
BIROn - Birkbeck Institutional Research Online

Tomasz, Sikora and Magoulas, George D. (2021) Neural Adaptive Admission
Control Framework: SLA-driven action termination for real-time application
service management. Enterprise Information Systems 15 (2), pp. 133-173.
ISSN 1751-7575.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/26394/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/26394/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Neural Adaptive Admission Control Framework: SLA–Driven Action

Termination for Real–Time Application Service Management

Tomasz D. Sikoraa and George D. Magoulasb

a sikora.t@gmail.com, b gmagoulas@dcs.bbk.ac.uk

Department of Computer Science and Information Systems,
Birkbeck Colledge, University of London, Malet Street, London WC1E 7HX, UK

ARTICLE HISTORY

Compiled February 28, 2019

ABSTRACT

Although most modern cloud–based enterprise systems, or operating systems,
do not commonly allow configurable/automatic termination of processes, tasks or
actions, it is common practice for systems administrators to manually terminate, or
stop, tasks or actions at any level of the system. The paper investigates the poten-
tial of automatic adaptive control with action termination as a method for adapting
the system to more appropriate conditions in environments with established goals
for both system’s performance and economics. A machine–learning driven control
mechanism, employing neural networks, is derived and applied within data–intensive
systems. Control policies that have been designed following this approach are evalu-
ated under different load patterns and service level requirements. The experimental
results demonstrate performance characteristics and benefits as well as implications
of termination control when applied to different action types with distinct run–time
characteristics. An automatic termination approach may be eminently suitable for
systems with harsh execution time Service Level Agreements, or systems running
under conditions of hard pressure on power supply or other constraints. The pro-
posed control mechanisms can be combined with other available toolkits to support
deployment of autonomous controllers in high–dimensional enterprise information
systems.

KEYWORDS
Neural Autonomous Control, Application Service Management, Cloud Computing,
Service Modelling, Service Level Agreement.

1. Introduction

Currently, data centres employ much more computational power, machines and energy
than it is really needed to provide the required level of service and ensure customer
satisfaction. This is a result of holding extra servers in reserve, ready to be brought into
operation in case of high demand, and is a consequence of the effect of high switching
on/off inertia of the reserve systems (Mao and Humphrey 2012). Theoretically, this
strategy would appear as inefficient but in practice it is considered as an effective ap-
proach to secure some strongly desired non-functional requirements, such as resiliency,
scalability and reliability (Zhang and Lin 2010).

The Cloud Computing paradigm tackles this problem distributing computational
power more efficiently through the allocation and reuse of resources, hardware and

sikora.t@gmail.com
gmagoulas@dcs.bbk.ac.uk

services to several clients. Cloud auto–scaling based on resources availability has
been researched thoroughly, including considerations about deadlines and budget con-
straints, both from practical and theoretical perspectives (Mao, Li, and Humphrey
2010; Dutreilh et al. 2010). In an attempt to provide solutions that would optimise en-
ergy usage and available equipment utilisation under dynamic workload changes, and
at the same time they would offer the flexibility of a computation framework, indus-
try has developed a range of cloud computing approaches ranging from Infrastructure
as a Service (IaaS), Software as a Service (SaaS), Platform as a Service (PaaS), to
serverless and Function as a Service (FaaS) computing. Other relevant areas that have
provided additional benefits are advances in flexible containerisation, micro–services,
and distributed computing (Garćıa-Valls, Cucinotta, and Lu 2014). All these cloud
computing and distributed computing developments aim at the efficiency of power
and infrastructure use, and ultimately seek to fully utilise the entire computational
power available. However, the closer we are to that goal, the probability of facing risks
related to fulfilled capacity and overused infrastructure rises. This can lead to operat-
ing scenarios that generate much harder problems for task scheduling, more difficult
control situations, much longer processing times, and in effect can have an impact
on Service Level Agreements (SLA). Any violated SLAs may cause high fines to be
paid as a result of contractual penalties. Whatever has not been optimised in a SLA
negotiation phase on a market level (Sim 2013) will have to be dealt in later opera-
tion. Application Service Management (ASM) tackles control aspects of the operating
environment by attempting to balance cost and service levels objectives. This paper
considers that these objectives can be reduced to monetization, where all resources,
usage profiles (services calls and load profile) and SLAs can be aggregated down to
cost and revenue calculations under consideration in SLA definitions.

This also relates to advances in Power–Aware Computing, focusing to maximise the
computation efficiency as a function of energy consumed (Fan, Weber, and Barroso
2007; Kim, Beloglazov, and Buyya 2009; Berl et al. 2010; Kim, Beloglazov, and Buyya
2011) relying on dynamic resources allocation (Beloglazov, Abawajy, and Buyya 2012;
Lee and Zomaya 2012) or virtual machines placement (Beloglazov and Buyya 2010;
Moreno et al. 2013; Duolikun, Enokido, and Takizawa 2017), but may also be facili-
tated by application action level control (Sikora and Magoulas 2015). Moreover, this
approach can be beneficial in the context of Energy Proportional Computing, where
the main issue is to deal with the high static power that is caused by the fact that
a computer consumes significant energy when it is idle but also to control the power
to operate under load, which is not linear (Barroso and Hölzle 2007). Low dynamic
range and poor efficiency at low to medium CPU utilisation (low energy proportion-
ality) is generated when there is a high static power relative to the maximum loaded
power (Barroso, Clidaras, and Hölzle 2013). This makes natural for cloud providers
to consider upper resources utilisation ranges, unavoidably reaching saturation levels;
that is an area where termination control, discussed further in the paper, can provide
a good countermeasure to methods relying on dynamic resources allocation.

Currently, the cloud computing industry does not offer effective hard real-time guar-
antees as the emphasis is on resources provision, e.g. existing hypervisors provide no
guarantee on latency, and there is lack of SLAs on latency. However, these types of
requirements are going to be more and more present in the near future, as the demands
for latency sensitive applications increase, e.g. cloud gaming, communication, stream-
ing, making simple cloud outsourced resources allocation, with calculated headroom,
is not adequate (Liu, Quan, and Ren 2010; Duy, Sato, and Inoguchi 2010; Zhu et al.
2014).

2

In this context, the paper investigates how embedding neural-based admission con-
trol into the application run-time, terminating actions before execution on a server but
also during their processing in the application, can help managing different types of
real-world load patterns and at the same time can meet requirements of profit/penalty
oriented SLAs.

The rest of the paper is organised as follows. Section 2 reviews literature that relates
to this research. Section 3 introduces the formulation of the problem used in this work.
Section 4 presents the proposed control framework and strategy. Section 5 introduces
the reader to aspects of the testbed design, and describes architectural aspects and
components. Section 6 presents test cases and experiments conducted to validate the
proposed adaptive control strategy. Section 7 discusses results and potential appli-
cations of the service management approach to cloud computing. Section 8 ends the
paper by providing concluding remarks and insights about aspects that deserve further
investigation.

2. Related Work

Scheduling mechanisms for tasks and requests, resource allocation, load–balancing,
auto-scaling and admission control on the cloud have been the topics of considerable
research attention in recent years. Most of the research done so far has tackled the
control problem using a combination of components working in an inter-dependent
manner, often operating in a sequence where admission control is done first, and then
scheduling and resource allocation are utilised. For example, such an approach can be
found in the work of Urgaonkar and Shenoy (2004) that aims to manage CPU and
network bandwidth in shared clusters. Also, Yu et al. (2008) used admission control
in the context of control of virtual network embedding, while Sharifian, Motamedi,
and Akbari (2008) applied admission control for a cluster of web servers together
with load balancing, and Almeida et al. (2010) proposed joint admission control and
resource allocation for virtualized servers. Lastly, Ferrer et al. (2012) introduced a
framework, called OPTIMIS, for cloud service provisioning where admission control is
a key component.

More recently, there has been a lot of interest in cost–aware control. For example,
Malawski et al. (2015) proposed methods for cost– and deadline–constrained resources
provisioning in IaaS using a priority–based scheduling algorithm. Also, Yuan et al.
(2016) built workload scheduling integrated with admission control for distributed
cloud data centres, whilst Bi et al. (2017) test application–aware dynamic resource
provisioning in cloud data centres. Whilst Ranaldo and Zimeo (2016) applied more
proactive measures and propose capacity–driven utility model for SLA bilateral nego-
tiation to optimise the utility for cloud service providers, costs and penalties prices,
Messina et al. (2014, 2016) discuss an agent based negotiation protocol for cloud SLA.

There have also been approaches that exploit learning algorithms working in super-
vised or unsupervised model. For example, Muppala, Chen, and Zhou (2014) applied a
model independent reinforcement learning with cascade neural networks technique for
load proportional auto-configuration of virtual machines and session based admission
control. Other researchers have proposed to steer admission control with neural con-
troller and support vector machines (Mohana and Thangaraj 2013), and use scheduling
algorithms based on meta–heuristic optimisation Hoang et al. (2016). Database access
with profit–oriented control has been researched by Xiong et al. (2011), while requests
preemption in admission control context was studied by (Salehi, Javadi, and Buyya

3

2012).
Another part of research has concentrated on requests termination or actions can-

cellation. Although work in this area has been limited, Cherkasova and Phaal (2002)
proposed an admission control mechanism based on server CPU utilisation using four
different strategies, and Leontiou, Dechouniotis, and Denazis (2010) used Kalman fil-
tering and ARMAX models to predict changes in incoming load in order to support
stable adaptive admission control of distributed cloud services. Zheng and Sakellar-
iou (2013) built admission control with work–flow heuristic to evaluate schedule plans
that meet budget-deadline constrains, while He et al. (2014) employ network calculus
to perform admission control on the cloud tackling large number of parallel service
requests.

Work in this area has been summarised in a number of survey papers, which cover
general cloud control aspects (Buyya et al. 2009), present a network embedding per-
spective (Fischer et al. 2013), focus on auto–scaling techniques for elastic applica-
tions (Lorido-Botran, Miguel-Alonso, and Lozano 2014), or review machine learn-
ing approaches for energy–efficient resource management in cloud computing environ-
ments (Demirci 2015). Although, as mentioned above, there have been several control
approaches and experimental platforms, which have been deployed in both model–
based and real–world systems with the use of synthetic and benchmark workloads,
there is still no clear established standard to enable an easy performance comparison.

Despite the massive progress in pre–call request termination as the main admission
control strategy, we are not aware of any documented research that focuses on action
termination, tackling pre– and during– request execution inclusively. In our view, it
is imperative to explore the potential of these control approaches in isolation without
utilising scalability and resource allocation methods, which could introduce obfuscation
to cumulative results.

In this context, the paper contributes a framework that allows embedding the neural
admission control into the application run–time. It builds on a previously introduced
learning controller framework for adaptive control in ASM environments (Sikora and
Magoulas 2013). This framework is extended, it is equipped with re–training capa-
bilities and it is incorporated into a model–based testbed, where the collection of
results is more efficient allowing the execution of long test runs involving real–systems
experimentation. Emphasis is placed on more complex, business–oriented scenarios,
where SLAs are defined as functions of not only call counts, as in our previous work,
but also execution time, and are converted directly into revenue, as per the defined
monetization model of SaaS, or PaaS systems.

The enhanced framework enables to terminate actions before execution on a server
but also during the processing of the requests in the application. It also supports
building synthetic workload profiles that are able to reproduce behaviours of real–
world load patterns, where priority is set as part of profit/penalty– oriented SLAs with
termination supporting real-time systems and harsh time–wise conditions. The new
control approach is validated through synthetic and real–world scenarios, built from
several system and workload profiles, which have been used by other researchers in the
literature. The proposed action termination solution is further evaluated using four
different control types, aiming at assessing both performance and cost–effectiveness.

The next section introduces the main concepts behind our approach and presents a
theoretical formulation of the problem.

4

3. SLA–Driven Services Management

In our formulation, financial performance is tightly associated with the ability to offer
the best available service under a contracted SLA. Financial performance P is defined
as a composition of revenue R and costs C, so that:

P =
∑

(R− C) ∼ fSLA; R,C ∈ R+ ∪ {0} . (1)

Hence, the main objective is to optimise the service of the system, i.e. maximise the
effectiveness in the background of load, resources usage, and performance character-
istics of the service by reducing the costs defined in the SLA. All those aspects are
time–variant; thus, adaptivity is a key requirement in a control system. The controller
should be capable of readjusting the characteristics of actions’ execution time at run–
time using only termination actions and without changing other functionalities.

To this end, we define the scope of possible actions as undertaking revenue/costs
related decisions, in line with what the parties have agreed to do when the conditions
are met. This allows to transform the SLA, defined as a set of service–level objec-
tives represented as if...then structures, into a function of actions execution time and
incorporate it into a more complex function, where costs and revenues of the same
argument are considered (see Equation 1, and Equation 2, below).

3.1. Defining the Control System

Suppose an enterprise system receives incoming requests to process action a in or-
der to generate a particular service outcome. This is achieved by employing resources
r(t), according to an effectiveness criterion defined in an SLA function fSLA. Hence,
the general performance of the system can be considered as a dynamic process of all
activities a and resources r, and is produced under some conditions, as a result of run-
ning the system code and providing some functionality on a given hardware/software
configuration.

The output of the system is fed back through a monitoring facility, which employs
sensor measurements, and is compared with a reference value that has been estimated
from a collection of historic data (measurements/metrics). The controller considers the
difference between the reference point and the current output (actions execution times
and resources in our case) to change the inputs to the system under control. This type
of controller design follows the paradigm of the closed–loop feedback control (Heller-
stein et al. 2004), and the controller is suitable for a multi–input multi–output (MIMO)
enterprise system, defined in a high–dimensionality space of Rn+1 → Rn+1, n = k+m
in time domain, where k is the number of measurable system actions and m is the
number of system resources (Sikora and Magoulas 2013).

The system performance is represented by the SLA function values and is defined
as

P ∼ fSLAa
= fR(ae)− fC(aet)− fC(aterm)− fC(r) , (2)

where fR(ae) denotes revenue, a function of action’s executions that is the main factor
exposed to the client as a price for a particular service, fC(aet) represents the cost of
SLA violations, which is a function of action’s execution time, fC(aterm) represents the

5

cost of penalties for terminated actions, and lastly, fC(r) denotes the cost of resources,
e.g. infrastructure provisioning. Due to the fact that, in this context, most of the
computation cost can be specifically defined for a given action, one can derive the cost
of resources needed to support a specific computation. Thus, fC(r) considers mainly
the infrastructure required to support the service. Effectively, infrastructure costs are
less dependent on computing fluctuations, and in the control approach adopted in
this work we have assumed that this function is constant. So we consider that the
infrastructure is not subjected to control; therefore, any optimization does not consider
this dimension, which can be set as a parameter that takes a constant value.

A system state S at time t is defined as a vector of collected metrics about resources
utilisation, r(t), but also system input load to actions a(t), and outputs, such as exe-
cution times and SLA values fSLAa

(t). During operation, the evolution of the system
states forms a trajectory in the state space S, where the search for the best available
solution takes place:

S(tc) = [a, r], S(tc) ∈ S , (3)

where a, r are vectors of actions and resources collected:

a = [a0(tc), fSLAa0
(tc), ..., an(tc), fSLAan

(tc)] ,

r = [r0(tc), ..., rm(tc)]
(4)

at a specific time instance tc.
In order to maximise the productivity of the system, P (Eq. 2), the controller

evaluates system states, S, attempting to reconcile service workload economics, defined
by incoming activity, fR(ae), with utilised resources, fC(r), on one hand, and other
limiting costs of SLA violations, fC(aet), and actions terminations, fC(aterm), on the
other hand. Consequently, the control process aims to generate a sequence of system
states that would lead to max fSLA(t) ∈ S. Thus, a key performance metric of the
control system is the sum of SLA values, in time, for all action types, which can be
considered as a cumulative indicator of productivity of the service provider that shapes
the landscape of profitability from service provisioning perspective:

TSLA(t) =
∑
i

fSLAi
(t) , (5)

where fSLAi
(t) is a sequence of collected values in time t (i.e. a time–series) that

incorporates costs and revenue for an action type SLA, fSLAa
.

3.2. Action Termination Control

In certain situations, mainly when there is excessive utilisation of saturated resources,
it is economically viable to terminate incoming calls1 so that the bottleneck resource
can be released. This will allow other actions to execute which can potentially bring

1Similar to calls termination is a concept of throttling, or the introduction of time-outs, that would cancel

the execution of a request to prevent overloading.

6

more profit. This is a type of control that will be investigated further in our experi-
mental study. In this context, there are several challenges involved, such as the number
of action types and the different economic contracts defined in their SLAs, the impact
of unknown run–time characteristics, and the nature of interference caused by others
action types accessing the same shared resources.

In practice, real–time processing fails if execution is not completed within a specified
time frame, or by a specified deadline, and this depends on the action type. Deadlines
must always be met, regardless of system load or functionality. Attempting to op-
timise resources allocation in a system experiencing higher load is a typical control
scenario (Buyya, Garg, and Calheiros 2011; Al-Dahoud et al. 2016; Hwang et al. 2016;
Tran et al. 2017).

Optimising resources consumption in this environment requires balancing the goals
of service providers and clients, e.g. the service provider may want to allocate many
different types of activities, or even many tenants on the same resources, whilst the
client may not be able to deliver a solid implementation. Although all functionalities
following this regime must finish on time, some may end before the deadline producing
a named error, which, then, should be interpreted by the client. This is softening
the definition of real–time but it may resolve the problem of optimising resources
consumption, and offer more flexibility to both parties. This is a desirable feature
and it can be implemented in the framework at the API level, especially in serverless
ecosystems where audit and control are possible.

Since typically real–time services must guarantee response within specified time
limits, the service provider can avoid contract violations by terminating the execution
before a hard deadline, just before processing the requested function but also during
execution. This scenario is the main focus of this paper, where the assumption is that
already allocated resources are not scaling up or down due to control decisions but can
be released by terminating incoming actions requests. This is a technique widely used
in practice by human administrators. Nevertheless, it has not attracted considerable
attention in cloud computing, cloud–based enterprise systems or operating systems
implementations yet.

Although both resources allocation and actions termination scenarios can be used
in conjunction, this paper concentrates on termination only. Following a scaling–up
strategy, e.g. adding extra resources, requires higher investment and introduces in-
ertia, which may limit flexibility to deal with high instantaneous (spike) usage, and
ultimately increase SLA costs. In contrast, termination control applied either before
or during execution offers an attractive alternative, as it will be demonstrated in our
experiments presented below.

4. A Framework for Action Termination Control

The control framework implementation sets the base for an autonomous agent that
monitors the complex enterprise environment through sensors and acts upon the cur-
rent run–time situation using actuators. Through appropriate control actions, it directs
the system activity towards goal states that fulfil SLA requirements. Figure 1 shows
the agent-based control blocks, which are able to control processes on application level,
deployed into a cloud environment.

The adoption of an agent–based implementation allows the controller to collect
instances of earlier control decisions and use a learning mechanism in order to re-
fine the acquired knowledge and achieve the desired goals. Integrated into the frame-

7

work are a component, named Evaluator, containing history of system states S, and
a Control Block API, supporting actuator features, to adapt the current run–time
dynamics in a way that makes the service more profitable for the service provider.

Application

Process
Controller

Disk
Controller

3rd Srv
Call

Server1

Control
Block

Server1

Servers Queue

Server1
[ready]

Request

Process
Controller

Servers
Supervisor

Server2
[ready]

ServerN
[down]

Server3
[down]

Disk
Controller

3rd Srv
Call

Control
Block

Load
Ballancer

...

Server2

...

Application

Figure 1. Deployment architecture of control blocks

into application running on a cloud–based system.

The control block incorporates neural
agents that are able to work indepen-
dently and execute concurrently, utilis-
ing a model built based on data gener-
ated by the system under control.

This type of control introduces bene-
fits especially in soft real–time systems,
where the expectation is that the system
responds within a given period of time,
and this is explicitly defined as a service–
level objective in the SLA definition. Ex-
amples of such functions, which better il-
lustrate the concept, are provided in Sec-
tion 6.3 below.

Special consideration is needed for ter-
mination errors, which may have ap-
peared suddenly due to a termination ac-
tuation, so as to avoid instabilities to the
rest of the client’s integrated systems. The control framework enables termination er-
rors to be handled on the client side at a price of maintaining a tighter conversation
– more frequent responses on requests – with the client systems, and in this way
supports higher availability across a variety of applications. This strategy may be
very effective especially in micro–services architectures, where many weakly–coupled
components are present. In such systems, instabilities caused by network issues, or
over–utilised services, must be considered by design in the handling framework. Thus,
the cost of extending error management with termination mechanisms is fairly low.
Furthermore, such an approach enforces integration of time–constraints, since an error
message caused by a termination event is in essence part of the contract that must
be followed between interconnected services. This is consistent with event–driven dis-
tributed services deployed on serverless (Baldini et al. 2017) workers, or micro–services
(Dmitry and Manfred 2014), that are getting more and more attention amongst pro-
grammers (Garćıa-Valls, Cucinotta, and Lu 2014).

Termination control, whether before or during execution, provides better potential
for serverless computing to support real–time systems constraints. For example, it
can provide an additional level of flexibility in the case of soft real–time systems, as
mentioned above, where the code is deployed to PaaS services, or in situations where
processes have types of actions with long execution, e.g. asynchronous messaging,
batch systems, etc, that are of lower importance. This is further discussed below in
Section 6.5.

5. Testbed Design

In this work, model–driven experimentation is used as the main approach
to analyse the framework and its components, and evaluate its performance.
The testbed constructed as part of the research allows profitability analy-
sis of SaaS, FaaS or PaaS for software and enterprise cloud providers, re-

8

spectively, interpreting flexible SLAs measures, actions count and SLA func-
tions evaluations in the background of complex system dynamics, which
are represented by actions, a, performance, and resources, r, consumption.

Data Preparation
<Queuing System>

DESMO-J
Frmk

ASM
Q-Model

Response
Data in R

Load
Generator

Mixture
of Load

Experiments Runner
<Results Collection and Presentation>

RCaller
Data and

Charts

Neural
Controller

Storage

Action
Types

Action
SLAs

Evaluator

Procesing

Figure 2. Testbed design contains model components,
experiment preparation framework, evaluator with di-

rect connection to controller, and data collection for

visualisation and debugging.

Experiments for various scenarios are
conducted using the testbed. The scenar-
ios target functional and serverless com-
puting, where an action (or a function) is
an atomic portion of requested comput-
ing service that a cloud service provider
manages. The cost/revenue model incor-
porates costs incurred for starting, or
stopping, virtual machines with workers
to serve requests and execute an action
by measuring resources required to sat-
isfy the call. The testbed framework con-
tains an Experiments Runner that is re-
sponsible for presentation but also col-
lection of data gathered in earlier experi-
ments; the testbed design is illustrated in
Figure 2. More details about the various
independent components2 and their function are provided in Sections 5.3, 5.4 and 5.5.

5.1. Discrete Event Simulation and Software Framework

Load Generator

Actions
Projected time of execution

and resources usage distribution
of a requested system routine

Processes

Server

CPU

Disk

Load
Mixture

Definition

Pre-call
Control
Block

Processes
Processes

Queue

During-exec
Control
Block

Terminating action
execution if it takes longer,

or exeeds set limits

Terminates actions
execution (incoming
request) before it is

pushed to the processing

Action
Requests

Queue

Simple round-robin
scheduling processing

Figure 3. Architecture of the ASM control system ap-

plied to a computer system model. Two different control
blocks are deployed– one is responsible for pre–call and

the other for during–call termination.

In order to model computer systems
we have used a discrete–event simula-
tion approach using the Java library
DESMO–j (Page, Kreutzer, and Gehlsen
2005; Göbel et al. 2013; Tim Lech-
ler 2014)3. The library has been ex-
tended with a framework wrapping the
APIs, and implementing specific fea-
tures of such computing systems, repli-
cating queuing models for server, pro-
cess, disk controller, action requests,
and action types. We have found that
lower–level discrete event modelling of
the machines and scheduling approaches
with DESMO–j gives better control
and extensibility than other compre-
hensive cloud modelling frameworks like
CloudSim (Calheiros et al. 2011)4. More-
over, the focus of this research is more
on application dynamics, and therefore,

2The proposed framework allows experimentation and testing of the model, which is equipped with a neural

controller directly applied to SaaS Cloud Service provisioning, in the light of revenue and cost of service usage.
3DESMO–j is freely available on Apache Licence version 2.0 (Apache 2004)
4CloudSim is able to simulate an entire cloud computational centre as well as federation of centres, offering

a complete cloud model with provision of hosts, network topology, virtual–machines, and resources utilisation

of CPU, memory, disks and bandwidth.

9

there is a stronger requirement for detailed definition of action types that reflect exe-
cution of the application functionalities, convoluted load profiles, and SLA definitions.
All that has to give stable and rigorous ground for adaptive control weaved into the
model. Thus, the DESMO–j library, which offers a high level of flexibility and insight
into the low–level operations, appears more suitable for this task.

The framework uses the Not–weighted Round Robin Scheduling (Stallings 2014).
Each process is given a fixed time to execute, called a quantum. Once a process is
executed for a specified time period, it is preempted and another process executes
for a given time period (Jensen, Locke, and Tokuda 1985). Each action request is
transformed into a process that is decomposed into smaller chunks, which are served
by resource controllers, according to the distribution set of the action type definition.
Context switching is used to save states of preempted processes 5.

In this paper, two types of resources have been considered into the model: proces-
sors and disk controllers (see Figure 3). This reflects the real systems context and
allows to get insight into the execution of complex action workloads. In such envi-
ronments, other resources, such as network, multiple servers or memory, as well as
software components, such as message queues or databases, may be interesting for im-
plementing more sophisticated models of modern enterprise distributed systems but
are not considered as essential for investigating termination control in server–based
or serverless environments, which is the focus of this paper. This issue is discussed
further in Section 5.8.

5.2. Load Generator and SLA Contracts

The load for each of the action types can be generated according to a statistical profile
considering: (a) the probability distribution of arrival requests; (b) the load pattern
evolution in time for the particular experiment with repetition (allowing to loop a
pattern so that it repeats itself); (c) the execution time in relation to resources usage
distribution. Load profiles will be explored further below, whilst some examples are
provided in Section 6.1.

An important consideration under load conditions is maintaining the stability of
the service, as this has implications on the performance of the systems and signifi-
cant impact on usability. Thus, in practice, providers secure additional computational
resources than effectively needed in order to ensure stability. Naturally, this strat-
egy affects the costs of the provided service. Therefore, we expect that the use of
reward/penalty–driven SLAs will become more widely adopted. Such SLA contracts
specify precisely up to what level of execution time, the provided service is accept-
able to the client, and, at the same time, profitable to the service provider. Of course
execution time is a function of the required resources and of the algorithm that is
being executed. The easiest way to reduce resources consumption is to optimise the
application code adapting it to the specific conditions, or to the requirements of the
platform on which it is running. However, since the application, software, or routine, is
complex, or may have been deployed by the customer (as per SaaS on service provider
system), this may not be possible. The introduction of SLA contracts gives to clients
a clearer understanding as to what the highest–acceptable level of execution time is,
and to service providers guidance on what resources have to be allocated in a given

5This is a fairly simple yet efficient scheduling algorithm. Round Robin compared to other standard ap-
proaches, like Shortest Job Next, Priority Based Scheduling, Shortest Remaining Time, or Multiple-Level

Queues Scheduling, performs particularly well in conditions of overloaded systems, when jobs characteristics
are unknown (Arpaci-Dusseau and Arpaci-Dusseau 2015)– an area of special consideration for this research.

10

point in time.

5.3. Evaluator

 System Under Control

Control Block <Actuator>

Decision Block

Resource 1

Current
System
State

"Positive"
Control

NN

"Negative"
Control

NN

Action 1

Action 2

Action M

Resource 2

Resource N

SLA 1

SLA 2

SLA M

Control
Actions
Training

Set

System
States

Repository

Retraining

Evaluator

System
Metrics

Collection

Figure 4. Architecture of the neural networks-based
decision block. It combines two multilayer perceptron

networks and is weaved into the system code, identify-
ing run–time situations in system’s states and executing

appropriate control actions.

A key component of the control frame-
work is the so–called Evaluator. Its role
is to interpret run–time situations pre-
sented through monitored activity at
the input, read gathered data about re-
sources consumption, and generate ap-
propriate output states in order to create
an appropriate trajectory in the system
state space. This type of outputs form
an actuating signal that can be used in
order to execute or terminate a service.
Following the fail first, learn, adapt, and
succeed feedback–loop approach6, which
is an essence of agent–environment type
of interaction with delayed reward, like
in reinforcement learning (Sutton 1992;
Sutton and Barto 1998), the Evaluator
selects systems states that formulate the
training set of the Decision Block. This
process selects states in operating regions where minimum and maximum SLA func-
tion boundaries are evaluated and generates the training set. Then a control action
is executed and its impact is evaluated once more before the next training round.
The process is iterative, so that the latest control actions can be evaluated together
with results of previous actuations. Figure 4 illustrates the software components that
support the data flow and the control feedback–loop, whilst Figure 6, described in the
next section, provides an example of actions sequence, illustrating iterative evaluation
of actions with subsequent control phases for one of our experiments. Previous control
states are evaluated according to a rule–based strategy, as listed in Table 1. These
rules can be seen as different strategies for selecting suitable data to train the Neural
Networks–based Decision Block. The rules can form groups that define different control
schemes or policies, which helps dealing with the exploration–exploitation trade–off.
Hence, in our implementation the Evaluator can derive training sets effectively sup-
porting four control schemes– these include rules combinations as shown in Table 2.
Further decision making or states conflict resolution strategy is not included in the
evaluation phase but is covered by the neural controller and the training process.

Both “positive” and “negative” operating conditions are important and should be
“learned” by the controller. Considering “positive” control states are the main area of
concern of the Evaluator. “Negative” control states operate as an additional protective
measure, making sure that no control, or termination control objectives, are applied to
states that were selected by mistake, producing negative outcomes. This could happen
for example in a very rapidly changing environment, where observed “disturbances”
may have an impact on the stability of the control. Consequently, sets of “positive”
and “negative” states create operating regions in the Neural Networks-based Decision
Block of the control system, as explained in Section 5.4.

6Similar approach to fail first, learn, adapt, and succeed is also used in Test–Driven Development.

11

Table 1. Rule-based Strategies
Rule Description

Rule 1 Search for “low” –enough and “high” –enough SLA states based on total of all SLAs, TSLA,
see Equation 5, and label control states that are below a predefined threshold of low–mark–

percentage or above a high–mark–percentage (by default 5% and 95%), as “positive” or “negative”,

respectively. This is similar to the strategy used in (Sikora and Magoulas 2013), which presented
a different control framework that is used as a baseline.

Rule 2 Evaluate “positive” and “negative” outcome of previous control actions based on a comparison

with gathered actuation decisions. Select all system states where executed termination actions had

led to an SLA decrease, as measured within a given time window. In all these cases, the system’s
reaction on the actuation had a positive outcome so all those states are labelled as “positive”.

These marked systems states are passed for training the decision block of the controller, unless

there is a similar system state that generated the opposite effect on the SLA values. This is
an important element of decision making for conflict resolution, which is an internal part of the

evaluation process. In the opposite situation, when termination control brought an increase of SLA

value, and this is confirmed in other observed system states under control, these states are labelled
as “negative” because the effect is counter–productive and the controller should avoid actuation

in those system states.

Rule 3 Introduce stronger exploration strategy with epsilon–greedy policy (Sutton and Barto 1998; Schef-

fler and Young 2002) randomly selecting states, where the control actions will be applied and
evaluated in the next evaluation round. System states selection is arbitrary, i.e. regardless of SLA

values or reactions to control actions. By default 10% of all the collected system state points,

amongst those not already selected, are added to both “positive” and “negative” sets.

Rule 4 This rule considers specifics of actions types scenarios, allowing to run independent evaluations and
generate training sets per action type. Such an approach creates a multi–agent system (Busoniu,

Babuska, and De Schutter 2008), where control blocks operate independently. Each evaluation

cycle is guided by reward of SLA values linked to particular action types rather than the overall
total of all SLAs– this will be discussed in detail in Section 5.6.

5.4. Neural Controller

The controller is a software component deployed into the system. It contains a decision
block that is responsible for holding the generalised knowledge about earlier system
states and a model of control actions/actuating signals. It is equipped with actuating
logic that terminates the execution when the current system state maps to particular
operating regions in the model and enforces the effective control over the incoming
system requests. It is applied to the system code API (pointed to selected methods,
batches, user interfaces, etc.), either weaved in with the use of Aspect Oriented Pro-
gramming (AOP), or coded explicitly as per the control framework exposed to the
application run–time. The controller decision block is equipped with two Neural Net-

Table 2. Control Schemes
Type Termination

On/Off
Rule Description

0 Off No
Rule

No automatic control is applied. This type is used in simulations as a
baseline for comparison purposes.

1 On Rule 1 Search states of “low” and “high” SLA value within a given band, e.g.
5%, and allocate states for “negative” and “positive” control regions
to be used for training the neural networks-based control block.

2 On Rule
1+2

Select “low” and “high” SLA states. Evaluate marked “positive” and
“negative” control states based on comparison with earlier control
actions, so that recent control decisions are validated.

3 On Rule
1+2+3

Select states of SLA extrema, evaluate earlier control decisions, and
add random control points. Introduce “curiosity” effect by randomly
selecting states with uniform distribution where control actions will
be enforced in the next runs.

4 On Rule
1+2+4

Select states of SLA extrema and evaluate earlier control indepen-
dently per action type, considering dedicated SLA values, and execute
termination targeted per each action type separately.

12

works (NNs), multilayer perceptrons trained with backpropagation with momentum,
one working as an “expert” on “positive” and one operating on “negative” control
states, as evaluated during earlier system runs.

The controller processes the current vector of the system state S and makes decisions
about termination. For each received request, the system state is evaluated by the
“negative” control neural network first, in order to confirm that the potential control
action is not going to harm system’s behaviour. Then, if found promising, the second
step is to validate this state against the mapping learned by the “positive” control
neural network to make sure that it lies within control regions that introduce positive
response increasing the SLA. Figure 3 illustrates the deployment of the controller on
the system infrastructure. Figure 4 presents in more detail the architecture of the
neural-networks based controller.

Every iteration of evaluation creates a new updated model instance, exploiting in-
formation from recently executed controller termination actions through retraining.
This approach allows to apply more precise control in the next cycle, and to adapt the
controller decisions to changing run–time or load characteristics of the system; this is
further discussed in Section 6.

5.5. Action Termination Actuator

Popular approaches to implement action termination are: (a) the use of AOP– in the
simplest case when the neural controller considering the current system state takes
a decision to terminate a run–time process, an exception is thrown from the object
that has been woven–in the code under the instrumentation. This may be a very good
solution for all internal APIs, User Interface facades, and batch job actions; (b) the
use of framework API integration by adding APIs in a serverless architecture (Kiran
et al. 2015), and event–driven function–oriented service provision (Baldini et al. 2017).

Although in practice the controller and the termination actuator would use some
part of CPU, for simplicity, the testbed model does not consider this part in the
resources utilization. The typical execution time for decision–making by the neural
controller is 7−9ms, and then less than 1ms is needed for action termination (actuating
the decision). Figure 3 illustrates the deployment and the queuing considerations of
the modelled, or real, resources.

5.6. Concurrent Multi Actions Control

In the previous discussion, the main measure driving the focus of the controller on
“positive” or “negative” operating regions in the system’s state space was the total of
SLA values, TSLA. That cumulative measure allows to simplify the formulation of the
problem by considering it in terms of the cost and financial performance of the service
provision, without the need to implement more complex Multi Objective Optimization
(MOO) techniques (Zhu et al. 2016).

Intuitively, controlling each action type independently may produce better results,
mainly because different actions can have far different load, performance, resources
usage and most importantly SLA characteristics. Furthermore, the evaluation of ear-
lier control actions, per action type, allows to consider specific SLA values and execute
targeted termination for each action type separately. For instance, action type A can
execute longer using a significant portion of resources, whilst action type B is rather
shorter, called occasionally, but contracted with high SLA penalties for longer execu-

13

tion times. In this scenario it is desirable to terminate action A at times when there
is a higher demand for many type B actions. Of course certain functionalities are not
consuming much processor time nor disk but they may still have long action execution
time due to their code structure. In such cases, although running multiple actions on
the environment may not have direct impact on key resources consumption, some of
these actions may still influence the execution of other actions. The best way to estab-
lish the effective run–time characteristics and interdependencies of the various action
types is to allow them to execute, collect data representing the situation under a given
load, and try to apply control so as to assess whether the anticipated operational
changes are providing the expected benefits.

0 500 1000 1500 2000 2500 3000

−
10

−
5

0
5 Fairly good profit from one of the actions

Most of the actions give loss,
impacting the total SLA

Figure 5. Sequence of SLA values for different action types de-

picted using a range of red and brown shades. Total SLA, line in

black, is the main cumulative measure driving the control schemes
described in Table 2, apart from type 4.

Figure 5 illustrates an exam-
ple of load activity related to
functionalities of five different
actions, shown using a range of
red and brown shades. It in-
cludes a case where the SLA
of one of the actions and the
total SLA value move to op-
posite directions. This is rep-
resentative of situations where
part of the system may be per-
fectly productive, and, thus, no
termination control is required,
although the SLAs values for
most of the other actions drive
the controller to take termina-
tion actions. A control scheme
that has been trained using
a Type–4 policy (cf. Table 2)
would focus on the termination
of the actions that cause neg-
ative SLA values, leaving the
most productive action (in red)
running.

It is important to note that the Evaluator must review the low and high SLA values
independently for each of the actions (see time–series in the bottom row of Figure 6).
The direct measure of the total of all SLAs, TSLA, is used for simpler control but still
the importance of influence, or strength, of termination control per type of action needs
to be proportionate to the total SLA measured in a given system state. This allows to
weaken termination control on types of actions that do not substantially impact the
total SLA7, and vice versa, i.e. apply termination control to actions whose SLA values
are matching the total SLA profile 8. To resolve a potential conflict between the total
of all SLAs, TSLA, and the SLA of a particular action, the algorithm considers states
with “low” and “high” SLA values for all selected types of actions scoring them based
on total SLA. Subsequently, a search is applied across all action types using a specified
threshold– by default this is 30% of the worst action points. As a result, control is
more likely to be formulated for an action type, whose SLA values are the lowest in

7Weak-influencer actions types– there is no point in terminating actions whose SLA values do not cause
big losses, i.e. where SLA values are not very low compared to others.

8For example, terminating actions with worst SLA values whilst saving well performing actions.

14

the system’s state subspace that has been defined by the selected “low” states.
There are two potential implementations for the controller’s decision block: (a)

training a single neural network that can be used for all action types but when in
operation, the network decodes a control decision depending on the given execution,
or (b) training separate, dedicated neural networks to form the decision block (see
Figure 4).

In this article, the second approach is used; hence, independent neural networks
(NNs) are trained based on the same training data source. Such an approach offers
more flexibility compared to implementation (a) mentioned above; for example, it
allows to create an array of neural networks dedicated to different action types, if
necessary. In addition, our research shows that this controller design approach usually
produces better control system performance, although there are associated costs for
designing different neural networks-based decision blocks, running the training pro-
cedure and an independent evaluation process. The performance of such a control
approach is promising especially in cases when there is a significant difference in the
run–time characteristics of the various types of actions. It is worth noticing that for
scenarios where far different action types are used, i.e. batches and user interface func-
tions, Type–1, 2 and 3 control schemes (cf. Table 2) can be used separately, so that
there are isolated instances of the same framework used. Both implementation strate-
gies can be easily applied to SaaS and PaaS models, but also to internal on–premises
enterprise systems with ASM controllers.

5.7. Terminations During Action Execution

The previous sections considered the termination of an action when the requests are
being received by the server, i.e. before any specific computation for a particular action
type has been done (see Section 5.5). In this context, the controller takes action ter-
mination decisions based on expectation, as derived through training from response
and usage patterns of previously observed execution instances. This aggressive ap-
proach is effective as long as the action execution times are predictable, and enforces
the control system to maximise the saving of resources used by the action. Although
this can be especially attractive in soft real-time systems where the code is deployed
to PaaS/SaaS services, in scenarios tested where the execution times are quite con-
stant under non–overloaded system conditions, little overall benefit was observed (see
Fig 11). However, the more unpredictable the execution time is, the more this method
is expected to outperform simple termination control working before action execution
only.

It is worth mentioning that the longer an action runs, the more resources are con-
sumed, so terminating the action at the end provides lower value since computational
power has been consumed for processing and execution already. Thus, often, it is much
more beneficial to decide not to produce a response in a given time line than to produce
it with delay. This is especially true for functions that are directly exposed to users or
human operators, and may cause stress to the user, such as when users make successive
clicks on the same button. For example, if a service is slower than usual, users tend to
confirm the requested action by clicking a button again and again. In most cases, the
first request has been processed correctly but there are just not enough resources to
execute it, or the performance might have been altered. Consequently, right after the
second request comes to the server, there is no point in executing the first one9.

9A potential solution to this problem in practice is to block the function from being clicked again, or

15

PaaS/SaaS/FaaS systems may be equipped with a control API specifically tack-
ling both action termination schemes following the application code structure, where
a specific control block type is weaved into different types of actions for best perfor-
mance. For example, short and predictable calls, like user–interface or web–services,
controlled by pre–execution control, and longer less predicable ones, like batch pro-
cesses or asynchronous messaging, controlled during action execution by terminator
actuators.

In engineering practice, instrumentation required by this approach can be difficult to
implement or may be using significant resources due to the repeatable additional checks
that should be performed during action execution. In many cases, this technique can
be simply too intrusive to be effective. However, it can be appropriate for batch based
systems or for selected longer actions. Further extensions could allow the controller to
detect execution times or distribution, predictably, and choose which control scheme
is best for a given action type under specific run–time conditions.

5.8. Simplifications and limitations

Enterprise systems are complex in nature so in order to simplify the experimental data
collection and analysis two types of resources are considered in this paper, namely
CPU and Disk. Of course, other types such as network, memory, virtualization layer
aspects, or calls to other services (introducing idle time and latencies) could be added
in a similar way to the already implemented resources. Moreover the computational
effort related to the collection of the metrics, storage, evaluation and neural–control
block training were not included in the model. There are two reasons for that: (a) the
monitoring facilities and the Evaluator can be isolated from the system under control,
having minimal effect on the system performance; (b) investigating engineering details
of the neural network training was not part of the research10.

Although extending the framework to deal with many servers would give simulation
results closer to real–world data centres, it is not considered essential for action termi-
nation control, which involves single server run–time, node instance or container and
interconnections with other nodes do not impact the core observations. Connectivity
to other servers, applications or systems, with waiting effects and networks utilisation
considerations were also left for future work in order to keep the range of the exper-
iments more focused on the potential of action termination. Therefore in this study
a single CPU and Disk queue per server has been chosen in order to simplify the set
up, and aspects, such as multi–threading, virtualization overhead, multi–node coordi-
nation that could introduce further complexity and obfuscate the observations were
not considered. In the future, the model could be easily extended with more CPUs.
Hhowever, it is expected that any change of characteristics would be close to linear
due to the used scheduling algorithms.

As discussed in Section 3, the execution time is very important for profitability of
PaaS/SaaS/FaaS running in tight SLA contracts. However, there are also factors such
as cost of equipment and energy usage that can be factored into the aggregate cost
values, which are added to the SLA functions associated with action types. The paper

simply generate the fastest action possible. Ideally, the entire end–user–performance execution time should be
less than 1 second. That is considered to be the limit for the user’s flow of thought to stay uninterrupted, while

10 seconds is the limit for keeping user’s attention focused on a human–machine dialogue (Jakob 1993; Miller
1968).

10It takes around 1–5 seconds to train a neural–control block per action type in a 2000–time steps experiment

on a single i7-6500 CPU@2.59GHz with use of around 11000 system metrics collected.

16

does not focus on those dimensions although the framework can incorporate those
values as constants in the SLA function definitions.

6. Experiments

A set of experiments is presented in this section to evaluate the proposed control
framework under various conditions and demonstrate its adaptiveness and effectiveness
to generate control actions that optimise financial performance in ASM environments.
Each of the experiments is executed in the context of a list of action types with specific
load patterns, distributions of resources usage and SLA function definitions. All these
elements create a complex environment even in a fairly simple server–disk control
scenario.

Section 6.1 elaborates more on the mixture of components used to define the load
profiles and the load parametrisation. The discussion of the experiments conducted
starts from simpler cases and then progresses to more complex and elaborate scenarios.
The first experiment in Section 6.2 demonstrates operation in a simple scenario, which
is first executed without control and then with control applied on the system in order
to compare changes in resources usage and SLA function optimisation between the two
configurations. Then, in Sections 6.3 and 6.4 the simulations exhibit more adaptivity
and illustrate financial performance details providing a comparative evaluation for
different types of control schemes (cf. Table 2) under various load profiles.

6.1. Load Parametrization

ActionType actionA3IO2 =
new ActionType (”A3IO2” ,

new LoadPattern (
// a r r i v a l d ens i t y d i s t r i b u t i o n
new LoadDistExponentia l (”DExp” , 10) ,

// load pa t t e rn
new double [] { // i n t e n s i t y

0 . 0 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2 ,
0 . 1 , 0 . 0 , 0 . 0 , 0 . 1 , 0 . 4 , 0 . 4 ,
0 . 6 , 0 . 2 , 0 . 1 , 0 . 0 , 0 . 0} ,
3) , // LM r e p e t i t i o n

// execu t ion time d i s t r i b u t i o n
new LoadDistNormal (”DNorm” , 1 , 0 . 1) ,
// resources u t i l i z a t i o n d i s t r i b u t i o n
new ResourcesUsage [] {

new ResourcesUsage (
Process ingType .CPU, 0 . 1) ,

new ResourcesUsage (
Process ingType . Disk , 0 . 9) } ,

new SLA ()) ;

Table 3. Example of action type: Java code snippet

of action A3IO2, its load profile, and load distributions

Different types of actions are realised
by application functionalities that utilise
CPU or Disk. The load is specified by
three factors: (a) load intensity pattern,
multiplied by (b) the quantity of incom-
ing requests to perform the action, gen-
erated by a probability density function,
and (c) an execution time distribution.

For example, action type A3IO2 def-
inition, in Tables 3 and 4, provides the
relevant statistics for a functionality that
is rather Disk–bound (90%), utilizing
CPU only 10% of the execution time,
and has the following execution distri-
bution parameters: exponential distribu-
tion with arrival rate Exp(λ = 10); ac-
tion execution time defined by a normal
distribution N (µ = 5, σ2 = 0.1); a vari-
able load intensity set as a request probability pattern repeated 3 times within the
time frame of a single experiment11.

11The load profile offers a precise way of configuring variability in the expected intensity of the frequency
of incoming requests for a particular action. It helps defining different test scenarios, highlighting cases such

as actions interference when using the same resource, higher load applied temporarily to observe the effects of
spikes in resources consumption, or short reoccurring load changes to analyse the impact of a “delay” factor

on the strength of ASM signal deconvolution (Sikora and Magoulas 2014, 2015).

17

Table 4. Action Types used in the experiments
Action
Type

Quantity of in-
coming callsa

Execution time
distributionb

Resources Usage
CPU, Disk(IO)

Load Intensity
Patternc

A1
N (µ = l,
σ2 = 0.1)

N (µ = 4.2,
σ2 = 0.1)

CPU=100%,
Disk=0%

0 10 20 30 40 50

0.
0

0.
4

0.
8

This action type imitates a business driven function that uti-
lizes only CPU. Load pattern of request calls and execution
time are following a normal distribution with average interval
l and µ equal to 4.2 .

A2B
N (µ = l,
σ2 = 0.1)

N (µ = 2.0,
σ2 = 0.1)

CPU=80%,
Disk=20%

0 10 20 30 40 50

0.
0

0.
4

0.
8

This action type models another business related function,
where request calls frequency is constant and execution time
follows a normal distribution with average set to 2.0. This ac-
tion uses 20% of Disk and 80% of CPU to compute the results.

AOS
N (µ = 10,
σ2 = 0.1)

N (µ = 0.5,
σ2 = 0.1)

CPU=90%,
Disk=10%

0 10 20 30 40 50

0.
0

0.
4

0.
8

This action type was introduced to mimic load coming from
operating system activities. Actions are very short and it is
rather CPU driven.

A3IO
exp(λ = 5) N (µ = 3.0,

σ2 = 0.1)
CPU=1%,
Disk=99%

0 10 20 30 40 50

0.
0

0.
4

0.
8

This action type computes responses by mainly using disk
resources– only 1% of execution time is used by CPU. The
frequency of calls is defined by an exponential distribution, so
it is less predictable than other actions shown above.

A3IO2
exp(λ = 10) N (µ = 1.0,

σ2 = 0.1)
CPU=10%,
Disk=90%

0 10 20 30 40 50

0.
0

0.
4

0.
8

Similar to A3IO but calls are 3x shorter, two times less fre-
quent, and is using less disk time. The code snippet of Table 3
provides implementation details.

WC1,
...,
WC12

N (µ = l,
σ2 = 0.1)

N (µ = 4.2,
σ2 = 0.1)

CPU=90%,
Disk=10%

0 20 40 60 80

0.
0

0.
4

0.
8

This set of action types imitates a business driven function,
which utilizes mainly CPU. Request calls and execution time
are the same as in a sequence of A1, A2B, AOS.

W.En,
W.De,
W.Ja,
W.Es

N (µ = l,
σ2 = 0.1)

N (µ = 4.2,
σ2 = 0.1)

CPU=90%,
Disk=10%

0 50 100 150 200 250 300 350

0.
0

0.
4

0.
8

This action type imitates a business driven function, which
utilizes mainly CPU. Request calls and execution time are same
as in A1.

aQuantity of incoming calls defines load produced by requests following a probability distribution: normal,
N (µ, σ2), or exponential exp(λ).

bExecution time of a single action call defined by normal distribution.
cLoad intensity patterns depicted in the table have been applied for Load Multiplier (LM) equal to 3.

Examples of SLA functions are provided in Table 5. The SLA function is formulated
according to an agreement made between parties; for example, it can be a function of
service quality provided that depends on execution times, for instance: “I as a service
provider expect payment (positive: revenue/profit) for short executions, and pay back
penalties for the longer executions and potentially for termination actions”.

Additional examples of action types that are used in the experiments are shown in
Table 4, while Table 6 describes experimental scenarios and defines SLA functions.
There is a mixture of synthetic– and real– workloads. The later represent loads cap-
tured on the 1989 World Cup website and on Wikipedia in October 2017, and have
been used in the past by adaptive admission control researchers Xiong et al. (2011)
and Ferrer et al. (2012).

18

Table 5. Example of execution time SLA cost functions; code and visualisation

SLA function with termination penalty SLA function without termination penalty

// such SLA c o s t s are common
// f o r S o f t Real−Time Systems
ExecutionTimeCostsSLA s l a

= new ExecutionTimeWithTermCostsSLA (){
public double p r i c e () {

// l i n e a r (not con s t an t) p ena l t y
i f (getServiceTime () > 10)

return −1∗getServiceTime () ;
else i f (getServiceTime () > 5)

return −7;
// sub−second c a l l , good p r i c e
else i f (getServiceTime () <= 1)

return 15 ;
// normal p o s i t i v e p r i c e
else i f (getServiceTime () <= 5)

return 7 ;
else return 1 ;

}
public double terminat ionPena l ty () {

return −40;
}

} ;

//
//
ExecutionTimeCostsSLA s l a2 =

new ExecutionTimeCostsSLA () {
public double p r i c e () {

// h i gh p ena l t y
i f (getServiceTime () > 10)

return −50;
else i f (getServiceTime () > 5)

return −10;
// sub−second c a l l
else i f (getServiceTime () <= 1)

return 10 ;
// normal p o s i t i v e p r i z e
else i f (getServiceTime () <= 5)

return 5 ;
else return 1 ;

}
// no t e rm ina t i on p ena l t y

} ;

0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

)

0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

)

6.2. Experiment 1: Comparing operation with and without the Neural
Control Block

This experiment aims to give an overview of the operation of the controller and demon-
strate its adaptivity and effectiveness, starting from the system operating without
control and then, as the load profile and SLA function remain the same, the controller
is activated. The control system performance is evaluated and gradually optimised
through controller retraining.

Figure 6 presents time sequences for input activity, impact on resources and finan-
cial performance, in terms of SLA values for an action type. The same load profile is
applied and the system operates without control (on the left) and with termination
control (on the right). Actions executions are presented in shades of red, whilst re-
sources utilizations are in blue and black. The bottom row presents the sequence of
the total SLA values for the experiment. The total SLA includes the costs of overrun-
ning actions/SLA violations, termination penalties, but also the revenue/rewards for
actions serviced in a normative time. Thus, the higher these SLA values are, the more
profitable the scenario is. Termination control is executed after the first evaluation
that was called at the 500th time slot. Later, the controller cancels the selected action
requests to free up resources for another action and in effect the total SLA is improved.
Count of terminations is shown in the sequence on the 6th row.The response diagrams
on the 4th and 5th row illustrate utilisation of disk and process queue (CPU usage
by actions computations). On the right hand side plots, the resources are clearly less
utilised due to the lower number of serviced actions, as shown by the sequences on the
2nd and the 3rd row.

19

The mean arrival time and quantity of different action types used in this experiment
expose the system to load, which is around 4 times bigger than the system is able to
handle; that is around 4 times above the saturation threshold. Although the system
load is generally more CPU–bound, disk is significantly overused as well. Thus the
controller attempts to reduce the load by terminating some of the actions. Naturally,
both the termination penalty and the penalty for longer execution times are considered
(see the example of SLA function definition in Table 5). We can see that the controller
drives the system into “profitable” states just after the first training cycle, where
SLA function values get significantly higher around the 750th time slot. The training
phase is repeated every 500 time steps, and it should be noted that not all actions are
terminated, whilst resources consumption is reduced soon after the first training cycle.
The training set used each time consists of “positive” and “negative” states identified
by the Evaluator, as described in Section 5.3. An example is shown in the scatter
plot matrix of Figure 7, where positive and negative states are denoted by Control
Mark “Right” and “Wrong”, respectively. This figure shows all the key dimensions
of the system states in pairs illustrating their relations. All system states presented
have been processed by the Evaluator and some of them were labelled with “positive”
and “negative” control marks. Note how the spikes in Disk Queue impact total SLA,
lowering the values due to high execution times (see red points). This is simply due to

Control: Eval 1

E
va

lu
a

tio
n

1

Control: Eval 2

E
va

lu
a

tio
n

2

Control: Eval 3

E
va

lu
a

tio
n

3

Control: Eval 4

E
va

lu
at

io
n

4

No control (Control Block switched off) Control applied (Control Block switched on)

No Control

E
va

lu
at

io
n

1

No Control

E
va

lu
at

io
n

 2

No Control

E
va

lu
at

io
n

3

No Control

E
va

lu
at

io
n

 4

Figure 6. Metrics time sequence and system responses for operation without controller, on the left side, and

with neural control block that uses Type–2 control scheme (cf. Table 2), on the right side. In both cases, the
experiment was executed under the load pattern and SLA function of scenario 4 (cf. Table 6).

20

the fact that all actions were executing simultaneously saturating the CPU. After the
500th time slot, when the controller is engaged for the first time, resources queues are
reduced substantially. High utilisation of the resources is still allowed, offering high
computational power for service provisioning, but overloading the system and very long
executions are avoided. The number of states with high SLA values, violet points, after
500 time steps in the scatter plot of the pair CPU utilization/Time (column 1, row 3
of the matrix) indicate revenue generation and more effective utilisation of resources,
and thus a much more profitable operation. The same effect can be seen in Figure 6,
where the time sequence in row 3, on the right side, shows a huge spike of concurrently
executing actions between the 480th and the 600th time slot. Although the same load
was applied repeatedly, i.e. 4 times, during the run, such a big accumulation of waiting
actions was not repeated, which is attributed to the application of termination control.
In general, after the controller takes over, financial performance, represented by the
values of the total SLA, gets better, as exhibited in Figure 7 (see plot in the first
column, last row of the scatter plot matrix). Due to the changing nature of the load
profile, saturation issues occurring quickly and system inertia, resources utilisation is
not highly correlated with SLA value changes, but directly relates to the queue length
that far better corresponds with high SLA function values observed.

Dimensions representing resources queues appear to be sources of rich information
for the system entering saturation. Thus, control actuators monitoring resources usage
and queues are able to react to the changing conditions and execute effective control
actions.

6.3. Experiment 2: Adaptivity to Load Profile and Financial
Performance

The testbed allows to perform many experiments in batch mode exploring various
problem dimensions such as: comparing types of control schemes (cf. Table 2), verifying
system performance under changing load patterns and different values for the mean
time of arrival, repetitions with different random generator seeds, and, lastly, testing
various model parameters using a set of scenarios with different action types under
specific load patterns and SLA definitions; see Tables 4 and 6 respectively.

In this section, we present experiments to test the above conditions and discuss
their results. Eight different system scenarios are discussed below, as summarised in
Table 6. The scenarios differ in the way their SLA contracts are defined. The scenarios
corpus starts from the most aggressive SLAs– mainly driven by operations mone-
tization perspective– where the control system has the most challenging situation to
manage from both financial and load perspectives. The first three scenarios are penalty
driven, and as a result the service provider will incur penalties for action executions
times that are longer than agreed. In the last three scenarios no penalties are included
but the reward/revenue for longer calls is zero; thus, in the case of a slow environ-
ment the service provider will be operating the requests for computation service with
minimal revenue generated, which will incur internal costs for the resources utilised.

In the first round, we compare the system operating without control against the
first two of the termination control schemes presented in Table 2. Tests are conducted
under eight different load scenarios and SLA function definitions, as presented in Ta-
ble 6. This test examines termination control before execution only, i.e., just before
the request for the functionality to be executed is processed. The results of the ex-
periment are exhibited in Figure 8. The plots illustrates the impact of the control

21

Time

0 5 10 15

●●●●●●●●●●●● ●●●●●●●●● ● ●●● ● ●●●● ● ●●●●● ●●●● ●●●● ● ●●●● ● ●●●● ●●●●●●● ● ●●● ● ●●●● ●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ● ●●●●●● ●● ●●● ●●● ● ●●● ●●●●● ●● ●●● ● ●●●● ●●● ●●● ●●● ●● ● ●● ●● ● ● ●●● ●●●●● ● ● ●●●●●●● ● ●●●●● ●●●● ● ●●●●●●● ● ●●● ● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●

●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●● ●●● ● ●●●●● ●●● ● ● ●● ● ● ●● ● ●●●● ● ●●●● ● ●●● ● ● ●● ● ●●●●
● ● ●●●● ● ●● ● ● ●●● ● ●●●● ● ●● ● ● ●●●●●● ●●●●●●

● ●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●● ●●● ●●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●● ● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●● ●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●● ● ●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ● ●●●●●● ● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●● ● ● ●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●● ●●●● ●● ●●●●● ● ●●●●●●● ● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●● ● ●●●● ●●●●●●●●●● ●●● ● ● ●●● ● ●●● ●●●●●●●● ●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ● ● ● ● ●●● ● ● ● ●●●●● ●●● ● ●●●● ● ●●●●●●●●●●●● ●●●●●●
●●●●●●●●●●
●●●●●●● ●●●● ● ●●●●●●●●●● ● ● ● ●●●●●●●● ● ● ● ● ● ● ●●●● ●●●●●●●● ● ●●

●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●● ●●●● ●●●● ● ●●●●●●●●● ●●● ● ●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●

●● ●●● ● ●●●●
●●●

●●●●●●●
●●●●●
●●●●●●●●●●●● ● ●●●●●●● ● ● ● ●●●● ●●● ●●●● ● ●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

● ●● ●●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●
●●●●●●●●●●●
●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●
●●●

●●

●● ●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
● ● ●●●●●●●●●●●●●●●●● ● ●●●●● ● ●● ●●●●●● ● ●●●●●●●● ● ● ●●● ● ●●●●●● ●● ●● ●●●●●●●●● ●●●●●● ● ●● ●● ●●● ●●●● ● ●●●● ● ●●● ● ●●●●●●●●●● ●●●●●●●●●●● ● ●●●●●● ● ● ●● ●● ●●●●●● ●●●●● ● ● ●●●●●● ● ●●●●●● ●●●●●●●●●● ●● ● ● ●●●●●●●●●●●●●●●● ● ● ●●●●●●● ● ● ●●● ● ●● ●●●●●● ● ●●●●●● ● ●●●●●●●●● ● ● ●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●● ● ●●●● ● ●●● ● ●●● ●● ●●● ● ●● ●●●●● ● ●●● ● ● ●●● ● ● ●●● ●●●●● ●●●● ● ● ●● ●● ●●●● ●●●● ●● ● ●● ● ●●● ● ●● ●●●●● ● ●●●●●●●●●●●●● ● ● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●● ● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ● ● ●●●●● ●● ●● ● ●● ●● ●● ●●● ●● ●● ●●● ● ● ●● ●●● ● ●● ● ● ●●● ●● ●● ● ●●● ● ●● ●● ●● ● ●●●● ● ●●● ● ● ●●●●●●●● ● ●●●●●●●●● ●● ●●●●●●●●●●● ● ● ●● ●●●●●●●●●● ● ● ●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●● ●●● ●●●●● ●●●●● ● ●● ● ● ●● ●●●●●● ● ●●●● ● ●● ● ● ● ●●● ●● ●● ● ●●●● ● ●● ●●●●●● ● ●● ● ●●● ● ●●●●● ● ●● ● ●●●● ● ●●●● ● ●●●●●●●●●●●● ● ●●●● ●●●●●●●●●● ●● ● ● ●●●●●● ●●●●●●●●●● ● ● ●●● ●●●●● ● ●●● ● ●●● ●● ●●●● ● ●●●●● ●● ● ●●●● ● ●●● ● ●●●● ●●●●●●●● ● ●●●●●●●●● ● ● ●● ●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●● ● ● ●● ●●●● ● ● ●●●●●●● ● ●●●● ● ●●●● ● ●●● ● ●●● ● ●● ●● ● ● ●●●● ●●● ●●●●●● ● ●● ●●●● ● ●●●● ● ●●●●●●●●●●●●●●●● ●● ●●● ●● ● ●● ●●●●●●●●● ● ● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ● ●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●● ● ● ●●●● ● ●● ●●●●●● ● ●●●● ● ●●● ●●●●●●●● ● ●●●● ●●●● ● ●●● ● ●● ●● ● ●●●● ● ●●● ● ● ●●●● ● ●● ●● ●●●● ●●● ● ●● ●● ●●●●●● ●●● ●●●●●●● ● ●●●●●●●●● ● ●●●●●●●●●●●●● ● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●● ● ●●●●●●●●● ● ●●●●●●●●●●●

0 1 2 3 4 5

●●● ● ●●●●● ●● ●●●● ● ● ● ● ●●●● ●● ● ● ● ● ● ● ● ● ● ●●●●●● ●● ● ● ● ● ● ● ●●● ● ●●●● ● ● ●● ●●●● ●●● ● ● ● ●● ● ● ● ● ● ●●●●● ●●●● ●●●●● ● ● ● ●●●●● ● ● ●● ● ●● ● ●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
● ● ●●● ● ● ● ● ●●●● ● ● ● ● ● ●● ● ●●●● ● ● ● ●● ● ● ●●● ● ● ● ●●● ● ● ●● ● ● ●● ●●● ● ●● ●● ● ● ● ● ● ● ●● ● ●● ● ● ●●●● ●● ● ●●●●● ●●● ●●●● ● ●● ●● ● ● ● ●●●●● ● ● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●● ● ● ●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●●● ●● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●●● ● ●● ● ●● ●●●

●● ● ● ● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●● ● ● ● ● ● ● ● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ● ●●●●●●●●●●●●● ●● ● ● ●●●●●● ● ●● ● ●●●●● ●●●● ●●●●● ●●● ●●●●●●● ●●●● ● ●● ●● ●● ● ●●●●●●●●●●●● ● ● ●●●● ●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●● ●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●● ●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●● ● ● ● ● ● ●●●●● ●●●●●●● ● ● ● ● ● ● ● ●● ●●●●●● ● ● ● ● ● ● ●●●●●● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●● ● ●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●● ● ●● ●●●●●● ● ● ●●●●●●●●●●●● ● ●●● ●● ● ●●●● ● ●●● ●● ● ●●●●● ●●● ● ●●●● ● ●●● ●●●●●●●●●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●● ●●●● ●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●● ● ●●●●●●●●●●●● ● ●●●●●●●●● ●●●● ●●●● ● ●● ● ●● ●●●●●●●●●● ● ●● ●● ● ● ● ● ●●●●●● ● ●●●●●●●●●●●●●●●●● ●●●●● ● ●●●●● ● ●● ● ● ●● ●● ●●●●●●●●●●●● ● ●●● ● ●●●● ●●●● ● ●● ● ● ● ● ●●●●● ● ●● ●●●●●●●● ● ● ● ● ● ● ● ●●●●●● ● ●●●●●●●●●●

●●●●●
●●●
●●● ●●●●● ●● ●●●● ● ● ● ● ●●●●●●●●●●●● ●● ● ●●●●●●●● ● ● ●● ● ●●●● ●● ●● ● ● ●● ● ●●●●●● ●●●●●●● ● ● ● ●●● ●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●● ● ●● ●●● ●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●● ● ●● ●●●● ● ● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ● ●●●● ●●● ● ●●●● ● ● ●● ●●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ●● ●● ●●●● ● ●● ●● ● ●●●●●● ●●●●●●●●●● ● ●● ● ● ● ●● ●●● ●●● ●●●● ● ● ● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●● ● ●●●●●●●●● ●●●●●●●●●●●●

● ● ●●●● ● ●●●● ● ● ●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ● ● ● ● ● ● ●●●●● ● ●●●● ●●●●●●●●●●●●●● ● ● ● ● ● ●● ● ●●●● ●●● ● ●●● ● ● ● ● ● ● ●●●●●● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●● ● ●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●●●●●●●●●● ● ●●●●●●●● ● ● ●●●●● ● ●●●●●●● ● ● ● ●●●●●●●●●●●●●●●● ● ● ●●●●●●●

●●●●●
●●●●●●●● ● ●●●● ● ●●●●●● ● ●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●● ● ●●●●●●●● ● ●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●● ● ● ● ● ●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●● ● ● ● ● ●●● ●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●●● ●●●● ● ● ●

● ●●●●●● ● ● ●●● ● ●●● ● ● ●● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●● ●●●● ●●●● ● ●●● ●●●●●● ●● ● ●●●●●●●● ●● ● ●● ●● ● ●● ● ●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ● ●●●●●●●●●●●●●●●●●●● ● ●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●●● ●●●●●●●● ●●●●● ●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ● ● ●● ●● ●●●●●●●●●●●

●●
● ● ●●●●●●●●●●●● ● ● ●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●● ●● ●●●●●● ● ●●●●●●●●●●●●●●● ● ●●●●●●● ●● ●● ●●● ● ● ●●● ● ● ●●●●●● ● ●● ●●● ●●●●●●●●●●●●●●●●●●●●● ● ● ●● ●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●● ● ●●● ●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●● ● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ● ●●●● ● ●● ● ● ●●● ●●●●●● ●●● ● ● ●●●●●●● ●●●●● ● ●●●●●●●●●●●●●●● ● ●● ●●●● ● ● ●●●● ●●●● ● ● ●● ● ●●●●●●●●●●●● ●●●● ● ●●●● ●●●● ●●●●●●● ● ● ●●●●● ●●●● ●●●●●●●●●●●● ● ● ●●●● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ● ●●●●●●●●●●● ●● ●●●●●●●●●●● ● ● ●●●●●●●● ● ●●●● ●●●●●● ● ● ●● ●●●●●● ● ●● ●●● ●●●● ● ●●●● ● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●● ● ● ●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ● ●●●●●●●● ● ●●●●● ● ● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ● ●● ● ●●●●●●● ●● ● ●●●●●●●●●●●●●●●●● ● ●●●● ● ● ●●● ●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ● ● ●●●●●●●●●● ●●●●●●●●● ● ● ●●●●●●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

●●●

●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●
●●●

●●●
●●●●●●●

●●●●●
●●●●●●

●●●●
●●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●
●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●
●●●

●●●

●●●●●●
●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●●●
●●●

●●●
●●●●●

●●●●●
●●●●●
●●●

●●●●
●●●●●●●
●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●
●●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●
●●●
●●●

●●●

●●●●●●
●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30

0
50

0
10

00
15

00
20

00

● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ●●●●●●●● ● ● ● ● ● ●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●● ● ●●●●●●●●● ●●●●●●●●●●●● ● ● ● ●●●●●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●

●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●● ● ●●●●●●●●●●●● ● ●●●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●
●●●●●●● ● ● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●● ●● ● ●●●●●●●●●●●●● ●● ● ●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ● ● ● ●● ● ●●●●●● ● ● ●●●●● ● ●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●● ● ● ● ● ● ●●● ● ●●● ●●●●●● ●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ●●●

●● ● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ● ● ● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●● ● ● ●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●

0
5

10
15

●●●●●●●
●
●
●
●

●●

●
●●●●
●
●
●

●
●
●
●
●
●
●●●●

●

●

●

●
●●

●●●

●

●

●●●

●
●

●
●
●

●
●●

●●

●●●●

●●

●
●
●●

●
●
●●●●

●●

●●●●

●●
●
●
●●●●●

●●
●
●●

●
●
●
●●●●●●●

●

●
●
●

●
●●

●●

●

●
●

●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●

●●●
●●●
●●●
●●

●
●

●●●●

●

●●●

●
●

●●●●●
●

●

●●●

●●●

●

●
●

●

●

●●●●

●

●
●

●●

●

●●
●

●

●●
●

●

●●

●

●

●

●

●
●
●●

●●

●
●

●
●

●

●
●
●

●●
●
●
●●●

●●●
●

●

●

●

●
●●

●
●

●●

●

●

●●●●●●
●
●●

●
●
●●

●

●●●●
●
●●●●

●●●●●●●●●●●●
●

●
●●●●

●●●●●●●●●●●
●●
●●
●●

●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●

●

●●●

●●●

●●
●●
●●
●●●●●●●●●

●●

●
●

●
●

●●●●●

●

●

●

●
●

●●

●●

●●
●
●●●●

●

●

●

●

●

●

●●●

●●

●●

●

●●●●●●

●

●●
●●
●●

●●

●●
●

●

●●
●
●

●●●
●

●
●

●●●

●
●

●●

●

●●●●

●●●●

●●

●●

●

●

●●●

●

●

●

●
●●

●

●

●

●●●

●
●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●
●
●
●●

●
●
●
●
●●●●●

●
●
●
●●●●●●
●
●
●
●●●●●●
●●●●

●
●
●
●

●

●●

●

●

●●
●●
●●
●●●

●●

●

●
●
●

●●●
●●

●●●

●●
●●

●
●

●

●

●
●
●●

●
●
●
●

●●
●
●
●

●

●●●

●●
●
●●

●●
●●
●●

●●
●●
●●
●●
●●

●
●
●
●

●●●●●
●●
●●
●●●●
●

●●
●
●
●●●●

●

●●●●●●

●
●
●
●●

●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●●●●
●

●●
●●
●●
●●
●●

●

●●

●●●●
●●●●
●●●●
●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●

●●●●●●●●●●●●●●●●
●
●
●
●
●

●
●
●
●●●●

●●

●●●●●●

●
●
●
●

●
●
●
●●●●●

●
●
●

●
●●●

●●●

●

●

●

●●

●

●●●●●●

●
●

●

●●●●●●●

●
●
●
●
●
●●

●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●
●
●

●●●●●●●●●●●●●
●●●●
●●●●
●●●●
●●

●
●
●
●●

●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●

●
●
●●

●
●
●
●
●●●

●

●●

●

●●●

●●●
●
●
●●

●●●

●●

●●●●●●
●●

●

●●●●●●●●●

●●●●

●●●●●●●●
●

●●●
●
●●●●●●

●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●
●●
●●
●●●●

●
●●●●●●●●●●●●●●●●●●●
●
●
●
●●●●

●

●●●
●

●
●
●
●

●●
●
●
●●●●

●

●●●●

●
●
●
●
●●●●●

●

●●●●●●

●

●

●●
●
●●●●

●
●

●

●
●
●●

●

●

●

●
●

●●●●●●●●
●
●
●●●

●●●

●

●●●●●●●●
●
●

●

●
●

●
●●
●●
●●

●●●●●●●●●

●

●

●●●

●●
●
●
●
●

●

●

●

●
●
●●

●
●

●●
●
●
●●●●
●
●●●

●
●

●
●
●
●
●
●
●
●●

●
●
●
●

●●●●●●●

●
●

●●●
●●
●
●
●
●●●●

●
●●●●●●●●●
●●
●●
●

●●●●●
●●●●●●●●
●●●●●●●
●●●

●
●
●
●
●
●●●

●

●●●●●
●
●
●
●●●●

●●
●
●●
●

●●●●
●
●
●
●

●
●

●

●
●
●●●●

●

●●

●●

●●

●
●

●●

●

●●
●●

●

●
●●●

●

●●
●

●●

●

●

●●

●
●

●
●
●
●
●

●●
●●
●●
●●
●
●
●●
●●
●●
●●
●
●

●

●●●●

●
●
●
●

●●●●●
●
●●●●
●
●●
●●
●●

●●●●●
●●
●●
●

●●●
●●●
●●●
●●●

●●●●●●●●●

●●●●

●●●●●●●●●●●●●
●●●●
●●●●
●●●●
●●●

●●
●●
●●
●●●●●●●●●●

●●

●

●●●
●
●●
●

●●
●●●

●
●

●●●

●
●●

●
●

●●●●●●●●

●
●
●●●

●

●
●●

●

●

●

●

●
●

●●●●●●●

●●
●
●●●●
●
●

●●●
●●
●●
●●
●●
●

●●●●●●●●●
●
●
●●

●●●
●

●

●●
●●
●●
●●
●●

●●●●
●●●
●●●
●●●●●●

●●●
●●●
●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●●
●

●●
●●
●●
●●
●●●●

●●●
●●●
●●●

e
Processor

Queue

●●●●●
●

●
●

●
●

●
●

●
● ● ●●

●
●

●

●
●

●
●

●
●

●● ● ●

●

●

●

●

●●

●●
●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●●●●

●●

●

●

●●

●

●

●
● ● ●

●
●

●●●
●

●●
●

●
● ● ●●●

●●
●

●●

●
●

●
● ● ● ●●●●

●

●
●

●

●
●●

● ●

●

●

●

●●
●●●●
●●●●
●●●●
●●●●
●●●●
●● ● ●●

●●●●●●●●●●●

●
●

●● ●●

●

● ● ●

●
●

●●●●
●

●

●

●● ●

●●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●

●

● ●

●
●

●
●

●

●● ●●
●

● ● ●●

●●●●●●●●●●●●
●

●
● ● ●●

●●●●●●●●●●●
●●

●●
●●

●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●

●

●● ●

●●●

●
●

●
●

●●●●● ● ●●●● ●

●●

●

●

●
●

●
●●●●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●● ●

●●●●●●●●●●●●●
●
●
●
● ●

●
●

●
●

● ● ●● ●

●●●●● ● ●●
●

●●●●● ● ● ●●● ● ●●

●
●

●
●

●

● ●

●

●

●●●●●●●● ●

●●●●
● ● ●●

●

●

●
●

●

●●
●
● ●

●
●

●
●

● ●
●

● ●

●●●●●
●●
●●
●

●●●●●●●●●●
● ● ●●●●●●

● ●
●

●

●
●

●●

●
●
●
●

●●
●

●●
●

● ●●

●●
●
● ●

●●●●●●

●●●
●●●

●●●
●

●

●
●

●
●
●

●
●

●
●

●●●●●
●●
●●
● ● ● ●

●

●●
●
●
● ● ● ●

●
●

●
●

● ●●●●●● ● ●●

●
●

●
● ●

●●●●●●●●● ● ● ●●

●
●

●
● ●

●●●●●●●●●●●

●●●
●●●
●●●
●●● ● ●●

●
●●●●●●●●● ●

●

●●

●●●●●●●●●●●●●●●●●●● ● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●

●●●●●●●●●●●●●●●●
●●
●
●

●

●
●

●
● ● ●●

●●

● ●●● ● ●●

●

●

●

●
●

● ● ●●
●

●
●

●● ●

●
●
●

●

● ●
●

● ● ● ●●● ●

●
●

●
●

●●●
●

● ● ●

●

●

●

●●

●

● ●●●● ●

●
●

●

● ● ●●● ● ●

●
●

●
●

●
● ●

●●●●●●●●●●●●

● ● ● ●●● ● ●●

●●●●●●●●●●●●●●●●●●●
●
●
●
●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●
●

●
● ●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●

● ●

● ●●●●● ●
●

●
●

● ●

●

●● ●
●

●

●

● ●
●

●● ●
●

●
●

● ●
●

●●

● ●

●● ● ● ●

●

● ●

●

●

● ●
●

●●

● ●

●
●● ●

● ●
●

●
●

● ●

●●●

● ●

●●●●●●

●
●

●

●●●●●●●●●

●● ●●

●●●●●●●●
●

● ● ●
●

●●●●●●●●●● ● ● ●●

●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●
● ●

●●●●●●●●●●●
●●
●●

● ● ●●

●
●●●●●●●●●●●●●●●●●●●

●
●
● ● ● ●●

●

● ●●●

●
●

●
●

● ●
●

●
●● ● ●

●

● ● ●●

●●●●●● ● ●●

●

● ● ●

●
●

● ● ●●● ●

● ●

● ● ●●●● ● ●

●

●

●●
●

●● ● ●

●
●

●
●

● ●

●●
●

●
● ●

●

● ●

●

●
●

● ●

●

●

●

●
●

●●●●●●●●
●●
●● ●

●●●

●

●●●●●●●●
●
●

●
●

●
●

●●●●●●

●●●●●●●●●

●

●

● ●●

● ●
●
●
●
●

●

●

●

●
●

●●

●
●

● ●
●

●
● ● ●●

●
●● ●

● ●
●

●
●

●
●

●
●

● ●

●
●

●●

●●●●●●●

●
●

●●●
●●
●
●
●
● ● ● ●

●
●●●●●●●●●

●
●
●
● ●

●●●●●●●●●●●●●
●

●
●

●
●

●

●

● ●

●

●

●
●

●

●●●

●

● ●●●●●●●●●●
●●
● ● ● ●

● ●
●

●●
●

● ●●●●●
●
●

●

●
●

●

●
●

●●●●

●

●●

● ●

●●
●

●
●

●
●

● ●

●

●●
●●

●

●
● ●●

●

●●
●

● ●

●

●

●●

● ●

●
●

●
●

●

●●●●●●●●●
●

●●
●●

●●
●●

●
●

●

●● ● ●

●
●

●
●

●●●●●
●

● ● ●●
●

●●●
●●●
●●●

●●●●●
●●
●●
●

●●●
●●●

●●●
●● ●

●●●●●●●●●

● ● ●●

●●●●●●●●●●●●●●●
●●●●
●●●●
●●●● ●

●●●●●●●● ● ● ●●●● ● ●

● ●●●●●● ● ●●

●

● ● ●
●

● ●

●●●●
●
●●

● ●

●

●●
●●●

●
● ●

●

● ●
●● ●

●
●

●●●

●
● ●

●
●

● ● ●●●● ● ●

●
●

● ●●

●

●
●
●

●

●

●

●

●

●

●
●●●●● ●

●●
●

●●●●
●
●

● ●●●●●●●●● ●
●

●●●●●●●●●
●
●
● ●

●●●
●

●

●●●●●●●●●●

●●●
●●

●●
●●

●●
● ● ●●●

●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
● ●

●●●●●●●●● ● ●●

●●●●
●●●
●●

●●● ● ●
●
●
●

●
●

●
●

●
●● ● ●
●

●
●

●
●

●
●

●
●

● ● ● ●

●

●

●

●

●●

●●
●

●

●

● ● ●

●

●

●

●

●

●

●
●

●
●

●● ● ●

●●

●

●

●●

●

●

●
● ● ●

●
●

● ● ●
●

● ●
●
●
●● ●●●

● ●
●
●●

●
●

●
● ●●●●● ●

●

●
●

●

●
● ●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●
●●●●

●●●●
●●●●

●●●●
●●●●●●

●●
●●

●●
●●

●●●

●
●

●● ● ●

●

● ●●

●
●

● ● ● ●
●

●

●

● ●●

●● ●

●

●

●

●

●

● ●●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●● ● ● ● ●

●

●●

●
●

●
●

●

●● ●●
●

●●●●

●●●●●●●●●●●●
●

●
●● ● ●

● ● ●●●●● ● ● ●●●
●● ● ● ●

●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●

●

● ● ●

● ● ●

●
●

●
●

●●●●●●●●●●●

●●

●

●

●
●

●
● ●● ●

●

●

●

●

●

● ●

●

●

● ●

●

● ●● ●

●

●

●

●

●

●

● ● ●

●

●

● ●

●

●● ● ● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●

●●●

●

●

● ● ● ● ●●●●● ●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
● ●

● ● ● ● ● ● ● ● ● ●●●●
●
●

●
● ●

●
●
●
●
●●●●●

●●
●●
●●●●
●
●●
●●
●●●●●●
●●●

●
●
●

●

●

●●

●

●

●●
●●
●●
●● ●

● ● ● ●
●●●●

●

●

●
●

●

●●
●
●●

●
●
●
●

●●
●
●●

●●● ●●●●
●●
●

●●●● ● ●● ●● ●
● ● ●●●
●●
●

●●
●

●

●
●

● ●

●
●

●
●

●●
●
●●
●

● ● ●

● ●
●

●●

●●●
●●
●

●●●
●●●
●●●
●

●

●
●
●
●
●
●
●
●
●

● ● ● ●● ●●●
●●●●● ●

● ●
●
●

●●●●
●
●
●
●

●●●
●●
●●●●●

●
●
●
●●

●●●●
●●●
●●●●●●

●
●
●
● ●

●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●●●●●
●●●
●●●
●●●●

●

●●

●●●●●
●●●●●
●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●

●●●●●●●●●●●●●●● ●●●
●
●

●

●
●
●
●●●●

●●

●●●●●●●

●

●

●

●
●
●●●●
●
●
●
●● ●

●
●
●

●

●●
●
●●●●●● ●

●
●
●

●
● ●●

●
●●●

●

●

●

●●

●

●●●●●●

●
●

●

●●●●●●●

●
●
●
●
●
● ●

● ● ● ● ● ● ●●●●● ●

●●●●●● ● ● ●

● ● ● ● ●● ●●●●●● ● ● ● ● ● ● ●
●
●
●

●

● ● ● ● ● ● ● ● ● ● ●●●●●●
●●●
●●●
●●●
● ●

●
●
●
● ●

●●●●●●●
●●●●●●
●●●●●●
●●●●●●● ●

●
●
●●

●●●
●●
●●
●
●
●
●●

●

●●●
●
●

●

●●
●
●●●
●
●
●
●●
●
●●

●●

●●●● ●

●

● ●

●

●

●●
●

● ●

●●

●
●●●

●●●
●
●
● ●

●●●

●●

● ●●●● ●

●
●

●

●● ● ●●●●● ●

●● ● ●

●●● ● ●●● ●
●

●●●
●

●●●
●●●
●●●
●●●●●

● ● ● ●●●●
●
●

●●●●●●●●●●●●●●●●●●●
●●

● ● ● ● ●● ●●●● ●●●
●●
● ● ● ●

●
● ●●●●●●●●●●●●●●●●●●

●
●

●●●●●

●

●●●●

●
●
●
●

● ●
●
●
●●●●

●

●●●●

●●
●●
●●●●●

●

●●●

●
●
●●●●●●

●●

●●●●●●●●

●

●

●●
●
●●●●

●
●
●
●
● ●

●●
●
●
●●
●

●●

●

●
●
● ●

●

●

●

●
●

● ● ●● ●●●●●●
●●●

● ● ●

●

●● ● ● ● ● ●●
●

●

●
●

●
●

●●
●●
●●

●●●●●●●●●

●

●

●●●

● ●
●
●
●

●

●

●

●

●
●

● ●

●
●

● ●
●
●
●●●●
●
●●●
● ●

●
●
●

●
●

●
●
● ●

●
●
● ●

●● ● ● ● ● ●

●
●

●● ●
●●

●
●

●
●●●●

●
● ● ● ● ● ● ● ●●

●
●

●
● ●

●●●●
●●
●●
●●
●●
●
●
●
●
●
●
●

●

● ●

●

●

●
●

●

●●●

●

● ●●●● ● ● ● ● ●●
●●●●●●

●●
●
● ●

●

● ●●●●
●●
●
●

●
●

●

●
●

●●●●

●

● ●

● ●

● ●
●

●
●

●
●
●●

●

●●
●●

●

●
● ● ●

●

●●
●

●●

●

●

●●

● ●

●
●
●

●
●

●●●
●●●
●●● ●
●●
●●
●●
●●

●
●

●

●●●●
●
●
●
●

● ● ●● ●
●

● ●●●
●

●●●
●●●
●●●

● ● ● ●●
●●●●

●

●●●
●●●
●●●
●● ●

●● ●●●● ● ● ●

● ●●●

●●●●●●●●●●●●●●
●●●●
●●●●
●●●●
● ●

●●●
●●
●●

● ●●●●●●●●

●●●
●●
●●●●●

●

●●●
●
●●

●●● ●
●

●●

● ●

●

●●
● ●●
●

● ●
●

●●
● ● ●

●
●

●●●

●
●●

●
●

●●●●●●●●

●
●

●●●

●

●
●
●

●

●

●

●

●

●

●
●●● ● ●●

●●
●

●●●●
●
●

●●●
●●
●●
●●
● ●

●

● ● ● ● ●● ●●●
●
●

● ●

●●●
●

●

● ●●
●●●

●●
●●

●●●
●●
●●
●●
●●
●●●●●

●●●
●●●
●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●●

●●
●●
●● ●

●●●
●●
●●
●● ●●●

●●●
●●●
●●
●

● ● ●●●
●

●
●

●
●

●
●

●
●●●●

●
●

●

●
●

●
●

●
●

●●●●

●

●

●

●

●●

●●
●

●

●

● ● ●

●

●

●

●

●

●

●
●

●
●

●●●●

●●

●

●

●●

●

●

●
●●●

●
●

● ● ●
●

● ●
●

●
●●●● ●

●●
●

●●

●
●

●
● ● ● ● ●●●

●

●
●

●

●
● ●

● ●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●

●
●

●●●●

●

●● ●

●
●

●●●●
●

●

●

● ● ●

●●●

●

●

●

●

●

● ●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●●●

●

●●

●
●

●
●

●

●●●●
●

●●●●

●●●●●●●●●●●●
●

●
●●●●

●●●● ● ●●●●●● ● ●●●●●

●
●●●●●●●
●●●●●●●
●●●●●●●
●●●●●●
●●●●●●
●●●●●●

●

●●●

●●●

●
●
●
●
●●

●●●●●●●●●

●●

●

●

●
●

●
● ● ● ●

●

●

●

●

●

●●

●

●

●●

●

●● ● ●

●

●

●

●

●

●

●●●

●

●

●●

●

●● ● ● ●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●●

●

●

●

●

●

● ● ●

●

●

●●●●● ● ● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●● ● ● ●
●

●
●

● ●

●
●

●
●

●●●●●

●●
●●
●●●●
●
●●
●●
●●●●●●
●●●

●
●
●
●

●

●●

●

●

●●
●●
●●
●●●

●●● ●
● ●●●

●

●

●
●

●

● ●
●

●●
●

●
●

●
●●

●
●●

● ●● ● ●●●●●●

●● ●● ● ●● ●● ●
●● ● ●●●●●

●●
●

●

●
●
●●

●
●

●
●

●●
●

●●
●

●●●

●●
●

● ●

●●●●●●

●●●
●●●
●●●
●

●

●
●
●
●
●
●
●
●
●

●●● ● ● ●●●●●●●●
●

● ●
●

●
●●●●

●
●
●
●

●●●
●●
●●●●●

●
●
●
●●

●●●
●●●
●●●●●●
●

●
●
●
●●

●●●
●●●

●●●
●●

●●●
●●●
●●●
●●●●●●●
●●●
●●●
●●●●

●

●●

●●●●●
●●●●●
●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●

●●●●●●●●●●●●●●● ● ●●
●

●
●

●
●

●
●●●●

●●

●●●●●●●

●

●

●

●
●
●●●●
●
●
●
●● ●

●
●

●
●

● ●
●

●●●●●● ●

●
●

●
●

●● ●
●

●●●

●

●

●

●●

●

●●●●●●

●
●

●

●●●●●●●

●
●
●
●
●
●●

●●●●●●● ● ● ●● ●

● ●●●●●●●●

●●●●●● ● ●●●●●●●●●●●●
●

●
●

●

●●●●●●●●●● ● ●●●●●●●●●●●●●●●●

●
●

●
● ●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●●●

●
●
●●

● ●●●●●●
●
●
●
●●

●

●●●
●
●

●

●●
●
●●●
●
●
●
●●
●
●●

●●

●●●●●

●

● ●

●

●

●●
●
●●

● ●

●
●●●

●●●
●
●
●●

●●●

● ●

●●●●●●

●
●

●

● ●●● ● ● ●●●

● ● ●●

●●●● ● ●● ●
●

● ●●
●

●●●
●●●
●●●
●●●●●

●●●● ● ● ●
●

●

● ●●●●●●●●●●●●●●●●●●
●●

●●●●●● ● ●●● ●●●●●●●●●

●
●● ● ● ●●●●●●●●●●●●●●●

●
●

●●●●●

●

●●●●

●
●
●
●

●●
●

●
●●●●

●

●●●●

●●
●●
●●●●●

●

●●●

●
●
●●●●●●

●●

●●●●●●●●

●

●

●●
●
●●●●

●
●
●
●
●●

●●
●

●
●●
●

●●

●

●
●

● ●

●

●

●

●
●

●● ● ● ●●● ●●●●●●

●●●

●

● ●●●●●●●
●

●

●
●

●
●

●●●●●●

●●●●●●●●●

●

●

● ●●

●●
●

●
●

●

●

●

●

●
●
● ●

●
●

● ●
●

●
●●●●
●
●●●
●●

●
●

●
●

●
●

●
●●

●
●

●●

●●●●●●●

●
●

●●●
●●

●
●
●

● ●●●

●
●●●●●●●● ●

●
●

●
●●

●●●●
●●

●●●●●●●
●

●
●

●
●

●

●

● ●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●●●● ● ●●
●●●●

●●
●
●●

●

● ●●●●●
●
●
●

●
●

●

●
●

●●●●

●

●●

● ●

●●
●

●
●

●
●

●●

●

● ●
●●

●

●
●●●

●

● ●
●

●●

●

●

●●

● ●

●
●

●
●

●

●●●
●●●

●●●●
●●
●●
●●
●●

●
●

●

●●●●
●
●
●
●

●●● ● ●
●

● ●●●
●

●●●
●●●
●●●

●●● ● ● ●●
●●●

●●●
●●●
●●●
●●●

●●● ● ● ●●●●

● ● ●●

●●●●●●●●●●●●●●●
●●●●
●●●●
●●●●●

●●
●●
●●
●●● ●●●●●●●

●●●
●●
●●●●●

●

●●●
●
●●

●●●●
●

●●

● ●

●

●●
●●●
●
● ●

●

●●
●● ●

●
●

●●●

●
●●

●
●

●●●●●●●●

●
●

●●●

●

●
●
●

●

●

●

●

●

●

●
●●●●●●

●●
●

●●●●
●
●

●●●
●●
●●
●●
●●

●

●●●● ● ● ●●●
●
●

● ●

●●●
●

●

●●
●●

●●●●●●

●●●
●●
●●
●●
●●
●●●●●

●●●
●●●
●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●

●●
●●

●●
●●

● ● ● ●

●●●●
●●●
●●

●●●

●

●●●

●

●

●

●

●

●

●
●

●
●

●●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●
●●●●

●

●
●
●●
●
●
●
●
●●
●
●●

●●●●

●●

●●●●●●●
●●●●
●
●
●
●
●
●

●●
●
●
●
●

●●●
●●
●●●

●
●
●●

●●●
●●●
●●●●●

●

●

●

●
●
●●●●
●
●
●
●●
●

●●●●●●●●●●●●●●●

●
●
●
●
●●

●

●●●
●
●

●

●●
●
●●●
●
●
●
●●
●
●●

●●

●●●●

●●
●
●●
●●●

● ●●●●●●●
●●●
●●
●●●

●
●
●●●●●●

●●

●●●

●
●
●
●
●
●
●
●●
●

●●
●●
●●
●
●
●
●
●
●
●

●

●●

●●●●●●●
●

●
●
●●●

●

●●●
●●
●●●●●

●

●●●
●
●●

●●●●
●
●

●● ●●●

●

●●●

●

●

●

●

●

●

●
●

●
●

●●●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●●
●●●●

●

●
●
●●
●
●
●
●
●●
●
●●

●●●●

●●

●●●●●●●
●●●●
●
●
●
●
●
●

●●
●
●
●
●

●●●
●●
●●●

●
●
●●

●●●
●●●
●●●●●

●

●

●

●
●
●●●●
●
●
●
●●
●

●●●●●●●●●●●●●●●

●
●
●
●
●●

●

●●●
●
●

●

●●
●
●●●
●
●
●
●●
●
●●

●●

●●●●

●●
●
●●
●●●

●●●●● ●●●
●●●
●●
●●●

●
●
●●●●●●

●●

●●●

●
●
●
●
●
●
●
●●
●

●●
●●
●●
●
●
●
●
●
●
●

●

●●

● ●●●●●●
●

●
●
●●●

●

●●●
●●
●●●●●

●

●●●
●
●●

●●●●
●
●

●● ● ● ● ● ●
●

●
●

●
●

●
●

●
●●●●

●
●
●

●
●

●
●

●
●

●●●●

●

●

●

●

●●

●●
●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●●●●

●●

●

●

● ●

●

●

●
●●●

●
●

● ● ●
●

●●
●

●
●●●●●

●●
●
●●

●
●

●
●●●●●●●

●

●
●

●

●
● ●

● ●

●

●

●

●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●

●●
●●
●●
●●
●●●

●
●

●●●●

●

●●●

●
●

● ● ● ●
●

●

●

●●●

●●●

●

●

●

●

●

●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

●

●

● ● ●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●●●●●●

●

●●

●
●
●
●

●

●●●●
●
●●●●

●●●●●●●●●●●●
●

●
●●●●

●●●●●●●●●●●
●●
●●
●●

●
●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●●

●

●●●

●●●

●
●

●
●
●●●●●●●●●●●

●●

●

●

●
●

●
●●● ●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●●●●●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

● ● ● ● ●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●●
●●●●●●●

●●●●●●●●●●●●●
●
●
●
●●

●
●

●
●

●●●●●

●●
●●
●●●●
●
●●
●●
●●●●●

●●●●

●
●

●
●

●

● ●

●

●

●●
●●
●●
●●●

● ● ●●
●●●●

●

●

●
●

●

● ●
●
●●

●
●
●
●
●●
●
●●

●●●●●●
●●●●

●●●●●●●●● ●
● ●●●●

●●
●

●●
●

●

●
●

●●

●
●

●
●

●●
●

●●
●

●●●

●●
●

●●

●●●●●●

●●●●●
●●●

●●

●

●
●
●
●
●
●
●
●
●

●●●●●●
●●
●●●●●●

●●
●
●
● ● ● ●

●
●
●
●

●●●
●●

●●●●●

●
●

●
●●

●●●
●●●

●●●●●●
●

●
●
●
●●

●●●
●●●
●●●
●●

●●●
●●●
●●●
●●●●●●●
●●●
●●●
●●●●

●

●●

●●●●●
●●●●●
●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●

●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●●●●

●●

●●●●●●●

●

●

●

●
●
●●●●
●

●
●

●●●

●
●

●
●

●●
●

●●●●●●●

●
●

●
●

●● ●
●

●●●

●

●

●

●●

●

●●●●●●

●
●

●

●●●●●●●

●
●

●
●

●
●●

●●●●●●●●●● ● ●

●●●●●●●●●

●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●
●
●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●

●
●
●●

●●
●●
●●●

●
●
●
●●

●

●●●
●
●

●

●●
●
●●●
●
●
●
●●
●
●●

●●

●●●●●

●

●●

●

●

●●
●

●●

●●

●
●●●

●●
●

●
●

●●

●●●

●●

●●●● ● ●

●
●

●

● ●●●●●● ● ●

●●●●

● ● ●●●●●●
●

● ● ●
●

●●●
●●●

●●●
●●●●●

●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●
●●

●●●●●

●
●●●●●●●●●●●●●●●●●●●

●
●
●●●●●

●

●●●●

●
●
●
●

●●
●
●
●●●●

●

●●●●

●●
●●
●●●●●

●

●●●

●
●
●●●●●●

●●

●●●●●●●●

●

●

●●
●

● ● ● ●

●
●

●
●

●●

●●
●
●
●●

●

●●

●

●
●
●●

●

●

●

●
●

●●●●●●●●
●●●●●

●●●

●

●●●●●●●●
●
●

●
●
●
●
●●

●●
●●

●●●●●●●●●

●

●

●●●

●●
●

●
●

●

●

●

●

●
●

●●

●
●

●●
●

●
● ● ● ●

●
●●●

●●
●
●
●
●
●
●
●
●●

●
●
●●

●●●●●●●

●
●

●●●
●●

●
●

●
● ●●●

●
●●●●●●●●●

●
●

●
●●

●●●●●●●●●●●●●
●

●
●

●
●

●

●

● ●

●

●

●
●

●

●●●

●

●●● ● ●●●●●●●●●●
●●●

●●
●
●●
●

●●● ●●
●●

●
●

●
●

●

●
●

● ● ● ●

●

●●

●●

●●
●

●
●
●

●
●●

●

●●
●●

●

●
●●●

●

● ●
●

● ●

●

●

● ●

●●

●
●
●
●
●

●●●
●●●
●●●●
●●
●●
●●
●●
●

●

●

●●●●
●
●
●
●

●●●●●
●
●●● ●

●

●●●
●●●

●●●

●●●●●●●●
●●

●●●
●●●

●●●
●●●

●●●●●●●●●

●●●●

●●●●●●●●●●●●●●
●●●●

●●●●
●●●●

●●

●●
●●
●●
●●●●●●●●●●

●●●
●●
●●●●●

●

●●●
●
● ●

●●●●
●

●●

●●

●

●●
●●●

●
●●

●

●●
●●●

●
●

● ● ●

●
●●

●
●

●●●●●●●●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
● ● ●●●●

●●
●

●●●●
●

●

●●●
●●
●●
●●
●●

●

●●●●●●●●●
●

●
●●

● ● ●
●

●

●●●●● ● ● ● ● ●

●●●
●●
●●
●●
●●
●●●●●

●●●
●●●
●●●
●●●
●●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●●●

● ●●●●●●●●

●●●●●●
●
●
●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●
●

●

●

●

●●●

●

●
●
●
●
●
●
●
●
●

●

●●

●

●

●●●●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●
●●
●●
●●
●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●●

●●●●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●
●

●

●
●●●●●●●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●

●
●●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●

●

●

●●●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●●●

●●●●●●

●
●
●
●●●●●●●

●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●●●

●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●●●

●
●
●
●
●
●
●
●
●
●

●●●●●●●●●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●● ●●●●●●
●
●
●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●●●● ●●●

●

●

●●● ● ●●●● ●●●●● ●●●●●●

●

●

●

●

●

●

●

●

●

● ●●●●●●

●

●
●

●

●

●

●●●

●

●
●

●
●

●
●

●
●
●

●

●●

●

●

●●● ●●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

● ●●●●●●

●

●

●

●

●

●

●●● ● ●●● ●●●●● ●●●●● ● ●●●● ●●● ●●● ●●

●

●

●

●

●

●

●● ●● ●●● ●●●●● ●●●●●●●●● ● ●●●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●
●●

●●
●●

●●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●● ●●●● ●●●●● ●●● ● ● ●● ●● ●●● ●●●● ● ●●●● ● ●●● ●● ●● ● ●●●●●● ●●●●●●● ●● ●●● ● ●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●●● ●

●

●

●

●

●

●

●

●

●

●●

●●●●

●
●

●

●

●

●

●

●●

●

● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●
●

●

●
●●●●●●●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●● ●

●

●
●●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●● ●

●●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●
●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●●●●●●●●●

●

●

●

● ●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ●

●

●

●●

●

●

●●●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●● ●
●

●

●●●

●●●●●●

●
●
●
●●●●●●●

●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

● ● ●

●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●● ●

●
●
●
●
●
●
●
●
●
●

●●●●●●●●●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●●

e

●●● ● ●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ●●●●●

●

●

● ● ● ● ● ● ● ●●● ● ●●●● ● ● ●●

●

●

●

●

●

●

●

●

●

● ●● ● ● ● ●

●

●
●

●

●

●

●●●

●

●
●
●

●
●

●
●

●
●

●

●●

●

●

● ●● ● ●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●● ● ● ● ● ●●●●●●●●●●

●●●●●●
●●●●●●

●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
●

●

●

●●● ● ● ● ●

●

●

●

●

●

●

●● ● ● ● ●● ● ● ●●● ● ● ● ●●● ● ● ●● ● ● ●● ●●● ●

●

●

●

●

●

●

● ● ● ● ●● ● ●● ● ● ●●●● ●● ● ●●●●● ●●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●●● ● ● ●●●
●● ● ● ● ●●

●

●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●●●● ● ● ● ●● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ●● ● ● ●●● ●● ● ●● ● ● ● ● ● ● ● ● ● ●● ● ● ● ● ● ●●● ● ●● ● ●● ●●●

●

●

●

●

●

●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ●●

●

●

●

●

CPU

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●●

●

●●● ● ●● ●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●●●

●
●

●
●
●

●

●

● ●

●

●●●

●

●

●

●

●

●

●
●●●●●●●●●●

●

●

●

●

●●

●

●

●

●
●

●
●

●● ●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●●●●●●●●●●●●●● ●●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●● ●●

●

●

●●

●

●

● ●

●

●

●

●

●

● ●●●●●● ● ● ● ● ● ● ●●●●●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●● ●

●

●

● ●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
● ●●●● ●●●●●

●

●

● ● ●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●● ●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●

●

●

●●●●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
● ● ● ● ●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●●
●

●

●●●

●●●●●●●●●

●
●

●
●●●●●●●

●●●●●●●●●●●

●

●

●

●

●●● ● ● ●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●●●●

●

● ●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●

●
●

●

●

●●●

●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●● ●●● ●●●

●

●

●

● ● ●

●
●
●

●

●

●

●

●

●
●

●●●●●●●●●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●● ● ● ●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●●●●●

●

●

● ● ● ● ● ● ● ●●●●● ● ●●●● ●●

●

●

●

●

●

●

●

●

●

●●● ● ● ● ●

●

●
●

●

●

●

●● ●

●

●
●

●
●

●
●

●
●

●

●

● ●

●

●

●●● ● ●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

● ●●●●●●

●

●

●

●

●

●

●●●●●●● ● ● ●●●●● ● ●●●●●●● ● ● ● ●●●●●

●

●

●

●

●

●

●●●●● ● ● ●●●●●●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ● ●●●●●● ● ●●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●●●●●● ● ● ● ● ●●●●●●●●●●●●●● ● ● ● ● ● ●●●●●●●●●●●●● ● ● ● ● ●●● ●●●●●●●●●●●●●● ● ● ● ● ● ● ● ●●● ●●●● ● ● ●

●

●

●

●

●

●

● ● ● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
● ● ●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●●●●●

●

● ●● ● ●● ●● ● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ● ●●

●
●

●
●
●

●

●

●●

●

● ● ●

●

●

●

●

●

●

●
●●●●●●●●●●

●

●

●

●

●●

●

●

●

●
●
●
●

● ● ●●●●●

●

●

●

●

●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●●●●

●●●●●●●●●●●●●●● ● ●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ●● ●●

●

●

●●

●

●

●●

●

●

●

●

●

● ● ●●●●●●●●●●●● ● ● ●●

●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●●●

●

●

●●

●

●

●

●

● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ●● ●

● ●●●●●●●●●●●●●●●●●● ●

●

●

●

●

●

●
● ● ●●● ●●●●●

●

●

●●●

●

●

● ● ●●●●●●●●●●●●●●● ● ●●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

● ● ●●● ●●●●●

●

●

●

● ●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●● ●

●

●

●●

●

●

● ● ●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●●●●● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

● ●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●
●

●

●●●

●●●●●●●●●

●
●
●

● ● ●●●●●

●●●●●●●●●●●

●

●

●

●

● ● ●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●● ● ●●

●

● ●

●●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●●●

●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

● ● ●●● ●●●

●

●

●

● ●●

●
●
●
●

●

●

●

●

●
●

●●●●●●●●●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●●●●●●●● ●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●
●●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●

●

● ●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●
●● 0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

● ● ● ● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●●●●●● ● ● ● ● ●●●●●●

●

●

●

●

●

●

●

●

●

●●● ● ● ● ●

●

●
●

●

●

●

●●●

●

●
●
●
●

●
●

●
●

●

●

●●

●

●

●●●●●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●●●● ● ● ●

●

●

●

●

●

●

●●●●●●● ● ●●●●●●●●● ●●●●●●●●●●●● ●

●

●

●

●

●

●

●●●●●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●
●●
●●
●●
●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●●●●●●●●● ● ● ● ●● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●●●●●●●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●
●

●
●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●
●●●●●●●●●●

●

●

●

●

●●

●

●

●

●
●
●
●
●●●●●●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●● ● ●●

●

●

●●

●

●

●●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●● ● ●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●
●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●

●

●

●●● ●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

● ● ●

●●●●●●●●●

●
●

●
●●●●●●●

●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●
●

●

●

●●●

●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●●●

●
●

●
●

●

●

●

●

●
●

●●●●●●●●●●●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●●●●●

0
1

2
3

4
5

●

●●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●
●
●
●
●
●

●

●
●

●

●●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●

●

●

●

●

●

●

●●●

●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●

●

●

●

●

●

●

●

●
●●●

●
●
●
●
●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●
●
●
●
●
●
●

●

●●●

●

●

●●●

●

●●
●

●●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●

●

●

●

●

●

●●●●

●

●

●

●
●●

●
●

●

●

●

●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●

●

●

●

●

●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●

●

●

●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●●

●

●

●
●
●
●
●
●
●
●
●
●

●

●

●

●●

●

●●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●
●

●

●

●

●
●
●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●
●
●
●
●
●
●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●●●●●
●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●●
●

●
●

●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●●●●●●

●

●

●●●

●●●●●●●●●●●●●●●

●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●

●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●●●

●

●●●●●●●●●●●●●●

●●

●●

●

●

●●●●●
●

●

●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●●●●●●
●
●
●
●
●
●
●
●

●

●●●●●

●
●
●
●
●
●
●
●●●●

●●
●
●
●
●
●
●
●
●
●

●

●
●

●●●●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●●

●●●●●●

●

●

●
●

●●

●

●●

●

●

●
●

●●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●
●

●

●

●

●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

●

●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●

●

●

●
●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●●●
●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●●●●●●
●
●
●
●
●
●
●
●●

●
●

●
●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●●
●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●●
●
●
●
●
●
●
●
●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●

●

●

●

●●●

●
●●●●●●●●

●●

●

●

●●●●●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●●●●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●
●●●●

●●

●●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●
●

●●

●

●

●●●●●●●●●●

●

●

●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●

●

●

●●●●●●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●

●●●●●●●●

●

●

●●●●●●●●

●●

●

●●●●●●●●● ●

●●

●

●

●●●●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●
●
●

●
●

●
●

●

●
●

●

●●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●

●

●

●

●

●

●●●

●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●

●●●
●●●

●●

●

●

●

●

●

●

●

●
●● ●

●
●
●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

● ●●

●

●

● ●●

●

●●
●

●●● ●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●● ●●

●

●

●

●

●

●●●●

●

●

●

●
●●

●
●

●

●

●

●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●

●

●

●

●

●

●

●●
●●

●●
●●
●●
●●
●●
● ●●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●
●

●
●

●
●
●

●

●

●

●●

●

●

●
●
●
●

●
●

●
●

●
●

●

●

●

●●

●

●●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●
●
●

●
●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●
●

●

●

●

●
●
●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●
●
●
●
●
●
●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●● ●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●● ●● ●
●

●

●

●●

●

●

●

●●●●●

●

●

●

●

● ●
●

●
●

●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●●●●●●

●

●

●●●

●●●●● ●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●
●●
●●●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●●●

●

●●●●●●●●● ●●●●●

●●

● ●

●

●

●● ●●●
●

●

●●●

●

●

●●

●●●● ●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●●●●●●
●
●
●

●
●
●
●
●

●

●●●●●

●
●
●
●
●
●
●
●●●●

●●
●
●
●
●
●
●
●
●
●

●

●
●

●●●●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●

●

●

●

●●

●●●●●●

●

●

●
●

●●

●

●●

●

●

●
●

● ●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●●
●

●

●

●

●●●●● ●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●● ●

●

●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●

●

●

●
●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●●●●●● ●●●●●●●●●

●

●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●

●

●

●●●●●

●

●

●

●

●●●

●

● ●●

●

●

●

●

●

●

●●

●

●

●●●●●
●

●

● ●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●●●●●●●
●
●
●
●
●
●
●
● ●

●
●

●
●

●

●

●●●

● ●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●● ●

●

●

●●
●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●●
●
●
●
●
●
●
●
●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●

●

●

●

●●●

●
●●●●●●●●

● ●

●

●

●●●●●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

● ●● ●

●

●
●

● ● ●●

●

●

●

●

●

●

●

●

●
●●● ●

●●

●●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●● ●●●●●●●●●

●

●
●

● ●

●

●

●●●●●●●●●●

●

●

●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●

●

●

●●●●●●●

●

●

●

●

●

● ●

●

●

●●●

●

●

●

●

●

●●● ● ●●●● ●●●●●●●●●

●

●

●

● ● ●●●● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●● ● ●

●

●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●●●●●●●●

●

●

●●●●●●●●

●●

●

●●●●●●●●● ●

●●

●

●

●●●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●

●
●
●
●
●
●
●

●

●
●

●

●●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●●●

●

●●●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●● ● ●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
● ●●

●
●
●
●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●
●
●
●
●
●

●

●●●

●

●

●●●

●

●●
●

●●●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●● ● ●

●

●

●

●

●

●●●●

●

●

●

●
●●

●
●

●

●

●

●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●

●

●

●

●

●

●

●●●●●●●●● ● ●●
●● ●●

●●
●

●

●

●

●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●●

●

●

●
●
●
●
●
●
●
●
●
●

●

●

●

●●

●

●●

●

●

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●

●

●
●

●

●

●

●
●
●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●
●

●
●

●
●

●
●●●●●●

●

●

●

●

●●●● ● ●● ●●●●●● ● ●●●●●●●● ● ● ●●● ● ●●●●●

●

●

● ●● ●●●●●●●●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●●● ● ● ●● ●
●

●

●

●●

●

●

●

●●●● ●

●

●

●

●

●●
●

●
●

●●●●● ●●●●●●●●●● ● ●●●
●

●

●

●

●

●

●●●● ● ● ●

●

●

●●●

● ● ●●●●● ● ● ●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●
● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●●●

●

●●●● ● ●●●● ● ●●●●

● ●

●●

●

●

●● ● ●●
●

●

●●●

●

●

●●

● ● ●● ●● ●●●● ●●●● ●● ● ●● ● ●●● ● ●● ●●●●●

●

●

●

●

●

●

●

●●●●

●

●

● ● ● ●●●
●

●
●

●
●

●
●

●

●

●●●●●

●
●
●
●
●
●
●
●●●●

● ●
●

●
●

●
●

●
●

●
●

●

●
●

●●●●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●

●

●●●●●

●

●

●

●

●

●

● ●

● ● ●●●●

●

●

●
●

● ●

●

●●

●

●

●
●

● ●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●●●● ● ● ●
●

●

●

●

●●●●●● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●●● ●

●

●

●

●

●

●
●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

● ● ● ●●●● ●●● ●●●●●

●

●●●● ● ●● ● ● ●● ●●●●●● ● ●●● ●●●● ● ●●

●

●

●●●● ●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●

●

●●●● ●
●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●●●●● ●
●

●
●

●
●

●
●

●●

●
●

●
●

●

●

●●●

● ●

●

●

●
●

●

●

●

●

●

●

●●● ● ●●●●● ●●

●

●

●●
●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ● ●●
●

●
●

●
●

●
●

●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●

●

●

●

●●●

●
● ● ● ●● ●●●

● ●

●

●

●●●●● ●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●● ● ●

●

●
●

● ●●●

●

●

●

●

●

●

●

●

●
●●●●

● ●

●●
●

●

●●●●●●●●●

●

●●●●●● ●●

●

●● ●● ● ●● ●●●●

●

●
●

●●

●

●

●●●●●●●●● ●

●

●

●●●

●

●●● ●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●

●

●

● ●●●● ●●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●●●● ● ●●● ● ● ●●●● ● ●●

●

●

●

●●● ●●● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●●●●●

●

●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●●●●●●●●

●

●

●●●●●●●●

● ●

●

●●●●●●●●●

e
Disk Wait

Queue
aitQ

● ●

●

●

●
● ● ●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ●

●

●● ●

●

● ● ●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
● ●

●

●

●

●

●

●

●
● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
● ● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●● ● ●

●

●

●

●

●

●● ● ●

●

●

●

●
● ●

●
●

●

●

●

●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●
●
●
●
●
●
● ● ● ●● ●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●●●●

●

●●
●

●

●●●●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

● ●

●

●

●

●●●●●

●

●

●

●

● ●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●●●●●●

●

●

● ● ●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●● ●

●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ●

● ●

●

●

●●●●●●●●

●

●●●
●

●
● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

● ● ● ●

●

●

● ●●●●
●

●

●

●

●

●

●

●

●

●

● ●●●●

●

●

●

●

●

●

●

● ● ● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●●●●
●

●

● ●

●●●●●●●●●●

●

●

●

●

● ●

●

●●

●

●

●

●

● ●

●

●

●

●
● ● ●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

● ●●●●●●●●●●●●●●●●
●

●

●

●

● ● ● ●● ●●

●●●●●●●●●●●●●●●
●

●● ●

●

●

●

●

●

●

●

● ●●

●

●

●●●●●

●

●

●

●
●
● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●● ●
●

●●●●●●●●●●●●●●●

●

●●●

●

●

●●●●●●●●●●●

●

●

●●●●●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●
●

●●●●●
●

●

● ●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●●●●●●●
●
●
●
●
●
●
●
● ●

●
●

●
●

●

●

● ● ●

●●

●

●

●
●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●●
●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●●●
●
●
●
●

●

●

●

● ● ●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●

● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●
● ● ●

●
●●●●●●●●

● ●

●

●

●●●●●●●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

● ●●●

●

●

●

●

●

●

●

●

●

●●●●

● ●

●●
●

●

●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●
●

●●

●

●

●●●●●●●●●●●●●

●

●

● ● ●

●

●●●●●●●●●●●●●●

●

●

●

● ● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ●

●
●

●

●

●●●

●

●●
●

●

●●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
● ● ●

●

●●●●●●●●

●

●

●●●●●●●●

● ●

●

●●●●●●●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●

●

●●
●

●

●●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●

●

●●●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●●

●

●●
●

●

●●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●●●●

●●

●

●

●●●

●

● ●●

●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●

● ●

●

●

●
● ● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●

●

●

●

●

●

●
●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ● ● ●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●

●

●

●

●

●

●●●●

●

●

●

●
●●

●
●

●

●

●

●

●●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●

●

●

●

●

●

●

●
●

●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●
●
●
●
●
●
●
●
●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

● ● ●●●●●●●●●●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●●●●

●

●●
●

●

●●●●

●

●

●

●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●●●●●●●

●

●

●●●

● ● ● ●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●

●

● ● ●●●●●●

●

●●●
●

●
● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●

●

●

●●●●●
●

●

●

●

●

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

●

●

● ● ● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●

●

● ●●●
●

●

●●

● ●●●●●●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ● ● ●●●●●●●●●●●●●●
●

●

●

●

●●●●●●●

●●
●●

●●
●●

●●
●●

●●
●
●
●●●

●

●

●

●

●

●

●

●●●

●

●

●●●●●

●

●

●

●
●
●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●●●
●

●●●●●●●●●●●●●●●

●

●●●

●

●

● ● ● ● ● ● ●●●●●

●

●

●●●●●●●●

●

●●●

●

●●●

●

●

●

●

●

●

●●

●
●

●●●●●
●

●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●

●●●●●●●
●
●
●
●
●
●
●
●●

●
●

●
●

●

●

●●●

● ●

●

●

●
●

●

●

●

●

●

●

● ● ● ● ● ● ●●●●●

●

●

●●
●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

● ● ● ●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●

●●

●

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●

●

●

● ● ●

●

●

●

●
●●●

●
●●●●●●●●

●●

●

●

● ●●●●●●

●

●

●

●

●

●

● ● ●

●●

●

●

●

●

●

●

●

●

●
●●●●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

● ● ●●

●●

●●
●

●

●●●●●●●●●

●

●●●●●●●●

●

● ●●●●●●●●●●

●

●
●

●●

●

●

● ● ● ●●●●●●●●●●

●

●

●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●●

●
●

●

●

●●●

●

●●

●

●

● ●●

●

●

●

●

●

● ● ● ●●●●●●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●●

●

●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●●

●

● ● ● ● ● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●

●

●●●●●●●●

●

●

●●●●●●●●

●●

●

● ●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●●●●●

●●●●●●

●

●

●

●
●
●
●
●
●

●

●●

●

●

●

●

●

●

●●

●●●●●●●●

●

●

●

●

●

●
●
●
●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●●
●

●

●

●

●

●

●

●

●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●●●●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●
●●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●
●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●●●●●●●●●●●●
●
●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●

●
●
●
●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●
●
●
●●●

●

●

●

●

●

●

●

●●●●●
●
●
●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●
●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●
●
●
●●●●●●●●●●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●●
●

●●

●
●

●

●

●

●
●

●
●

●●

●●●
●
●
●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●●●●●●●

●
●

●

●

●●●●●●
●
●

●

●

●

●

●

●

●●●●

●

●●

●
●

●●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●●
●

●
●
●
●

●

●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●
●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●

●

●●●●●●●●●●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●

●

●

●

●

●●●●
●

●

●

●
●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●●

●

●●●●●●
●

●

●

●

●●

●

●
●●●

●

●

●

●●

●

●●●●
●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●●●●●●●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●●●●● ● ●

●●●● ●●

●

●

●

●
●
●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●●●●●●●●

●

●

●

●

●

●
●
●
●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●

●

● ●
●

●

●

●

●

●

●

●

●●●●●●●● ●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●● ●●●

●

●

●●● ●● ●● ●●

●

●●●●● ●●●●●●●●● ● ●●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●
● ●●

●●●●●●●●●●●●●●●● ●● ●●●● ●●●
●●

●●● ● ● ●● ●● ●●● ●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●

●●● ●●●●●●●●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●

●
● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●● ●● ●●●●

●

●

●

●

●●●●●● ●●●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●●● ●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●●●● ●●●●●

●

●

●

●

●

●

●

●

●●●●

●
●

●
●●

●

●

●

●

●

●

●

●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●
●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●
●
●
●●●
●

●

●

●

●

●

●

●●●●●
●

●
●
●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●● ●●●●●●●●●
●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●

●

●●

●
●

●
●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●
●
●
●●●●●●●●●●

●

●

●

●●●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●● ●
●

●●

●
●

●

●

●

●
●

●
●

●●

●●●
●
●
●●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●●●●●●●

●
●

●

●

●●●●● ●
●

●

●

●

●

●

●

●

●●● ●

●

●●

●
●

●● ●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

● ●
●

●
●

●
●

●

●●●●●●●●●●●●●●●●●●
●●

● ●●●●●●●●●●
●

●

● ●

●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●

●

●●●●●●●●●●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●

●

●

●

●

●●● ●
●

●

●

●
●●●

●

●

●

●

●

●

● ●●●● ●●●●●●●●●●

●●

●

● ●●●● ●
●

●

●

●

●●

●

●
●●●

●

●

●

●●

●

● ● ●●●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●●●●●●●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●● ● ●●●

●●●●●●

●

●

●

●
●
●
●
●
●

●

●●

●

●

●

●

●

●

●●

●●●●●● ●●

●

●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●●●●●●● ●●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●

●

●

●● ● ●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●● ●●
●●

●●●●●●●●● ● ●●●● ●●●●●●
●●
●●
●●
●●
●●●●●●●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●

●

●●●●●●●●●●●●●●

●

●

●●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●●●●●●●●●

●

●

●

●

●●

●

●

●
●

●

●

● ● ●● ●●●●●● ● ●●●●●●●● ● ● ●●● ● ●●●●●● ●● ●● ●●●●●●●●● ●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
● ● ● ●● ●● ●●

●

●

●

●

●●●●● ● ● ●●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●● ● ●●●●●●

●

●

●

●

●

●

●

● ● ●●●

●

●

●

●

● ●●●●● ● ● ●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
● ● ●●●● ● ●●●●

●

●

●

●

●

●

●

●

● ●●●

●
●

●
●●

●

●

●

●

●

●

●

●● ●●●● ●●●● ●● ● ●● ● ●●● ● ●● ●●●●● ● ●●●●●●●

●

●

●

●

●

●

●

●

●

●

● ● ●●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ● ●

●
●

●
●

● ●●
●

●

●

●

●

●

●

● ●●●●
●

●
●

●

●

● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●● ● ● ●● ●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●●● ●●● ●●●●●
●●●●● ● ●● ● ● ●● ●●●●●● ● ●●● ●●●● ● ●● ●●●●●● ●

●

●●

●
●

●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●
● ●●●●●●●●●

●

●

●

●●●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

● ● ●●●●● ●●
●

●●

●
●

●

●

●

●
●

●
●

●●

●●
●

●
●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●● ● ●●●●● ●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

● ● ●● ●●●●

●
●

●

●

●●●● ● ●
●

●

●

●

●

●

●

●

● ●●●

●

●●

●
●

● ● ●

●

●

●

●

●

●● ●●●

●

●

●

● ●

●

●

●

●●
●

●
●

●
●

●

●●●●●●●●●● ●●●●●● ●●
●●

● ●● ● ●● ●●●●●
●

●

●●

●

●

●

●

●

●●●●●● ●●●

●

●

●●

●

●

●

●●●●●●●●●●● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ● ●●●●●●●● ●

● ●●●● ●

●

●

●

●

●●●●
●

●

●

●
● ●●

●

●

●

●

●

●

● ● ●●● ● ● ●●●● ● ●● ●

● ●

●

●● ●●● ●
●

●

●

●

●●

●

●
●● ●

●

●

●

●●

●

●●● ● ●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●●●●●●●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ● ● ● ● ● ● ●

● ● ●●●●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

● ●

●● ●●●● ●●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●●
●

●

●

●

●

●

●

●

● ● ● ● ● ● ●● ●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●● ● ●

●

●

●●●●●●●●●

●

●● ● ● ●●●● ●●● ●●●●● ●●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●● ● ● ● ●● ● ● ●●●●●●●●●●●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●●●● ● ● ● ●●●●●●●

●

●

● ● ● ● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ● ● ● ● ● ● ● ● ●

●

●

●

●

●●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●● ●

●
●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●●●●●●● ● ●

●

●

●

●

●●●●●● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●● ● ●

●

●

●

●

●

●

●

●●● ● ●

●

●

●

●

●●●●●●●●●●●●●●
●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●

●
●
●
● ●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

● ● ● ●●●●●●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●

●
●
●
●
● ● ●

●

●

●

●

●

●

●

●●●●●
●

●
●

●

●

● ● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●

●

●●

●
●
●
●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●
●
●
●
●● ● ● ● ● ● ● ● ●

●

●

●

●●●

●

●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●

●

●●●●●●●●●
●

●●

●
●

●

●

●

●
●

●
●

● ●

●●
●

●
●

● ●

●

●

●

●

● ●

●

●●●

●

●

●

●

●

● ● ● ● ● ● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●●●●●● ●

●
●

●

●

●●●●● ●
●

●

●

●

●

●

●

●

●● ●●

●

● ●

●
●

●●●

●

●

●

●

●

●● ● ● ●

●

●

●

●●

●

●

●

●●
●

●
●
●

●

●

●●●●●●●●● ●●●●●●●●●
●●

●●●●●●●●●● ●
●

●

●●

●

●

●

●

●

●●●●●●● ● ●

●

●

●●

●

●

●

●●●●●●●●●●● ●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●

●●●●●●

●

●

●

●

● ●●●
●

●

●

●
● ● ●

●

●

●

●

●

●

●●●●●●●●●●●●●● ●

●●

●

●●●●●●
●

●

●

●

●●

●

●
● ●●

●

●

●

●●

●

●●● ●●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

● ●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●●●●●●●●

e
Disk

Utilization

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●●●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●
●
●

●
●
●
●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●
●
●
●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●●●●●●

●

●●●●

●

●

●

●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●●●●●

●

●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●
●
●

●
●
●
●
●
●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●
●
●
●
●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●●●●●●

●

●●●●

●

●

●

●

●●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●

●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●● 0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●
●

●
●

●●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●

●

●●

●

●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●
●

● ●

●●

●

●

●●●

●
●

● ●

●

●

●●
●
●
●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●●●●●●●●●●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●

●

●

●

●

●

●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●●●●●

●
●

●
●●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

● ● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●

●

●

●

●●●●●●●●●
●

●
●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●
●●● ● ● ● ● ● ●●●●●

●

●●
●
●
●●●●●

●
●
●
●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●
●
●
●
●
●
●●●●●●●●●●

●

●

●

●●●

●

●

●

●

● ●
●

●

●

●●

●

●

●

●

●

●

●

● ● ● ● ●●●●●
●

●●

●
●

●
●

●

●
●

●
●

●●

●●●
●
●
●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●
●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
● ● ● ● ●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●●●

●

●

●●

●

●●●●●●●●

●
●

●

●

●

●●●●●●
●

●

●

●

●

●

●

●

●●●●

●

●●

●
●

●

●
●

●●●

●

●

●

●

●

●●
●●●

●

●

●

● ●

●

●

●

●●
●

●
●
●
●

●
●●●●●●●●●●●●●●●●●●

● ●
●●●●●●●●●●●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●

●

●

●●

●

●

●

●●●●●●●●●●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●

●
●

●

●

●

●●●●●●●

●

●

●
●●●

●

●

●

●

●

●

●●●●●●●●●●●●●●●

●●

●

●●●●●●

●

●

●

●

● ●

●

●
●●●

●

●

●

●●

●

●●●●●●●●●●●●●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●●●●●●

●

●

●

●

●●●●●●●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●● ● ●●●● ●●●●● ●●●●●●●●●●●● ●● ●●● ●●● ●●●●● ●● ●● ●●● ●●●●● ●●●●●●●●● ● ●●● ●●●● ●● ●●● ●●●● ● ●●●● ● ●●● ●● ●● ● ●●●●●● ●●●●●●● ●● ●●● ● ●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●● ● ●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ● ● ● ●●● ●● ● ● ● ● ● ● ●●● ● ●●●● ● ● ●● ●●●● ●●● ●● ●●● ● ●● ●●●●●●●●●● ●●● ● ● ●●●● ●●● ●●●●● ●●● ●● ●●●●●●●●● ● ● ●● ● ●●●●●●●●●●●● ● ● ●●● ●● ● ●●●●●●●●●●●●● ● ● ● ● ●●●● ● ●● ● ●● ●●●● ●● ● ● ● ● ● ● ● ● ●●●● ● ● ● ●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ● ● ●●●●●●●●● ● ●●●●● ● ●●●● ●●●●●●●●● ● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●● ● ● ● ● ●●● ●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●● ● ● ●●●●●●●●●●● ● ●●●●●●●●●●●●●●● ●●●●●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

Control Mark
"Right"

●●

●●●

●●●●●●●●●●●●●●●

●●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

● ● ●●●●●●●●●●● ● ● ● ● ●●●●●●●● ● ● ● ●●●●●●● ● ● ● ●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ●●

●● ●●●

●●●●●● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●

●●● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●● ● ●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●● ●●●● ● ●●●● ●●●●● ●●●●●●●●●●●● ●● ●●● ●●● ●●●●● ●● ●● ●●● ●●●●● ●●●●●●●●● ● ●●● ●●●● ●● ●●● ●●●● ● ●●●● ● ●●● ●● ●● ● ●●●●●● ●●●●●●● ●● ●●● ● ●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●● ● ●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ● ● ● ●●● ●● ● ● ● ● ● ● ●●● ● ●●●● ● ● ●● ●●●● ●●● ●● ●●● ● ●● ●●●●●●●●●● ●●● ● ● ●●●● ●●● ●●●●● ●●● ●● ●●●●●●●●● ● ● ●● ● ●●●●●●●●●●●● ● ● ●●● ●● ● ●●●●●●●●●●●●● ● ● ● ● ●●●● ● ●● ● ●● ●●●● ●● ● ● ● ● ● ● ● ● ●●●● ● ● ● ●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ● ● ●●●●●●●●● ● ●●●●● ● ●●●● ●●●●●●●●● ● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●●●●●●●●●● ● ● ● ● ●●● ●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●● ● ● ●●●●●●●●●●● ● ●●●●●●●●●●●●●●● ●●●●●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●

Control Mark
"Wrong"

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

● ● ●●●●●●●●●●● ● ● ● ● ●●●●●●●● ● ● ● ●●●●●●● ● ● ● ●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●● ●●

●● ●●●

●●●●●● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●

●●● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

●●●●●●●●●●●●● ● ●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●

0 500 1000 1500 2000

0
10

20
30

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●●●●
●
●
●
●
●
●
●
●
●
●
●
●●●●

●

●●●●●●●●●●●●●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●

●

●

●
●
●
●
●
●●
●●
●●
●●
●●●●●●●●●●
●

●

●

●
●
●●
●
●
●
●
●
●
●●

●
●
●
●
●
●

●

●

●●●●
●
●
●
●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●●●
●
●
●●
●
●
●
●
●
●
●
●●●●●●
●●●
●●●
●●●
●●●
●

●

●

●

●

●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●
●●●●●
●●●●●
●●●●●
●●

●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●

●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●●●●
●●●●●●●
●●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●

●

●●●●●●●
●●●●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●●●●●●●●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●
●
●●
●
●
●
●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●

●●●●●●●●●●
●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●
●●
●

●

●

●
●
●

●●

●
●
●
●
●●●
●
●
●
●
●

●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●

●

●

●

●
●
●
●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●
●
●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●
●●

●
●
●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●
●●

●

●

●●

●

●

●

●
●●●●●●●

●

●

●

●●
●●●●●●●●
●●
●●
●●
●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●
●
●

●●●
●●
●●
●●●●●●●●
●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●
●●●
●●●●
●
●
●
●
●
●●●
●
●
●●

●

●

●

●

●

●●
●
●
●
●
●
●
●
●●●●
●●
●●
●●
●●●●●●●●●●●

●

●
●
●●
●
●
●

●
●
●

●

●●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●
●

●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●

●

●

●

●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●
●

●
●
●
●
●●●●●●●●
●●
●●
●●

●
●
●
●
●
●
●
●

●●

●

●

●

●

●
●
●
●
●
●
●

●
●
●
●
●
●
●
●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●
●
●
●●●●●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●

●
●
●

●●●
●
●
●●

●
●

●

●

●

●
●●

●

●

●
●
●
●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●
●
●●
●

●

●

●

●●●●●●●
●
●●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●

●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●
●●●●●

●
●

●
●

●
●
●
●
●

●
●

●●●●

●

●●● ●●●● ● ●●●● ●●
●

●
●

●●
●
●

●
●

●
●

●
●

●
●

●●
●●

●●
●

●

●

●
●
●

●
●

●●
●●

●●●●●●●●●●●●●●
●

●

●

●
●

●●
●
●

●
●

●
●

●●● ●●●●●
●
●
●

●
●

●

●

●

●●●●
●
●
●

●
●
●

●
●

●
●

●

●
●
●
●

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
● ●●

●
●

●●
●
●

●
●

●
●

●
●● ●●●●● ●●●●●

●●●
● ● ●●

●

●

●

●

●
●●

● ●●●
●●
●●

● ●●
●●●●
● ●●

●●
●●●●●●●●●●

●●●●●
●●● ●●● ●●● ●●●●●

●●
●●

●●
●●
●●●
●
●

●
●

●
●

●
●

●

●
●
●
●

●

●
●

●
●

●
●

●● ●●● ●●●● ● ●●●● ● ●●● ●● ●● ● ●●●●●● ●●●●●●● ●● ●●● ● ●●●● ●●●● ●●●●●
●

●
●

●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●

●
●

●

●

●

●

●
●

●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●●●●

●●●●●●●●●●●●
●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●

●
●

●
●

●
●

●

● ●●●●●●
●●●●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●●●● ●● ●●
●
●

●
●

●●
●
●
●
●
●

●
●
●
●

●
●

●
●
●●●

●
●
●
●

●●
●
●
●
●●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●● ●●

●●●●●●●
●
●
●

●
●●

●
●

●
●
●
●

●
●

●
●
●●

●

●

●

●
●

●

●●

●
●
●
●
●●●

●
●

●
●
●

● ●
●
●

● ●● ●●● ●●●●●●●●● ●●●●●●●●
●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●

●

●

●

●
●
●
●
●
●
●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●
●

●●●●●●●●●●●●●
●●
●●
●●
●●
●●
●●
●●

●●●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●●●

●●●●●●●
●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●●
●●

●

●

●●

●

●

●

●
●●●●●●●

●

●

●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●●●●●●●●

●●
●●
●●

●●●
●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●
●

●
●

●●●●●
●●

● ●●●●●●●●●●●●●● ●●●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●●● ●● ●●●
●
●
●
●
●
●●●

●
●
●●

●

●

●

●

●

●●
●
●
●
●
●

●
●

● ●●●●●
●●

●●
●●●●●●●●● ●●

●

●
●

●●
●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●
●
●

●
●
●● ●●●●●●●●●●●●●●●●●●●●●● ●●●

●● ●●
●

●
●

●

●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●

●

●

●

●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●● ●●●
●

●
●
●
●
●●●●●●

●●●●
●●

●●

●
●

●
●

●
●

●
●

●●

●

●

●

●

●
●
●

●
●

●
●

●
●

●
●

●
●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●
●

●●●●●●●●●●●●●
●●●●●●●●●●●

●

● ●●●●●●●●●●●●● ● ●●●

●

●●
●
●
●
●
●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●●

●
●

●

●●●
●

●
●●

●
●

●

●

●

●
●●

●

●

●
●
●

●● ●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●●● ●●●
●
●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●

●
●
●
●
●
●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●●●● ●

●
●

●
●

●
●

●
●

●
●
●
●●●●

●

●●●● ●●●●●●●●●●
●
●
●
●●
●
●
●
●

●
●

●
●

●
●

●● ● ●●
●
●

●

●

●
●

●
●

●
● ● ●●

●●●●●● ● ● ● ● ● ● ●●
●

●

●

●
●
●●

●
●

●
●

●
●
●●● ● ●●●●●●●●●●●●● ●●●● ●●●

●
●

●
●
●
●

●

●

●●● ●
●

●
●

●
●
●
●
●
●
●

●

●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●
●●●

●
●

●●
●

●
●
●
●
●
●
●●●●●●
●●●
●●●
●●●
●●●
●

●

●

●

●

●
●● ● ●●●●●●● ● ● ● ●●●● ●●● ●●

●● ● ●●●●●●●●●●●●●●● ● ● ● ●●● ● ●● ●●●●●●●●●●●●● ● ●●●
●

●
●
●
●
●
●
●
●

●
●
●
●
●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●

●

●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
● ● ●●●●●●●●●●●●●●●●●

● ●
●

●
●

●
●

●
● ●●●●●● ● ●●●●●●●● ● ● ●

●
●

●
●
●

●
●

●
●

●
●

●

● ●●●●●●●●● ●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●● ● ● ●● ●●
●
●

●
●
●●

●
●

●
●

●
●

●
●
●

●
●
●
●

● ●●
●

●
●

●
●●

●
●

●
●●

●
●

●
● ●●●●●●●●●●●●● ● ● ●●●●●●●

●
●●●

●● ● ● ●●●●●● ● ●●●●●●●●●●●●●●●●●●●
●●●● ● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●
●●●●●●●

●
●
●
●

● ●
●

●
●

●
●
●

●
●

●
●
●●

●

●

●

●
●

●

● ●

●
●

●
●

● ●●
●

●
●

●
●

● ●
●

●
● ●● ●●●● ●●●● ●● ● ●● ● ●●● ● ●●

●

●

●

●

●

●

●
●

●
●

●
●

●
●
●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●
●

●●●●●●●●●● ●●●●●●●●●●●●●●●●● ● ●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●● ● ● ●●●●● ●
●

●
●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●●
●

●

●

●●

●

●

●

●
●●●●●●●

●

●

●

●●● ● ● ●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●
●●

● ● ●●
●●●●●

●●●●●●●●●●●●●●●●●● ● ● ●●●● ●●● ●
●

●
●

●

●●●●●
● ●● ● ● ●● ●●●●●● ● ●●● ●●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●●● ● ●●●● ● ●
●

●
●
●
●
●●●
●
●
● ●

●

●

●

●

●

●●
●

●
●

●
●
●
●

●● ● ● ●●●●●● ●●●●●●●●●● ●

●

●
●

● ●
●
●
●

●
●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●
●
●

●
● ●● ● ●●●● ● ●●● ● ●●●● ●●●●●●●● ● ●

●●●●
●
●
●

●

● ● ●●
●

●
●

●
●

●
●

●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●

●

●

●

●

●

●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●● ● ● ●

●

●
●
●
●
●● ● ● ●●

●●●● ● ●
●●

●
●
●
●

●
●
●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●

●
●
●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●
●●●● ● ●●●●●●●●●● ●●●●●● ●● ●

●

● ●● ● ●● ●●●●●●●●● ● ● ●

●

●●
●
●
●
●
●

●
●

●
●
●
●
●●●● ●●●●●●●●●●● ● ●●●●●●●●● ● ● ●●●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●● ● ●●●●●●●● ● ●
●
●
●

●
●●

●
●
●

●●●
●

●
●●

●
●

●

●

●

●
● ●

●

●

●
●

●
●● ● ● ●●●● ● ●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●●● ●●● ●
●

●●
●
●
●

● ●●●●●●●●● ● ●●●●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●●●●●●● ● ●● ● ●●●●●●●●● ● ●●●

●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●
● ● ● ●●

●
●

●
●

●
●

●
●

●
●

●
● ● ●●

●

●●● ●● ● ● ● ● ● ● ●●●
●

●
●

●●
●

●
●
●

●
●
●
●

●
●

● ● ● ● ●●
●

●

●

●
●

●
●
●
●● ●●
●● ●●
●●● ● ● ● ●●●●

●

●

●

●
●

● ●
●

●
●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●● ● ●●● ● ● ●
●

●
●
●

●
●

●

●

● ● ●●
●

●
●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●
●

●
●● ●

●
●

●●
●

●
●

●
●

●
●

● ●●● ● ● ●●●
● ●●● ●●●

●● ●

●

●

●

●

●
● ● ●●

●● ● ● ● ●●
●●● ● ● ● ● ●● ●●

●●●●●●●●●●●●●●●●●●●●● ● ● ● ● ●●●●● ● ● ●●●●● ● ● ● ●● ● ● ● ● ●●●●●●●●●●●●●
●
●
●
●
●
●
●

●
●

●

●
●

●
●

●

●
●

●
●

●
●
●●●●●●●● ● ● ●● ● ●●●●●●●●●●●● ● ● ●●● ●● ● ●●●●●●●●●●●●● ● ● ● ● ●●●● ●

●
●

●
●● ●●●● ●● ● ● ● ● ● ● ● ● ●●●● ● ● ● ●●●●●●●

●
●

●

●

●

●

●
●

●

●● ●●●●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●● ● ● ● ● ● ● ● ● ●●●●●●●● ●●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●

●
●

●

●

●●●●●●●
●●● ●●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●●●●●●●●●
●

●
●
●

●●
●

●
●
●
●
●

●
●

●
●

●
●

●
●●●

●
●
●
●
●●
●
●
●
●●
●
●
●
●●●●● ● ● ●● ●●●●●●●● ● ● ●●●●

●
●●●
●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●

●
●

●
●
●

●●
●
●
●
●
●
●
●
●
●
●
●●
●

●

●

●
●

●

●●

●
●
●
●

● ●●
●
●

●
●

●

●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●

●

●

●
●

●
●

●
●

●
●
●
●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●
●

●
●
●
●
●

●
●

●
●

●

●

●

●

●

●

●
●
● ● ● ● ● ● ● ● ● ● ●●●●●
●●
●●
●●
●●
●●
● ● ●●●
● ● ●●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
● ●●●

●●
●●●

●●
● ●

●
●

●
●

● ●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●●●
●

●

●

●●

●

●

●

●
● ● ●●● ●●

●

●

●

●●●●●●● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●● ●●●●
●●●

●●
● ● ● ● ● ● ●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●
●
●
●

●●●
●●
●●
●●●●●●●●
●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●●●
●●●● ● ●●
●

●
●

●
●

●●●
●
●
●●

●

●

●

●

●

● ●
●

●
●

●
●
●

●
●● ● ●●●
●●
●●
● ● ● ● ● ● ● ● ●● ●

●

●
●

● ●
●
●
●

●
●

●

●

● ●

●

●

●

●

●
●

●
●
●
●
●
●
●
●
●●● ● ●●● ● ●●●● ●●●● ● ●● ● ● ● ● ●●●●

● ● ●●
●

●
●

●

●●●●
●

●
●

●
●

●
●

●
●
●

●
●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●● ●
●

●
●
●
●

●●●●●●●●
● ●● ●

●●

●
●
●
●
●

●
●

●

● ●

●

●

●

●

●
●

●
●

●
●

●

●
●
●
●
●

●
●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●
●

●
●●●● ●●●●●●●●●

● ●●●●●●●●● ●

●

●●●●●●●●●● ● ●● ●●● ●●

●

●●
●
●
●
●
●
●

●
●

●
●
●

●●●●●●●●●●●●●●● ● ●● ●●●● ● ● ●● ●●●●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●● ●●●●●●●● ● ●●
●
●
●
●
●●

●
●

●

● ●●
●

●
●●

●
●

●

●

●

●
●●

●

●

●
●
●
●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

● ● ●● ●● ●
●

●●
●
●
●

●●●●●●●●●● ● ●● ● ● ● ●● ●●● ●●● ●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●● ●●●●

●
●
●
●
●
●
●
●

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●●●● ●
●

●
●

●
●

●
●

●
●

●
●

●●●●

●

●●●●●●●●●● ● ●●●
●

●
●

●●
●
●

●
●
●
●
●
●
●
●

●●●●●●
●

●

●

●
●

●
●

●
●●●● ●●● ● ●●● ● ● ● ● ● ● ●

●

●

●

●
●

● ●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●
●

●
●

●
●

●

●

●●●●
●

●
●
●

●
●

●
●

●
●

●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●●●
●

●
●●

●
●

●
●

●
●

●
● ● ●●●●

●●●
●●●
●●●
●●●
●

●

●

●

●

●
●●● ● ●●

●●●● ● ●●●●●●● ●●
●● ●●●●●●●●●●●●●●●●●● ● ●●●●●●●● ● ●●●●●● ● ●●●

●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●

●
●
●
●

●

●
●
●
●
●
●

●●●●●●●● ● ● ● ● ●●●●●●●●●●●●● ● ● ● ● ●●● ●●●●●●●●●●●●●●●●●●●● ● ●●
●

●
●

●● ● ● ●●●●●●●●●●● ● ●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●

●

●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●

● ● ● ●● ●●● ● ●
●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●

●

●

●●●●●●●
●●●● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●●●●●●●●
●
●

●
●

●●
●
●

●
●

●
●
●
●
●
●
●

●
●

●●●
●

●
●

●
●●
●
●
●
●●
●
●
●
●●●●●●● ● ● ●●●●●●●●●● ● ● ●●

●
●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●● ● ●●●●●●●●●●●●●
●●●●●● ●

●
●

●
●

● ●
●

●
●
●
●
●
●
●
●
●
●●
●

●

●

●
●

●

● ●

●
●
●
●
● ● ●

●
●
●

●
●

● ●
●

●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●
●
●
●
●
●
●

●
●

●

●

●

●

●
●

●
●

●
●
●
●

●

●

●

●

●
●

●
●
●
●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●●●●●●●●● ● ●●
●●●●●●●●●●●●●●●●

●●
● ●●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●
● ●●●●●●
●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ● ● ●

●

●

● ●

●

●

●

●
●● ● ●● ●●

●

●

●

●●●●●●●●●●● ● ● ●● ●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●● ● ●●●
●●●●●●●

●●
●●
● ● ● ●●●●●●●●●●●●●●● ● ●●●●●●●●●
●●●
●
●
●
●

●●●
●●
●●
●●●●●●●●
●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●●● ● ●●●● ● ●
●

●
●

●
●

● ●●
●

●
●●

●

●

●

●

●

●●
●

●
●

●
●

●
●

●●● ● ●●●●●●●●●●●●●●● ● ●

●

●
●
●●

●
●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●
●
●
●
●
●●● ● ●●●● ● ●●●● ●●●● ●●●●●●● ● ● ●

●●●●
●
●
●

●

●●●●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●

●

●

●

●

●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

● ● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●
●

●
●

●
●
●●●●●●●●

●●
●●

●●

●
●
●
●
●
●

●
●

● ●

●

●

●

●

●
●
●
●

●
●
●

●
●

●
●
●

●
●

●

●

●

●

●

●
●
● ●

●

●

●

●

●

●

●

●
●

●
●●●● ● ●●●●●●●●

●●●●●●●●●● ●

●

●●●●●●●●●●●● ● ●●● ●●

●

●●
●
●
●
●
●
●
●
●

●
●

●
●●●●●●●●●●●●●●●●●●● ● ● ●●●●● ● ●●●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●

●
●

●
● ●

●
●

●

●●●
●
●

● ●

●
●

●

●

●

●
●●

●

●

●
●
●
●●●●●●●●●●●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●●●● ●● ●
●
●●

●
●
●
●●●●●●●●●●● ● ●●●● ● ● ●●● ●●● ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●● ● ● ●●

●
●
●
●
●
●
●
●

●

●

●

●●●●●●●●●●●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●●●
●
●
●●
●
●
●
●
●
●
●
●●●●●●
●●●
●●●
●●●
●●●
●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●

●

●

●●●
●
●
●
●
●
●
●
●
●
●
●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

●

●

●

●●●●●●●●●●●●
●
●
●
●●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●●●
●
●
●●
●
●
●
●
●
●
●
●●●●●●
●●●
●●●
●●●
●●●
●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●●

●

●

●●●
●
●
●
●
●
●
●
●
●
●
●●

●

●

Total
Cumulative

SLA

Figure 7. Scatter plot matrix of the most important dimensions of the system states collected during the
last evaluation iteration in Experiment–1. The neural control block uses a Type–2 control scheme (cf. Table 2),

whilst the load pattern and SLA function follow scenario 4 (cf. Table 6). The dimensions named in the diagonal,

starting from top–left, are: Time, Processor Queue, Processor Utilization (CPU), Disk Queue, Disk Utilization,
“Positive” and “Negative” Control States (denoted by Control Mark “Right” and “Wrong”, respectively),
Total Cumulative SLA. The system states have been processed by the Evaluator (cf. Section 5.3) and have

been labelled with “positive” and “negative” control marks used later for neural networks training. In the plots
below the diagonal, a rainbow colour scale is used, starting from red for low values and ending with pink-violet

for high values. The size of a point in the scatter plots above the diagonal represent its SLA function value, so

that system states with lower SLA value are smaller and less visible.

22

Table 6. Examples of Load Scenarios and SLA function definitions
Scenario SLA Function Description, Actions Types (SLAs), Load Pat-

tern, LMa

Scenario 0: This is a
very challenging control
scenario that employs a
very aggressive penalty
scheme for an overloaded
system. 0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

)

5 action types, namely A1, A2B, AOS, A3IO, A3IO2
with very aggressive SLAs, where the system is prof-
itable only for calls shorter than 5 time stamps. For
execution times longer than 10 stamps, the penalty
is linearly increasing, whilst the termination penalty
remains very high, equal to -40 for each termination
decision. The code for this SLA is shown in Table 5.
Effectively, termination control makes sense only for
very long execution times. Actions load pattern is
described in Table 4 and load is applied for LM=4.

Scenario 1: A slightly
less aggressive penalty
scheme for an overloaded
system.

0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

) 4 action types, namely A1, A2B, A3IO, AOS. Exe-
cution time less than or equal to 5 time steps gen-
erates a +7 award, but longer executions produce a
penalty of -7, while the ones that are longer than
10 time stamps produce a penalty of -10. The ter-
mination penalty is -20 (two times smaller than in
Scenario 0). Actions load pattern is described in Ta-
ble 4 and LM=4.

Scenario 2: A scenario
with low penalties
for long execution times
and termination penalty,
which is cheaper than
long execution time
penalty.

0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

)

4 action types, A1, A2B, AOS, A3IO, are used. There
are low penalties for long executions: only -1 penalty
for execution time longer than 5 time steps, also rea-
sonably low penalty, -10, for each action termination,
while for AOS and A1, termination penalty is only
-5. Actions load as described in Table 4 and LM=4.

Scenario 3: This scenario
has no penalties for long
execution calls, so that
the control can focus
on revenue optimization
only. 0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

) 4 action types are used: A1, A2B, AOS, A3IO. There
are no penalties for long executions but also zero
award. There is a substantial penalty, -12, for ter-
mination of A1, A3 and AOS, but also awards for
shorter calls; that is +10 for calls shorter than 1
time slot and +5 for shorter that 5. Action load, see
Tab. 4, LM=4.

Scenario 4: This scenario
demonstrates the effect
of termination control on
overloaded system with-
out penalties.

0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

) 4 action types are executed: A1, A2B, AOS, A3IO.
No penalties for longer executions are applied but
there is substantial penalty for termination. Shorter
calls are rewarded, enabling active control. This sce-
nario uses a load pattern based on Wolfs Sunspot
Numbers Hathaway, Wilson, and Reichmann (2002).
Actions load is standard, except for AOS that follows
a pattern of annual sunspotsb, LM=3.

Scenario 5: This is a sce-
nario that demonstrates
the effect of termina-
tion control on over-
loaded system without
any penalties. 0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

) 4 action types are executed: A1, A2B, AOS, A3IO.
There is no penalty for termination nor for longer
execution times (SLA function has no negative val-
ues). Still, shorter calls are rewarded which drives
the evaluations and the controller optimization di-
rection. Details of the actions load pattern are in
Table 4; load is applied for LM=2.

Scenario 6: The ”World
Cup 1998” scenario, de-
scribed by Arlitt and Jin
(2000), shows a three
month period of quite
bursty traffic and aperi-
odic workload.

0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

) 12 actions of type A1, A2B, AOS, A3IO are exe-
cuted, representing 1% of the most popular pages of
the website that received 75% of all requests (Ar-
litt and Jin 1998). There are no penalties for longer
executions and termination, but still higher reward
for shorter calls. The load pattern distinguishes this
scenario from the rest, as shown in Table 4, and it is
applied for LM=1.

Scenario 7: This sce-
nario uses Wikipedia
workload in October
2007 (Urdaneta, Pierre,
and Van Steen 2009)
demonstrating operation
under cyclic traffic.

0 10 20 30 40 50 60

−
60

−
20

0
20

aet

f S
LA

a
~

f C
(a

et
),

f C
(a

te
rm

) There are 4 action types, namely W.En, W.De,
W.Ja, and W.Es, responsible for 63.18% of the to-
tal load to Wikipedia in October 2017. There are
no penalties for longer executions and termination,
but still reward for shorter calls is higher. The load
pattern is distinctive, shown in Table 4. Although
LM=1, the pattern is periodic.

aLM = Load Pattern Multiplier is a parameter that multiplies the sequence of a base entry load profile, so that
repetitive sequences of system states can be tested. An LM equal to 4 correlates very well with the frequency of the
Evaluator cycles (see Section 5.3), which executes every 500 time steps. In all experiments, a total of 2100 time steps is
used (see Section 6.2).

b“Annual sunspot relative number 1936-1972” and “Wolfs Sunspot Numbers 1936-1972”, source https://datamarket.

com/data/set/22nu/annual-sunspot-relative-number-1936-1972#!ds=22nu&display=line

23

https://datamarket.com/data/set/22nu/annual-sunspot-relative-number-1936-1972#!ds=22nu&display=line
https://datamarket.com/data/set/22nu/annual-sunspot-relative-number-1936-1972#!ds=22nu&display=line

scheme on financial performance, represented by the Total Cumulative value of SLA
units measured for each of the monitored system states TSLA. As the time between
calls increases, represented by the mean arrival time l that is defined according to a
probability distribution for each scenario, the lower the frequency of calls gets, and,
effectively, the load that the system needs to consume. Table 7 shows a comparison
of financial performance increase P ∼ fSLA in the test runs, per scenario and load l,
using cumulative figures of TSLA collected during these simulations.

Depending on the functionalities produced by the different actions in the scenario,
the control system reacts differently to the load pattern it is exposed to taking into
account the SLA function’s definition. In effect, the controller adapts to the particu-
lar load conditions. In all scenarios, the controller improves the revenue generated by
the provided service when the system is under higher load, as denoted by the lower
mean arrival time l values. Furthermore, Type–2 control scheme performs better than
Type–1 in most of the cases. In scenarios 2, 4 and 5 the control system was able to
improve the situation regardless of the load that the system was exposed to. Note
that even for action types, whose SLA function definition does not include penalties
set explicitly (i.e., no negative SLA values for longer executions) but there is a higher
reward for shorter execution times (see for example scenarios 3, 4, and 5), the con-
troller drives the system to states that generate revenues. Also, the controller tends
to terminate the longer actions, although these may be cheap in terms of associated
penalty. This is because it considers that a cheaper action that is consuming resources
is not economically viable to operate, even if termination incurs additional cost. This
is a key finding for the monetization of computing services such as PaaS/FaaS/SaaS
equipped with this type of control. The controller shapes the run–time situation in
order to achieve better conditions for running many types of actions under the same
shared pools of resources. It favours cheaper executing actions that generate revenue
over more resource expensive actions and their revenue, taking into consideration the
potential costs of termination. Intuitively, such control could be most efficient when
system’s utilisation is high. In that case, releasing resources required to compute com-
peting for access to resources actions benefits high–revenue actions. Therefore, it is not
surprising that the best performance of the termination control in the experiments was
in the heavily loaded system cases. The highest efficiency was noted under scenario
4 and 5, for arrival time lower than 4.0. In scenario 5, Type–1 and Type–2 control
schemes were able to improve the system’s operation value by 30–52% and 13–33%,
respectively. This is clearly due to the less restrictive SLA and the lack of penalty for
termination. Still in scenario 4, where additional cost for termination is considered,
the improvement is significant– in the range of 15–35% and 8–25% for Type–1 and
Type–2 control, respectively. Note that in scenario 4 there is still good improvement
after applying control in the lower load as well. This is possible due to the relaxed
nature of SLA, and the lack of penalties for termination. Scenario 5 has quite good
overall improvement that is gradually reduced– the higher the load (l value gets low),
the worse the total profit is. Interestingly, the operation performance is much greater
than the intuitively expected increase of the revenue generation due to higher load
(more actions to account) but impeded by the overused system resources, see the
distribution shown on the violin charts. Very cheap termination in scenario 3 shows
fairly good improvement, 5–12%, in cases of higher load, for arrival time lower than
4. The lower the load is, the fewer the chances to reduce the usage of resources by
termination actions, so the operational improvement is gradually lowering but it is still
better than no–control. This behaviour is repeated even when lower load is applied,
e.g. mean arrival time gets equal to 6, where the system was profitable for all system

24

Table 7. Financial performance increase P ∼ fSLA between control (Types 1 and 2) and no–control (Type–0),

in independent test runs per scenario and load, in terms of TSLA values measured during simulations execution
(cf. Figure 8)

∆TSLA [%]

Control Type Scenario 3.0 3.5 4.0 4.5 5.0 5.5 6.0 Total

1 to 0 0 5.63 -18.87 -25.52 -5.14 -6.18 -22.04 -43.66 -16.54
1 0.60 2.72 3.64 -23.69 -16.89 -16.16 -29.22 -11.28
2 9.07 9.09 28.70 21.85 14.77 15.02 7.71 15.17
3 12.30 5.62 0.55 -8.14 -3.31 3.18 -16.21 -0.85
4 34.64 30.50 15.36 14.46 22.57 20.41 14.69 21.80
5 47.03 52.26 8.09 9.67 3.64 11.35 10.50 20.36
6 96.41 75.14 33.95 25.70 54.86 64.44 62.26 58.97
7 146.41 58.33 38.88 34.74 55.07 56.78 59.86 64.30

2 to 0 0 -1.89 -14.48 -31.35 -2.67 5.39 -19.58 -25.46 -12.86
1 0.52 13.87 6.84 -22.51 13.31 -21.78 -36.02 -6.54
2 5.84 66.99 22.75 36.18 18.82 3.42 7.34 23.05
3 12.89 3.32 -4.26 1.61 -13.41 -4.79 -13.57 -2.60
4 8.54 24.72 13.78 10.61 23.31 12.99 11.21 15.02
5 16.81 33.40 13.63 16.82 6.64 14.03 9.44 15.82
6 98.12 22.87 27.51 21.45 57.38 45.18 54.27 46.68
7 146.41 61.61 34.23 31.94 52.71 55.78 58.36 63.01

states monitored.
Performance in scenarios 0, 1, 2, where SLAs contain penalties for longer termina-

tion, is lower than in scenarios 3–5, but still there are improvements made especially
for higher loads. The financial performance in these cases is mainly impacted by the
fact that SLAs contain substantial penalties for longer execution times that widen the
band of profitability distribution and reduce the scale of the potential improvements
that can be made on the system. Of course high prices for termination additionally im-
pact the chances to improve the operation. The most difficult scenarios, 0 and 1, show
practically optimisation of the loss of a service provider that is exposed to extremely
challenging contracted SLA conditions. The control system was able to improve the
situation by 5% only under very high load, where mean time of arrival is 3.0.

It is important to note that in the case of difficult to control scenarios where SLAs
are aggressive in terms of penalties, like in scenario 0 and 1, the lower load may carry
risks such as introducing degradation of the operational performance and even greater
financial losses.

6.4. Experiment 3: Resources Utilisation and Financial Performance

The focus of this experiment is to evaluate how the controller operates under different
load conditions when the executing actions require resources to be consumed, and
the impact of the control scheme on resources utilisation and cost optimization and
revenue generation.

It is clear that action execution times will heavily depend on the utilization of re-
sources; thus, high SLA values are likely to be found in the situations where the system
is reaching a saturation state. From this point on, the system will be queueing the re-
quests and SLA values will grow significantly. Figure 9 show this effect as observed in
the experiments, while Figure 10 illustrates the states’ SLA values. Each row in these
figures presents several independent runs in one scenario, illustrating the distribution
of system states for process queue, disk wait queue and total cumulative SLA for each
one the three control schemes (Types 0, 1, and 2) tested under various load patterns.

25

−400

−300

−200

−100

0

3 3.5 4 4.5 5 5.5 6

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

scenario = 0 − with termination only before execution

−40

−20

0

20

3 3.5 4 4.5 5 5.5 6

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

scenario = 1 − with termination only before execution

0

10

20

30

3 3.5 4 4.5 5 5.5 6

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

scenario = 2 − with termination only before execution

0

10

20

30

3 3.5 4 4.5 5 5.5 6

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

scenario = 3 − with termination only before execution

0

10

20

30

40

3 3.5 4 4.5 5 5.5 6

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

scenario = 4 − with termination only before execution

0

10

20

30

40

3 3.5 4 4.5 5 5.5 6

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

scenario = 5 − with termination only before execution

0

25

50

75

100

125

3 3.5 4 4.5 5 5.5 6

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

scenario = 6 − with termination only before execution

0

10

20

30

40

3 3.5 4 4.5 5 5.5 6

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

scenario = 7 − with termination only before execution

Figure 8. Comparative results for operation without control and with two of the termination control schemes,

namely Type–1 and Type–2 (cf. Table 2), which apply termination control only before action execution. The
diagram presents the distribution of system states as a function of load run. The focus is on financial perfor-

mance, represented by the Total Cumulative value of SLA units measured for each of the monitored system
states. SLA function definitions consider costs/permissions and revenue generated, and the higher the values

reached in the vertical axis, the more profitable a control scheme is for the particular scenario.

26

Similarly to the previous tests, to simplify the results presentation12, this one also
examines termination before execution only.

One can see that in scenario 0 the CPU is massively over–utilised, e.g. there is a large
process queue length with up to 80 tasks awaiting. For other scenarios, namely 1, 2, 3
and 4, where SLA functions get gradually less restrictive (e.g. especially when penalties
for actions termination are lower), the controller is able to gradually free up more
and more resources in order to give an improved SLA response. The only exception
to this “rule” is the last scenario, number 5, where the load–pattern multiplier–LM
(cf.Table 6) is too low to allow the controller to experience more repetitive sequences
of systems states, and thus to reinforce the notion of “good”/“bad” control states.
Effectively, there are fewer high quality control actions executed, and only the lack of
penalties compensates the cumulative SLA value. Another effect observed in cases of
lower LM is the much higher queues due to the longer duration of high load.

Overall, for every scenario, the controller using either Type–1 or Type–2 control
scheme manages to reduce resources consumption regardless of the load used in such
a way that states with better financial performance are reached.

6.5. Experiment 4: Timing of Termination and Impact on Financial
Performance

The next experiment focuses on aspects related to the timing of the termination action:
(a) just after the request has been received but before it has been processed, or (b)
during execution when the action is being processed.

In Figure 11, violin plots are used to illustrate the distribution of Total SLA in sys-
tem states measured during the experiments for the two approaches mentioned above.
The left column shows control approach (a) whilst the right one shows approach (b).
Four control schemes, Types 1, 2, 3 and 4, and no–control (Type–0), (cf. Table 2),
have been tested with the two approaches. The plots focus on one load condition with
mean arrival time equal to 4 time buckets, while the expected mean execution time of
actions, l (cf. Table 4), was set to 4.2. When the load pattern reached around 95%, the
system was already above limit and was going into saturation. Table 8 contains aggre-
gated general performance improvement values per type of control scheme collected in
simulations which involve a wide range of load conditions across all scenarios.

Termination during execution, namely control approach (b), offers substantial flex-
ibility allowing the controller to improve the system’s revenue/costs performance sig-
nificantly. Although, in some cases, the added value seems low, as shown in Figure 11
and Table 8, cumulatively approach (b) is an attractive option whenever an action
takes longer and/or is affecting resources consumption, deadline violation costs are
substantial and/or termination penalty is not high.

Of course, performance is impacted by the fact that allowing the execution of an ac-
tion causes resources consumption, and thus, it introduces costs. So after termination,
the benefits of releasing these resources are lower than applying approach (a) directly.
Nevertheless, the potential penalty for the termination remains the same, even though
in certain cases the controller may find that it is still worth applying termination
immediately after the start of an action.

In most cases, Type–4 control is the best. Only in scenario 5, simpler control schemes
(Type–1, 2, or 3) are better, as there are no penalties. Although the model does not

12Figure 9 and 10 shows distributions of systems states collected in 336 test runs (168 experiments executed

twice) that generated 2GB of trace data.

27

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

40

80

120

Load Run, Arrival Mean Time

P
ro

ce
s

Q
ue

ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

40

80

120

Load Run, Arrival Mean Time

P
ro

ce
s

Q
ue

ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

40

80

120

Load Run, Arrival Mean Time

P
ro

ce
s

Q
ue

ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

40

80

120

Load Run, Arrival Mean Time

P
ro

ce
s

Q
ue

ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

20

40

60

Load Run, Arrival Mean Time

P
ro

ce
s

Q
ue

ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

50

100

150

200

Load Run, Arrival Mean Time

P
ro

ce
s

Q
ue

ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

200

400

600

Load Run, Arrival Mean Time

P
ro

ce
s

Q
ue

ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

200

400

600

Load Run, Arrival Mean Time

P
ro

ce
s

Q
ue

ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
0

5

10

15

Load Run, Arrival Mean Time

D
is

k
W

ai
t Q

ue
ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
0

5

10

15

Load Run, Arrival Mean Time

D
is

k
W

ai
t Q

ue
ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
0

5

10

15

Load Run, Arrival Mean Time

D
is

k
W

ai
t Q

ue
ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
0

5

10

15

Load Run, Arrival Mean Time

D
is

k
W

ai
t Q

ue
ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
0

5

10

15

20

Load Run, Arrival Mean Time

D
is

k
W

ai
t Q

ue
ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
0

10

20

30

Load Run, Arrival Mean Time

D
is

k
W

ai
t Q

ue
ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
0

25

50

75

Load Run, Arrival Mean Time

D
is

k
W

ai
t Q

ue
ue

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

5

10

15

20

Load Run, Arrival Mean Time

D
is

k
W

ai
t Q

ue
ue

Figure 9. Experimental results for Type–0 (no–control) and Types 1 and 2 control schemes (cf. Table 2) for

each of the eight scenarios (cf. Table 6). The diagram shows the distribution of system states as a function of
load run. Each experiment contains around 500K states sampled during 168 tests: 3 control types, 8 scenarios,
7 load runs, across 2500 time steps. Every experiment was run twice for incremented pseudo-random number

generator seed. The focus is on the effect of the control on resources utilisations, namely Processor and Disk
Queues, as a function of load run. 28

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

−400

−300

−200

−100

0

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
−60

−40

−20

0

20

40

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6
−10

0

10

20

30

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

10

20

30

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

10

20

30

40

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

10

20

30

40

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

50

100

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

0 1 2

3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6 3 3.5 4 4.5 5 5.5 6

0

10

20

30

40

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA

Control
type

0

1

2

Figure 10. Effect of the control on financial performance, represented by the Total Cumulative SLA values

of the system states with respect to load run. Results are for the experiments of Figure 9, i.e. around 500K
states sampled during 168 tests: 3 control types, 8 scenarios, 7 load runs, across 2500 time steps.

29

Table 8. Financial performance increase P ∼ fSLA between control (Types 1, 2, 3 and 4) and no–control

(Type–0), in independent test runs across all scenarios (cf. Table 6), in terms of mean TSLA values of the
simulations (cf. Figure 11)

Control Type Only before (a) During (b) Difference [%]

1 to 0 16.23 19.84 22.28
2 to 0 18.34 19.18 4.59
3 to 0 19.67 19.99 1.65
4 to 0 32.16 35.38 10.01

take into account the computation loss related to control instrumentation processing,
the termination during execution approach (right column) is only slightly better. The
difference is clearly visible only in scenarios 1, 3, 4. Termination approach (b), applying
control during action execution, was best performing for Type–1 control scheme where
an average improvement of 19% on average was noted across all scenarios. For Type–3
control the improvement was 14%, while for Type–4 the amelioration was only 4%,
even thought Type–4 gives the best results over all.

7. Discussion

In enterprise information systems, high load situations and requirements for stable
service at times of peak demand are typically dealt with by increasing computational
power or by releasing load; for example, terminating incoming actions that appear less
important to the new operating context and its activity demand pattern.

The experiments identified many benefits, qualities, but also implications of the
termination control when it is applied to different action types of distinct run–time
characteristics under dedicated service level objectives.

Table 9 presents a qualitative comparison of main control mechanisms for cloud–
based enterprise information systems. Action termination can be an especially inter-
esting option for cloud service providers that would like to mitigate the risk of the
longer VM spin-off in situations of a sudden load increase. In such cases, they need to
pay additional attention to prevent overload when auto-scaling is too costly (reached
certain threshold), and responses times (execution times) are strictly defined in SLAs.

The benefits of the weaved–in termination control approach for enterprise systems
in real–world applications can be substantial: (i) when it is preferable to return error
before the maximum contracted execution time is reached than to calculate a response
that takes much longer than normally expected. In such cases, the control framework
enables termination errors to be handled on the client side for the price of maintaining
a tighter conversation (of more frequent responses on requests) with the client systems
supporting in this way a higher availability. This strategy may be very effective es-
pecially in micro–services architectures where many weakly–coupled components are
present. In this context, instabilities caused by network issues or over-utilised services
must be considered by design in the handling frameworks. Thus, the costs of extending
the error management with termination mechanisms should be fairly low. Effectively,
the action termination control swaps risks of execution time unpredictability on re-
sponse type uncertainty but in a precisely defined time frame set in the SLA function
definition. This can be applied to cloud service provider systems managing PaaS, FaaS
and SaaS, but also to client systems deployed on IaaS where the control framework is
weaved-into the application. (ii) When a service provider or client changes/renegoti-
ates the SLA in run–time, this can be supported by the framework’s adaptive nature.

30

−200

−100

0

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 0 − with termination only before execution

−50

−25

0

25

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 1 − with termination only before execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 2 − with termination only before execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 3 − with termination only before execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 4 − with termination only before execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 5 − with termination only before execution

0

25

50

75

100

125

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 6 − with termination only before execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 7 − with termination only before execution

−200

−100

0

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 0 − with termination also during execution

−50

−25

0

25

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 1 − with termination also during execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 2 − with termination also during execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 3 − with termination also during execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 4 − with termination also during execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 5 − with termination also during execution

0

25

50

75

100

125

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 6 − with termination also during execution

0

10

20

30

40

4

Load Run, Arrival Mean Time

To
ta

l C
um

ul
at

iv
e

S
LA Control

type
0

1

2

3

4

scenario = 7 − with termination also during execution

Figure 11. Results of experiments testing four control schemes (Types 1, 2, 3, and 4) and no–control (Type–

0), (cf. Table 2), in all load and SLA definition scenarios (cf. Table 6) for a given mean arrival time equal to
4. The violin plots show distributions of Total Cumulative SLA values measured at each one of the monitored

system states. The column on the left side shows values for states where termination was performed only before
action execution, whilst the column on the right side refers to states where termination was done also during

the action execution.

31

Table 9. Comparison of main control approaches for cloud–based enterprise information systems and their

applicability to different service delivery models.
Control approach Main cloud features support Applicability to cloud service layer

Name Architecture Load Scalability SLA IaaS PaaS FaaS SaaS

Server Consoli-
dationa

Hypervisorc Strongd Strong Weakf Strong Ù
(Strong, often given via IaaS)

Ù Ù

Virtual Ma-
chines Migra-
tionb

Hypervisorc Strongd Stronge Weakf Strong Ù
(Strong, often given via IaaS)

Ù Ù

Conteneralizationg OS-level pro-
cesses isola-
tionh

Strongi Strongj Weakf Medium Strong Ù
(Strong, often
given via PaaS)

Ù

Auto-scaling IaaS Ser-
vice Manger

Strongdi Strong Weakf Strong
(Client-driven control mechanism)

— — —

Adaptive micro-
scheduling,
Asynchronous
Messaging

Application
tier, Mes-
sage Queue
Systems

Mediumif Mediumk Medium N/An Strong
(by event-driven platform
framework, Application
Server, MQ)

Strong Strong

Request Termi-
nation

Application
tier or Plat-
form.

Mediumifl Weakk Strongm N/An Medium
(by admission control frame-
work, AOP, App. Server)

Strong Strong

aServer Consolidation is provided by multiplexing physical resources over virtualized environments adapting
the assignment to the current system workload (Vogels 2008). Such an optimisation can be formulated as a

bin-packing problem which is NP-hard (Padala et al. 2007).
bDynamic VM placement to assign/reassign virtual resources to applications on-demand (Ahmad et al.

2015). VM migration is often used to consolidate VMs residing on multiple under-utilised servers onto a single
server, so that the remaining servers can be set to an energy-saving state (Zhang, Cheng, and Boutaba 2010).

cAmongst other most notable technologies are Xen, VMware, Libvirt.
dApplicable to all load scenarios, with lower efficiency for sudden spikes in load.
eSecures scalability requirement is fulfilled, uses proactive/reactive control to get resources before/on de-

mand.
fIt is difficult to build a model that provides the mapping between request-level SLA and resources.
gConteneralization by Linux kernel cgroups (control groups) has lightweight nature, but containers have

to share a common kernel. It can be managed by technologies like Docker, DockerSwarm, Kubernetes, LXC,

CoreOS.
hLinux kernel cgroups, Hyper-V for Windows
iIt does not introduce the overhead of full virtualization neither on the hypervisor nor the guest operating

systems.
jWithout hypervisor overhead the container capacity auto-scales dynamically with computing load.
kSupports scalability requirements indirectly; works better in a composition with other control approaches.
lVery effective under high load and strict SLA function definitions. The approach is dealing well with

run-times that are a mixture of different load profile functionalities or parameters sensitive functions.
mJust-in-time style of control is able to explore and find the mapping between SLAs and resources needs.
nStrong support if the control is applied through weaved-in block to the application code directly.

(iii) When SLA functions per action are not defined explicitly, but the cloud service
provider desires to secure the operation of the more important functions, the controller
can be used internally by the cloud management framework. This could be useful, for
example, in a cloud-computing execution model like serverless computing that requires
running an application integrated with the framework. (iv) When it is important to
secure productivity or mitigate the risks of over-spending on less essential computa-
tion, action termination can be exposed to cloud clients directly on a Software as a
Service basis in a form of an API.

Lastly, as the action level framework shows/exposes the details of the financial and
computational performance of an application, it could become part of an augmented
operation–toolbox to support human administrators coordinating autonomous con-
trollers that operate in high-dimensional enterprise environments. This audit and vi-
sualisation, built on the top of the data, can offer insights into the dynamics of the

32

system and of the algorithms employed. This is a specialised domain where human
administrators require additional support mechanisms as they frequently experience
problems when analysing high-frequency sampled time–series data from weeks and
months to arrive at a judgement on a particular control decision. This could also work
as a framework–level addition to cloud–provider–based Web Application Firewalls
(WAF) offering additional data scanning to prevent DoS attacks.

8. Conclusions and Future Work

Cloud–computing, hybrid clouds, but also on–premises systems demand more and
more autonomous control integrated within cloud deployable enterprise information
systems. To this end, this paper presented an approach that is driven by SLA re-
quirements to design and test a neural adaptive controller with the goal to satisfy the
quality of the services provisioned and the financial performance of the cloud services.
These services can be provided by systems deployed to IaaS, PaaS but also SaaS mod-
els placed in complex spaces of many SLA and action performance characteristics.
Metrics signals gathered during normal operation of the enterprise system are used
to build a database of time sequences that effectively contains definitions of hidden
causality chains present in the system. These data are used to train control blocks
on how calls should be managed and what is the most promising decision to feed the
actuator blocks at each time step.

Experiments using different control schemes based on this approach provide evi-
dence that system’s revenue generation and cloud service provider performance can
be significantly improved by applying termination control coupled with adaptive con-
troller.

Further validation of the approach is needed and enhancements, particularly
through designing more complex control blocks for scheduling in order to control
specific operating areas. To this end, in the future we will continue enhancing the
framework with scheduling algorithms (Section 5.1), especially those that are dealing
better with overloaded systems, and apply more complex system architectures, allow-
ing to test memory allocation or network consumption as key resources for distributed
systems.

Another promising area for further work would be to extend the control block
and the neural model of action types. Such extension would support collecting and
processing run–time data directly without evaluation that unavoidably comes with
longer feedback time. Furthermore, using adaptive thresholds for defining high-mark
and low-mark states (Section 5.3) would be useful as it would allow the controller
to regulate how aggressive or smooth the applied control is; for example, reducing
the frequency of terminations when the system under control has not reached certain
operating regions yet, or smoothen the effect of the control in certain areas of the
system state space. Lastly, we see potential in an extension that would allow the
controller to switch off the decision block when the system is not significantly loaded.
This will reduce the activity of the control block to sampling only, and would allow
implementing a risk mitigation strategy for preventing potential terminations that do
not bring additional benefit since the available resources are free to support a good
level of operations.

33

Acknowledgement

This work was partially supported by Solid Software Solutions13.

References

Ahmad, Raja Wasim, Abdullah Gani, Siti Hafizah Ab Hamid, Muhammad Shiraz, Abdullah
Yousafzai, and Feng Xia. 2015. “A survey on virtual machine migration and server consol-
idation frameworks for cloud data centers.” Journal of network and computer applications
52: 11–25.

Al-Dahoud, Ahmad, Ziad Al-Sharif, Luay Alawneh, and Yaser Jararweh. 2016. “Autonomic
cloud computing resource scaling.” In 4th International IBM Cloud Academy Conference
(ICACON 2016), University of Alberta, Edmonton, Canada, IBM, .

Almeida, Jussara, Virǵılio Almeida, Danilo Ardagna, Ítalo Cunha, Chiara Francalanci, and
Marco Trubian. 2010. “Joint admission control and resource allocation in virtualized
servers.” Journal of Parallel and Distributed Computing 70 (4): 344–362.

Apache. 2004. “Version 2.0.” The Apache Software Foundation: Apache License, Version 2.0,
January 2004 http://www.apache.org/licenses/LICENSE-2.0.

Arlitt, Martin, and Tai Jin. 1998. “1998 World Cup Web Site Access Logs.” The Internet
Traffic Archive, sponsored by ACM SIGCOMM. http://ita.ee.lbl.gov/html/contrib/
WorldCup.html.

Arlitt, Martin, and Tai Jin. 2000. “A workload characterization study of the 1998 world cup
web site.” IEEE network 14 (3): 30–37.

Arpaci-Dusseau, Remzi H., and Andrea C. Arpaci-Dusseau. 2015. Operating Systems: Three
Easy Pieces. 0th ed. Arpaci-Dusseau Books.

Baldini, Ioana, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche Ishakian, Nick
Mitchell, et al. 2017. “Serverless computing: Current trends and open problems.” In Research
Advances in Cloud Computing, 1–20. Springer.

Barroso, Luiz André, Jimmy Clidaras, and Urs Hölzle. 2013. “The datacenter as a computer:
An introduction to the design of warehouse-scale machines.” Synthesis lectures on computer
architecture 8 (3): 1–154.

Barroso, Luiz André, and Urs Hölzle. 2007. “The case for energy-proportional computing.”
Computer 40 (12).

Beloglazov, Anton, Jemal Abawajy, and Rajkumar Buyya. 2012. “Energy-aware resource al-
location heuristics for efficient management of data centers for cloud computing.” Future
Generation Computer Systems 28 (5): 755–768.

Beloglazov, Anton, and Rajkumar Buyya. 2010. “Energy efficient allocation of virtual ma-
chines in cloud data centers.” In Cluster, Cloud and Grid Computing (CCGrid), 2010 10th
IEEE/ACM International Conference on, 577–578. IEEE.

Berl, Andreas, Erol Gelenbe, Marco Di Girolamo, Giovanni Giuliani, Hermann De Meer,
Minh Quan Dang, and Kostas Pentikousis. 2010. “Energy-efficient cloud computing.” The
computer journal 53 (7): 1045–1051.

Bi, Jing, Haitao Yuan, Wei Tan, MengChu Zhou, Yushun Fan, Jia Zhang, and Jianqiang Li.
2017. “Application-aware dynamic fine-grained resource provisioning in a virtualized cloud
data center.” IEEE Transactions on Automation Science and Engineering 14 (2): 1172–1184.

Busoniu, Lucian, Robert Babuska, and Bart De Schutter. 2008. “A comprehensive survey of
multiagent reinforcement learning.” IEEE Trans. Systems, Man, and Cybernetics, Part C
38 (2): 156–172.

Buyya, R., C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. 2009. “Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th utility.”
Future Generation computer systems 25 (6): 599–616.

13http://www.solidsoftware.pl/

34

http://www.apache.org/licenses/LICENSE-2.0
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://www.solidsoftware.pl/

Buyya, Rajkumar, Saurabh Kumar Garg, and Rodrigo N Calheiros. 2011. “SLA-oriented re-
source provisioning for cloud computing: Challenges, architecture, and solutions.” In Cloud
and Service Computing (CSC), 2011 International Conference on, 1–10. IEEE.

Calheiros, Rodrigo N, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar
Buyya. 2011. “CloudSim: a toolkit for modeling and simulation of cloud computing envi-
ronments and evaluation of resource provisioning algorithms.” Software: Practice and Ex-
perience 41 (1): 23–50.

Cherkasova, Ludmila, and Peter Phaal. 2002. “Session-based admission control: A mechanism
for peak load management of commercial web sites.” IEEE Transactions on computers 51
(6): 669–685.

Demirci, Mehmet. 2015. “A survey of machine learning applications for energy-efficient re-
source management in cloud computing environments.” In Machine Learning and Applica-
tions (ICMLA), 2015 IEEE 14th International Conference on, 1185–1190. IEEE.

Dmitry, Namiot, and Sneps-Sneppe Manfred. 2014. “On micro-services architecture.” Interna-
tional Journal of Open Information Technologies 2 (9).

Duolikun, Dilawaer, Tomoya Enokido, and Makoto Takizawa. 2017. “An energy-aware algo-
rithm to migrate virtual machines in a server cluster.” International Journal of Space-Based
and Situated Computing 7 (1): 32–42.

Dutreilh, Xavier, Aurélien Moreau, Jacques Malenfant, Nicolas Rivierre, and Isis Truck. 2010.
“From data center resource allocation to control theory and back.” In Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on, 410–417. IEEE.

Duy, Truong Vinh Truong, Yukinori Sato, and Yasushi Inoguchi. 2010. “Performance evalua-
tion of a green scheduling algorithm for energy savings in cloud computing.” In Parallel &
Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International
Symposium on, 1–8. IEEE.

Fan, Xiaobo, Wolf-Dietrich Weber, and Luiz Andre Barroso. 2007. “Power provisioning for a
warehouse-sized computer.” In ACM SIGARCH computer architecture news, Vol. 35, 13–23.
ACM.

Ferrer, Ana Juan, Francisco HernáNdez, Johan Tordsson, Erik Elmroth, Ahmed Ali-Eldin,
Csilla Zsigri, RaüL Sirvent, et al. 2012. “OPTIMIS: A holistic approach to cloud service
provisioning.” Future Generation Computer Systems 28 (1): 66–77.

Fischer, Andreas, Juan Felipe Botero, Michael Till Beck, Hermann De Meer, and Xavier Hes-
selbach. 2013. “Virtual network embedding: A survey.” IEEE Communications Surveys &
Tutorials 15 (4): 1888–1906.

Garćıa-Valls, Marisol, Tommaso Cucinotta, and Chenyang Lu. 2014. “Challenges in real-time
virtualization and predictable cloud computing.” Journal of Systems Architecture 60 (9):
726–740.

Göbel, Johannes, Philip Joschko, Arne Koors, and Bernd Page. 2013. “The Discrete Event
Simulation Framework DESMO-J: Review, Comparison To Other Frameworks And Latest
Development.” In ECMS, 100–109.

Hathaway, David H, Robert M Wilson, and Edwin J Reichmann. 2002. “Group sunspot num-
bers: Sunspot cycle characteristics.” Solar Physics 211 (1-2): 357–370.

He, Yunlong, Jun Huang, Qiang Duan, Zi Xiong, Juan Lv, and Yanbing Liu. 2014. “A Novel
Admission Control Model in Cloud Computing.” arXiv preprint arXiv:1401.4716 .

Hellerstein, J., S. Parekh, Y. Diao, and D.M. Tilbury. 2004. Feedback control of computing
systems. Wiley-IEEE Press.

Hoang, Ha Nguyen, Son Le Van, Han Nguyen Maue, and Cuong Phan Nhat Bien. 2016. “Ad-
mission control and scheduling algorithms based on ACO and PSO heuristic for optimizing
cost in cloud computing.” In Recent Developments in Intelligent Information and Database
Systems, 15–28. Springer.

Hwang, Kai, Xiaoying Bai, Yue Shi, Muyang Li, Wen-Guang Chen, and Yongwei Wu. 2016.
“Cloud performance modeling with benchmark evaluation of elastic scaling strategies.”
IEEE Transactions on Parallel and Distributed Systems 27 (1): 130–143.

Jakob, Nielsen. 1993. “Usability engineering.” Fremont, California: Morgan .

35

Jensen, E Douglas, C Douglas Locke, and Hideyuki Tokuda. 1985. “A Time-Driven Scheduling
Model for Real-Time Operating Systems.” In RTSS, Vol. 85, 112–122.

Kim, Kyong Hoon, Anton Beloglazov, and Rajkumar Buyya. 2009. “Power-aware provisioning
of cloud resources for real-time services.” In Proceedings of the 7th International Workshop
on Middleware for Grids, Clouds and e-Science, 1. ACM.

Kim, Kyong Hoon, Anton Beloglazov, and Rajkumar Buyya. 2011. “Power-aware provisioning
of virtual machines for real-time Cloud services.” Concurrency and Computation: Practice
and Experience 23 (13): 1491–1505.

Kiran, Mariam, Peter Murphy, Inder Monga, Jon Dugan, and Sartaj Singh Baveja. 2015.
“Lambda architecture for cost-effective batch and speed big data processing.” In Big Data
(Big Data), 2015 IEEE International Conference on, 2785–2792. IEEE.

Lee, Young Choon, and Albert Y Zomaya. 2012. “Energy efficient utilization of resources in
cloud computing systems.” The Journal of Supercomputing 60 (2): 268–280.

Leontiou, Nikolaos, Dimitrios Dechouniotis, and Spyros Denazis. 2010. “Adaptive admission
control of distributed cloud services.” In Network and Service Management (CNSM), 2010
International Conference on, 318–321. IEEE.

Liu, Shuo, Gang Quan, and Shangping Ren. 2010. “On-line scheduling of real-time services
for cloud computing.” In Services (SERVICES-1), 2010 6th World Congress on, 459–464.
IEEE.

Lorido-Botran, Tania, Jose Miguel-Alonso, and Jose A Lozano. 2014. “A review of auto-scaling
techniques for elastic applications in cloud environments.” Journal of grid computing 12 (4):
559–592.

Malawski, Maciej, Gideon Juve, Ewa Deelman, and Jarek Nabrzyski. 2015. “Algorithms for
cost-and deadline-constrained provisioning for scientific workflow ensembles in IaaS clouds.”
Future Generation Computer Systems 48: 1–18.

Mao, Ming, and Marty Humphrey. 2012. “A performance study on the vm startup time in
the cloud.” In Cloud Computing (CLOUD), 2012 IEEE 5th International Conference on,
423–430. IEEE.

Mao, Ming, Jie Li, and Marty Humphrey. 2010. “Cloud auto-scaling with deadline and budget
constraints.” In Grid Computing (GRID), 2010 11th IEEE/ACM International Conference
on, 41–48. IEEE.

Messina, Fabrizio, Giuseppe Pappalardo, Corrado Santoro, Domenico Rosaci, and
Giuseppe ML Sarné. 2014. “An agent based negotiation protocol for cloud service level
agreements.” In WETICE Conference (WETICE), 2014 IEEE 23rd International, 161–166.
IEEE.

Messina, Fabrizio, Giuseppe Pappalardo, Corrado Santoro, Domenico Rosaci, and
Giuseppe ML Sarné. 2016. “A multi-agent protocol for service level agreement negotiation
in cloud federations.” International Journal of Grid and Utility Computing 7 (2): 101–112.

Miller, Robert B. 1968. “Response time in man-computer conversational transactions.” In
Proceedings of the December 9-11, 1968, fall joint computer conference, part I, 267–277.
ACM.

Mohana, RS, and P Thangaraj. 2013. “Machine learning approaches in improving service level
agreement-based admission control for a software-as-a-service provider in cloud.” Journal
of Computer Science 9: 1283–1294.

Moreno, Ismael Solis, Renyu Yang, Jie Xu, and Tianyu Wo. 2013. “Improved energy-efficiency
in cloud datacenters with interference-aware virtual machine placement.” In Autonomous
Decentralized Systems (ISADS), 2013 IEEE Eleventh International Symposium on, 1–8.
IEEE.

Muppala, Sireesha, Guihai Chen, and Xiaobo Zhou. 2014. “Multi-tier service differentiation by
coordinated learning-based resource provisioning and admission control.” Journal of Parallel
and Distributed Computing 74 (5): 2351–2364.

Padala, Pradeep, Xiaoyun Zhu, Zhikui Wang, Sharad Singhal, Kang G Shin, et al. 2007.
“Performance evaluation of virtualization technologies for server consolidation.” HP Labs
Tec. Report 137.

36

Page, Bernd, Wolfgang Kreutzer, and Björn Gehlsen. 2005. The Java simulation handbook:
simulating discrete event systems with UML and Java. Shaker Verlag.

Ranaldo, Nadia, and Eugenio Zimeo. 2016. “Capacity-driven utility model for service level
agreement negotiation of cloud services.” Future Generation Computer Systems 55: 186–
199.

Salehi, Mohsen Amini, Bahman Javadi, and Rajkumar Buyya. 2012. “Preemption-aware ad-
mission control in a virtualized grid federation.” In Advanced Information Networking and
Applications (AINA), 2012 IEEE 26th International Conference on, 854–861. IEEE.

Scheffler, Konrad, and Steve Young. 2002. “Automatic learning of dialogue strategy using
dialogue simulation and reinforcement learning.” In Proceedings of the second international
conference on Human Language Technology Research, 12–19. Morgan Kaufmann Publishers
Inc.

Sharifian, Saeed, Seyed A Motamedi, and Mohammad K Akbari. 2008. “A content-based load
balancing algorithm with admission control for cluster web servers.” Future Generation
Computer Systems 24 (8): 775–787.

Sikora, T. D., and G. D. Magoulas. 2013. “Neural Adaptive Control in Application Service
Management Environment.” Evolving Systems 4(4) 267–287.

Sikora, Tomasz D, and George D Magoulas. 2014. “Search-guided activity signals extraction
in application service management control.” In Computational Intelligence (UKCI), 2014
14th UK Workshop on, 1–8. IEEE.

Sikora, Tomasz D, and George D Magoulas. 2015. “Evolutionary approaches to signal decom-
position in an application service management system.” Soft Computing 1–22.

Sim, Kwang Mong. 2013. “Complex and concurrent negotiations for multiple interrelated e-
markets.” IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 43
(1): 230–245.

Stallings, William. 2014. Operating Systems: Internals and Design Principles— Edition: 8.
Pearson.

Sutton, Richard S. 1992. “Introduction: The challenge of reinforcement learning.” In Rein-
forcement Learning, 1–3. Springer.

Sutton, Richard S, and Andrew G Barto. 1998. Reinforcement learning: An introduction. MIT
press Cambridge.

Tim Lechler, Johannes Goebel Peter Wueppen Ruth Meyer Philip Joschko Fredrich Broder
Malte Unkrig Christian Mentz Nicolas Knaak Gunnar Kiesel Tim Janz, Soenke Claassen.
2014. “DESMO-J: A Framework for Discrete-Event Modeling and Simulation.” April. http:
//desmoj.sourceforge.net/.

Tran, Dang, Nhuan Tran, Giang Nguyen, and Binh Minh Nguyen. 2017. “A Proactive Cloud
Scaling Model Based on Fuzzy Time Series and SLA Awareness.” Procedia Computer Science
108: 365–374.

Urdaneta, Guido, Guillaume Pierre, and Maarten Van Steen. 2009. “Wikipedia workload anal-
ysis for decentralized hosting.” Computer Networks 53 (11): 1830–1845.

Urgaonkar, Bhuvan, and Prashant Shenoy. 2004. “Sharc: Managing CPU and network band-
width in shared clusters.” IEEE Transactions on Parallel and Distributed Systems 15 (1):
2–17.

Vogels, Werner. 2008. “Beyond server consolidation.” Queue 6 (1): 20–26.
Xiong, Pengcheng, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Calton Pu, and Hakan

HacigümüŞ. 2011. “ActiveSLA: a profit-oriented admission control framework for database-
as-a-service providers.” In Proceedings of the 2nd ACM Symposium on Cloud Computing,
15. ACM.

Yu, Minlan, Yung Yi, Jennifer Rexford, and Mung Chiang. 2008. “Rethinking virtual net-
work embedding: substrate support for path splitting and migration.” ACM SIGCOMM
Computer Communication Review 38 (2): 17–29.

Yuan, Haitao, Jing Bi, Wei Tan, and Bo Hu Li. 2016. “CAWSAC: Cost-aware workload schedul-
ing and admission control for distributed cloud data centers.” IEEE Transactions on Au-
tomation Science and Engineering 13 (2): 976–985.

37

http://desmoj.sourceforge.net/
http://desmoj.sourceforge.net/

Zhang, Qi, Lu Cheng, and Raouf Boutaba. 2010. “Cloud computing: state-of-the-art and re-
search challenges.” Journal of internet services and applications 1 (1): 7–18.

Zhang, Wen-Jun, and Yingzi Lin. 2010. “On the principle of design of resilient systems–
application to enterprise information systems.” Enterprise Information Systems 4 (2): 99–
110.

Zheng, Wei, and Rizos Sakellariou. 2013. “Budget-deadline constrained workflow planning for
admission control.” Journal of grid computing 11 (4): 633–651.

Zhu, Xiaomin, Laurence T Yang, Huangke Chen, Ji Wang, Shu Yin, and Xiaocheng Liu. 2014.
“Real-time tasks oriented energy-aware scheduling in virtualized clouds.” IEEE Transac-
tions on Cloud Computing 2 (2): 168–180.

Zhu, Zhaomeng, Gongxuan Zhang, Miqing Li, and Xiaohui Liu. 2016. “Evolutionary multi-
objective workflow scheduling in cloud.” IEEE Transactions on parallel and distributed Sys-
tems 27 (5): 1344–1357.

38

	Introduction
	Related Work
	SLA–Driven Services Management
	Defining the Control System
	Action Termination Control

	A Framework for Action Termination Control
	Testbed Design
	Discrete Event Simulation and Software Framework
	Load Generator and SLA Contracts
	Evaluator
	Neural Controller
	Action Termination Actuator
	Concurrent Multi Actions Control
	Terminations During Action Execution
	Simplifications and limitations

	Experiments
	Load Parametrization
	Experiment 1: Comparing operation with and without the Neural Control Block
	Experiment 2: Adaptivity to Load Profile and Financial Performance
	Experiment 3: Resources Utilisation and Financial Performance
	Experiment 4: Timing of Termination and Impact on Financial Performance

	Discussion
	Conclusions and Future Work

