BIROn - Birkbeck Institutional Research Online

    Delta-matroids as subsystems of sequences of Higgs lifts

    Bonin, J. and Chun, C. and Noble, Steven (2019) Delta-matroids as subsystems of sequences of Higgs lifts. Advances in Applied Mathematics , ISSN 0196-8858. (In Press)

    [img] Text
    DeltaHiggsRevised.pdf - Author's Accepted Manuscript
    Restricted to Repository staff only until 30 April 2020.
    Available under License Creative Commons Attribution Non-commercial No Derivatives.

    Download (385kB) | Request a copy


    . In [30], Tardos studied special delta-matroids obtained from sequences of Higgs lifts; these are the full Higgs lift delta-matroids that we treat and around which all of our results revolve. We give an excluded-minor characterization of the class of full Higgs lift delta-matroids within the class of all delta-matroids, and we give similar characterizations of two other minor-closed classes of delta-matroids that we define using Higgs lifts. We introduce a minor-closed, dual-closed class of Higgs lift delta-matroids that arise from lattice paths. It follows from results of Bouchet that all delta-matroids can be obtained from full Higgs lift delta-matroids by removing certain feasible sets; to address which feasible sets can be removed, we give an excluded-minor characterization of deltamatroids within the more general structure of set systems. Many of these excluded minors occur again when we characterize the delta-matroids in which the collection of feasible sets is the union of the collections of bases of matroids of different ranks, and yet again when we require those matroids to have special properties, such as being paving.


    Item Type: Article
    School: Birkbeck Schools and Departments > School of Business, Economics & Informatics > Economics, Mathematics and Statistics
    Depositing User: Steven Noble
    Date Deposited: 30 Apr 2019 15:49
    Last Modified: 18 Aug 2019 09:14


    Activity Overview

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item