.82; \ p<0.0001; \ I^2=0\%] \), providing strong overall evidence for an opposite illusion for bodies. There was no overall evidence from the 3 experiments for any illusion at all for either Hands [0.13%, \(t(143)= 0.30; \ p=0.765 \)] or Objects [0.09%, \(t(143)= 0.47; \ p=0.639 \)]. There was little evidence of heterogeneity between experiments for each condition (Q statistic all < 1.3, all \(p > 0.26 \); with a corresponding \(I^2 \) statistic, all < 19 %).
GENERAL DISCUSSION

We tested whether the size underestimation of upright faces effect (Araragi, et al., 2012) is specific to faces, or generalizes to other stimuli with canonical orientations, such as human bodies, body parts like hands, and non-body objects. Consistent with the report of Araragi and colleagues, there were clear effects of inversion on size for faces in all
experiments, with faces judged to be larger when inverted than upright. This effect was not
apparent for any of the other three categories of stimuli, suggesting a high level of
specificity to faces. Interestingly, and contrary to our initial predictions, human bodies
showed a novel reverse size illusion with upright bodies judged as larger than the same body
inverted. No size illusion (in either direction) was apparent for hands or for objects.
Furthermore, Experiment 2 showed that the size illusions for faces and bodies are
unaffected when negative photographic stimuli were used, demonstrating that the opposite
illusions for faces and bodies are not an artefact of luminance differences across categories
(e.g., hair being darker than the rest of a face). Critically, negative contrast stimuli preserve
configural information, thereby suggesting that the visual system driving the illusion
depends on the geometric properties of faces and bodies.

Configural processing and the size illusion

Featural information refers to the properties of the individual parts of a face, while
configural information refers to the metric distances between the individual parts and the
relative spatial arrangements or configurations of these parts. When a face is inverted,
featural and configural information are decoupled (Barton, Keenan, & Bass, 2001; Carey &
Diamond, 1977; Farah, et al., 1995; Leder & Bruce, 2000) as has been demonstrated in
several face inversion illusions (Thompson, 1980, 2010; Thompson & Wilson, 2012).
Studying illusions that rely on inversion effects offers an insight into body and face
processing, as well as the strength of holistic coding and the processes underlying the
various illusions. Examples of illusions thought to incorporate holistic processing are the
composite illusion (Young, et al., 2013), the part-whole illusion (Tanaka & Farah, 1993), and
the “fat face thin” illusion (Thompson, 2010). Holistic processing is also evident in the
inverted face size illusion (Araragi, et al., 2012; this study), which demonstrates that inverting the face affects perceived size of the whole face. These illusions occur for the upright but not for the inverted stimulus (Thompson, 2010). As the processing of an inverted face relies on featural information only, the changes that are detected by configural processing are not apparent.

Araragi and colleagues (Araragi, et al., 2012) found evidence for a size underestimation of upright faces which operates for cartoon faces, photographic faces, and outlines of faces. One possible explanation of the results from Experiments 1a and b was that the opposite illusory effects seen for faces and for bodies reflect luminance differences between both stimulus types. A perceptual bias for objects which are darker towards the bottom e.g. the inverted faces used here, to be perceived as bigger could potentially account for the opposite results we find for faces and bodies. However, reversing the contrast polarity of the stimuli using negative photographic stimuli in Exp. 2 did not flip the effects for faces and bodies. Thus, luminance cues do not drive the opposite face and body illusory effects. Our results clearly show that the size illusion is not disrupted when faces are observed in negative contrast polarity (Figures 5 and 6), suggesting that the visual mechanisms driving the illusions depend on the geometric properties of the stimuli, rather than relying on image properties such as the contrast between light (e.g. a pale face) and dark (e.g. black hair). These results therefore raise an interesting dissociation with previous studies which have shown that recognition for faces of reversed (‘negative’) contrast polarity is impaired (Bruce & Young, 1998; Galper, 1970; Kemp, et al., 1996) and familiar faces are more difficult to recognize when viewed as photographic negatives (Galper, 1970). It may be that when faces (and other classes of object) (e.g., Yin, 1969) are presented in negative polarity, the disruptive effect on recognition results from misinterpretation of
shadow cues to the 3D structure of a face (e.g., Kemp, et al., 1996), whereas the perceived size of the negative polarity body and face images depends on an over-reliance on featural rather than configural processing.

If upside-down faces appear “thinner” (Thompson & Wilson, 2012) as well as “larger” (Araragi, et al., 2012), then one might predict that inverted faces ought to also appear “longer” (in order to occupy identical surface areas); future work could test this hypothesis directly. In the “fat face thin” illusion, an upright face looks “fatter” when viewed next to an inverted face (Thompson, 2010; Thompson & Wilson, 2012). In that research, the face stimuli were always only expanded in the horizontal direction, keeping the vertical dimensions unchanged, and participants made a judgement of face shape (“which face is fatter?”). In the current study, both the vertical and horizontal aspects were locked when the image size was adjusted, so that the overall stimulus aspect ratio was preserved and participants made a judgement of face extent (i.e. “which face is larger?”). Thus, the size overestimation of upright bodies and the size underestimation of upright faces shown in the present study is based on perceived stimulus size, and not on perceived shape.

Can configural processing explain the reverse size illusion for bodies?

Our finding of a reverse illusion for bodies provides behavioural evidence that bodies and faces are processed differently, at least in part. Our results further suggest that the processing of human bodies appears to be clearly dissociable from object processing and are consistent with previously reported face and object perception data which indicated that human bodies might not be processed configurally like faces, or analytically like objects.
Body forms might not be processed holistically as integrated representations (Maurer, et al., 2002). Recent studies suggest that human faces and human body forms are unique stimulus classes.

Neuroimaging studies using fMRI have revealed distinct, but partly overlapping, brain areas for face and body perception (Kanwisher & Yovel, 2006; Peelen & Downing, 2005; Schwarzlose, Baker, & Kanwisher, 2005). Faces and human body forms appear to be processed in adjacent and overlapping but distinct networks within the fusiform gyrus (Peelen & Downing, 2005; Schwarzlose, et al., 2005). The fusiform face area (FFA; Barton, 2003) and the occipital face area (OFA; Rossion, et al., 2003; Sorger, Goebel, Schiltz, & Rossion, 2007) are two occipitotemporal regions selectively activated by visual presentation of human faces. FFA is implicated more with configural processing of faces (Benuzzi, et al., 2007; Rossion, et al., 2000; Tong, Nakayama, Moscovitch, Weinrib, & Kanwisher, 2000), while OFA is thought to be involved in processing of face parts (Yovel & Kanwisher, 2005). Visual processing of non-facial body parts selectively activates bilateral occipitotemporal regions called extrastriate body area (EBA; Downing, Jiang, Shuman, & Kanwisher, 2001). EBA responds to viewing static and dynamic displays of the human body and its single parts, but not faces and objects (Peelen & Downing, 2007). A second body selective area - the fusiform body area (FBA) responds selectively to whole bodies and body parts (Peelen & Downing, 2005; Schwarzlose, et al., 2005). FFA and EBA spatially and anatomically overlap to varying degrees in most observers, though neuroimaging techniques such as multivariate pattern analysis, as well as high-resolution fMRI, can distinguish between these two functionally defined regions (Peelen & Downing, 2005, 2007; Schwarzlose, et al., 2005). FBA responds more to whole bodies than to single body parts (Taylor, Wiggett, & Downing,
2007), while EBA processes non-facial body parts (Taylor, et al., 2007; Urgesi, Calvo-Merino, Haggard, & Aglioti, 2007). Thus, distinct brain areas appear to be involved in the perception of faces and bodies, and their parts. The present results showing opposite size illusions for body and for face stimuli are consistent with the notion that human body forms and human faces are processed as unique stimulus classes.

The reason for the size overestimation of upright bodies remains unclear. Our results provide no clear evidence for a configural processing mechanism involved in human body form perception, at least for body shapes without heads, which might be related to a lack of configural processing of these stimuli. This behavioural evidence corresponds with previous neuroimaging data (Peelen & Downing, 2005; Schwarzlose et al., 2005, Kanwisher & Yovel, 2006) which suggested that human bodies, like faces, are processed in specialized distinct, though possibly overlapping cortical areas. There is however, as yet considerable uncertainty as to whether faces and bodies are processed by the same neuronal mechanisms (domain general hypothesis), or by dissociable mechanisms (face specificity hypothesis) (Kanwisher & Yovel, 2006; Tarr & Cheng, 2003). Body shapes and faces might share some initial processing mechanisms (e.g. first-order relational and structural information), but later stages might process both stimulus classes differentially. The presence of the head may also be critical for the processing of the human body. Interestingly, configural processing possibly from the spacing of the features seems to have a (diminishing) effect on the perceived size of the face. Therefore, information obtained and their consequent influence on the perception of the size of a face should be absent when the face is inverted. However, when a face is inverted, holistic processing is disrupted so that only featural processing can be used to judge size.
In the visual cortex, receptive field (RF) size progressively increases at successively higher levels in the processing hierarchy (Kravitz, Saleem, Baker, Ungerleider, & Mishkin, 2013; Smith, Singh, Williams, & Greenlee, 2001; Zeki, 1978). RFs are smallest in V1, larger in V4, and larger still in areas TE and TEO respectively. Upright faces activate separate higher-level visual areas than inverted faces (Haxby, Hoffman, & Gobbini, 2000; Pitcher, Garrido, Walsh, & Duchaine, 2008; Yovel & Kanwisher, 2005), and may involve neuronal populations with larger receptive fields than those involved in processing the same face inverted (Figure 8B, upper). Such neural activity could give rise to a conscious percept of a ‘smaller’ upright face (Zeki, 1998). A reversal of this ‘RF size and stimulus orientation’ relationship for bodies, i.e. smaller RF size for upright bodies and larger RF size for inverted bodies, could provide a possible neural mechanism for the reverse body illusion. Clarifying this issue would increase our understanding of how humans recognise other humans.

According to theories of vision, the visual system may use neurons with differing receptive field sizes to create a series of neural representations of the same stimulus on different scales (Blakemore & Campbell, 1969; Campbell & Robson, 1968; Pantle & Sekuler, 1968), thereby providing the brain with a neural representation of a face from a number of scales simultaneously, and enabling the visual system to solve problems of scale intractable using single scaled representations only. A small population of face-selective neurons in the superior temporal sulcus (STS) of the monkey have been identified which show size constancy, i.e., the absolute size of a face is determined by the magnitude of the neuronal response, independently of the distance of the face (Rolls & Baylis, 1986). Such neurons could contribute to a face recognition system by ensuring that only objects within a specific absolute size range are classified as faces.
Future neuroimaging research could unlock whether an inverted face illusorily experienced as larger, activates a greater retinotopic map in visual cortex than an identical upright face that projects the same visual angle on the retina. The retinotopic representation of a visual stimulus can change in accordance with its perceived angular size (S. O. Murray, Boyaci, & Kersten, 2006). Measuring whether an inverted stimulus shows a different spatial extent of visuo-cortical activation while occupying the same retinal area as its upright counterpart, remains a vital question for future research; and could inform us which stages of the retinotopic representation in the human visual system are affected by the size illusion scaling process. The answer would elucidate face and body processing neural mechanisms in the human brain. It seems the goal of the visual system is not to precisely measure the size of a face or body image projected onto the retina, but rather to identify the source of the image so that one can interact with it appropriately.

Absence of a size illusion for human hands

Interestingly, in Experiments 1a and 1b, upright and inverted hands, were judged to be identical in size. In a previous EEG study (Yovel, Pelc, & Lubetzky, 2010), a significant BIE was found when hands were removed from a body form. Indeed neuroimaging results have provided evidence for a distinct representation for the hand in left extrastriate visual cortex (Bracci, Ietswaart, Peelen, & Cavina-Pratesi, 2010); (see also Susilo, Yang, Potter, Robbins, & Duchaine, 2015). Hand selective areas have been observed in humans in right ventral visual cortex, left STS and right inferior parietal cortex (C. Gross, Bender, & Rocha-Miranda, 1969; C. G. Gross, 2008; McCarthy, Puce, Belger, & Allison, 1999). Considering the important role
played by hands in our daily lives e.g. during feeding and grooming behaviours and communication, the hand, similar to the face and body, ought to be “special” too (Bracci, et al., 2010), and yet elicits no size illusion.

A possible limitation of this study is that in everyday life, human body shapes are usually perceived with heads. Bodies without heads might be unnatural stimuli, which may lead to different processing strategies. Inverted human body shapes without heads might not match the typical representation of bodies. Recent research has shown that bodies with and without heads can be processed differently (Minnebusch, et al., 2009). Bodies with heads might activate both face and body sensitive areas, whereas bodies without heads may be processed by the brain as non-biological unnatural stimuli (Minnebusch, et al., 2010; Minnebusch, et al., 2009; Reed, et al., 2003; Reed, et al., 2006). The head is a critical feature of the body and absence of the head may alter how the body is perceived, at least during recognition tasks.

In conclusion, we replicated (Experiments 1a and 1b) and extended (Experiment 2) the intriguing size illusion effect previously reported by Araragi and colleagues (Araragi, et al., 2012), where an upside down face is perceived as larger than the same face stimulus upright. Additionally, we found evidence for a novel reverse illusion for human body forms and report the absence of any illusion for body parts (i.e., human hands) and non-body objects. The illusion is not altered when faces are presented with negative polarity contrast (Exp 2), suggesting that face illusions may be driven by low level perceptual processes (Coren & Enns, 1993). Intriguingly, together the current results indicate that the face, body and hands produce an illusion, a reverse illusion and no illusion respectively, suggesting that
all body-parts are processed differentially by the brain. One possibility is that selective representations exist for bodies, faces and hands, and the mechanism underlying the size illusions operates at the level of these separate representations, rather than the whole. Our findings offer an intriguing insight into body and face perception and offer prospects for future research. Clearly the goal of the visual system is not to measure the precise size of the image of a human projected onto the retina, but rather perhaps to determine how one should socially interact with it.
References

Bruce, V., & Young, A. (1998). *In the eye of the beholder: the science of face perception*: Oxford University Press.

Acknowledgements

This research was supported by European Research Council (ERC) Starting Grant

BODYBUILDING (ERC-2013-StG-336050) under the FP7 to MRL; and an Erasmus Student Mobility for Placement grant (Lifelong Learning Programme) to AV. Thanks to Marius Peelen for advice on the design of the body stimuli.