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Abstract

A longstanding puzzle in macroeconomic forecasting has been that a wide variety

of multivariate models have struggled to out-predict univariate models consistently.

We seek an explanation for this puzzle in terms of population properties. We derive

bounds for the predictive R2 of the true, but unknown, multivariate model from

univariate ARMA parameters alone. These bounds can be quite tight, implying

little forecasting gain even if we knew the true multivariate model. We illustrate

using CPI inflation data.
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1 Introduction

A long-standing and, on the face of it, puzzling feature of macroeconomic forecasting

(that goes back at least as far as Nelson, 1972) has been that a wide variety of multi-

variate models have struggled to out-predict univariate models, particularly in terms of a

consistent performance both over time and over a range of variables.1 Indirect evidence

of the power of univariate models can also be inferred from the relative forecasting suc-

cess of Bayesian VARs that utilise Minnesota type priors (e.g., see Banbura et al., 2010;

Canova, 2007, p. 378), since these effectively give greater weight in estimation to finite

order univariate autoregressive representations.

In this paper we seek insights into this puzzle in terms of population properties. We

analyse a stationary univariate time series process, yt, data for which are assumed to

be generated by a multivariate macroeconomic model. We then take a backwards look

at the relationship between multivariate and univariate properties, by asking what the

univariate ARMA representation can tell us about the properties of the true multivariate

model that generated the data.

We first ask: how much better could we predict yt if we could condition on the true

state variables of the underlying multivariate model, rather than just use the ARMA? We

show that the resulting one-step-ahead predictive R2 must lie between bounds, R2
min and

R2
max, that can be derived from ARMA parameters alone. The R2 bounds will usually

lie strictly within [0, 1]. We first derive these bounds for a time-invariant framework, and

then show how they can be generalised to models with time-varying parameters. Hence

our core results do not rely on the assumption of structural stability.

The lower bound, R2
min, is simply the one-step-ahead R2 of the fundamental ARMA

representation. We show that R2
max is the (strictly notional) R2 of a particular “non-

fundamental” (Lippi and Reichlin, 1994) representation. While such nonfundamental

representations are nonviable as predictive models their properties, and hence R2
max, can

be derived from the ARMA parameters.

For some time series, ARMA properties imply that the gap between R2
min and R2

max

is quite narrow. In such cases our results show that little improvement in predictive

performance would be possible, even if we had the true state variables for yt. We show

1On the problems of providing consistent forecasting performance over time, for a range of macro time
series, see e.g., D’Agostino and Surico (2012); Chauvet and Potter (2013); Rossi (2013a); Estrella and
Stock (2015); Stock and Watson (2007, 2009, 2010, 2016). In contrast, Banbura et al. (2010), Koop
(2013) and Carriero et al. (2016), for example, find that large Bayesian VAR models can (but do not
always) outpredict smaller models, including univariate (AR) models; and Stock and Watson (2002) find
that forecasts from factor models can outperform univariate (AR) benchmarks, but typically less so for
nominal than real variables.
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that this case is particularly likely to occur when yt is the first difference of an I(1) process,

with a Beveridge and Nelson (1981) unit root permanent component with relatively low

volatility.

The R2 bounds are a population property. Clearly in a finite sample the true ARMA

representation, and hence the true R2 bounds, are not known. However, we can calculate

the bounds for commonly used univariate representations, and we show that this pro-

vides important insights. Furthermore, we show that, even if these representations are

mis-specified, because the true ARMA is higher order, but close to cancellation, univari-

ate properties can still provide important information about the nature of multivariate

predictability. In particular, we note the implications for the time series properties of

one-step ahead predictions and the covariance structure of the underlying system.

We illustrate our analysis using data on CPI inflation in eight countries. (For space

reasons we focus on results for the US in the main paper, with those for seven other

countries discussed in the online appendix.) We calculate the (time-varying) R2 bounds

implied by two commonly used univariate unobserved components (UC) representations,

both of which are nested within a time-varying parameter ARMA(1,1) model.2 These two

models are Stock and Watson’s (2007) UC-stochastic volatility model and Chan, Koop

and Potter’s (2013) UC model with an autoregression in the transitory component.

The rest of the paper is structured as follows. Section 2 sets out the links between the

ARMA representation and the multivariate model; and describes the R2 bounds and their

implications. In Section 3 we illustrate our results for the special case of an ARMA(1,1).

Section 4 shows that our core results can be generalised to accommodate time variation

in parameters. Section 5 considers the implications of cancellation, or near-cancellation,

of AR and MA polynomials in the true ARMA for inference in finite samples. Section 6

presents the empirical application. Section 7 concludes. Online appendices provide proofs

and derivations, estimation results for the seven other countries and background detail

for our empirical application.

2We derive moment conditions for the ARMA(1,1) models implied by these UC representations. As
far as we are aware, these derivations are also new.
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2 What the population ARMA representation tells

us about the true multivariate system: the time-

invariant case

2.1 The true multivariate macroeconomic model and its implied

predictive regression for yt

Consider a univariate time series yt that is generated by a linear (or linearised) multivariate

macroeconomic model:3

zt = Azt−1 + Bst (1)

yt = Czt−1 + Dst (2)

where zt is an n×1 vector of state variables hit by a vector of structural economic shocks,

st, and yt is a vector of observed macroeconomic variables, the first element of which, yt,

is the variable of interest.

We wish to consider what the population univariate properties of yt can tell us about

the nature of the true underlying system in (1) and (2).

We make the following assumptions:

Assumptions

A1 A can be diagonalised as A = T−1MT where M is an n× n diagonal matrix.

A2 eig (M) = {µi}, with |µi| < 1 ∀i.
A3 st is an s× 1 vector of Gaussian IID processes with E (sts

′
t) = Is.

Assumption A1, that the ABCD system can be diagonalised, is in most cases innocu-

ous.4 Assumption A2, that the system is stationary, is also simply convenient: some or

all of the elements of yt and zt may in principle be stationary transformations of un-

derlying nonstationary series. Assumption A3 follows Fernández-Villaverde et al. (2007);

3We use the notation of the generic ABCD representation of Fernández-Villaverde et al. (2007). They
assume that this system represents the rational expectations solution of a DSGE model (in which cases
the matrices (A,B,C,D) are usually functions of a lower dimensional vector of deep parameters, δ).
But the representation is sufficiently general to capture the key properties of a wide range of multivariate
models, including VAR and factor models. Note that the state vector zt may contain information from the
history of yt itself. In the benchmark structural DSGE model of Smets and Wouters (2007), for example,
zt contains levels of 6 out of the 7 observables in yt. The system can also represent the companion form
of a VAR.

4It allows for possibly complex eigenvalues, and hence elements of zt. It can be generalised completely
by letting M take the Jordan form (with 1s on the sub-diagonal). This admits, in terms of the discussion
below, ARMA(p, q) representations with q > p, but does not otherwise change the nature of our results.
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it is convenient (but not essential) to assume normality to equate expectations to linear

projections; while the normalisation of the structural shocks to be orthogonal, with unit

variances, is simply an identifying assumption, with the matrices B and D accounting

for scale factors and mutual correlation. The assumption that the structural disturbances

st are serially uncorrelated, while standard is, however, crucial - as we discuss below in

Lemma 1.

Note that the time-invariant nature of the model is not crucial; it merely simplifies

the exposition. In Section 4 we consider generalisations to cases where the parameters of

the structural model may vary over time.

These assumptions allow us to derive a particularly simple specification for the true

predictive regression for yt, a single element of yt. This conditions on a minimal set of

AR(1) predictors that are linear combinations of the state variables in the system in (1)

and (2):5

Lemma 1 (The Predictive System for yt) Under A1 to A3 the structural ABCD

representation implies the true predictive regression for yt, the first element of yt:

yt = β′xt−1 + ut (3)

where xt = (x1t, ..., xrt)
′ is an r × 1 vector of predictors with law of motion

xt = Λxt−1 + vt (4)

with Λ = diag (λ1, . . . , λr), i = 1, . . . , r, where the λi are elements of {µi} = eig (M) such

that βi 6= 0, and λi 6= λj, ∀i , and hence r ≤ n.

Since (3) is derived from the structural model that generated the data, the r-vector

of AR(1) predictors xt−1 can be viewed as generating the data for yt up to a white noise

error, ut (given Assumption A3).

Remark: Elements of the predictor vector xt in the true predictive regression may be

aggregates of the elements of the underlying true state vector zt if A, the autoregressive

matrix of the states, has repeated eigenvalues. Additionally, if the ABCD representation

has a block-recursive structure, there may be state variables with no predictive role for

yt. Thus r, the dimension of the predictor vector, may be substantially less than n, the

dimension of the true underlying states. At most one element may have λi = 0 in which

case xit is NIID.

5All proofs are in the online appendix.
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2.2 The Macroeconomist’s ARMA

Exploiting standard results (e.g., applying Corollary 11.1.2 in Lütkepohl (2007)), it is

straightforward to derive the true univariate reduced form for yt:
6

Lemma 2 (The Macroeconomist’s ARMA) The true predictive regression in (3)

and the process for the associated predictor vector (4) together imply that yt has a unique

fundamental ARMA(r, r) representation with parameters λ = (λ1, ..., λr) and θ = (θ1, ..., θr)

λ (L) yt = θ (L) εt (5)

where λ (L) ≡
∏r

i=1 (1− λiL) ≡ det (I −ΛL) and θ (L) ≡
∏r

i=1 (1− θiL), |θi| ≤ 1, ∀i.

The θi are solutions to a set of r moment conditions that match the autocorrelations

of yt, as set out in Appendix B. The condition |θi| ≤ 1, ∀i, gives the unique fundamental

solution (Hamilton, 1994, pp. 64-67; Lippi and Reichlin, 1994) since it ensures that

εt = θ (L)−1 λ (L) yt is recoverable as a non-divergent sum of current and lagged values of

yt.
7

Note that we refer to this representation as the “Macroeconomist’s ARMA” because

its properties follow directly from those of the underlying macroeconomic model. Thus λ

and θ are functions of the parameters (A,B,C,D) of the underlying system in (1) and

(2).

2.3 Bounds for the predictive R2

We have derived the ARMA representation from the underlying structural model. We

now look at this process backwards, and ask: what do the population univariate properties

of yt, as captured by λ and θ, tell us about the properties of the structural multivariate

system that generated the data for yt?

We first show that the degree of predictability measured by the R2 of the true predictive

regression (3) lies between bounds that can be defined solely in terms of population ARMA

parameters. Denote σ2
u = V ar(ut), σ2

y = V ar(yt) and σ2
ε = V ar(εt).

Proposition 1 (Bounds for the Predictive R2) Let

R2 = 1− σ2
u/σ

2
y (6)

6This draws on the seminal work of Zellner and Palm (1974) and Wallis (1977).
7The limiting case |θi| = 1, for some i, which is not invertible but is still fundamental, may in principle

arise if yt has been over-differenced. But since this case essentially arises from a mis-specification of the
structural (multivariate) model we do not consider it further.
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be the one-step-ahead predictive R2 for the true predictive regression for yt (3), that is

derived from the ABCD representation (1) and (2) of the true multivariate model. Under

A1 to A3, R2 satisfies

0 ≤ R2
min (λ, θ) ≤ R2 ≤ R2

max (λ, θ) ≤ 1 (7)

where

R2
min (λ, θ) = 1− σ2

ε/σ
2
y (8)

is the predictive R2 from the ARMA representation (5) and

R2
max (λ, θ) = R2

min (λ, θ) +
(
1−R2

min (λ, θ)
)(

1−
r∏

i=1

θ2
i

)
(9)

Corollary 1 (R2 bounds for a minimal ARMA). If the macroeconomist’s ARMA

(5) is a minimal representation (i.e., θi 6= λj, θi 6= 0, ∀i,∀j) then the R2 bounds lie strictly

within [0, 1].

2.3.1 The lower bound for R2

The intuitive basis for the lower bound, R2
min, is straightforward and follows from known

results (e.g., see Lütkepohl (2007), Proposition 11.2). Predictions generated by the fun-

damental ARMA representation condition only on the history of yt; so they cannot be

worsened by conditioning on the true state variables.8 Indeed, the true R2 must be strictly

greater than R2
min except in the limiting case that ut = εt. Furthermore, for any yt process

that is not IID (which would imply a non-minimal ARMA in (5)) this lower bound is

itself strictly positive.

2.3.2 The upper bound for R2

The upper bound R2
max is calculated from the parameters (λ, θ) of the ARMA represen-

tation. But the proof of the proposition shows that it also has a clear-cut interpretation:

Remark: If θi 6= 0 ∀i, the upper bound R2
max is the notional R2 from a nonfun-

damental ARMA representation in which all the θi are replaced with their reciprocals:

λ (L) yt = θN (L) ηt (10)

where λ (L) is as in (5), and θN (L) =
∏r

i=1

(
1− θ−1

i L
)
.

8Which may in principle, as noted above, contain information from the history of yt itself.
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Recall that, in deriving the ARMA from the structural model, we noted that the

MA parameters, θ must satisfy r moment conditions to match the autocorrelations of

yt, subject to the constraint that all the θi live within (−1, 1). However, there are a

further (2r − 1) nonfundamental ARMA representations, in which one or more of the θi

is replaced by its reciprocal, (Lippi and Reichlin, 1994),9 each of which also satisfies the

moment conditions, and thus generates identical autocorrelations to (5). In the particular

nonfundamental representation, (10), relevant to Proposition 1 all the θi in (5) are replaced

by their reciprocals.10

Like all nonfundamental representations (10) is a non-viable predictive model, because

its shocks ηt, cannot be recovered from the history of yt. However, its properties can still

be calculated from the parameters of the fundamental ARMA representation in (5).

Thus the proposition says that while we can increase R2, relative to the lower bound

given by the ARMA, by conditioning on the true state variables, there is a limit to the

extent that R2 can be increased. Furthermore, this limit can be calculated solely from

the population ARMA parameters.

In Section 2.4 below we provide further intuition for the existence of an upper bound;

in Section 3.4 we illustrate in a simple analytical example.

2.3.3 The R2 bounds and observable predictors

Our R2 bounds apply to predictions that condition on the true state variables that gen-

erated the data for yt. In practice, of course, we must make do with predictors we can

actually observe. Suppose, for some observable predictor vector, qt, we simply run a

predictive regression that is just a least squares projection of the form yt = γ ′qt−1 + ξt.

If qt 6= xt, but contains elements that are at least somewhat correlated with elements of

xt, any such regression may have predictive power, but we would not necessarily expect

the resulting predictive R2 to exceed our lower bound, R2
min.

11

However, a straightforward corollary of Proposition 1 implies that, at least in pop-

ulation, our R2 bounds must still apply for any predictive regression for yt in which

information from observable predictors is used efficiently :

Corollary 2 (R2 Bounds for observable predictors with efficient filtering) Con-

sider some set of estimates x̂t = E (xt|qt, yt) derived by the Kalman Filter, that condition

9Note that as discussed in Lippi & Reichlin (1994) some of the θi may be complex conjugates.
10Note that if θi = 0 for some i (hence the ARMA is not a minimal representation) the nonfundamental

representation is undefined but we can still use (9) to calculate R2
max = 1.

11Not least because the predictive errors ξt cannot in general be jointly IID with the innovation to a
time series representation of qt (a point made forcefully by Pastor and Stambaugh, 2009).
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on the joint history of a vector of observable predictors, qt and yt. The predictive R2 for

a predictive regression of the same form as (3), but replacing xt−1 with x̂t−1, also satisfies

R2
x̂ ∈ [R2

min, R
2
max], as in Proposition 1.

If the observable predictor vector qt has any informational content about the true

state variables that is independent of the history yt, then R2
x̂ must be strictly greater

than R2
min, since this comes from a predictive model that conditions only on the history

yt−1. Clearly the more information qt reveals about the true states, the closer R2
x̂ can get

to R2. If, in contrast, qt reveals no information about xt that cannot be recovered from yt,

it is predictively redundant, in which case E (xt|qt, y
t) = E (xt|yt), implying R2

x̂ = R2
min.

12

2.4 The Predictive Space

While the focus of this paper is on the R2 bounds, this is not the only information that

the population ARMA representation provides about the predictive system. Nor indeed is

it necessary to know the full set of ARMA parameters; even a restricted set of univariate

characteristics can also provide information.

Following Mitchell, Robertson and Wright (2017), let Pr be the parameter space of

all possible predictive models with r predictors. The parameters of the predictive model

map to some set of univariate properties, u. Such properties might, for example, be the

full set of ARMA parameters (i.e., u = (λ, θ)) but they might simply the be property

that yt is, for example a near-IID process (i.e., R2
min is less than some particular value)

or has a Beveridge and Nelson (1981) permanent component cy (1), where yt = cy (L) εt,

that is less than unity.

Suppose that we observe - or possibly simply wish to assume - some set of univariate

properties u. Then there is an inverse mapping that describes the parameter space of all

possible predictive models that could have generated the univariate property u. Mitchell,

Robertson and Wright (2017) denote this the “Predictive Space”, Pu, a strict (and often

quite restricted) subset of the full parameter space, Pr.
13

In this paper we let u = (λ, θ), and the R2 bounds derived above are a key defining

characteristic of Pλ,θ, but by no means the only one.

Mitchell, Robertson and Wright (2017) provide some intuition for this broader class

of restrictions on the parameter space of the underlying predictive model, and how they

12This is indeed the null hypothesis of no Granger Causality from qt, as originally formulated by
Granger (1969) (although in practice in most econometric testing yt−1 is typically only included via a
finite set of autoregressive terms).

13Pu is the pre-image of u in Pr.
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relate to the R2 bounds.14 Consider the case where we observe (or assume) that yt has

some particular univariate property, or set of properties, u. It must immediately follow

that, for any predictive model with predictions ŷt = β′xt−1, then in the limit as R2 → 1,

ŷt → yt, and hence ŷt must also have u. Conversely, for any predictive model for which

ŷt does not have u, i.e., for which uŷ 6= u, this must imply (at least) an upper bound on

R2. Thus even when we do not know the true ARMA representation, knowing u and at

least some general properties of uŷ must in general imply R2 bounds. In Proposition 4

we provide an example.

But a second important aspect of the predictive space Pu is that since the sum of the

predictions and the prediction errors must by construction match the univariate properties

of yt, then if the predictions themselves do not display some univariate property u then

this must imply restrictions on the covariance matrix of innovations in (3) and (4).

We focus here on on two particular features of the predictive space Pλ,θ that con-

tains the parameters of the true predictive model, both of which arise as corollaries of

Proposition 1.

2.4.1 Time series properties of the predictions

Corollary 3 (Time series properties of the predictions) Whereas yt has an ARMA(r, r)

representation in population, the predictions ŷt = β′xt have an ARMA(r, r − 1) represen-

tation.

The key insight here is that the time series properties of the predictions ŷt are in-

herently different from those of yt itself (in terms of the analysis of the previous section,

uŷ 6= u). Indeed this inherent difference in time series properties is an essential part of

the explanation of why there must be an upper bound for R2, as in Proposition 1. We

discuss this issue further in Section 3.5.2 below. We shall also see that this difference in

time series properties provides important insights into the empirical application discussed

in Section 6.

2.4.2 Covariance properties

Since both R2 bounds are associated with ARMA representations, Proposition 1 also

provides an example of the implications for the covariance properties of the underlying

14One of the referees objected to our use of the term “restrictions” on the predictive system. Clearly in
causal terms the properties of the predictive system determine univariate properties, and not vice-versa.
However, in strict mathematical terms, if we observe (or assume) a population univariate property, this
does indeed restrict the parameter space of predictive systems that could have generated that property.
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structural model and its associated predictive regression:

Corollary 4 If the true predictive regression (3) attains either R2 bound the error co-

variance matrix of the predictive system (3) and (4), Ω ≡ E

([
ut

vt

] [
ut vt

])
will be

rank 1.

Thus not only do the R2 bounds reveal limits to the degree of multivariate predictabil-

ity, they also shed light on the necessary properties of innovations to any predictive system

within the predictive space Pλ,θ. In the neighbourhood of either bound, prediction errors

for yt and innovations to the predictor vector xt must be close to perfectly correlated, so

they must be close to being generated by a single structural shock. Thus, even in cases

where the gap between R2 bounds is wide, the closer a predictive is to attaining the upper

bound, the tighter is the parameter space it can inhabit.

In Section 3 we also show that, for an important special case, Corollary 4 has stronger

implications: the correlation between innovations to ŷt and those to yt may be bounded

for any predictive system within the predictive space.

3 An illustrative example: The ARMA(1,1)/Unobserved

Components case

As an illustrative example we explore an important special case, in which yt admits

an ARMA(1,1) representation, which arises from a single predictor model, but is also

consistent with a widely used univariate unobserved components model.

3.1 The macroeconomist’s ARMA with r = 1

Consider the case in which data for yt are generated by an ABCD model with a single

state variable and a 2 × 1 vector of structural shocks. In this case the structural and

predictive models coincide:

yt = βxt−1 + ut (11)

xt = µxt−1 + vt (12)

where in terms of the ABCD representation we have xt = xt = zt, A = µ, C = β, vt = Bst

and ut = Dst, with B and D both 1× 2 row vectors that generate a covariance structure

10



for ut and vt; let σuv = cov(ut, vt). This simple system has been widely employed.15 A

predictive system of this form can also easily subsume the case of an underlying structural

ABCD representation in which the state vector zt has n > 1 elements, with multiple

eigenvalues, but where the subset of state variables that predict yt can be reduced to a

single predictor, with AR parameter µ. We note below that this framework also nests a

very commonly used unobserved components representation.

3.2 The moment condition for θ

By substitution from (11) into (12) we have

(1− λL) yt = βvt−1 + (1− λL) ut (13)

with λ = µ = eig (A) . The right-hand-side of this expression is an MA(1) so yt admits a

fundamental ARMA(1,1) representation

(1− λL) yt = (1− θL) εt (14)

with |θ| < 1. The first order autocorrelation of the MA(1) process on the right-hand-side

of (14) matches that of the right-hand-side of (13): i.e., the single MA parameter θ is the

the solution in (−1, 1) to the moment condition

−θ

1 + θ2 =
βσuv − λσ2

u(
1 + λ2

)
σ2

u + β2σ2
v − 2λβσuv

(15)

Since the autocorrelation on the right-hand-side of (15) is derived from the parameters

of the ABCD representation, we have θ = θ (A,B,C,D).

3.3 An unobserved components decomposition

An alternative way to derive the univariate ARMA(1,1) is to consider the unobserved com-

ponents (UC) decomposition of an I(1) process, Yt, into a random walk trend component,

15A specification of this form has, for example, dominated the finance literature on predictive return
regressions, with yt some measure of returns or excess returns, and xt some stationary valuation criterion.
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τ t, and a stationary AR(1) component, ct:
16

Yt = ct + τ t (16)

ct = µct−1 + sc,t

τ t = τ t−1 + g + sτ,t

where sc,t ∼ i.i.d.(0, σ2
c), sτ,t ∼ i.i.d.(0, σ2

τ ) and σcτ = cov(sc,t, sτ,t).

In this UC representation the trend may have a deterministic element (if g > 0) and

a unit root stochastic component (when στ > 0).

The representation, (16), can be viewed in two distinct ways.

It is straightforward to show that, without imposing any restrictions on the structure

of the model, it can be reparameterised as a predictive system with the same structure as

(11) and (12), in which the stationary AR(1) component ct is the single predictor variable

for yt = ∆Yt.
17

More commonly, this representation is used as alternative (implicit) derivation of the

univariate ARMA(1,1) for yt = ∆Yt by imposing the identifying assumption that the

(innovations to the) trend and stationary components are orthogonal (σcτ = 0) since

then (14) and (16) contain the same number of parameters. In this case, the stationary

component ct can be interpreted in filtering terms as an estimate (up to a scale factor)

of the true state variable xt, conditional only upon data for yt. But we note that it also

imposes a nontrivial restriction on the parameter space of the ARMA:

Lemma 3 In the UC representation in (16), if µ ≥ 0, στ > 0 and σcτ = 0, then yt = ∆Yt

admits a restricted ARMA(1,1) representation as in (14) with 0 < λ < θ < 1. Hence the

Beveridge-Nelson decomposition of Yt = cy(L)

(1−L)
εt has cy (1) = (1− θ) / (1− λ) < 1.

The restricted nature of this ARMA representation makes it particularly suitable for

“near-stationary” Yt processes: a prime example being inflation, which we analyse later

in this paper. In terms of our analysis of R2 bounds we shall see that one key feature of

this representation is that if ct, the AR(1) component, is strongly persistent, i.e., µ (= λ)

is close to unity, then the MA parameter θ must be even closer to unity. We shall see

that this feature of the state space model has strong implications for the nature of the R2

bounds for the first difference of any series that can be represented as in (16).

16We focus here on the time-invariant case; but in Section 6 below we extend the analysis to the case
where µ, σ2

τ and σ2
c are all potentially time-varying.

17See Appendix I.1 for the reparameterisation in the time-varying case, which nests the time-invariant
case here.
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3.4 Proposition 1 in the ARMA(1,1) case: Bounds for R2

The R2 of the true predictive regression (11) that conditions on the single true state

variable xt = zt has a lower bound given by

R2
min (λ, θ) =

(θ − λ)2

1− λ2 + (θ − λ)2 (17)

which is the predictive R2 of the ARMA representation. The upper bound is

R2
max (λ, θ) = R2

min +
(
1−R2

min

) (
1− θ2

)
=

(1− λθ)2

1− λ2 + (θ − λ)2 (18)

which would be the notional R2 of the nonfundamental representation associated with

(14)

(1− λL) yt =
(
1− θ−1L

)
ηt (19)

which is a special case of (10).18

3.4.1 The upper bound for R2 and the nonfundamental representation

To provide intuition for the upper bound, note that using straightforward manipulations

we can reparameterise (19) as a special case of the predictive system in (11) and (12) as

yt = βNxN
t−1 + ηt (20)

xN
t = λxN

t−1 + ηt

with βN = λ − θ−1, where the maximal R2 would be attained by the state variable

xN
t = (1− λL)−1 ηt. Since the resulting predictive system is a reparameterisation of a

nonfundamental representation xN
t cannot be derived as a convergent sum of past yt.

However we can write, using (19),

xN
t =

(
1− θ−1L

)−1
yt = − θL−1

(1− θL−1)
yt = −

∑
i=0

θiyt+i+1 (21)

so xN
t is a convergent sum of future values of yt. Thus predictive power comes about

because xN
t acts as a window into the future: the lower is θ, the more it will reveal.19

18Note that the moment condition (15) is satisfied by θ and also by θ−1. While in general, as discussed
in Section 2.2, there will be multiple nonfundamental representations of the same order, in this particular
case, with r = q = 1, there is only one.

19Note that only in the limiting case as θ → 0 does it actually reveal yt+1 perfectly.
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Thus the true state variable xt will predict yt better, the more closely it resembles xN
t ;

but it cannot predict better than xN
t .

3.4.2 The R2 bounds in some special cases of the ARMA(1,1)

The bounds in (17) and (18) can be used to illustrate some important special cases.

As a benchmark case, we start by considering the single limiting case in which the

R2 bounds are not interesting. If θ is close to λ, so that yt is close to being white noise,

R2
min is close to zero. If θ is also close to zero, R2

max is close to one. But only if θ and λ

are both sufficiently close to zero does the inequality for R2 open up to include the entire

range from zero to unity. Thus only in this doubly limiting case is Proposition 1 entirely

devoid of content. Note also that in this case both yt and the single predictor xt are close

to white noise.

In marked contrast, as |θ| approaches unity the value of R2 tends to a single point

(1−sign(θ)λ
2

). This has the important implication that for any ARMA(1, 1) process with

high |θ| there is very little scope for the true predictive regression to outperform the

ARMA.

The unobserved components model in (16), in which yt = ∆Yt is the first difference of

a unit root process, is an important, and commonly applied, special case in which there

are strong a priori grounds to expect this to be the case. As noted above, from Lemma

3, we must have θ > λ > 0. If the transitory component ct is strongly persistent (λ close

to unity) then θ must be even closer to unity, implying that R2
max will be close to R2

min.

3.5 The Predictive Space for an ARMA(1,1)

In Section 2.4 we noted that univariate properties do not just provide us with R2 bounds.

The parameters of the true predictive system must live within the “Predictive Space” of

predictive systems that generate these univariate properties. We noted two corollaries of

Proposition 1 that illustrate the features of this parameter space. The ARMA(1,1) case

provides a useful illustration since it can be shown that in this case the predictive space

has a particularly simple representation.

3.5.1 Corollary 4 in the ARMA(1,1) case: bounds on the innovation corre-

lation

Corollary 4 showed that, for the general case, if the true predictive system has an R2 in

the neighbourhood of either of the R2 bounds, its innovation covariance matrix must be
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close to being rank 1: i.e., innovations to (all) predictors would be strongly correlated

with ut, the prediction error. In the context of one particular case of the ARMA(1,1) this

can apply for any value of R2:

Proposition 2 (Bounds for ρuv for an ARMA(1,1)/Unobserved Components

Representation) Consider the fundamental ARMA(1, 1) univariate representation (14)

which is the reduced form of a predictive system with r = 1, with predictive eror ut

and a single AR(1) predictor with innovations vt. For 0 < λ < θ ≤ 1 (as implied by

the univariate unobserved components model (16)) the absolute value of the innovation

correlation ρuv = corr (ut, vt) satisfies

|ρuv| = |corr (ut, vt)| ≥ ρmin =
2
√

(θ − λ) (1− λθ) θ

1− λ2 + (θ − λ)2 > 0 (22)

The proof of the proposition (see Appendix H) exploits the particularly simple form of

the predictive space in this special case. A single predictor model, as in (11) and (12), can

be parameterised by the triplet (λ, ρuv, R
2). These map to the two ARMA parameters

(λ, θ). The inverse mapping describes a parameter space which, for given λ, can be

represented by a curve in (R2, ρuv) space with a unique stationary point at |ρuv| = ρmin.

We show later for our empirical application in Section 6 that the lower bound for |ρuv|,
ρmin, can be quite close to unity even where the gap between the upper and lower bound

for R2 may be quite wide. In these circumstances, although the predictive regression

may offer an improvement relative to the fundamental ARMA, this can only be the case

if the true predictor variable has innovations closely resembling those of the predicted

variable.20

3.5.2 Corollary 3 in the ARMA(1,1) case: R2
max and the time series properties

of the predictions

Corollary 3 noted a key general feature of any predictive system, that the predictions it

generates must of necessity be of a lower MA order than the predicted series yt itself.

This provides additional intuition for the the upper bound for R2 in Proposition 1. For

the true state variable to predict yt well must ultimately require the the predictions it

generates to mimic the time series properties of yt itself. But if the time series properties

of yt and xt are inherently different, this must imply a limit on how well xt can predict

yt+1.

20Mitchell, Robertson and Wright (2017) prove a generalisation of this result for r ≥ 1, for any predicted
series with cy (1) < 1.
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The UC representation analysed in Lemma 3 and Proposition 2 provides a powerful

illustration. As noted there the Beveridge Nelson decomposition of such a yt has the

property that cy (1) < 1. The predictor, however, is an AR(1). Writing (12), as xt =

Cx (L) vt then Cx (1) = 1
1−λ

> 1. For strongly persistent predictors Cx (1) can be well

above unity. The Beveridge-Nelson decomposition of the process for xt (and hence for

the predictions ŷt = βxt−1) is thus distinctly different from that of yt itself. As such, its

ability to predict yt can be severely constrained.

We also noted above, in Section 3.4.2, that only in the unique limiting case where

λ = θ = 0 do our bounds cease to bind. In this case (and only in this case) the time

series properties of xt and yt are identical: a white noise can predict another white noise

arbitrarily well (or arbitrarily badly). In all other cases the difference in time series

properties must imply R2 bounds.

4 Time-varying parameters

Models with time-varying parameters are increasingly used in forecasting (e.g., see Cogley

and Sargent (2005), D’Agostino et al. (2013), Rossi (2013b) and Chan et al. (2013)). In

general, if any of the parameters in the true structural model (1) and (2) are non-constant

over time, this must translate into time variation in the parameters of the associated

predictive regresssion (3) and the process for the predictor variables (4), i.e., the coefficient

vector β, the vector of AR parameters λ and the error covariance matrix Ω. This will,

in turn, translate into time variation in the parameters of the univariate representation

for yt. However, this does not detract from the insight our analysis provides; it merely

complicates the algebra. The proof of our core result, the R2 bounds in Proposition 1,

relies on the assumption that the underlying innovations are independently distributed,

not on their having a time-invariant distribution; nor does it rely on the constancy of λ,

β or Ω.

Before considering an extension of our analysis to time-varying parameters, it is worth

stressing two points. First there are some important forms of parameter variation that

can be captured by a stationary ABCD representation with constant parameters and IID

(but non-Gaussian) shocks. Hamilton (1994, p. 679) shows, for example, that if the

conditional mean of yt shifts due to a state variable that follows a Markov chain this

implies a VAR model for the state; this in turn implies stationary ABCD and ARMA

representations for yt but with non-Gaussian shocks.21 Second, even forms of structural

21Any ARMA model has a state space representation (Hamilton, 1994, chapter 13, pp. 375-6). Per-
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instability that cannot be captured in this way should arguably still imply a time-invariant

representation in some form. Thus, for example, each of the two unobserved components

models of inflation analysed in Section 6 has a time-invariant state-space representation

- it is simply nonlinear rather than linear.

In what follows we simply assume that there is some model of time variation that

results in a sequence {At,Bt,Ct,Dt}, and hence time-varying ARMA parameters (in-

cluding the innovation variance), without considering how this is generated. We show

that we can generalise our key result on the R2 bounds, for the special case of a time-

varying ARMA(1,1)22, which nests commonly used unobserved components models which

we exploit in the empirical example in the next section:

Proposition 3 (Bounds for the Predictive R2 of a Time-Varying ARMA(1,1))

Assume yt is generated by the time-varying parameter structural model

yt = βtxt−1 + ut (23)

xt = µtxt−1 + vt (24)

where xt, the single state variable, has a time-varying AR(1) representation, and wt =

(vt, ut)
′ is a serially independent vector process with E (wtw

′
t) = Ωt, all elements of which

are potentially time-varying. In reduced form yt has the unique time-varying fundamental

ARMA(1,1) representation

(1− λtL) yt = (1− θtL) εt (25)

with

λt = µt−1

βt

βt−1

(26)

(thus if βt = βt−1, λt = µt) and εt is a serially uncorrelated error orthogonal to yt−1, with

E (ε2
t ) = σ2

ε,t. Fundamentalness here requires

lim
i→∞

i∏
j=0

θt−j = 0, ∀t (27)

manent mean shifts induce a unit root that can be differenced out to derive a stationary ABCD repre-
sentation.

22The methodology could be generalised to higher order ARMA representations.
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implying that εt can be recovered from yt. Letting

R2
t = 1− σ2

u,t/σ
2
y,t (28)

be the time-varying R2 for the predictive regression that conditions on the true state vari-

able xt (23), then

0 < R2
min,t ≤ R2

t ≤ R2
max,t < 1 (29)

where R2
min,t = 1 − σ2

ε,t/σ
2
y,t is the time-varying R2 of (25), and R2

max,t = 1 − σ2
η,t/σ

2
y,t is

the time-varying R2 of the associated unique time-varying nonfundamental representation

(1− λt) yt = (1− γtL) ηt (30)

where γt satisfies

lim
i→∞

i∏
j=0

γ−1
t+j = 0 ∀t (31)

implying that ηt can only be recovered from current and future values of yt.

Remark: Corollaries 1 to 4 in the time-invariant case of Proposition 1 also apply in

the time-varying case of Proposition 3.

Time-varying parameters introduce simultaneity into the moment conditions for θt

and σ2
ε,t (whereas in the time-invariant case these can be solved independently). As far

as we are aware the exact derivation of the processes for θt and σ2
ε,t, and of the associated

nonfundamental representation, has not been carried out before.23 While solution of the

moment conditions is as a result distinctly more complicated for the time-varying case,

once this problem has been solved the proof of the (time-varying) R2 bounds follows

quite straightforwardly, and analogously to the proof of Proposition 1.24 All the associated

formulae nest the time-invariant results for the ARMA(1,1) model as a special case.

The Stock and Watson (2007) unobserved components stochastic volatility model,

discussed in Section 6, is a special case with λt = 0, ∀t (i.e., a time-varying MA(1)). In

this case the properties of their structural state space model (see below), constrain θt to

be strictly positive and less than unity.

In contrast, a striking feature of the more general time-varying ARMA(1,1) case is

23Stock and Watson (2007), for example, note that their unobserved components stochastic volatility
model (as employed in the next section) implies a time-varying MA(1) representation, but the estimates
of θt that they present are derived using a time-invariant formula.

24As such the methodology applied here could in principle be extended to higher order predictive
systems.
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that θt is not bounded above by 1. The fundamentalness condition (27) only requires

that the product of the sequence converges to zero, which can be satisfied with some

individual values of θt greater than unity. Furthermore, even if µt, the AR(1) parameter

of the predictor, is bounded to lie within (−1, 1), from (26), the same bounds do not

apply to λt. Indeed we show in Section 6 that estimates of both λt and θt exceed unity,

at some points in time, in our empirical applications.25

5 The R2 bounds and the predictive space when r > q

All our analysis has thus far been in terms of population properties. We have assumed that

r, the true order of the predictive system for yt is known, and hence that the true “macroe-

conomist’s ARMA” (5), from which we calculate the R2 bounds, is an ARMA(r, r). Corol-

lary 1 noted that if this is also a minimal representation (with no cancellation of AR and

MA polynomials, or zero MA terms) then the R2 bounds will lie strictly within [0, 1].

In a finite sample, clearly we cannot know r. To what extent does this limit the value

of our population-based analysis?

Even in population, we cannot rule out the logical possibility that the macroeconomist’s

ARMA may be non-minimal. However, suppose that in population yt admits an ARMA(p, q)

representation that is minimal. Then it is straightforward to show that the MA order q

can only be less than r if the (A,B,C,D) parameters of the structural model satisfy r−q

restrictions that ensure exact cancellation of AR and MA polynomials in the univariate

reduced form.26 Lippi and Reichlin (1994) note that there are no obvious theoretical

properties of structural macroeconomic models that would imply such restrictions. Hence

as a population property we would usually expect r = q.27

Consider now the finite sample case in which standard model selection criteria point

to a particular ARMA(p, q) representation of yt. To be specific, assume that the data

admit a time-invariant ARMA(1,1) representation,28 and that the estimated parameters

25Nor is the nonfundamental MA parameter, γt, equal to θ−1
t , except in the limiting time-invariant

case.
26In Lippi and Reichlin’s (1994) terms, this would imply that the minimal ARMA(p, q) is the funda-

mental representation, which provides the lower R2 bound, while there would exist a nonfundamental
“nonbasic” ARMA(r, r) representation, with r > q, in which all the θi in the macroeconomist’s ARMA
(5) are replaced with their reciprocals, which provides the true upper bound. But the nonbasic nature of
this representation would mean that the true upper bound would be unknowable.

27Note that this would also rule out q = 0, i.e., a pure AR(p). While such representations are widely
used in empirical applications, the derivation from a structural model shows that, absent restrictions
on the ABCD parameters, such representations can only be rationalised as approximations for the true
ARMA(r, r) .

28Most of the arguments presented here also apply in the time-varying case, to which we revert below
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(
λ̂, θ̂
)

and calculated R2 bounds (using (17) and (18), as in the example analysed above

in Section 3) are reasonably well-estimated, conditional upon that order.

Irrespective of the true value of r, it follows immediately that the finite history {yt}T
0

is at least consistent with a predictive system with a single predictor with AR parameter

λ̂, with an R2 bounded between the estimated values R2
min

(
λ̂, θ̂
)

and R2
max

(
λ̂, θ̂
)
. We

have seen that if λ̂ and θ̂ are both close to unity, which is likely to occur in particular

if yt is the first difference of a near-stationary I (1) process, then the gap between these

estimated bounds may be quite narrow.

Of course, in a finite sample, it is perfectly possible, in principle, that the true value

of r may be greater than 1. The higher order elements of the AR and MA polynomials

in the true population ARMA could be sufficiently close to cancellation that it may be

impossible to infer the true value of r in any finite sample. What if we get r wrong?

There are three key implications:

1. The true lower bound R2
min is likely to be quite similar to the estimated value

derived from the parameters of a low order ARMA, simply because of the feature

of near-cancellation: if the additional parameters are close to cancelling they will

barely impact on goodness-of-fit.

2. In contrast, simply by inspection of the general (time-invariant) formula (9) for the

upper bound, R2
max in Proposition 1, it is evident that a higher true value of r,

almost certainly means that the true value of R2
max is likely to be higher than that

implied by the estimated ARMA(1, 1) representation, and all the more so if the true

value of θi is close to zero for some i.

3. However, for the true model to attain a higher value of R2 does not simply require

it to have more than one predictor. The key insight of Section 2.4 is that whatever

is the true value of r, the parameters of the true predictive system must still live

within the “Predictive Space” consistent with the univariate properties of yt: in

this particular example, that yt can be represented (to some arbitrary degree of

precision) by an ARMA(1,1).

While the problem above arises in finite samples, population properties still allow us

to gain some insights into the nature of the predictive space in such cases by consid-

ering the special case that the minimal population ARMA representation is exactly an

after discussing our empirical application.
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ARMA(1, 1) with the particular form implied by the univariate unobserved components

model of Lemma 3, but that the true value of r is greater than 1:

Proposition 4 (Escaping the ARMA(1, 1) bounds). Let yt admit a minimal funda-

mental ARMA(1,1) representation with 0 ≤ λ < θ < 1. Hence, from Lemma 3 yt has a

Beveridge-Nelson decomposition with cy (1) = 1−θ
1−λ

< 1. Let the true data-generating pro-

cess for yt be a structural ABCD model that, from Lemma 1, reduces to a predictive system

with r > 1 predictors. (The structural model must therefore satisfy r− 1 restrictions such

that p = 1, q = 1.) For any predictive model of this form,

R2 > R2
max (λ, θ) ⇔ cŷ (1) <

1

1− λ
(32)

where R2
max (λ, θ) is the calculated upper bound for a single predictor model from Propo-

sition 1, using (18), and the predictions from the true structural model, ŷt = β′xt−1 have

the Beveridge-Nelson decomposition ŷt = cŷ (L) β′vt.

Thus a higher order predictive model may in principle exceed the R2 bounds calculated

from the parameters of the ARMA(1,1) representation, but it can only do this if the

predictions it generates have lower persistence than those of an AR(1) predictor consistent

with the ARMA(1,1) formulation (which, as discussed in Section 3.5.2, would have cx (1) =
1

1−λ
). So the ARMA(1,1) representation still provides us with important information

about the nature of the predictive space that contains the parameters of the true predictive

system.

In summary, Proposition 4 illustrates the more general property that whatever the

true value of r, univariate properties can still provide us with information on whether a

predictive system has the “right kind of predictions” - in time series terms. We explore

this issue further, in the context of our empirical example, in Section 6.8.

6 An empirical application: R2 bounds for inflation

6.1 Key points

We use the framework above to: a) analyse the univariate properties of US inflation, with

results for an additional seven OECD countries presented and discussed in (the online)

Appendix L; and b) make inference about both the potential predictive performance and

nature of the true multivariate models that generated the data. We use two time-varying

univariate unobserved components models: Stock and Watson (2007) and Chan, Koop
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and Potter (2013). Both models have been used previously to model and forecast inflation,

in particular in the US, and have been found to forecast well relative to competitors. We

show that both are nested within the time-varying parameter ARMA(1,1) representation

of Proposition 3, and hence can be used to derive time-varying R2 bounds. As expected,

the two representations imply similar values, and time paths, of R2
min,t. However at times

they imply very different values of R2
max,t, with Chan et al.’s model typically implying

a much narrower gap between the two bounds. We note that this reflects the distinctly

different multivariate frameworks implicit in the two univariate representions.

Since both representations are implicitly single predictor models, we also consider

whether a higher order predictive system might in principle have an R2 outside our esti-

mated bounds. We show, using simulation evidence, that even if the benchmark Smets

and Wouters (2007) DSGE model were the true data generating process for inflation, it

would fall foul of Proposition 4, because it generates “the wrong kind of predictions”.

6.2 Data

We analyse quarterly headline CPI inflation data for the US (seasonally adjusted), down-

loaded from FRED (the underlying data are from the OECD’s MEI database) over the

sample 1961Q1 to 2017Q1.

6.3 Unobserved components models through the lens of the

time-varying ARMA(1,1)

Consider the following general unobserved components model with stochastic volatility

that nests both Stock and Watson (2007) and Chan et al. (2013):

Yt = τ t + ct (33)

τ t = τ t−1 + sτ,t, where sτ,t = στ,tζτ,t

ct = µtct−1 + sc,t, where sc,t = σc,tζc,t

ln σ2
τ,t = ln σ2

τ,t−1 + υτ,t

ln σ2
c,t = ln σ2

c,t−1 + υc,t

where inflation, Yt, is decomposed as the sum of a a random walk (permanent) component,

τ t, and a (transitory) AR(1) component, ct. ζt = (ζτ,t, ζc,t) is assumed NIID(0, I2),

υt = (υτ,t, υc,t) is NIID(0, diag(σ2
υ,τ , σ

2
υ,c)). Allowing for stochastic volatility has been

found to improve both in-sample and out-of-sample fit (e.g., see Stock and Watson (2007)).
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The Stock and Watson (2007) model assumes µt = 0. We follow Chan’s (2017) gen-

eralisation of Stock-Watson by estimating σ2
υ,τ and σ2

υ,c rather than setting both equal to

0.2, as in Stock and Watson (2007). This flexibility is helpful, as shown by Chan (2017),

certainly in considering applications beyond the US (see appendix L). Henceforth, we

denote our first UC model, “SWC”.

The SWC model implies that yt = ∆Yt has a time-varying MA(1) representation.29 In

our framework, for r = q = 1, the SWC representation implies inflation is generated by an

underlying multivariate system with time-varying parameters as in (23) and (24), in which,

in the absence of restrictions across the underlying structural model, the single predictor

xt must be IID.30 The predictor xt could itself be some aggregate of state variables for

inflation, but this would usually require that these are all themselves IID (i.e., may in

principle be some aggregate of “news” about a range of series).

The Chan, Koop and Potter (2013) (“CKP”) model allows both the volatility of

the transitory component, σc,t, and its AR parameter, µt, to be time-varying; but in

contrast to SWC it assumes the innovation to the permanent component has constant

volatility (στ,t = στ , ∀t). This implies a time-varying ARMA(1,1) representation, in

which the AR parameter, λt, is a recursive function of µt, as in Proposition 3.31 If again

we assume r = q = 1, the underlying predictor for inflation, xt, consistent with this

ARMA representation is itself a time-varying AR(1) process with AR parameter µt.
32

The time invariant versions of both SWC and CKP impose certain restrictions on

their ARMA representations (as discussed in Section 3.3 and summarised in Lemma 3):

both require θ > λ ≥ 0. In the time-varying case we are not aware of any results

showing that this must necessarily still hold, although in practice it does hold in all the

applications we have examined. Note that (as discussed in relation to Proposition 3) the

CKP representation does not require either θt or λt to be bounded above by unity.

One feature of both representations is also quite clear-cut, whether in time-varying or

time-invariant form: both exclude the possibility that either yt or Yt admit a pure AR

29Note that Stock and Watson use a time-invariant formula to derive an estimate of the implied time-
varying MA parameter; however we show below that in this context this generates very similar answers
to the exact recursive formula.

30In the SWC framework, with no AR component, stochastic volatility in the implicit single predictor
can be captured by time variation in βt.

31See Appendix I.1. Note that CKP also utilise restrictions that bound both τ t and µt. We impose
bounds on µt, as in CKP, but not on τ t, since this would change the order of the ARMA representation.
However, we find that our estimated unobserved components are affected only minimally by whether we
impose the bound on τ t.

32Note that, as in the time-invariant case analysed in Section 3.3, ct can be viewed in filtering terms
as an estimate of the true predictor, conditional upon the history of yt, and the identifying assumption
E(ζτ,t, ζc,t) = 0, ∀t.
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representation.

Both the SWC and CKP models are estimated, with the same priors and starting

values, using Bayesian methods as in Chan (2017) and Chan et al. (2013), respectively;

we refer the reader to these papers for background specification and estimation details.33

6.4 Unobserved Components representations of quarterly CPI

inflation

Figure 1 summarises our estimation results and the properties of the derived ARMA

representations.

33We gratefully acknowledge use of Joshua Chan’s Matlab code for both the SWC and CKP models,
available at http://joshuachan.org/code.html. As detailed in the discussion below, with associated Figures
in Appendices L and M, we do investigate the robustness of results to some of these specification choices.
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Figure 1: US inflation. Panel A plots posterior median estimates of the permanent
component, τ t, of inflation from the SWC and CKP models alongside CPI inflation.
Panel B plots posterior median estimates of θt, λt and µt from the SWC and CKP models
(where λt = µt = 0 for SWC). Panels C and D plot posterior median of estimates of στ,t

and σc,t from the SWC and CKP models. Panels E and F plot posterior median estimates
of R2

min,t and R2
max,t from the SWC and CKP models as defined in Proposition 3.
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Panel A of Figure 1 plots annualised quarterly inflation, Yt, alongside the estimated

permanent components, τ t, in the SWC and CKP representations.34 For the first half of

the sample especially during the periods of high inflation in the 1970s and early 1980s,

Panel A shows that the CKP estimates of τ t are much smoother than those from SWC.

Panels C and D show that during this period shocks to inflation in the US are largely

interpreted as permanent in SWC (hence at these times the path for τ t is very similar

to that for inflation itself), but must be allocated to the transitory component in CKP.

However, from the late 1980s onwards (i.e., post Great Moderation), the SWC and CKP

estimates of τ t (and hence the implied cycles, ct) are much more similar, with the SWC

estimates of σ2
τ,t falling and then stabilising at similar values to CKP. Both representations

therefore imply that transitory shocks have dominated in more recent data.

6.5 The lower bound, R2
min,t and the ARMA representations

Comparison of Panels E and F, of Figure 1, shows that, as we would expect (see Section 5)

both SWC and CKP generate fairly similar estimates of R2
min,t (for yt = ∆Yt).

35 Estimates

of R2
min,t fell to near-zero during the high inflation of the mid-1970s, but have recovered

in more recent years.

How can both SWC and CKP show such similar patterns of time variation in univari-

ate predictability, while having such distinctly different patterns of σ2
τ,t and σ2

c,τ? The

reconciliation comes from an examination of the implied ARMA structure of both repre-

sentations.

In the SWC representation, for example, Figure 1 shows that the fall in the estimated

value of R2
min,t (Panel E) to near-zero in the mid-1970s was, of necessity, matched by a

fall in θ̂t, (Panel B).36 But in the CKP representation, R2
min,t is driven primarily by the

difference between θ̂t and λ̂t.
37 Panel B of Figure 1 shows that during this inflationary

period µ̂t, the estimated AR(1) parameter of CKP’s transitory component of US inflation,

34Panels C and D of Figure M.1 (see online appendix) also show that results are robust to consideration
of a more diffuse prior for σ2

τ in CKP. Such a diffuse prior is in line with the similarly diffuse prior employed
in SWC.

35Chan et al. (2013)’s out-of-sample predictability tests (their Table 5) also show that differences
between the CKP and Stock-Watson’s UC model are relatively modest, certainly for 1-step ahead forecasts
which are our focus in this paper.

36The time-invariant formula in (17), for the SWC/MA(1) case is simply R2
min = θ2/(1+θ2). In Panels

A and B of Figure M.1 we show that applying the time-invariant formulae from Section 3 to the time-
varying UC and ARMA estimates usually gives good, or (in the case of the SWC representation very
good) approximations to the true, recursive values we derive from our moment conditions. Exceptions to
this general rule arise when estimates of θt exceed unity.

37From (17) the time-invariant formula is R2
min = (λ− θ)2 /(1− λ2 + (λ− θ)2)).
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rose to a peak of around 0.9. There was a similar, if somewhat more volatile implied

pattern in λ̂t (which is driven not just by µ̂t but also by its rate of change). This narrowing

of the gap between θ̂t and λ̂t, despite a few periods when θ̂t exceeded unity,38 implied falls

in estimates of R2
min,t to close to zero during this period of higher inflation.

While SWC and CKP, despite their different interpretations, both capture the very low

degree of univariate predictability, especially during the mid-1970s, there are significant

differences in what the two representations imply about multivariate predictability, to

which we now turn.

6.6 The upper bound, R2
max,t and the ARMA representations

Panels E and F of Figure 1 show that while the time paths for the estimates of R2
min,t are

similar for both SWC and CKP, at times their estimates of R2
max,t differ very markedly,

particularly in the period when inflation was high and R2
min,t was low. Comparison of

Panels E and F shows that the estimated paths for R2
max,t from CKP are typically much

lower than those implied by SWC. The gap between R2
min,t and R2

max,t from the CPK

model has widened in recent years, but remains distinctly narrower than for SWC.39

To help understand how these contrasting estimates for R2
max,t arise from the two

ARMA models implied by SWC and CKP, we again exploit the formula, (18), for R2
max in

the time-invariant ARMA(1,1) given in Section 3: R2
max = R2

min +
(
1− θ2

)
(1−R2

min).
40

For SWC, a low estimate of R2
min,t requires θ̂t to be close to zero, which must imply that

R̂2
max,t is close to unity; in contrast in the CKP model a similarly low R̂2

min,t reflects a

high value of λ̂t that is close to an even higher value of θ̂t (which in some periods exceeds

unity). This results in the implied R̂2
max,t being very close to the lower bound.

38As noted in the discussion of Proposition 3, fundamentalness does not impose an upper bound of
unity in every period. Note also that the proof also shows that the nonfundamental MA parameter γt is
only equal to θ−1

t on average, so when Figure 1 shows θ̂t > 1 this does not imply that γ̂t < 1; indeed it
is always higher than θ̂t.

39In Panels E and F of Figure M.1 we show 16.5%, 50% and 83.5% quantiles of the posterior distribution
of (R2

max,t − R2
min,t) for SWC and CKP. The range of values of the gap between the upper and lower

bounds is more revealing of the impact of parameter uncertainty than for either in isolation, since R2
min,t

and R2
max,t are strongly correlated across replications. The posterior intervals are much narrower for

CKP than SWC.
40As noted above (see footnote 36), Figure M.1 shows that the time-invariant formulae mostly provide

a good approximation to the true values.
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6.7 Implications for multivariate models with r = 1

The differences between the SWC and CKP estimates of R2
max,t reflect the very different

implicit assumptions about the nature of the underlying multivariate predictive systems

for inflation that generated the ARMA reduced form. At this stage we focus on the

implications under the maintained assumption that r = 1; we consider the impact of

relaxing this assumption in the next sub-section.

The SWC representation constrains the AR parameter λt = 0; this implies there must

be a single white noise predictor in the underlying multivariate model.41 But the CKP

representation both allows the single predictor to be persistent and produces estimates of

µ̂t (and hence λ̂t) that are, at times, quite close to unity. Note that while CKP estimate

this parameter as the AR(1) of the transitory component, when viewed through the lens

of our analytical framework it is an estimate of the AR(1) parameter of the true (but

unobserved) predictor.

The contrast between estimates of R2
max,t can therefore be seen as arising from different

implicit assumptions about the underlying macroeconomic drivers of inflation. The (at

times) strongly persistent predictor implied by the CKP representation is what we might

expect in a traditional Phillips Curve framework, if some indicator of demand pressure

from the real economy was both persistent (for which there is much evidence) and had

predictive power for changes in inflation (for which evidence is of course much more mixed;

cf. Stock and Watson, 2007). However, the mid-1970s, when inflation was most hard to

predict from its own history, was also the period in which the predictor implicit in the

CKP representation was estimated to be most strongly persistent. From Corollary 3,

and the analysis of Section 3.5.2, the time series properties of such a strongly persistent

predictor would have been radically different from the time series properties of inflation,

which was at the time near white-noise. Thus the associated estimate of R2
max,t tells us

that no such predictor could have done much better during this period than the ARMA

(which itself had minimal predictive power): an AR(1) with high µt would have been just

too different from a near-white noise to have more than marginal predictive power.

In contrast, the (at times, much) wider gap between the R2 bounds from the SWC

representation (Panel E of Figure 142) leaves open the possibility of nontrivial improve-

ments in predictability of inflation relative to the ARMA, but only if the true predictor

is white noise. This could, at least in principle, be consistent with a “news” model of

informational shocks driving forward-looking price setting. Unlike the case with a persis-

41Time variation in βt allows us to make the single predictor pure white noise.
42Results for other OECD countries are similar; see Panel E of Figures L2-L8 in the online appendix.
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tent predictor, during the period of higher inflation the estimated R2
max,t tells us that a

white noise predictor could in principle have predicted inflation extremely well. Corollary

3 again provides a rationale. Since we know that the change in inflation was near-white

noise during this period, the time series properties of the predictor and the predicted

variable would have been very close. An upper bound close to unity then simply tells us

that there could in principle have been a white noise predictor in period t that could have

predicted the outturn for inflation in period t + 1.

At face value this suggests a resolution of the Predictive Puzzle for inflation: that

macroeconomists looking at persistent predictors of inflation have been looking in the

wrong place, given the much greater scope for predictability from a white noise predictor.

However a distinct note of caution is needed. As discussed in Section 2.4, the R2 bounds

are not the only information provided by the univariate representation. Proposition 2

showed that, at least in the time-invariant ARMA(1,1) case, there is also a lower bound

on |ρuv|, the absolute correlation between any such predictor and innovations to inflation

itself.43 In the time-invariant MA(1) case this lower bound is given by ρmin = 2θ
1+θ2 . If we

plug the SWC time-varying value θ̂t into this time-invariant formula, the implied estimate

ρ̂min,t has been close to unity in recent years.44 Thus, while the SWC representation implies

that a white noise predictor could, in principle, predict better than the time-varying

MA(1), the “predictive space” of parameters of the true predictive system consistent with

this MA(1) representation is very tightly defined by this bound on ρuv.

Thus an alternative, and distinctly more pessimistic, resolution of the Predictive Puz-

zle in relation to inflation is that in recent data the properties required for even a white

noise predictor to out-predict the univariate representation are so tightly defined that

there may be little or no scope for such a predictor to exist.45 This conclusion holds

a fortiori for a persistent predictor consistent with the CKP representation, given the

combination of tight R2 bounds and the lower bound for |ρuv|.
43For the general case this result relates to the correlation between ut and vt, the innovation to the

predictor, but in the MA(1) case xt = vt.
44We have not found a way to generalise Proposition 2 to the time-varying case; however we would

defend the approach used here on the basis both of the (usually) fairly good approximations provided by
time-invariant formulae for the R2 bounds, and the logic of Corollaries 3 and 4, together with the concept
of the predictive space, all of which must apply even in a time-varying context.

45This conclusion also holds, to varying extents, in most other countries (see online Appendix L). An
exception is Italian inflation, where the SWC estimates of θ̂t (see Figure L.6, Panel B) are much lower,
implying lower values for ρ̂min,t (using the time-invariant formula) than in the US.
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6.8 Implications for higher-order predictive models of inflation

The potential resolution of the Predictive Puzzle for inflation offered in the previous

section is of course dependent on the crucial assumption that the predictive regression

has just a single (possibly composite) predictor. Yet, as discussed above, in Section

5, while the data for CPI inflation may be well described by a low-order ARMA in a

finite sample, it is always possible that r, the true number of predictors derived from the

underlying ABCD model, is greater than q, the MA order found in the data, because the

the true reduced form (the “macroeconomist’s ARMA”, (5)) has near-cancellation, such

that increasing the ARMA order would give no significant improvement in fit.46

Since most multivariate predictive models that generate inflation forecasts have larger

numbers of state variables this would appear, on the face of it at least, to re-open the

Predictive Puzzle, since, as discussed in Section 5, a higher true value of r would almost

certainly mean that the true value of R2
max would be higher than that implied by an

estimated low-order ARMA representation. Yet, as documented by Stock and Watson

(2007) in practice additional predictors still struggle to predict inflation better than a

univariate representation.

We can get some insights into why this might be the case by analysing some of the

properties of the predictive system for inflation implied by the benchmark DSGE model

of Smets and Wouters (2007).

The Smets-Wouters model has n = 16 linearly independent state variables with dis-

tinct eigenvalues. Even if we allow for the possibility (discussed in relation to Lemma 1

above) of a near-block-recursive structure, such that r might in principle be very much

smaller, this still in principle opens up at least the logical possibility that the true value

of R2
max might be distinctly higher than implied by the R2 bounds we calculated in the

previous section.

Proposition 4 provides one crucial insight into why, in practice, a higher true value of

r need not imply that the true predictive system actually attains a value of R2 beyond the

upper bounds implied by our estimated representations, which implicitly assume r = 1.

It showed that, for the time-invariant case at least, this will only be the case if the true

structural model, with r > 1 generates predictions with lower persistence (a lower value

46The discussion in online Appendix L shows that in most countries it is quite hard even to distinguish
conclusively between time-varying MA(1) and ARMA(1,1) representations of CPI inflation. So it seems
highly unlikely that higher order representations could be estimated. In practice we are not aware of
readily available estimation routines that would allow us to estimate a higher order ARMA model with
time-varying parameters (or equivalently a UC model for the level of inflation, Yt with multiple stationary
components). However, applying standard time-invariant ARMA estimation techniques to CPI inflation
suggests minimal gains from increasing ARMA order in any of the 8 countries we examine.
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of cŷ (1)) than the single predictor model consistent with the ARMA(1,1) representation.

But in Appendix K we demonstrate, via simulation, that the Smets and Wouters DSGE

model as fitted to US macroeconomic data, generates the wrong kind of predictions: it

consistently delivers implied values of cŷ (1) well above unity and at least as large as those

implied by the CKP time-varying ARMA(1,1) representation in recent years (hence, by

implication, very much higher than that implied by the SWC representation, which always

implies cŷ (1) = 1).

Nor indeed should we be very surprised by this result. Inflation in the Smets-Wouters

model, as in most structural models (at least those with a New Keynesian core) is gen-

erated by a hybrid Phillips Curve with both forward- and backward-looking components.

Inflation predictions are thus driven by a combination of strongly persistent shocks to

marginal costs from the real economy and (less persistent) margin shocks (which to some

extent capture some of the univariate characteristics of inflation itself). A structure like

this simply cannot generate predictions with time series properties that allow it to es-

cape the R2 bounds implied by the low-order ARMA representations we analysed in the

previous section.

Of course, the Smets-Wouters model is only one model, albeit an important bench-

mark. We cannot rule out the possibility that the true model that generated the data for

inflation - in the US and elsewhere - may escape the R2 bounds calculated in Section 6.7.

But the insights of the “predictive space” still apply. While the theoretical R2 bounds

may widen in higher dimensional systems (possibly even to include values of R2
max close

to unity) the existence of the Predictive Puzzle suggests that the parameter space of any

predictive system that could actually get anywhere near this notionally possible higher

upper bound is likely to be sparse.47

7 Conclusions

We motivated the analysis in this paper with reference to the “Predictive Puzzle” in em-

pirical macroeconomics: that multivariate time series models often struggle to outpredict

univariate representations.

47For example Mitchell, Robertson and Wright (2017) work through the implications of case of a true
ARMA(2,2) that generates data for inflation consistent (within the range of sampling variation) with
Stock and Watson’s MA(1) representation. They show that the bounds from the ARMA(1,1) provide a
very good approximation, in the sense that the predictive space” either has very little mass outside these
bounds, or only contains predictive systems with properties that we would rule out on a priori grounds
(eg, cases in which both predictors have λi < 0, or are perfectly negatively correlated.
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A common response to this puzzle is to conclude that the macroeconomy is simply

unforecastable. But this would be incorrect. There is plenty of evidence of at least

a modest degree of univariate predictability (our empirical example of CPI inflation is

certainly not an isolated example), with AR(MA) benchmarks commonplace across the

macroeconomic forecasting literature. The challenge is to find additional multivariate

predictability that improves on this univariate performance.

This paper uses population-based analysis to analyse the Predictive Puzzle. If a mul-

tivariate macroeconomic model yields an ARMA(r, r) reduced form for one of its endoge-

nous variables, we show that we can use the ARMA parameters to derive bounds for the

R2 for the predictive regression that conditions upon the true states. If r is low then these

bounds can be tight, so that little improvement beyond univariate modelling is possible.

Many contemporary macro models imply that r may be quite high, in which case the

R2 bounds could in principle be (substantially) looser. At the same time, univariate anal-

ysis typically finds little role for higher order AR or MA terms (Diebold and Rudebusch,

1989; Cubbada et al., 2009). So either multivariate macro models are being specified with

too many state variables, or the structure of these models must generate exact (or near-)

cancellation of AR and MA terms.

In the former case, the R2 bounds found from estimating the low order ARMA may

therefore provide a good characterisation of the (often limited) degree of improvement

that multivariate prediction may give over univariate analysis.

But even in the latter case, where the true R2 bounds may potentially be much wider

than those implied by low order estimation, we show that improvements in predictability

can be obtained only if the predictor variables introduced have characteristics that are

consistent with properties of the univariate representation. In our application to CPI

inflation we argue that improvements in predictability will typically require low (or even

zero) persistence in the predictor variables, and that this is not a feature displayed by, for

example, the benchmark Smets and Wouters (2007) DSGE model.

Our analysis suggests new avenues that future researchers might pursue. In the case

of our empirical example, it suggests that future researchers looking for predictors of

inflation should be focussed on low persistence or IID (“news”) predictors. More generally

researchers should be looking for multivariate predictability consistent with the univariate

properties of the series they seek to predict.
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A Proof of Lemma 1 (the predictive system for yt)

We can write the state equation (1) as

zt = T−1MTzt−1 + Bst (A.1)

Tzt = MTzt−1 + TBst (A.2)

x∗t = Mx∗t−1 + v∗t (A.3)

where x∗t = Tzt is n× 1 and v∗t = TBst. The observables equation (2) is then

yt = CT−1Tzt−1 + Dst (A.4)

= CT−1x∗t−1 + Dst (A.5)

Let

β∗′ =
[

1 01×(n−1)

]
CT−1 (A.6)

and we can write a predictive equation for the first element of yt as

yt = β∗
′
x∗t−1 + ut (A.7)

where

ut =
[

1 01×(n−1)

]
Dst (A.8)

This representation may in principle have state variables with identical eigenvalues

(for example multiple IID states) or state variables with zero β∗ entries (states that do

not directly affect yt). To derive a minimal representation we first eliminate from x∗t those

elements with zero β∗ entries (and rewrite β∗ appropriately). Then if state variables x∗i

and x∗j correspond to identical eigenvalues µi = µj (and so have the same autoregressive

parameter in the transition equation) we combine these into a new state variable xi =

x∗i +
β∗j
β∗i

x∗j (and note that xi will also be an AR(1) with parameter µi) and we can then

rewrite the prediction equation in terms of xi with parameter βi = β∗i . We are then left

with an r × 1 vector xt obeying

xt = Λxt−1 + vt (A.9)

where vt contains the appropiate elements of v∗t and a prediction equation

yt = β′xt−1 + ut (A.10)
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where Λ then contains the distinct eigenvalues of M corresponding to the r variables in

xt (which are either original states in x∗t or combinations thereof that are relevant for yt);

β contains the matching elements from β∗, and vt those from v∗t .

Note that

r = n−# {{states that do not predict yt} ∪ {repeated eigenvalues of M}} (A.11)

which could be substantially less than n.�

B Proof of Lemma 2 (The Macroeconomist’s ARMA)

After substitution from (4) the predictive regression (3) can be written as

det (I−ΛL) yt = β′adj (I−ΛL)vt−1 + det (I−ΛL) ut (B.1)

Given diagonality of Λ, from A1, we can rewrite this as

ỹt ≡
r∏

i=1

(1− λiL) yt =
r∑

i=1

βi

∏
j 6=i

(1− λjL) Lvit +
r∏

i=1

(1− λiL) ut ≡
r∑

i=0

γ ′iL
iwt (B.2)

wherein ỹt is then an MA(r), wt =
(
ut v

′
t

)′
and the final equality implicitly defines a set

of vectors γi (β, λ), for i = 0, . . . , r each of which is (r + 1)× 1.

Let acfi be the ith order autocorrelation of ỹt implied by the predictive system. Write

Ω = E (wtw
′
t) and we have straightforwardly

acfi (β, λ,Ω) =

∑r−i
j=0 γ ′jΩγj+i∑r
j=0 γ ′jΩγj

(B.3)

To obtain explicitly the coefficients of the MA(r) representation write the right hand

side of (B.2) as an MA(r) process
∑r

i=0 γ ′iL
iwt =

∏r
i=1 (1− θiL) εt = θ (L) εt for some

white noise process εt and rth order lag polynomial θ (L).

The autocorrelations of θ (L) εt are derived as follows. Define a set of parameters ci

by
r∏

i=1

(1− θiL) = 1 + c1L + c2L
2 + ... + crL

r (B.4)
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Then the ith order autocorrelation of θ (L) εt is given by (Hamilton, 1994, p.51)

ci + ci+1c1 + ci+2c2 + .... + crcr−i

1 + c2
1 + c2

2 + ... + c2
r

, i = 1, . . . , r (B.5)

Equating these to the ith order autocorrelations of ỹt we obtain a system of moment

equations

ci + ci+1c1 + ci+2c2 + .... + crcr−i

1 + c2
1 + c2

2 + ... + c2
r

= acfi (β, λ,Ω) , i = 1, . . . , r (B.6)

which can be solved for ci, i = 1, . . . , r, and hence for θi. The solutions are chosen such

that |θi| < 1, ∀i.�

C Proof of Proposition 1 (Bounds for the Predictive

R2)

We start by establishing the importance of two of the set of possible ARMA representa-

tions.

Lemma 4 In the set of all possible nonfundamental ARMA(r, r) representations consis-

tent with (5) in which θi > 0, ∀i, and θi is replaced with θ−1
i for at least some i, the

moving average polynomial θN (L) in (10) in which θi is replaced with θ−1
i for all i, has

innovations ηt with the minimum variance, with

σ2
η = σ2

ε

q∏
i=1

θ2
i (C.1)

Proof. Equating (5) to (10) the non-fundamental and fundamental innovations are

related by

εt =
r∏

i=1

(
1− θ−1

i L

1− θiL

)
ηt =

∞∑
j=0

cjηt−j (C.2)

for some square summable cj. Therefore, since ηt is itself IID,

σ2
ε = σ2

η

∞∑
j=0

c2
j (C.3)
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Now define

c(L) =
∞∑

j=0

cjL
j =

r∏
i=1

(
1− θ−1

i L

1− θiL

)
(C.4)

so

c(1) =
r∏

i=1

(
1− θ−1

i

1− θi

)
=

r∏
i=1

(
−1

θi

)
(C.5)

and

c(1)2 =
r∏

i=1

1

θ2
i

=

(
∞∑

j=0

cj

)2

=
∞∑

j=0

c2
j +

∑
k 6=j

cjck (C.6)

Since εt is IID we have

E(εtεt+k) = 0 ∀k > 0

implying
∞∑

j=0

cjcj+k = 0 ∀k > 0 (C.7)

Hence we have ∑
j 6=k

cjck = 2
∞∑

k=1

∞∑
j=0

cjcj+k = 0 (C.8)

thus
∞∑

j=0

c2
j = c(1)2 =

r∏
i=1

1

θ2
i

(C.9)

Thus using (C.9) and (C.3) we have (C.1).

To show that this is the nonfundamental representation with the minimum innovation

variance, consider the full set of nonfundamental ARMA(r, r) representations, in which,

for each representation k, k = 1, . . . , 2r−1, there is some ordering such that, θi is replaced

with θ−1
i , i = 1, . . . , s (k) , for s ≤ r. For any such representation, with innovations ηk,t,

we have

σ2
η,k = σ2

ε

s(k)∏
i=1

θ2
i (C.10)

This is minimised for s (k) = r, which is only the case for the single representation in

which θi is replaced with θ−1
i for all i, and thus this will give the minimum variance non-

fundamental representation. Note that it also follows that the fundamental representation

itself has the maximal innovation variance amongst all representations.�
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We now define the R2 of the (maximal innovation variance) fundamental and this

(minimal innovation variance) non-fundamental representations as follows

R2
F = R2

F (λ, θ) = 1− σ2
ε

σ2
y

(C.11)

and

R2
N = R2

N (λ, θ) = 1−
σ2

η

σ2
y

(C.12)

and note that immediately from the above we have

R2
N (λ, θ) = 1−

(
1−R2

F (λ, θ)
) r∏

i=1

θ2
i (C.13)

Also for the predictive model yt = β′xt−1 + ut we have

R2 =
σ2

ŷ

σ2
ŷ + σ2

u

(C.14)

where

σ2
ŷ = β′E (xtx

′
t) β (C.15)

We now show that we can recast the macroeconomist’s ARMA and its minimal vari-

ance nonfundamental counterpart as special cases of the predictive system in Lemma

1.

For these two ARMA representations

r∏
i=1

(1− λiL) yt =
r∏

i=1

(1− θiL) εt (C.16)

r∏
i=1

(1− λiL) yt =
r∏

i=1

(
1− θ−1

i L
)
ηt (C.17)

we can define r × 1 coefficient vectors βF =
(
βF,1, . . . , βF,r

)′
and βN =

(
βN,1, . . . , βN,r

)′
that satisfy respectively

1 +
r∑

i=1

βF,iL

1− λiL
=

∏r
i=1 (1− θiL)∏r
i=1 (1− λiL)

(C.18)

1 +
r∑

i=1

βN,iL

1− λiL
=

∏r
i=1

(
1− θ−1

i L
)∏r

i=1 (1− λiL)
(C.19)
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We can then define two r × 1 vectors of “univariate predictors” (which we label as

fundamental (F) and nonfundamental (N)) by

xF
t = ΛxF

t−1 + 1εt (C.20)

xN
t = ΛxN

t−1 + 1ηt (C.21)

where by construction we can now represent the (fundamental and nonfundamental) AR-

MAs for yt as predictive regressions

yt = β′FxF
t−1 + εt (C.22)

yt = β′NxN
t−1 + ηt (C.23)

The predictive regressions in (C.22) and (C.23), together with the processes for the

two univariate predictor vectors in (C.20) and (C.21), are both special cases of the general

predictive system of Lemma 1, but with rank 1 covariance matrices, ΩF = σ2
ε11′, and

ΩN = σ2
η11

′, thus proving Corollary 4.48 We shall show below that the properties of

the two special cases provide us with important information about all predictive systems

consistent with the history of yt. We note that, since these predictive regressions are

merely rewrites of their respective ARMA representations, the R2 of these predictive

regressions must match those of the underlying ARMAs (each of which can be expressed

as a function of the ARMA coefficients). That is:

1. The fundamental predictive regression yt = β′FxF
t−1 + εt has R2 = R2

F (λ, θ).

2. The nonfundamental predictive regression yt = β′NxN
t−1 + ηt has R2 = R2

N (λ, θ).

We now proceed by proving two results that lead straightforwardly to the Proposition

itself.

Lemma 5 In the population regression

yt = ν ′xxt−1 + ν ′FxF
t−1 + ξt (C.24)

where the true process for yt is as in (3), and xF
t is the vector of fundamental univariate

predictors defined in (C.20), all elements of the coefficient vector νF are zero.

48Note that we could also write (C.22) as yt = β′x̂t−1 + εt; where x̂t = E
(
xt| {yi}t

i=−∞

)
is the

optimal estimate of the predictor vector given the single observable yt and the state estimates update
by x̂t = Λx̂t−1 + kεt, where k is a vector of steady-state Kalman gain coefficients (using the Kalman
gain definition as in Harvey, 1989). The implied reduced form process for yt must be identical to the
fundamental ARMA representation (Hamilton, 1994) hence we have βF,i = βiki.
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Proof. The result will follow automatically if we can show that the xF
it−1 are all

orthogonal to ut ≡ yt−β′xt−1. Equalising (5) and (3), and substituting from (4), we have

(noting that p = q = r)

yt =

∏r
i=1(1− θiL)∏r
i=1(1− λiL)

εt =
β1v1t−1

1− λ1L
+

β2v2t−1

1− λ2L
+ . . . +

βrvrt−1

1− λrL
+ ut (C.25)

So we may write, using (C.20),

xF
jt−1 =

εt−1

1− λjL

=

(
L

1− λjL

) ∏r
i=1(1− λiL)∏r
i=1(1− θiL)

×(
β1Lv1t−1

1− λ1L
+

β2Lv2t−1

1− λ2L
+ . . . +

βrLvrt−1

1− λrL
+ ut

)
(C.26)

Given the assumption that ut and the vit are jointly IID, ut will indeed be orthogonal to

xF
jt−1, for all j, since the expression on the right-hand side involves only terms dated t− 1

and earlier, thus proving the Lemma.

Lemma 6 In the population regression

yt = φ′xxt−1 + φ′NxN
t−1 + ζt (C.27)

where xN
t is the vector of nonfundamental univariate predictors defined in (C.21), all

elements of the coefficient vector φx are zero.

Proof. The result will again follow automatically if we can show that the xit−1 are

all orthogonal to ηt ≡ yt − β′NxN
t−1. Equating (10) and (3), and substituting from (4), we

have

yt =

∏r
i=1(1− θ−1

i L)∏r
i=1(1− λiL)

ηt = β1

v1t−1

1− λ1L
+ β2

v2t−1

1− λ2L
+ . . . + βr

vrt−1

1− λrL
+ ut (C.28)

Using
1

1− θ−1
i L

=
−θiF

1− θiF
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where F is the forward shift operator, F = L−1, we can write

ηt = F r

r∏
i=1

(−θi)

(∏r
i=1(1− λiL)∏r
i=1(1− θiF )

)(
β1

v1t−1

1− λ1L
+ β2

v2t−1

1− λ2L
+ . . . + βr

vrt−1

1− λrL
+ ut

)
(C.29)

Now

F r

∏r
i=1(1− λiL)∏r
i=1(1− θiF )

vkt−1

(1− λkL)
= F r

(∏
i6=k(1− λiL)∏r
i=1(1− θiF )

)
vkt−1

= vkt + c1vkt+1 + c2vkt+2 + . . . (C.30)

for some c1, c2, ... since the highest order term in L in the numerator of the bracketed

expression is of order r − 1, and

F r

(∏r
i=1(1− λiL)∏r
i=1(1− θiF )

)
ut = ut + b1ut+1 + b2ut+2 + . . . (C.31)

for some b1, b2, . . ., since the highest order term in L in the numerator of the bracketed

expression is r. Hence ηt can be expressed as a weighted average of current and forward

values of ut and vit and will thus be orthogonal to xit−1 = vit−1

1−λiL
for all i, by the assumed

joint IID properties of ut and the vit, thus proving the Lemma.

Now let R2
1 = 1 − σ2

ξ/σ
2
y be the predictive R2 of the regression (C.24) analysed in

Lemma 5. Since the predictive regressions in terms of xt in (3) and in terms of xF
t in

(C.22) are both nested within (C.24) we must have R2
1 ≥ R2 and R2

1 ≥ R2
F . But Lemma

5 implies that, given νF = 0 we must have R2
1 = R2, hence R2 ≥ R2

F .

By a similar argument, let R2
2 = 1 − σ2

ζ/σ
2
y be the predictive R2 of the predictive

regression (C.27) analysed in Lemma 6. Since the predictive regressions in terms of xt

in (3) and in terms of xN
t in (C.23) are both nested in (C.27) we must have R2

2 ≥ R2

and R2
2 ≥ R2

N . But Lemma 6 implies that, given φx = 0 we must have R2
2 = R2

N , hence

R2
N ≥ R2. From above we have that R2

F and R2
N give the minimum and maximum values

of R2 from all possible (fundamental and non-fundamental) ARMA representations for

yt. Thus writing R2
F = R2

min (λ, θ) and R2
N = R2

max (λ, θ) we have

R2
min (λ, θ) ≤ R2 ≤ R2

max (λ, θ) (C.32)

as given in the Proposition.

Moreover these inequalities will be strict unless the predictor vector xt matches either

the fundamental predictor xF
t or the nonfundamental predictor xN

t in which case the
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innovations to the predictor variable match those in the relevant ARMA representation.

In the A,B,C,D system this occurs only if rank

[
B

D

]
= 1.

This completes the proof of the Proposition.

D Proof of Corollary 1 (R2 bounds for a minimal

ARMA)

The macroeconomist’s ARMA in (5) is ARMA(r, r) . The minimal ARMA(p, q) represen-

tation will only be of lower order if we have either cancellation of some MA and AR roots,

or an MA or AR coefficient precisely equal to zero. Thus we have

q = r −#{θi = 0} −#{θi = λi 6= 0} (D.1)

p = r −#{λi = 0} −#{θi = λi 6= 0} (D.2)

thus unless A,B,C,D satisfy exact restrictions such that there are zero coefficients or

cancellation in the macroeconomist’s ARMA we have r = p = q. Furthermore for q > 0

we have R2
F > 0 and R2

N < 1. hence the bounds lie strictly within [0, 1] .�

E Proof of Corollary 2 (R2 Bounds for observable

predictors with efficient filtering)

The proof follows as a direct consequence of efficient filtering, given some observation

equation for the observables, qt: the vector of state estimates, x̂t, will have the same

autoregressive form as the process in (4) for the true predictor vector (Hansen and Sargent,

2013, Chapter 8), with innovations, v̂t, that, given efficient filtering, are jointly IID with

the innovations to the associated predictive regression yt = β′x̂t−1 + ût, which takes the

same form as (3). Given that the resulting predictive system is of the same form, the

proof of Proposition 1 must also apply.�
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F Proof of Corollary 3 (Time series properties of the

predictions)

Using (B.1), restated here

det (I−ΛL) yt = β′adj (I−ΛL)vt−1 + det (I−ΛL) ut (F.1)

implies

det (I−ΛL) ŷt = β′adj (I−ΛL)vt−1 (F.2)

where the right-hand side of (F.2) is an MA(r − 1), since each element of adj(I−ΛL) is

a polynomial of order ≤ r − 1. Hence ŷt is an ARMA(r, r − 1).�

G Proof of Lemma 3 (Beveridge-Nelson decomposi-

tion)

The UC model of equation (16) is, setting the deterministic component g = 0 as this does

not affect this proof

Yt = ct + τ t (G.1)

ct = µct−1 + sc,t (G.2)

τ t = τ t−1 + sτ,t (G.3)

Assume sτ,t ∼ (0, σ2
τ ), sc,t ∼ (0, σ2

c) and assume σcτ = Cov (sc,t, sτ,t) = 0, i.e., the

innovations to the random walk and to the cyclical components are orthogonal.

We have

yt = 4Yt = 4ct +4τ t (G.4)

= (µ− 1) ct−1 + sc,t + sτ,t (G.5)

Now we can write ct−1 = (1− µL)−1 sc,t−1

yt = (µ− 1) (1− µL)−1 sc,t−1 + sc,t + sτ,t (G.6)

yt = µyt−1 + (µ− 1) sc,t−1 + sc,t − µsc,t−1 + sτ,t − µsτ,t−1

yt = µyt−1 + sc,t − sc,t−1 + sτ,t − µsτ,t−1
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or, since µ = λ,

yt = λyt−1 + sc,t − sc,t−1 + sτ,t − λsτ,t−1 (G.7)

which is an ARMA(1,1), as the second order autocorrelation of sc,t− sc,t−1 + sτ,t−λsτ,t−1

is zero.

The first order autocorrelation of εt − θεt−1, cf. (14), is − θ
1+θ2 so this has to match

the first order autocorrelation of sc,t − sc,t−1 + sτ,t − λsτ,t−1. This implies

− θ

1 + θ2 =
Cov (sc,t − sc,t−1 + sτ,t − λsτ,t−1, sc,t−1 − sc,t−2 + sτ,t−1 − λsτ,t−2)

V ar (sc,t − sc,t−1 + sτ,t − λsτ,t−1)
(G.8)

=
−σ2

c − λσ2
τ

2σ2
c +

(
1 + λ2

)
σ2

τ

(G.9)

So

− θ

1 + θ2 =
−σ2

c − λσ2
τ

2σ2
c +

(
1 + λ2

)
σ2

τ

(G.10)

=
−σ2

c + λσ2
c − λ (σ2

τ + σ2
c)

2σ2
c −

(
1 + λ2

)
σ2

c +
(
1 + λ2

)
(σ2

τ + σ2
c)

(G.11)

and

− θ

1 + θ2 =
−λ− (1− λ) q

1 + λ2 +
(
1− λ2

)
q

(G.12)

where q = σ2
c/ (σ2

τ + σ2
c).

Thus
θ

1 + θ2 =
λ + (1− λ) q

1 + λ2 +
(
1− λ2

)
q
. (G.13)

Now consider the curves G (θ) = θ
1+θ2 and F (λ) = λ+(1−λ)q

1+λ2+(1−λ2)q
for −1 ≤ θ, λ ≤ 1.

Note that G is monotonic with G (−1) = −1
2

and G (1) = 1
2
. We show that F (λ) lies

everywhere above G (λ)

F (λ)−G (λ) =
λ + (1− λ) q

1 + λ2 +
(
1− λ2

)
q
− λ

1 + λ2 (G.14)

=

(
1 + λ2

)
(λ + (1− λ) q)− λ

(
1 + λ2 +

(
1− λ2

)
q
)(

1 + λ2 +
(
1− λ2

)
q
) (

1 + λ2
) (G.15)
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Now the denominator is positive so we need only consider the numerator

(
1 + λ2

)
(λ + (1− λ) q)− λ

(
1 + λ2 +

(
1− λ2

)
q
)

= λ + (1− λ) q (G.16)

+ λ3 + λ2 (1− λ) q

− λ− λ3 − λ
(
1− λ2

)
q

=
(
(1− λ) + λ2 (1− λ)− λ

(
1− λ2

))
q

=
(
1− 2λ + λ2

)
q

= (1− λ)2 q > 0

So the curve F lies above the curve G and hence for any λ the solution to

G (θ) = F (λ) (G.17)

will have θ > λ (see Figure G.1).�

1

Figure G.1: Proof of Lemma 3 (Beveridge-Nelson decomposition)
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H Proof of Proposition 2 (Bounds for ρuv)

We can re-write (15), the moment condition for the ARMA(1,1), as

−θ

1 + θ
=

−λ + βρuvs(
1− λ2

)
+ β2s2 − 2λβρuvs

(H.1)

where ρuv = corr ((ut, vt) and s = σu

σv
, and we note that the predictive equation here has

R2 =
V ar (βxt−1)

V ar (yt)
=

β2σ2
v

1−λ2

β2σ2
v

1−λ2 + σ2
u

=
β2s2(

1− λ2
)

+ β2s2

Without loss of generality, assume β > 0, implying

βs =

√(
1− λ2

)
R2

1−R2
. (H.2)

Subsituting into (H.1) we can (with some tedious but straightforward manipulations)

invert to obtain an expression for ρuv in terms of λ, θ and R2, giving

ρuv(θ, λ, R2) = −

 (θ − λ) (1− θλ) +
(1−λ2)R2

1−R2 θ(
1− λ2 + (θ − λ)2)√(1−λ2)R2

1−R2

 (H.3)

This equation describes the predictive space Pλ,θ : a necessary relation between pa-

rameters that describe the predictive system that generates the ARMA(1,1), and has

powerful consequences. For example if for a given triplet (θ, λ, R2) the solved value for

ρuv lies outside the unit interval then there can be no possible predictive model described

by that particular combination of (θ, λ, R2).

We have already seen in Corollary 4 that the maximum and minimum values of R2

correspond to |ρuv| = 1. Values of R2 between these limits will correspond to different

values of ρuv. If the limits are both attained at ρuv = +1 (or at ρuv = −1) then there

must be a turning point in the function ρuv (θ, λ, R2) as R2 covers that range.

The first order condition yields a possible stationary point where:

∂ρuv (θ, λ, R2)

∂R2
= 0 ⇒ R2 =

(θ − λ) (1− θλ)

θ − λ + θ (1− θλ)

48



which after substituting into (H.3) yields a solution as long as

(θ − λ) θ > 0

which is satisfied for θ > λ, given λ > 0. Given the definition above the second-order

condition confirms a maximum for ρuv, hence a minimum for |ρuv| at the value

ρmin =
2
√

(θ − λ) (1− θλ) θ(
1− λ2 + (θ − λ)2) > 0.�

I Proof of Proposition 3 (the time-varying ARMA(1,1))

Restating the predictive model (23) and (24) from the proposition,

yt = βtxt−1 + ut (I.1)

xt = µtxt−1 + vt (I.2)

it can be characterised by the sequence
{
βt, µt, σ

2
v,t, σ

2
u,t, σuv,t

}
.

Assumption: βt 6= 0

This assumption is the time-varying equivalent of that in the time-invariant case in

Lemma 1. (In this context we are simply ruling out a measure zero case in any model

that generates βt as a random sequence from a continuous error distribution.)

This then implies a time varying ARMA(1,1) since

yt − µt−1

βt

βt−1

yt−1 = βtxt−1 − µt−1

βt

βt−1

βt−1xt−2 + ut − µt−1

βt

βt−1

ut−1

= βt

(
xt−1 − µt−1xt−2

)
+ ut − µt−1

βt

βt−1

ut−1 (I.3)

thus

yt − λtyt−1 = βtvt−1 + ut − λtut−1 (I.4)

wherein

λt = µt−1

βt

βt−1

(I.5)

and the right-hand side is a time-varying MA(1) process (its 2nd order autocorrelation is

zero).

As in the time-invariant case we define two time-varying ARMA(1,1) representations
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yt − λtyt−1 = εt − θtεt−1 (I.6)

yt − λtyt−1 = ηt − γtηt−1 (I.7)

Note that the equality of the AR parameter of the predictor to the AR parameter

in the ARMA representation that occurs in the time-invariant case no longer holds; but

there is still a direct recursive mapping in terms of µt, βt and βt−1 (with equality as a

special case if the βt are constant).

The representation (I.6) is fundamental if we can derive εt as a convergent sum of

current and lagged values of yt:

εt = ỹt +
∞∑
i=1

(
i−1∏
j=0

θt−j

)
ỹt−i (I.8)

where ỹt = yt − λtyt−1, thus for fundamentalness we require

lim
i→∞

i∏
j=0

θt−j = 0 ∀t (I.9)

In the time-invariant case, with θt = θ ∀t, a necessary and sufficient condition is

|θ| < 1. For the time-varying case a sufficient condition is |θt| < 1 for all t, however

this is not a necessary condition (indeed we find in our application that the fundamental

representation can have |θt| > 1 for some t).

As in the time-invariant case, for the nonfundamental representation (I.7) we have

ηt = −
∞∑
i=1

(
i∏

j=1

γ−1
t+j

)
ỹt+i (I.10)

which gives a convergent sum in terms of current and future values of yt if

lim
i→∞

i∏
j=1

γ−1
t+j = 0 ∀t (I.11)

Note also that we now no longer have γt = θ−1
t , except in the time-invariant case.

Conditional upon the sequences
{
βt, µt, σ

2
v,t, σ

2
u,t, σuv,t

}T

t=0
the predictive model implies
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the sequences

W0t : = var
(
ỹt|
{
βt, µt, σ

2
v,t, σ

2
u,t, σuv,t

}T

t=0

)
(I.12)

W1t : = cov
(
ỹt, ỹt−1|

{
βt, µt, σ

2
v,t, σ

2
u,t, σuv,t

}T

t=0

)
(I.13)

where as before ỹt = yt − λtyt−1. These autocovariances, conditional upon the parameter

sequence, are given by

W0t = β2
t σ

2
v,t−1 + σ2

u,t +

(
µt−1

βt

βt−1

)2

σ2
u,t−1 − 2µt−1

β2
t

βt−1

σuv,t−1 (I.14)

W1t = βtσuv,t−1 − µt−1

βt

βt−1

σ2
u,t−1 (I.15)

We now have a recursive moment matching problem: for a given sequence {λt} (from

(I.5)) we require sequences
{
θt, σ

2
ε,t

}
such that the time-varying moments implied by the

fundamental ARMA representation, conditional upon
{
θt, σ

2
ε,t, λt

}
, match those of the

structural model given in (I.14) and (I.15), i.e.

cov
(
ỹt, ỹt−1|

{
θt, σ

2
ε,t, λt

}T

t=0

)
= −θtσ

2
ε,t−1 = W1t (I.16)

var
(
ỹt|
{
θt, σ

2
ε,t, λt

}T

t=0

)
= σ2

ε,t + θ2
t σ

2
ε,t−1 = W0t (I.17)

and analogously for the sequences
{
γt, σ

2
η,t

}
from the nonfundamental representation:

cov
(
ỹt, ỹt−1|

{
γt, σ

2
η,t, λt

}T

t=0

)
= −γtσ

2
η,t−1 = W1t (I.18)

var
(
ỹt|
{
γt, σ

2
η,t, λt

}T

t=0

)
= σ2

η,t + γ2
t σ

2
η,t−1 = W0t. (I.19)

Re-writing (I.17) and (I.19) as

σ2
ε,t = W0t − θ2

t σ
2
ε,t−1 (I.20)

σ2
η,t = W0t − γ2

t σ
2
η,t−1 (I.21)

then by recursive substitution, for given θt, the solution for σ2
ε,t becomes invariant to

starting values as t →∞ if

lim
t→∞

t∏
j=0

θ2
t−j = 0 (I.22)

which is clearly satisfied by (I.9), the property of fundamentalness.
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To solve, substituting from (I.16) into (I.17) we have

σ2
ε,t = W0t −

W 2
1t

σ2
ε,t−1

(I.23)

which we can solve recursively forward, and then use (I.16) to find θt. By inspection in

(I.20) the impact of the initial value σ2
ε,0 tends to zero as t → +∞, thus we have a unique

fundamental representation in population.

In the time-invariant case, once we know θ we know γ = θ−1, but here it is not so

simple. Substituting for γt using (I.18) the equivalent recursion for the nonfundamental

representation is

σ2
η,t = W0t −

W 2
1t

σ2
η,t−1

(I.24)

However if we solve forward, by inspection of (I.21), the impact of the initial value

diverges. But, if we rewrite as the backward recursion

σ2
η,t−1 =

W 2
1t(

W0t − σ2
η,t

) (I.25)

we can then solve for γt using (I.18). As t → −∞, the impact of starting values tends to

zero, thus the representation is again unique in population.

The proof of the inequality then follows analogously to the proof of Proposition 1,

since this only requires serial independence, it does not require that wt is drawn from

a time-invariant distribution. To see this, from (I.8) εt is a combination of current and

lagged ỹt, whereas from (I.10) ηt is a combination of strictly future values of ỹt. Thus ηt

must have predictive power for all possible predictors (except itself), but not vice versa.

�

I.1 Application of Proposition 3 to the unobserved components

model

It is straightforward to show that the unobserved components model of Section 6.3 can

also be put into the form of the predictive model in the proposition.
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Restating (33), the model for inflation Yt,

Yt = τ t + ct (I.1)

τ t = τ t−1 + sτ,t (I.2)

ct = µtct−1 + sc,t (I.3)

Then we can restate as the predictive model in (I.1) and (I.2), by defining

yt = ∆Yt (I.4)

xt = ct (I.5)

βt = µt − 1 (I.6)

ut = sc,t + sτ,t (I.7)

vt = sc,t (I.8)

where our assumption in the proof above that βt 6= 0 clearly translates to the assumption

µt 6= 1. We can then apply the formulae in the proof of the proposition.

J Proof of Proposition 4 (Escaping the ARMA(1,1)

bounds)

To prove the proposition, first define the limiting variance ratio (Cochrane, 1988) of the

predicted series, yt, as Vy = σ2
P /σ2

y where σ2
P = cy (1)2 σ2

ε is the variance of the Beveridge-

Nelson (1981) permanent component (see Lemma 3). It is straightforward to show (see

Robertson and Wright, 2009, Appendix C1) that in the case of an ARMA(1,1)

Vy < 1 ⇐⇒ θ > λ > 0 ⇐⇒ c (1) < 1 (J.1)

We now exploit a necessary linkage between Vy and three summary features of any mul-

tivariate system, proved in Mitchell, Robertson and Wright (2017), Proposition 2, repro-

duced below as Proposition 5 for convenience:

Proposition 5 Let Vy be the limit of the variance ratio (Cochrane,1988) of the predicted

process yt, defined by

Vy =
σ2

P

σ2
Y

= 1 + 2
∞∑
i

corr (yt, yt−i) (J.2)
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The parameters Ψ = (A,B,C,D) of the predictive system must satisfy

g (Ψ) = Vy (J.3)

where G
(
R2, Vŷ, ρBN

)
= 1 + R2 (Vŷ − 1) + 2ρBN

√
VŷR2 (1−R2)

where R2 (Ψ) is the predictive R2 from (3); ρBN (Ψ) = corr (ut, δ
′vt), with δ′= β′ [I − Λ]−1,

is the correlation between innovations to 1-step ahead and long-run (Beveridge-Nelson)

forecasts; and Vŷ (Ψ) is the variance ratio of the predicted value ŷt ≡ β′xt−1, calculated

by replacing yt with ŷt in (J.2).

Proof. See Mitchell, Robertson and Wright (2017).

To show that Proposition 5 leads directly to Proposition 4, if we totally differentiate

(J.3)

0 = G1dρBN + G2dR2 + G3dVŷ (J.4)

this gives
dVŷ

dR2
= −G2

G3

− G1

G3

dρBN

dR2
(J.5)

We evaluate this expression at the calculated upper bound for an ARMA(1,1), where

R2
max (λ, θ) = (1−λθ)2

1−λ2+(θ−λ)2
(using (18)); Vŷ (1, 1) = 1+λ

1−λ
and ρBN = −1 since, exploiting

(20) the reparameterisation of the nonfundamental ARMA(1,1) in Section 3.4, at the

upper bound ρBN = corr
(
εt,
(

λ−θ−1

1−λ

)
εt

)
= −1, given 0 ≤ λ < θ ≤ 1 as assumed in the

proposition.

We now establish that at this point G1 > 0, G2 > 0 and G3 > 0, implying
dVŷ

dR2 < 0 as

stated in the proposition.

Since

G1 = 2
√

VŷR2 (1−R2) > 0 (J.6)

for all possible values of Vŷ and R2, we thus need to establish the signs of G2 and G3 at

this point, using

G2 = Vŷ − 1 +
ρBNVŷ (1− 2R2)√

VŷR2 (1−R2)
(J.7)

G3 = R2 +
ρBNR2 (1−R2)√

VŷR2 (1−R2)
(J.8)

If we first evaluate (J.8) at ρ = −1 then

G3

(
−1, R2, Vŷ

)
> 0 ⇐⇒

√
Vŷ >

√
1−R2

R2
⇐⇒ Vŷ + 1 >

1

R2
(J.9)
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Now Vŷ + 1 = 1+λ
1−λ

+ 1 = 2
1−λ

hence

G3

(
−1, R2, Vŷ (1, 1)

)
> 0 ⇐⇒ R2 >

1− λ

2
(J.10)

But given the assumptions in the proposition we have

R2
max (λ, θ) ≥ 1− λ

2
(J.11)

hence

G3

(
−1, R2

max (λ, θ) , Vŷ (1, 1)
)

> 0 (J.12)

as required.

Now evaluate G2 at ρBN = −1

G2

(
−1, R2, Vŷ

)
= (Vŷ − 1)−

(
VŷR

2
(
1−R2

))−1/2
Vŷ

(
1− 2R2

)
=

(Vŷ − 1)
√

R2 (1−R2)−
√

Vŷ (1− 2R2)√
R2 (1−R2)

=
H (Vŷ, R

2)√
R2 (1−R2)

(J.13)

Now given Vŷ (1, 1) > 1 the numerator H (Vŷ, R
2) is certainly positive if (1− 2R2

max (λ, θ)) <

0 i.e. if R2
max (λ, θ) > 1

2
.

Thus we only need to show that H (Vŷ, R
2) is positive for R2

max (λ, θ) < 1
2
. Given that

R2
max (λ, θ) always satisfies the inequality (J.11), if we evaluate H (Vŷ, R

2) at R2 = 1−λ
2

and

Vŷ = 1+λ
1−λ

we have

H

(
Vŷ (1, 1) ,

1− λ

2

)
=

(
1 + λ

1− λ
− 1

)√
1− λ

2

(
1− 1− λ

2

)
−
√

1 + λ

1− λ

(
1− 2

1− λ

2

)

=
2λ

1− λ

√(
1− λ

2

)(
1 + λ

2

)
− λ

√
1 + λ

1− λ
= 0 (J.14)

and since

H1 =
1

2

(Vŷ − 1) (1− 2R2)√
R2 (1−R2)

+ 2
√

Vŷ > 0 (J.15)

we must have

R2
max (λ, θ) <

1

2
⇒ H

(
Vŷ (1, 1) , R2

max (λ, θ)
)

> 0 (J.16)

Hence

G2

(
−1, R2

max (λ, θ) , Vŷ (1, 1)
)

> 0 (J.17)
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as required.

Hence at R2 = R2
max (λ, θ) ,

dVŷ

dR2 < 0 so higher values of R2 require lower values of Vŷ.

�

K Time series properties of the inflation predictions

from the Smets and Wouters (2007) DSGE model

To illustrate the contrast between the restrictions implied by Proposition 4 and the time

series properties of inflation predictions in a benchmark macroeconomic forecasting model,

we examine the DSGE model of Smets-Wouters (2007). Using their own Dynare code, we

generate 100 artificial samples of quarterly data for the 16 state variables and 7 observables

in the Smets-Wouters model, using posterior modes of all parameter estimates as given

in their paper, and generate one-step-ahead predictions of changes in inflation from the

simulated data using the appropriate line of (2). Since we do not wish the results of this

exercise to be contaminated by small sample bias we set T = 1, 000, in an attempt to get

a reasonably good estimate of the true implied population properties.

Table K1 summarises the results.

Table K1: Time Series Properties of Simulated Inflation Predictions, ŷt ≡ ∆π̂t,

in the Smets-Wouters (2007) model at various forecast horizons

First Order Sample Variance Ratio (bias-corrected)

Autocorrelation 5 years 10 years 15 years 20 years

Mean 0.49 3.81 3.97 4.05 4.15

Median 0.49 3.81 3.89 3.92 3.98

Minimum 0.42 2.77 1.80 1.47 1.16

The first column of Table K1 shows the first-order autocorrelation coefficient of the

simulated predictions; the remaining columns show estimates of Vŷ using sample variance

ratios (using the small sample correction proposed by Cochrane, 1988) at a range of finite

horizons.49 Table K1 makes it clear that the Smets-Wouters model generates predictions

with strong positive persistence - as would be expected given that predicted changes in

inflation in the model are driven by strongly persistent processes in the real economy.

49Note that for the the general case, for yt Vy =
(
1−R2

min

)
c (1)2, hence c (1) < 1 implies Vy < 1, and

analogously for Vŷ. For the ARMA(1,1) case the reverse also applies.
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As a benchmark for comparison, in the ARMA(1,1) case Vŷ = 1+λ
1−λ

⇒ λ =
Vŷ−1

Vŷ+1
, thus a

median value of Vŷ ≈ 4 would arise from an AR(1) predictor with λ = 0.6, thus a value of

Vŷ well above the value implied by the CKP representation in recent decades, and shown

in Panel B of Figure L.1 for US CPI inflation and in Figure M.11 for US GDP deflator

inflation (strictly speaking the relevant comparator for the Smets-Wouters model). As

such the Smets-Wouters model is even further from generating IID predictions, consistent

with the SWC representation, since this would imply Vŷ = 1.

Thus, using Proposition 4, if the Smets-Wouters model were the true DGP it would

generate the “wrong kind of predictions” to have an R2 exceeding the the calculated upper

bound derived for recent year from a single predictor model.

L CPI inflation in 8 OECD countries

This appendix complements the results for the US, in Section 6 of the main paper, by

both analysing the univariate properties of inflation in a further seven OECD countries

(Canada, France, Germany, Greece, Italy, Japan and the UK) and by making inference

about both the potential predictive performance and nature of the true multivariate mod-

els that generated the data.

The quarterly headline CPI inflation data are downloaded from FRED (the underlying

data are from the OECD’s MEI database) over the sample 1961Q1 to 2017Q1. With the

exception of the US the published CPI series are not seasonally adjusted; but in most

countries there is significant evidence of quarterly seasonality. For all countries except

the US we therefore seasonally adjust the annualised quarterly inflation series, defined as

Yt = 400 log (CPIt/CPIt−1), using X12.50

To ensure this online appendix and its discussion of the eight OECD countries is self-

contained, and to facilitate cross-country comparisons, we include the US results, also

discussed in Section 6. Thus, Figure L.1 reproduces Figure 1 in the main paper.

Figures L.1 to L.8 summarise our estimation results and the properties of the derived

ARMA representations.

50As implemented in EViews 9.5. In Appendix M (Figures M.9-M.10) we show that when we apply
X12 to the unadjusted CPI inflation series for the US (which publishes both adjusted and unadjusted
series) and compare the results with the adjusted series they are extremely similar. We also report results
(Figures M.11-M.12) for the US using GDP deflator inflation (as analysed by Stock and Watson (2007)),
and show that the results are qualitatively similar. However, while the R2 bounds (in Panel E of Figure
M.11) still narrow in recent data they do not do so to the same extent as for CPI inflation (Panel E
of Figure L.1), implying that there is more scope to forecast changes in GDP deflator inflation with a
multivariate model than CPI inflation.
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Figure L.1: US. Panel A plots posterior median estimates of the permanent component,
τ t, of inflation from the SWC and CKP models alongside CPI inflation. Panel B plots
posterior median estimates of θt, λt and µt from the SWC and CKP models (where
λt = µt = 0 for SWC). Panels C and D plot posterior median of estimates of στ,t and
σc,t from the SWC and CKP models. Panels E and F plot posterior median estimates of
R2

min,t and R2
max,t from the SWC and CKP models as defined in Proposition 3.
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Figure L.2: Canada. See note to Figure L.1
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Figure L.3: France. See note to Figure L.1
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Figure L.4: Germany. See note to Figure L.1
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Figure L.5: Greece. See note to Figure L.1
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Figure L.6: Italy. See note to Figure L.1
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Figure L.7: Japan. See note to Figure L.1
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Figure L.8: UK. See note to Figure L.1
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Panels A of Figures L.1 to L.8 plot, for each country, annualised quarterly inflation,

Yt, alongside the estimated permanent components, τ t, in the SWC and CKP represen-

tations.51 The CKP estimates of τ t are seen, from Panel A, to be much smoother than

those from SWC, including during the periods of higher inflation through the 1970s and

early 1980s. This is explained by Panels C and D; these Panels reveal that during this

period shocks to inflation in the US - and Canada, France, Greece, Italy and to a lesser

degree the UK too - are largely interpreted as permanent in SWC (hence at these times

the path for τ t is very similar to that for inflation itself), but allocated to the transitory

component in CKP. However, in more recent (post 1990s) data, the SWC and CKP esti-

mates of τ t (and hence the implied cycles, ct) are more similar, with the SWC estimates of

the variance of the permanent component falling and then stabilising at similar values to

CKP. Transitory shocks have tended to dominate in more recent data. A striking contrast

is found in Germany (Figure L.4) and Japan (Figure L.7) where transitory shocks play

a greater role in both the SWC and CKP representations. While both SWC and CKP

estimates of trend inflation in Germany stay within a very narrow range (as might be

expected, given the putative stabilising role of the Bundesbank for most of the sample),

the two estimates also do not converge in later data, with the SWC trend still affected

quite strongly by current inflation.52

Comparison of Panels E and F, of Figures L.1 to L.8, shows that, as we would expect

(see Section 5) both SWC and CKP generate similar estimates of R2
min,t (for yt = ∆Yt).

53

In the US, Canada, France and the UK (and to a lesser degree in Japan) estimates of R2
min,t

fell to near-zero during the high inflation of the mid-1970s but then rose thereafter. In

Germany there is a less pronounced dip in estimates of R2
min,t; but then inflation did not,

unlike in the other countries, rise to double-digit levels in the 1970s. In Italy estimates

of R2
min,t have remained consistently low throughout the sample period; while in Greece

51Panels C and D of Figures M.1-M.8 also show that results are robust, in all countries except Greece
and Italy, to consideration of a more diffuse prior for στ in CKP. Such a diffuse prior is in line with the
similarly diffuse prior employed in SWC. In Greece and Italy the relatively tight priors used by CKP
imply time-varying ARMA parameters that make us sceptical of the results. In both countries, the
implied paths for θ̂t (in Panel B of Figures L.5 and L.6) are very close to unity for most of the sample.
This appears to suggest over-differencing, reflecting very low (time-invariant) estimates of στ . However,
we think it unlikely that inflation in these countries was so close to being stationary. Furthermore, in
the case of Greece, a more diffuse prior results in more plausible time paths for τ̂ t (see Panel C of Figure
M.5).

52Note that this feature also differs strikingly from that in Chan (2017) who finds that the transi-
tory component dominates German inflation. However the difference here appears to reflect his use of
unadjusted CPI data: the seasonal component derived from X12 is very volatile.

53Chan et al. (2013)’s out-of-sample predictability tests (their Table 5) also show that differences
between the CKP and Stock-Watson’s UC model are relatively modest, certainly for 1-step ahead forecasts
which are our focus in this paper.
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they have bounced around more, but were also low in the inflationary 1970s.

These movements in R2
min,t, as discussed in the main paper, can be understood and

decomposed by inspecting the estimates for θ̂t and λ̂t. For the SWC representations

these falls in the estimated value of R2
min,t (Panel E) to near-zero in the mid-1970s are,

of necessity, matched by a fall in θ̂t, (Panel B). For the CKP representations these falls

in R2
min,t during this inflationary period are driven by both µ̂t, the estimated AR(1)

parameter of the transitory component of inflation, and λ̂t rising to peaks (Panel B).

These peaks are around 0.8 to 0.9 in the US, Canada, France, Greece and the UK. In

Germany, and in particular in Japan, these peaks are lower; while in Italy, the average

values of µ̂t and λ̂t are higher although these estimates still peak at around 0.9 in the late

1970s (see Figure L.6, Panel B).

Panels E and F of Figures L.1 to L.8 also show that while the time paths of estimates

of R2
min,t are similar for both SWC and CKP, their estimates of R2

max,t can differ very

markedly, particularly in the period when inflation was high and R2
min,t was low.54 For

all eight countries we observe only a small gap between R2
min,t and R2

max,t from the CPK

model, especially during the inflationary 1970s; in contrast the SWC model suggests much

larger gaps, even during the 1970s. In the SWC model estimates of R2
max,t are highest and

close to unity during the 1970s in the US, Canada, France, Greece and the UK; in Japan

there is a lower peak at around 0.9. These estimates of R2
max,t then declined as inflation

fell from the 1980s onwards. However, for Germany (and Italy) the estimates of R2
max,t

from SWC exhibit less variation: estimates are consistently higher, averaging around 0.7

(and 0.95), across the 1961Q1 to 2017Q1 sample. Comparison of Panels E and F, across

all eight countries, shows that the estimated paths for R2
max,t from CKP are much lower

than those implied by SWC. Again, as discussed in the main paper, we can understand

and decompose these movements in R2
max,t by relating them to the observed movements

of θ̂t and λ̂t.

M Supplementary empirical results: CPI inflation in

8 OECD countries

Here we present additional Figures referred to both in the main body of the paper and in

Appendix L to provide background information on the estimation results.

54In Panels E and F of Figures M.1-M.8 we show, by country, 16.5%, 50% and 83.5% quantiles of the
posterior distribution of (R2

max,t − R2
min,t) for SWC and CKP. For all countries, the posterior intervals

are much narrower for CKP than SWC.
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Figure M.1: US. Panels A and B plot posterior median estimates of R2
min,t and R2

max,t

from Proposition 3 and the time-invariant approximations from Section 3 for the SWC
and CKP models, respectively. Panel C plots posterior median estimates of the permanent
component, τ t, of inflation from the CKP model both where the priors are as in CKP
(calibrated for US inflation data) and when

√
E(σ2

τ ) 6= 0.141, as in CKP, but the priors
are chosen so that this is 100 times bigger. This “diffuse” prior imposes less smoothness
on the permanent component. Panel D plots posterior median estimates for στ,t and σc,t

for both variants of the CKP model. Panels E and F plot 16.5%, 50% and 83.5% quantiles
of the posterior distributions of (R2

max,t − R2
min,t) for the SWC and CKP models (using

CKP’s prior). Panels G and H plot 16.5%, 50% and 83.5% quantiles of the posterior
distributions of θt for the SWC and CKP models (using CKP’s prior).
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Figure M.2: Canada. See notes to Figure M.1
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Figure M.3: France. See note to Figure M.1
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Figure M.4: Germany. See note to Figure M.1

71



0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2min SWC R2min SWC time invariant

R2max SWC R2max SWC time invariant

A

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2min CKP R2min CKP time invariant

R2max CKP R2max CKP time invariant

B

-10

0

10

20

30

40

50

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

TAU CKP TAU CKP diffuse prior Y = CPI Inflation

C

0

2

4

6

8

10

12

14

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

sigTAU CKP sigC CKP

sigTAU CKP dif f use prior sigC CKP dif f use prior

DD

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2max-R2min SWC

E

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2max-R2min CKP

F

0.0

0.4

0.8

1.2

1.6

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

theta SWC

G

0.0

0.4

0.8

1.2

1.6

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

theta CKP

H

 

Figure M.5: Greece. See note to Figure M.1
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Figure M.6: Italy. See note to Figure M.1
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Figure M.7: Japan. See note to Figure M.1

74



0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2min SWC R2min SWC time invariant

R2max SWC R2max SWC time invariant

A

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2min CKP R2min CKP time invariant

R2max CKP R2max CKP time invariant

B

-4

0

4

8

12

16

20

24

28

32

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

TAU CKP TAU CKP diffuse prior Y = CPI Inflation

C

0

1

2

3

4

5

6

7

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

sigTAU CKP sigC CKP

sigTAU CKP dif f use prior sigC CKP dif f use prior

DD

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2max-R2min SWC

E

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2max-R2min CKP

F

0.0

0.4

0.8

1.2

1.6

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

theta SWC

G

0.0

0.4

0.8

1.2

1.6

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

theta CKP

H

 

Figure M.8: UK. See note to Figure M.1
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Figure M.9: US: using X12 to seasonally adjust CPI inflation. See note to Figure L.1
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Figure M.10: US: using X12 to seasonally adjust CPI inflation (cont.). See note to Figure
M.1
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Figure M.11: US: GDP deflator inflation. See note to Figure L.1
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Figure M.12: US: GDP deflator inflation (cont.). See notes to Figure M.1
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