
BIROn - Birkbeck Institutional Research Online

Kikot, Stanislav and Kontchakov, Roman and Rapisarda, Salvatore and
Zakharyaschev, Michael (2018) STYPES: nonrecursive datalog rewriter for
linear TGDs and conjunctive queries. In: Panetto, H. and Debruyne, C. and
Proper, H. and Ardagna, C. and Roman, D. and Meersman, R. (eds.) On
the Move to Meaningful Internet Systems. OTM 2018 Conferences. LNCS
11230. Springer, pp. 441-460. ISBN 9783030026707.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/24097/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/24097/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

STYPES: Nonrecursive Datalog Rewriter
for Linear TGDs and Conjunctive Queries

Stanislav Kikot1, Roman Kontchakov2,�, Salvatore Rapisarda2, and
Michael Zakharyaschev2

1 University of Oxford, UK
staskikotx@gmail.com

2 Birkbeck, University of London, UK
{roman,srapis01,michael}@dcs.bbk.ac.uk

Abstract. We present STYPES, a system that rewrites ontology-mediated queries
with linear tuple-generating dependencies and conjunctive queries to equivalent
nonrecursive datalog (NDL) queries. The main feature of STYPES is that it pro-
duces polynomial-size rewritings whenever the treewidth of the input conjunctive
queries and the size of the chases for the ontology atoms as well as their arity are
bounded; moreover, the rewritings can be constructed and executed in LOGCFL,
indicating high parallelisability in theory. We show experimentally that Apache
Flink on a cluster of machines with 20 virtual CPUs is indeed able to parallelise
execution of a series of NDL-rewritings constructed by STYPES, with the time
decreasing proportionally to the number of CPUs available.

1 Introduction

First-order (FO) query rewriting (or reformulation) lies in the core of ontology-based
data access [24, 28] and data integration [22]. An abstract formulation of the problem
is as follows: given a set O of tuple-generating dependencies (tgds), called here an
ontology, and a conjunctive query q(x) with a tuple x of answer variables, construct
an FO-formula q′(x), called an FO-rewriting of the ontology-mediated query (OMQ)
(O, q(x)), such that, for any data instance D and any tuple a of constants in it,

q(a) holds in every model of O ∪D iff a is an answer to q′(x) over D. (1)

Thus, FO-rewriting is a reduction of the certain answer reasoning problem to database
query evaluation, and so it can only be possible for OMQs given in carefully chosen lan-
guages. For ontology-based data access, the W3C standardised the OWL 2 QL profile
of the Web Ontology Language OWL 2 [23], which guarantees FO-rewritability of all
OMQs with conjunctive queries (CQs) and ontologies in the OWL 2 QL profile [3]. Fol-
lowing the database tradition, more expressive, yet still ensuring FO-rewritability, lan-
guages have been suggested, including fragments of Datalog± such as linear tgds [11]
(also known as atomic-body existential rules [5]) or sticky sets of tgds [12, 13]. We
remind the reader that a tuple-generating dependency (tgd) is an FO-sentence of the
form

∀X
(
γ(X)→ ∃Y γ′(X ′,Y)

)
, (2)

where γ and γ′ are conjunctions of atoms with variables X and X ′ ∪ Y , respectively,
and the variables of X ′ are contained in X . A tgd is linear if γ(X) is a single atom.
As an illustration, we show how OMQs with linear tgds could be used in the system
ETAP [10, 27] designed to answer natural language questions by translating them into
SPARQL and executing—along with background knowledge—over RDF data extracted
from texts.

Example 1. Suppose we have a data instance with atoms purchased(john,BD51SMR)
and Car(BD51SMR) representing the sentence ‘John purchased car BD51SMR’. To an-
swer the question ‘Which cars have been sold?’ ETAP utilises the ontology rules

∀xy
[
purchased(x, y)→
∃vz

(
Purchase(v) ∧ hasAgent1(v, x) ∧ hasObject(v, y) ∧ hasAgent2(v, z)

)]
,

∀vxyz
[
Purchase(v) ∧ hasAgent1(v, x) ∧ hasObject(v, y) ∧ hasAgent2(v, z)→
∃v′
(
Sale(v′) ∧ hasAgent1(v

′, z) ∧ hasObject(v′, y) ∧ hasAgent2(v
′, x)

)]
,

where v and v′ represent the acts of purchase and sale, respectively. These rules are
beyond the limitations of OWL 2 QL ; however, the knowledge they represent can also
be captured by means of linear tgds with ternary predicates:

∀xy
[
purchased(x, y)→ ∃z Purchase(x, y, z)

]
,

∀xyz
[
Purchase(x, y, z)→ Sale(z, y, x)

]
,

which are sufficient for answering the CQ q(y)=∃xz (Car(y)∧Sale(x, y, z)) to obtain
the answer BD51SMR. The resulting OMQ can be rewritten into the following FO-que-
ry (or equivalently, an SQL query), which can then be evaluated directly over the data:

∃xz
[
Car(y) ∧

(
Sale(x, y, z) ∨ Purchase(z, y, x) ∨ purchased(z, y)

)]
.

FO-rewritability means, in particular, that OMQ answering is in the class AC0 for
data complexity, that is, as complex as standard database query evaluation. It has been
discovered [21, 19], however, that the shortest FO-rewritings can be of superpolynomial
size compared to the given CQ, which makes reduction (1) impractical. Further inves-
tigations [7–9] revealed that, by restricting the class of linear tgds to those of bounded
arity and bounded existential depth and the class of CQs to those of bounded treewidth,
one can achieve polynomial-size rewritings in the form of nonrecursive datalog (NDL)
queries (rather than FO-formulas). In the context of Example 1, the following is a rewrit-
ing in the form of an NDL query with the goal predicate G:

G(y)← Car(y) ∧ Sale′(x, y, z), Sale′(x, y, z)← Sale(x, y, z),

Sale′(x, y, z)← Purchase(z, y, x), Sale′(x, y, z)← purchased(z, y).

(NDL queries can also be thought of as SQL queries with view definitions.) The NDL-
rewritings obtained in [8, 9] are optimal in the sense that the combined complexity of
constructing and evaluating them is the same (LOGCFL) as the complexity of evaluat-
ing the underlying CQs [29, 15, 20]. (Note that the shortest rewritings into positive exis-
tential formulas in this case can still be of superpolynomial size, while polynomial-size

FO-rewritings exist iff LOGCFL/poly ⊆ NC1, which is highly doubtful.) The exper-
iments in [8] compared the size of the optimal NDL-rewritings constructed manually
for a series of OMQs having the following fixed ontology:

∀XY
[
P (X,Y)→ S(X,Y)

]
, ∀X

[
A(X)→ ∃Y P (X,Y)

]
,

∀XY
[
P (X,Y)→ R(Y,X)

]
, ∀X

[
B(X)→ ∃Y P (Y,X)

]
,

with the rewritings produced by three known NDL-rewriters: Clipper [17], Presto [25]
and Rapid [16], and established that, while the latter three grew exponentially, the for-
mer displayed linear growth.

The main distinguishing feature of the optimal NDL-rewritings from [9] is that,
in theory, their evaluation can be performed by an efficient parallel algorithm because
LOGCFL ⊆ NC2 [26]. However, it has remained unclear whether such NDL-queries,
which encode possibly exponentially large unions of CQs (UCQs), can be executed
efficiently by a standard data management system, and whether the system can utilise
the inherent parallelism of the NDL-rewritings.

The general aim of this paper is to give a positive answer to these questions. More
specifically, we present a system STYPES that constructs an NDL-rewriting of any
OMQ (O, q(x)) with a set of linear tgds O and a CQ q(x). The rewritings are of poly-
nomial size if the treewidth of CQs and the arity and the size of the chase for ontology
atoms are bounded. Moreover, in this case, they can be constructed and executed in
LOGCFL. Our rewriting algorithm takes a tree decomposition of the CQ as input in
order to generate a plan for constructing an NDL-rewriting. Another input of the algo-
rithm is a set of chases for the ontology atoms that occur in the rule bodies. In STYPES,
the chases are constructed by the Graal library [4]. We use STYPES to produce NDL-
rewritings for the OMQs from [8] mentioned above and then execute the rewritings by
means of Apache Flink on a cluster of machines with 20 virtual CPUs. The experiments
show that Flink is indeed able to parallelise execution of these NDL-rewritings, with the
execution time decreasing proportionally to the number of CPUs available.

The plan of the remaining part of the paper is as follows. Section 2 provides def-
initions of the main notions we use and illustrates them with examples. Section 3 is
the main technical contribution of this paper describing the NDL-rewriting algorithm
implemented in STYPES. Section 4 presents and discusses our experimental results.

2 Preliminaries

LetΣ be a relational schema. By writing P (x), for a predicate name P and an n-tuplex
of variables (with possible repetitions), we mean that P is n-ary. Also, by writing γ(x)
we mean that x are the free variables of formula γ, where the tuple x contains no
repetitions. When it is clear from the context, we use the set-theoretic notation for lists.
In the series of examples below, we use relational schema Σ0 with binary predicates R,
S and T .

A conjunctive query (CQ) q(x) is an FO-formula of the form ∃y ϕ(x,y), where ϕ
is a conjunction of atoms P (z) with predicate symbols from Σ and z ⊆ x ∪ y. The
free variables, x, are called the answer variables of the CQ, and a CQ without answer
variables is called Boolean. We often regard CQs as sets of their atoms.

Example 2. For our running example, we use the Boolean CQ

q0 = ∃xyz
(
R(x, y) ∧ T (y, z) ∧R(z, v)

)
, (3)

which can be depicted as follows:

x y z v

R T R

An ontology O is a finite set of linear tuple-generating dependencies (linear tgds),
that is, sentences of the form

∀X
(
γ(X)→ ∃Y γ′(X ′,Y)

)
,

where γ is an atom and γ′ a conjunction of atoms with predicate symbols from Σ and
X ′ ⊆X , for disjoint setsX andY of variables (Y is possibly empty); as a convention,
we will use capital letters for variables in tgds. When writing tgds, we omit both the
universal and existential quantifiers. An ontology-mediated query (OMQ) Q(x) is a
pair (O, q(x)), where O is an ontology and q(x) a CQ. The variables x are called the
answer variables ofQ(x), and an OMQ without answer variables is called Boolean.

Example 3. For our running example, we use the Boolean OMQQ0 = (O0, q0), where
the CQ q0 is given by (3) and O0 consists of the following linear tgds:

S(X,Z)→ R(X,Y) ∧ T (Y, Z), (4)
T (X,Z)→ R(X,Y). (5)

Note that X and Z are universally quantified and Y is existentially quantified in both
tgds (4) and (5).

A data instance D over Σ is any finite set of ground atoms P (a) with predicate
symbols P from Σ. We denote by ind(D) the set of individual constants in D. A tuple
a ∈ ind(D)|x| is a certain answer to an OMQQ(x) = (O, q(x)) over D if

M |= q(a), for every model M of O ∪D;

in this case we write O,D |= q(a). If Q is Boolean, then the certain answer to Q
over D is ‘yes’ if M |= q, for every model M of O ∪D, and ‘no’ otherwise.

Canonical Models. An important property of tgds is the fact [1] that, for any O and D,
there is a (possibly infinite) canonical (or universal) model CO,D such that

O,D |= q(a) iff CO,D |= q(a), for every CQ q(x) and a ∈ ind(D)|x|. (6)

Such a canonical model can be constructed by a chase procedure that, intuitively, ‘re-
pairs’ D with respect to O by extending the data instance with fresh anonymous indi-
viduals (labelled nulls) to witness existential quantifiers in tgds (though not necessarily
in the most economical way).

Remark 1. There are variants of the chase procedure with various termination condi-
tions. In our running examples, we follow a particular variant called the Skolem chase.
However, STYPES can employ any type of chase as a black box. Obviously, the class of
OMQs for which STYPES terminates depends on this choice. In particular, it would ter-
minate for weakly-acyclic linear tgds if it were supplied with a restricted chase engine.
Note that the ontology from Example 3.8 in [18], serving there as the main motivating
example for introducing weakly-acyclic tgds, falls into this class. Moreover, since lin-
ear tgds satisfy the polynomial witness property [19], for each fixed OMQ, one could
construct the chases only up to the depth that guarantees completeness of answers for
the particular CQ, rather than for all CQs; cf. (6). Therefore, such a modification of our
NDL rewriting algorithm would terminate on all OMQs with linear tgds.

Example 4. In the context of Example 3, consider a data instance D0 = {S(a, b) }.
Then, tgd (4) is applicable to D0 because h with h : X 7→ a and h : Z 7→ b is a
homomorphism from the body S(X,Z) of the tgd to D0. An application of the tgd
produces a fresh anonymous individual e0 for its existential quantifier and results in

D1 = D0 ∪ {R(a, e0), T (e0, b) }.

Next, tgd (5) is applicable toD1 via a homomorphism hwith h : X 7→ e0 and h : Z 7→ b
from the body T (X,Z) of the tgd to D1. So, its application produces another fresh
anonymous individual, e1, and results in

D2 = D1 ∪ {R(e0, e1) }.

In this example, the chase terminates at step 2 because all tgds are satisfied inD2 (and so
there are no defects to repair). In general, however, the chase does not have to terminate.

NDL-rewritings. A datalog program, Π , is a finite set of Horn clauses of the form

∀z (γ0 ← γ1 ∧ · · · ∧ γm),

where each γi is an atom P (y) with y ⊆ z or an equality (z = z′) with z, z′ ∈ z.
(As usual, we omit the universal quantifiers from clauses.) The atom γ0 is the head of
the clause, and γ1, . . . , γm its body. All variables in the head must occur in the body,
and = can only occur in the body. The predicates in the heads of clauses in Π are IDB
predicates, the rest (including =) EDB predicates. A predicate Q depends on P in Π if
Π has a clause with Q in the head and P in the body. A program Π is a nonrecursive
datalog (NDL) program if the (directed) dependence graph of the dependence relation
is acyclic. The size |Π| of Π is the number of symbols in it.

An NDL query is a pair (Π,G(x)), whereΠ is an NDL program andG a predicate.
A tuple a ∈ ind(D)|x| is an answer to (Π,G(x)) over a data instance D if G(a) holds
in the first-order structure with domain ind(D) obtained by closing D under the clauses
in Π; in this case we write Π,D |= G(a). The problem of checking whether a is an
answer to (Π,G(x)) over D is called the query evaluation problem. It is known to be
P-complete for combined complexity provided that the arity of predicates is bounded.

An NDL query (Π,G(x)) is an NDL-rewriting of an OMQ Q(x) = (O, q(x)) in
case

O,D |= q(a) iff Π,D |= G(a), for any D and any a ∈ ind(D)|x|.

Every OMQ is known to have an NDL-rewriting [6, 11].

Example 5. For the OMQ Q0 in Example 3, the following program with the nullary
goal predicate P1 is an NDL-rewriting:

P1 ← R(x, y) ∧ T (y, z) ∧ P2(z), (7)
P1 ← S(x, z) ∧ P2(z), (8)

P2(z)← R(z, v), (9)
P2(z)← S(z, Z), (10)
P2(z)← T (z, Z). (11)

In Section 3, we describe an algorithm for computing such NDL-rewritings.

H-completeness. A data instance D is said to be H-complete with respect to an on-
tology O if D validates all full tgds τ such that O |= τ (full tgds have no existential
variables). By default, STYPES produces an NDL-rewriting that is correct only for
H-complete data instances (rather than over all data instances). An essentially NDL-
rewriting that is correct for all data instances can be obtained by adding to it all full
tgds τ with O |= τ . A proof of these statements is given in the extended version of [9].

3 NDL Rewriting

Our query rewriting algorithm takes two inputs, an ontology O, which is a set of linear
tgds, and a tree decomposition of a CQ q(x).

Tree Decompositions. A bag β for a CQ q(x) is a pair (ν,α), where ν is a subset of
the variables in the CQ andα is a subset of query atoms with variables from ν; we refer
to the two components as ν(β) and α(β), respectively.

A tree decomposition of a CQ q(x) is a pair (T, λ) consisting of a (rooted directed)
tree T = (V,E) and a map λ associating a bag to each vertex in T such that the
following conditions hold:

– for any atom R(z) in q, there is a vertex v ∈ V with R(z) ∈ α(λ(v));
– for any variable z in q, the set { v ∈ V | z ∈ ν(λ(v)) } is connected in T .

The width of the tree decomposition (T, λ) is maxv∈V |ν(λ(v))| − 1. The treewidth of
q is the minimum width over all tree decompositions of q. Tree decompositions can be
computed by htd [2], which is an open-source application written in C++3.

3 http://github.com/mabseher/htd

Example 6. A tree decomposition for q0 in Example 2 can look as follows:

β1 β2 β3

x y y z z v

R T R

Atomic Canonical Models. The algorithm begins by extracting from the ontology O a
set of atomic canonical models. Given a linear tgd γ(X)→ γ′(X ′,Y), we call γ(X) a
generating atom and the canonical model CO,D for D = {γ(X)} an atomic canonical
model for O, where (somewhat abusing notation) we treat X as a tuple of individual
constants. We assume thatO is fixed and denote the atomic canonical model by Cγ(X).
The implementation of the algorithm in STYPES uses the Graal [4]4 library to construct
the atomic canonical models for O by chasing its generating atoms.

Example 7. The ontology O0 in Example 3 has two generating atoms, S(X,Z) and
T (X,Z), and the following atomic canonical models:

generating atom atomic canonical model

S(X,Z) T (e0, Z), R(e0, e1), R(X, e0), S(X,Z)
T (X,Z) R(X, e0), T (X,Z)

where e0 and e1 are the anonymous individuals; see Example 4.

3.1 Bag Types

We use term types to indicate how query variables can be mapped into canonical mod-
els CO,D for possible data instances D. The non-anonymous term type ε is used when a
variable is mapped to an individual constant from D. An anonymous term type is a pair
of the form (γ(X), e), where γ(X) is a generating atom and e an anonymous individ-
ual from the atomic canonical model Cγ(X) for γ(X). For a given γ(X), we denote by
Tγ(X) the set of all term types of the form (γ(X), e) and ε. In the sequel, we silently
assume that term types of all answer variables are always ε.

Example 8. As follows from Example 7, O0 has four term types: ε, (S(X,Z), e0),
(S(X,Z), e1) and (T (X,Z), e0).

A partial type s is a map that assigns term types to a subset of query variables. The
domain of s is denoted by dom(s). Given a partial type s, we denote by var(s) the
tuple of variables that contains, for z ∈ dom(s),

the variable z, if s(z) = ε, and the variablesXz, if s(z) ∈ Tγ(X) \ {ε},

where, for a tuple X = (X1, . . . , Xn) of variables and a decoration k, we denote by
Xk the tuple (Xk

1 , . . . , X
k
n) of variables in which every component is decorated by k.

Given a bag β = (ν,α) for q, we say that a partial type s is a bag type for β if ν is
the domain of s and, for every atom R(z) ∈ α, one of the following applies:

4 http://graphik-team.github.io/graal

(d) s(z) ⊆ {ε} (in which case the variables of the atom are mapped to the individuals
in the data instance, and the atom itself is in the data instance);

(b) s(z) ⊆ Tγ(X), for some (uniquely determined) γ(X), with zε 6= ∅ and z\zε 6= ∅,
and there is a grounding function g : zε →X such that R(c) ∈ Cγ(X), where

zε = { z ∈ z | s(z) = ε } and c(z) =

{
g(z), if s(z) = ε,

e, if s(z) = (γ(X), e)

(in which case the variables in zε are mapped to the individuals in the data instance,
whereas z \zε are mapped to the anonymous individuals, that is, the atom is on the
boundary of the data instance and the anonymous part of the chase);

(i) s(z) ⊆ Tγ(X) \ {ε}, for some (uniquely determined) γ(X), and R(c) ∈ Cγ(X),
where c(z) = e for z with s(z) = (γ(X), e) (in which case all variables are
mapped to the anonymous individuals, that is, the atom is in the interior of the
anonymous part of the chase).

Given a bag type s for a bag β = (ν,α), we denote by≡ν the smallest equivalence
relation on ν such that z ≡ν z′ if s(z) 6= ε, s(z′) 6= ε and z and z′ occur in R(z) and
R′(z′), respectively, such that the two atoms share a variable z′′ with s(z′′) 6= ε. For
a variable z, we denote by [z] its ≡ν -equivalence class; also, for a set z of variables
occurring in an atom from α with s(z) ⊆ Tγ(X) \ {ε}, let [z] be the ≡ν -equivalence
class of some (equivalently, any) z ∈ z.

The MakeAtoms function in the code of STYPES produces the formula Ats(var(s))
by mapping each atom R(z) in α to

(d′) R(z) if s(z) ⊆ {ε};

(b′) γ(X [z\zε]) ∧
(∨

g : zε→X
is a grounding function

[∧
z∈zε and g(z)=X

(z = X [z\zε])
])

if s(z) ⊆ Tγ(X) but neither s(z) ⊆ Tγ(X) \ {ε} nor s(z) ⊆ {ε};
(i′) γ(X [z]) if s(z) ⊆ Tγ(X) \ {ε}.

We also add to the formula Ats(var(s)) the equalities X [z] = Xz , for all z ∈ dom(s)
such that s(z) ∈ Tγ(X) \ {ε} and X ∈X .

Example 9. There are four possible bag types for β3 = ({z, v}, {R(z, v)}). The bag
type t3 = {z 7→ ε, v 7→ ε} trivially gives rise to the following At-formula, see (d′):

Att3(z, v) = R(z, v).

For the bag type t4 = {z 7→ ε, v 7→ (T (X,Z), e0)}, we have neither t4(z, v) ⊆ {ε}
nor t4(z, v) ⊆ TT (X,Z) \ {ε}, and the only grounding function is g : z 7→ X . Thus,
by (b′), we obtain

Att4(Xv, Zv, z) = T (X [v], Z [v]) ∧ (z = X [v]) ∧ (X [v] = Xv) ∧ (Z [v] = Zv).

For the bag type t5 = {z 7→ ε, v 7→ (S(X,Z), e0)}, the At-formula is constructed
similarly, with S(X,Z) in place of T (X,Z).

Finally, for the bag type s = {z 7→ (S(X,Z), e0), v 7→ (S(X,Z), e1)}, we have
s(z, v) ⊆ TS(X,Z) \ {ε}. So, by (i′), we obtain the following At-formula:

Ats(Xv, Xz, Zv, Zz) = S(X [v,z], Z [v,z]) ∧
(X [v,z] = Xv) ∧ (X [v,z] = Xz) ∧ (Z [v,z] = Zv) ∧ (Z [v,z] = Zz).

3.2 Splitters

A splitter S is a (rooted) directed tree and a map that associates a bag to each node
of the tree, which is constructed by the following recursive algorithm. The constructor
receives a tree decomposition (T, λ) of the given CQ and proceeds as follows. First,
we find the splitting vertex of T by computing, for every vertex v of T , the size |Tv|
of the subtree at v, and then recursively moving from the root r of T to the child of
the maximal size until we reach a vertex v with |Tv| ≤ |Tr|/2 + 1. Then the root of S
is associated with the bag λ(v), which is called the splitting bag of S. The vertex v
splits T into subtrees, whose induced tree decompositions are then used to recursively
construct children in S. We will often refer to subtrees of S also as splitters.

For each splitter S, we define a set of its boundary variables bv(S) by induction
on the tree structure: for the root splitter, bv(S) is the set of all answer variables of the
given CQ, and, if S′ is a child of S and β is the splitting bag of S, then bv(S′) is the
restriction of bv(S) ∪ ν(β) to the set of all variables in the bags of the nodes of S′. A
boundary type for a splitter S is a partial type defined on its boundary variables bv(S).

Example 10. In our running example, we have the following root splitter S1 with two
children, S2 and S3:

S3

S1

S2
x y

y z

z v

R

T

R
y z

The sets of boundary variables for S1, S2 and S3 are ∅, {y} and {z}, respectively.

With any splitter S and a boundary type w for S, we associate a fresh IDB PS,w
with variables var(w). In Example 10, we associate

– nullary predicate P1 with S1 and the empty boundary type {};
– unary predicate P2(z) with S2 and the boundary type {z 7→ ε};
– binary predicate P3(X

y, Zy) with S3 and the boundary type {y 7→ (S(X,Z), e0)};
– and finally, unary predicate P4(y) with S3 and the boundary type {y 7→ ε}

(for simplicity, we use numerical subscripts rather than S,w).

3.3 Bag Type Extender

A splitting type for a splitter S and its boundary type w is a type s for the splitting
bag β of S that agrees with w on their common domain. TypeExtender produces all
splitting types for a given bag β = (ν,α) and a given partial type w by constructing a
rooted type extender tree with a labelling function ` that assigns to each node v a partial
type `(v) such that the root is labelled with w, and `(u) is an extension of `(v) when-
ever u is a child of v. More precisely, the recursive algorithm maintains the following
parameters when constructing the tree:

– the current node label, in other words, the partial type w′ being extended
(currentType);

– the subset α′ of atoms α that are yet to be processed (atomsToBeMapped);
– the subset ν′ of variables ν on which w′ is yet to be defined (varsToBeMapped).

For the root of the type extender tree, we set w′ = w, α′ = α and ν′ = ν \ dom(w′).
Then, the constructor proceeds by recursion on decreasing sets α′ and ν′ using the
following three rules in the given order:

(I) If ν′ is empty, then, in function filterThroughAtoms, we check whether each atom
in α′ satisfies one of the three conditions, (d), (b) or (i), assuming that w′ is a bag
type for β. We mark the current leaf as valid if it is the case, and invalid otherwise.

(II) If α′ contains an atom R(z) such that w′ is defined on some z ∈ z and w′(z) is
an anonymous individual from Tγ(X), then we say that R(z) connected tow′ and,
using Cγ(X), extendw′ to all variables z on which it is not defined. More precisely,
in function extendToAnAtom, we use Graal to execute the queryR(z) on Cγ(X) and
then extract all possible extensions from its output.

(III) If a connected atom cannot be found, then we pick a variable from ν′ and, in
function ExtendToATerm, assign all possible term types to it.

Thus, the extension tree is constructed using the following procedure:

1 /* Receives a node of the type extender tree under construction

2 Returns a tuple (status , extensions), where

3 - status is the status of the node , and

4 - extensions is the children of the current node. */

5

6 getExtensions(currentType , varsToBeMapped , atomsToBeMapped) {

7 if (varsToBeMapped is Empty) {
8 return (filterThroughAtoms(currentType , atomsToBeMapped),
9 EmptyList)

10 }

11 else if (atomsToBeMapped contains
12 an atom connected to the currentType) {

13 return (true , ExtendToAnAtom(currentType , atom))
14 }

15 else {
16 return (true ,
17 ExtendToATerm(currentType , varsToBeMapped.head))

18 }

19 }

When the type extender tree is fully constructed, all bag types s for β that extendw
can be collected from the labels w′ of valid tree leaves that satisfy dom(w′) = ν.

Example 11. In the running example, initially, w′ is empty, and so we apply rule (III)
and create four children of the root for four possible term types for y. Then, we apply
rule (III) to the node {y 7→ ε} and create four children for four possible term types
for z. Then, by (I), we apply the FilterThroughAtoms procedure to these four children
and conclude that only {y 7→ ε, z 7→ ε} is valid, while the other three siblings are not.

The three remaining children of the tree root have an atom T (y, z) connected to its
partial type, and so we apply rule (II) to them.

First, consider {y 7→ (S(X,Z), e0)}. We execute the query T (y, z) on CS(X,Z),
which yileds {y 7→ e0, z 7→ Z}. Since the obtained value for y matches the partial type
{y 7→ (S(X,Z), e0)}, we create a single child {y 7→ (S(X,Z), e0), z 7→ ε}, which is
valid because α′ is empty when FilterThroughAtoms is called.

Second, consider {y 7→ (S(X,Z), e1)}. The execution of the query T (y, z) on
CS(X,Z) gives the answer {y 7→ e0, z 7→ Z}, which does not match the partial type,
and so the node {y 7→ (S(X,Z), e1)} has no children.

Third, the same happens with the remaining node {y 7→ (T (X,Z), e0)}.

y → ε y 7→ (S(X,Z), e0)

y 7→ (S(X,Z), e1)

y 7→ (T (X,Z), e0)

y 7→ ε
z 7→ ε

valid

y 7→ ε
z 7→ (S(X,Z), e0)

invalid

y 7→ ε
z 7→ (S(X,Z), e1)

invalid

y 7→ ε
z 7→ (T (X,Z), e0)

invalid

y 7→ (S(X,Z), e0)
z 7→ ε

valid

Finally, we collect the partial types from the valid leaves of the tree: note that the last
two nodes considered do not give rise to any partial types because their labels w′ do
not satisfy dom(w′) = ν. To sum up, there are two splitting types for S1 and its empty
boundary type that are compatible with T (y, z):

t1 = { y 7→ ε, z 7→ ε } and t2 = { y 7→ (S(X,Z), e0), z 7→ ε }.

3.4 Generating Rewriting

The GenerateRewriting(S,w) function in STYPES receives a splitter S and its bound-
ary typew. It first calls TypeExtender to construct the splitting types for S andw. Then,
for each splitting type s, the function creates a fresh IDB PS,w(var(w)) for S and w

(see Section 3.2) and produces a RuleTemplate, which describes clauses, whose head
is PS,w(var(w)) and whose body includes Ats(var(s)) and the atoms PS′,w′(var(w′))
for children S′ of S, wherew′ is the restriction ofw∪s to the boundary variables bv(S′)
of S′. The name RuleTemplate refers to the fact that the Ats(var(s)) formulas in gen-
eral contain disjunctions and therefore, each RuleTemplate may give rise to several
clauses. Next, function GenerateRewriting(S′, w′) is called recursively for all chil-
dren S′ of S and their induced boundary types w′.

Example 12. We continue Example 11. For S1 and its empty boundary type, the split-
ting types t1 and t2, give rise to the following:

P1 ← T (y, z) ∧ P2(z) ∧ P4(y),

P1 ← S(Xy, Zy) ∧ P2(z) ∧ P3(X
y, Zy) ∧ (z = Zy).

For readability, we do not distinguish between variables V u and V [u] and omit the re-
spective equalities of the form V u = V [u]. Note that in these cases (and in the cases be-
low) the Ats(var(s)) formulas contain no disjunctions, and so we actually have clauses.

For S2 and its boundary type {z 7→ ε}, the splitting types t3, t4 and t5 (see Exam-
ple 9) give rise to the clauses

P2(z)← R(z, v),

P2(z)← T (Xv, Zv) ∧ (z = Xv),

P2(z)← S(Xv, Zv) ∧ (z = Xv).

Next, for the splitter S3 and its boundary type {y 7→ (S(X,Z), e0)}, the only splitting
type {y 7→ (S(X,Z), e0), x 7→ ε} yields the clause

P3(X
y, Zy)← S(Xy, Zy) ∧ (x = Xy).

Finally, for S3 and its other boundary type, {y 7→ ε}, the only possible splitting type
{y 7→ ε, x 7→ ε} gives

P4(y)← R(x, y).

The produced list of RuleTemplates is passed to the generateDatalog function,
which converts them into clauses and simplifies the resulting NDL program in the fol-
lowing way. First, it recursively removes predicates of the form PS,w(var(w)) that are
guaranteed to be empty because they do not occur in the head of any clause. Then, it
recursively eliminates predicates with a single definition: each PS,w(var(w)) that has a
single clause with PS,w(var(w)) in the head is replaced by the body of the clause (with
the existentially quantified variables appropriately renamed). Finally, all equalities are
removed from the program by repeatedly replacing one of the terms of an equality for
all terms that are equivalent to it in the clause.

Example 13. In Example 12, P3 and P4 have single definitions, and so, they can be
eliminated. This gives us the following NDL program:

P1 ← T (y, z) ∧ P2(z) ∧R(x, y),
P1 ← S(Xy, Zy) ∧ P2(z) ∧ (z = Zy) ∧ (x = X),

P2(z)← R(z, v),

P2(z)← T (Xv, Zv) ∧ (z = Xv),

P2(z)← S(Xv, Zv) ∧ (z = Xv).

After removing equalities and replacing variables accordingly, we obtain the final NDL-
rewriting given in Example 5.

4 Experiments

To understand whether the NDL-rewritings computed by STYPES are efficient in prac-
tice and whether a standard data management system is capable of taking advantage
of their inherent parallelism, we conducted a few experiments with the ontology and
CQs designed in [8]. The ontology was given in the introduction and the CQs are path
queries with up to 15 atoms that correspond to words in the language {R,S}∗. For ex-
ample, the CQ q(x0, x7) for the word RSRRSRR is shown below (with black nodes
representing answer variables):

x0 x1 x2 x3 x4 x5 x6 x7

R S R R S R R

We used STYPES to compute NDL-rewritings for OMQ Q15 with a CQ of 15 atoms,
Q22 with 7 atoms, andQ45 with 15 atoms. The queries are available at
http://github.com/srapisarda/stypes/tree/master/src/test/resources/ODBASE.
Their NDL-rewritings have, respectively, 25, 5 and 30 clauses. Thus, for Q15, the con-
structed NDL-rewriting looks as follows, where p1 is the goal predicate:

1 p1(x0,x15) :- p35(x0 ,x7), r(x7 ,x8), p2(x8 ,x15).

2 p1(x0,x15) :- p3(x0 ,x8), a(x8), p2(x8 ,x15).

3 p3(x0,X) :- p19(x0 ,x3), r(x3 ,x4), p28(x4 ,X).

4 p3(x0,x2) :- r(x0 ,x1), r(x1 ,x2), a(x2), p28(x2 ,x2).

5 p3(x0,x6) :- p19(x0 ,x6), b(x6), a(x6), r(x6 ,x6).

6 p28(x4 ,x4) :- a(x4).

7 p28(x4 ,x6) :- s(x4 ,x5), r(x5 ,x6), a(x6).

8 p2(x8,x15) :- p5(x10 ,x8), r(x10 ,x11), p14(x11 ,x15).

9 p2(x8,x15) :- r(x8 ,x9), a(x9), p14(x9 ,x15).

10 p14(x11 ,x15) :- r(x11 ,x12), s(x12 ,x13), p7(x13 ,x15).

11 p14(x11 ,x15) :- b(x11), p7(x11 ,x15).

12 p7(x15 ,x15) :- a(x15).

13 p7(x13 ,x15) :- s(x13 ,x14), r(x14 ,x15).

14 p5(x8,x8) :- b(x8).

15 p5(x10 ,x8) :- s(x9 ,x10), r(x8 ,x9).

16 p35(x0 ,x7) :- p43(x7 ,x2), r(x0 ,x1), r(x1,x2), a(x2).

17 p35(x0 ,x7) :- p19(x0 ,x3), r(x3 ,x4), p43(x7,x4).

18 p35(x0 ,x7) :- p40(x7 ,x3), p19(x0 ,x3), b(x3).

19 p19(x0 ,x3) :- r(x0 ,x3), b(x3).

20 p19(x0 ,x3) :- r(x0 ,x1), r(x1 ,x2), s(x2,x3).

21 p43(x7 ,x4) :- s(x4 ,x5), r(x5 ,x6), s(x6,x7).

22 p43(x7 ,x4) :- a(x4), s(x4 ,x7).

23 p43(x7 ,x4) :- s(x4 ,x7), b(x7).

24 p40(x7 ,x5) :- b(x5), r(x5 ,x6), s(x6 ,x7).

25 p40(x5 ,x5) :- b(x5).

It is to be noted [8] that UCQ-rewritings of these OMQs are very large. STYPES en-
codes these UCQs as ‘deep’ yet polynomial-size NDL-queries. Thus, in the example
above, p1 depends on p2, which depends on p14, which in turn depends on p7, with
each of these predicates having at least two defining clauses. This makes STYPES dif-
ferent from all other existing rewriters. Neither Rapid nor Clipper terminate on this
OMQ within 15 minutes, while Presto (in the NDL mode) produces an NDL-rewriting
with 2723 clauses (see [8] for details). The aim of our experiments was to understand
whether the optimal NDL-rewritings computed by STYPES are (i) executable and (ii)
efficiently parallelisable.

We executed the NDL-rewritings on Apache Flink [14], a highly scalable modern
tool for parallel streaming and batch processing based on estimated cost-based choice
of the optimal physical execution plan.

For our experiments, we created a Hadoop cluster with six nodes, where each virtual
machine had four Intel(R) Xeon(R) E5-2640 v3 CPUs @ 2.60GHz and 16GB RAM.
Each machine served as a data node equipped with Hadoop HDFS of 250GB on SDD.
For Flink, we used a stand-alone cluster configuration.

We represented clauses of NDL-rewritings using the join-where-equalTo-map se-
quences of standard Flink functions. For example, for the clause

p(x,z) :- w(x,y), v(z,x,y).

we produced the following Flink script:

val p = w.join(v).where(0,1).equalTo(1,2).map(t => (t._1._1, t._2._1))

In Flink, the join of two relations consists of all composite tuples (w, v) constructed
from their tuples w and v. In the example above, w.join(v) consists of all composite
tuples ((w0, w1), (v0, v1, v2)) for tuples (w0, w1) in w and tuples (v0, v1, v2) in v. The
arguments of the where function specify the positions in the first relation that must have
the values equal to the values in the respective positions in the second relation spec-
ified by the arguments of equalTo (the positions start from 0). In the example above,
the where(0,1) selects the first and second components of tuples in w (i.e., the com-
ponents at positions 0 and 1), which are then matched by equalsTo(1,2) with the sec-
ond and third components of tuples in v (which are at positions 1 and 2). Finally, we
use function map to keep only the positions occurring in the clause head: for instance,
t => (t._1._1, t._2._1) maps each composite tuple t to the first component of its
first half and the first component of its second half.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 9
dataset

Fig. 1. Speed-up factor due to parallelisation for Q15.

We used the following randomly generated datasets for the binary relation R and
unary relations A and B:

dataset |V | p q avg. degree #atoms ttl size csv size

1.ttl 1 000 0.050 0.050 50 61K 1MB 0.5MB
2.ttl 5 000 0.002 0.004 10 64K 1.2MB 0.7MB
3.ttl 10 000 0.002 0.004 20 257K 5MB 3MB
4.ttl 20 000 0.002 0.010 40 1M 20MB 12MB
5.ttl 30 000 0.002 0.010 60 2M 47MB 28MB
6.ttl 40 000 0.002 0.010 80 5M 84MB 51MB
7.ttl 50 000 0.002 0.010 100 6M 130MB 70MB
8.ttl 60 000 0.002 0.010 120 9M 190MB 100MB
9.ttl 70 000 0.002 0.010 140 13M 260MB 140MB

The parameter p is the probability of an R-edge between two points from V ; q is the
density of unary concepts A and B. The first four datasets come from [8], the last five
were generated to create a significant load on the system. We intentionally decided to
make the relation S empty in order to leave some margin for optimisation for the NDL-
query planner, and also because empty relations are typical in the OBDA scenario.

We executed the constructed NDL-rewritings of the OMQsQ15,Q22 andQ45 over
the datasets 1.ttl–9.ttl on our cluster using Flink with the number of available virtual
CPUs varying from 1 to 20. The run-times ranged from 3.91s to 1797s for Q15, from
1.85s to 1398s for Q22, and from 3.47s to 1769s for Q45. Our main concern was the
degree of parallelisability, which can be measured as the speed-up factor t1/tn, where
ti is the run-time on i-many CPUs over the same dataset. The results for two datasets,
4.ttl and 9.ttl, are presented in Figures 1–3: the horizontal axis indicates the number of
CPUs available, while the vertical axis the speed-up factor. The charts show that the
increase in the number of CPUs reduces query execution time, with the speed-up factor
growing almost linearly with the number of CPUs, particularly on the larger dataset.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 9
dataset

Fig. 2. Speed-up factor due to parallelisation for Q22.

5 Conclusion

The contribution of this paper is twofold. First, it presents an OMQ rewriter STYPES
that transforms conjunctive queries mediated by ontologies given as sets of linear tgds
(in particular, OWL 2 QL concept and role inclusions) into equivalent nonrecursive dat-
alog queries over the data. A distinctive feature of STYPES is that, if the treewidth of
the input conjunctive queries and the size of the chases for the ontology atoms as well
as their arity are bounded, then the resulting rewritings are theoretically optimal in the
sense that they can be constructed and executed in LOGCFL. Second, the paper ex-
perimentally demonstrates that optimal NDL-rewritings computed by STYPES can be
efficiently executed by Apache Flink, whereas other existing rewriters struggle even to
produce rewritings for the same OMQs. It is also shown that Fink is capable of par-
allelising the execution of STYPES’s NDL-rewritings proportionally to the number of
available CPUs, although it remains to be seen how exactly Flink utilises the structure
of the rewritings and whether further improvements are possible.

References
1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)
2. Abseher, M., Musliu, N., Woltran, S.: htd - A free, open-source framework for (customized)

tree decompositions and beyond. In: Proc. of the 14th Int. Conf. on Integration of AI and OR
Techniques in Constraint Programming, CPAIOR 2017. LNCS, vol. 10335, pp. 376–386.
Springer (2017). https://doi.org/10.1007/978-3-319-59776-8_30

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite fam-
ily and relations. Journal of Artificial Intelligence Research (JAIR) 36, 1–69 (2009).
https://doi.org/10.1613/jair.2820

4. Baget, J.F., Leclère, M., Mugnier, M.L., Rocher, S., Sipieter, C.: Graal: A toolkit for query
answering with existential rules. In: Proc. of the 9th Int. Symposium on Rule Technolo-
gies: Foundations, Tools, and Applications, RuleML 2015. LNCS, vol. 9202, pp. 328–344.
Springer (2015). https://doi.org/10.1007/978-3-319-21542-6_21

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 9
dataset

Fig. 3. Speed-up factor due to parallelisation for Q45.

5. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: Extending decidable cases for rules
with existential variables. In: Proc. of the 21th Int. Joint Conf. on Artificial Intelligence
(IJCAI 2009). pp. 677–682. IJCAI (2009)

6. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential vari-
ables: Walking the decidability line. Artificial Intelligence 175(9–10), 1620–1654 (2011).
https://doi.org/10.1016/j.artint.2011.03.002

7. Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Ontology-
mediated queries: Combined complexity and succinctness of rewritings via circuit complex-
ity. Journal of the ACM 65(5), 28:1–28:51 (2018). https://doi.org/10.1145/3191832

8. Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V.V., Ryzhikov, V., Zakharyaschev,
M.: The complexity of ontology-based data access with OWL 2 QL and bounded
treewidth queries. In: Proc. of the 36th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2017. pp. 201–216. ACM (2017).
https://doi.org/10.1145/3034786.3034791

9. Bienvenu, M., Kikot, S., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Optimal non-
recursive datalog rewritings of linear tgds and bounded (hyper)tree-width queries. In: Proc.
of the 30th Int. Workshop on Description Logics, DL 2017. CEUR Workshop Proceedings,
vol. 1879. CEUR-WS.org (2017)

10. Boguslavsky, I., Dikonov, V., Iomdin, L., Lazursky, A., Sizov, V., Timoshenko, S.: Semantic
analysis and question answering: a system under development. In: Computational Linguistics
and Intellectual Technologies (Papers from the Annual Int. Conf. Dialogue 2015, vol. 1), pp.
62–79. RSUH (2015)

11. Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable
query answering over ontologies. Journal of Web Semantics 14, 57–83 (2012).
https://doi.org/10.1016/j.websem.2012.03.001

12. Calì, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries. PVLDB 3(1),
554–565 (2010). https://doi.org/10.14778/1920841.1920912

13. Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages:
The query answering problem. Artificial Intelligence 193, 87–128 (2012).

https://doi.org/10.1016/j.artint.2012.08.002
14. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.: Apache flink™:

Stream and batch processing in a single engine. IEEE Data Eng. Bull. 38(4), 28–38 (2015)
15. Chekuri, C., Rajaraman, A.: Conjunctive query containment revisited. Theoretical Computer

Science 239(2), 211–229 (2000). https://doi.org/10.1016/S0304-3975(99)00220-0
16. Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL. In: Proc.

of the 23rd Int. Conf. on Automated Deduction, CADE-23. LNCS, vol. 6803, pp. 192–206.
Springer (2011). https://doi.org/10.1007/978-3-642-22438-6_16

17. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-SHIQ plus
rules. In: Proc. of the 26th AAAI Conf. on Artificial Intelligence, AAAI 2012. pp. 726–733.
AAAI Press (2012)

18. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics
and query answering. Theoretical Computer Science 336(1), 89–124 (2005).
https://doi.org/10.1016/j.tcs.2004.10.033

19. Gottlob, G., Kikot, S., Kontchakov, R., Podolskii, V.V., Schwentick, T., Zakharyaschev, M.:
The price of query rewriting in ontology-based data access. Artificial Intelligence 213, 42–59
(2014). https://doi.org/10.1016/j.artint.2014.04.004

20. Gottlob, G., Leone, N., Scarcello, F.: Computing LOGCFL certificates. In: Proc. of the 26th
Int. Colloquium on Automata, Languages and Programming, ICALP-99. LNCS, vol. 1644,
pp. 361–371. Springer (1999). https://doi.org/10.1007/3-540-48523-6_33

21. Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.: Exponential lower bounds
and separation for query rewriting. In: Proc. of the 39th Int. Colloquium on Automata, Lan-
guages and Programming, ICALP 2012. LNCS, vol. 7392, pp. 263–274. Springer (2012).
https://doi.org/10.1007/978-3-642-31585-5_26

22. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, PODS’02. pp.
233–246. ACM (2002). https://doi.org/10.1145/543613.543644

23. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2
Web Ontology Language Profiles. W3C Recommendation (2012), http://www.w3.org/TR/
owl2-profiles

24. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati,
R.: Linking data to ontologies. Journal on Data Semantics 10, 133–173 (2008).
https://doi.org/10.1007/978-3-540-77688-8_5

25. Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: Proc. of
the 12th Int. Conf. on Principles of Knowledge Representation and Reasoning, KR 2010. pp.
290–300. AAAI Press (2010)

26. Ruzzo, W.L.: Tree-size bounded alternation. Journal of Computer and System Sciences
21(2), 218–235 (1980). https://doi.org/10.1016/0022-0000(80)90036-7

27. Rygaev, I.: Rule-based reasoning in semantic text analysis. In: Proc. of the Doctoral Consor-
tium, Challenge, Industry Track, Tutorials and Posters @ RuleML+RR 2017. CEUR Work-
shop Proceedings, vol. 1875. CEUR-WS.org (2017)

28. Xiao, G., Calvanese, D., Kontchakov, R., Lembo, D., Poggi, A., Rosati, R., Za-
kharyaschev, M.: Ontology-based data access: A survey. In: Proc. of the 27th Int. Joint
Conf. on Artificial Intelligence, IJCAI-ECAI 2018. pp. 5511–5519. IJCAI/AAAI (2018).
https://doi.org/10.24963/ijcai.2018/777

29. Yannakakis, M.: Algorithms for acyclic database schemes. In: Proc. of the 7th Int. Conf. on
Very Large Data Bases, VLDB’81. pp. 82–94. IEEE Computer Society (1981)

