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Abstract  

Background: Childhood-onset dystonia is often genetically determined. Recently, KMT2B variants 

have been recognized as an important cause of childhood-onset dystonia.  

Objective: To define the frequency of KMT2B mutations in a cohort of dystonic patients aged less 

than 18 years at onset, the associated clinical and radiological phenotype, and the natural history of 

disease.  

Methods: Whole-exome sequencing or customized gene panels were used to screen a cohort of 

sixty-five patients who had previously tested negative for all other known dystonia-associated 

genes. 

Results: We identified fourteen patients (21.5%) carrying KMT2B variants, of which one was 

classified as a Variant of Unknown Significance (VUS). We also identified two additional patients 

carrying pathogenic mutations in GNAO1 and ATM. Overall, we established a definitive genetic 

diagnosis in 23% of cases. We observed a spectrum of clinical manifestations in KMT2B variant 

carriers, ranging from generalized dystonia to short stature or intellectual disability alone, even 

within the same family. In 78.5% of cases, dystonia involved the lower limbs at onset, with later 

caudo-cranial generalization. Eight patients underwent pallidal Deep Brain Stimulation with a 

median decrease of BFMDRS-M score of 38.5% in the long term. We also report four 

asymptomatic carriers, suggesting that some KMT2B mutations may be associated with incomplete 

disease penetrance.  

Conclusions: KMT2B mutations are frequent in childhood-onset dystonia and cause a complex 

neurodevelopmental syndrome often featuring growth retardation and intellectual disability as 

additional phenotypic features. A dramatic and long-lasting response to Deep Brain Stimulation is 

characteristic of DYT-KMT2B dystonia. 
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Introduction 

Dystonia is a heterogeneous clinical and genetic entity1; since the discovery of DYT1 (TOR1A)2, 

the list of genes underlying isolated and combined dystonia has rapidly grown, with a significant 

boost thanks to the advent of Next Generation Sequencing (NGS) techniques3. Nonetheless, a large 

number of pediatric and adult patients with dystonia remains without a definitive genetic diagnosis 

even after comprehensive genetic analyses4.  

In 2016, two research groups independently identified dominant mutations in KMT2B as a new 

cause of generalized childhood-onset dystonia5,6. KMT2B encodes a specific lysine 

methyltransferase that catalyzes the transfer of a methyl group to the fourth lysine (K4) of histone 

H3 (H3K4), an important post-translational mechanism that promotes gene transcription and 

expression with a key role in normal human development7,8. 

Data from the first two back-to-back papers suggested that mutations in KMT2B play a relevant role 

in the pathogenesis of early-onset dystonia and mutations in this gene were likely to be more 

frequent than other recently identified dystonia-related genes. However, the frequency of KMT2B 

mutations in childhood-onset dystonia has not been systematically assessed and the description of 

the phenotypic spectrum and natural history of the disease is still limited.  

In this study, we screened a cohort of 65 patients with genetically undefined childhood-onset 

dystonia with whole-exome sequencing (WES) or a customized gene panels, with the aim of 

identifying pathogenic mutations in KMT2B and other dystonia-related genes and defining the 

relative prevalence, clinical findings and disease course of patients carrying KMT2B mutations.  

Material and methods 

Patients  

Patients were enrolled at the Department of Child Neurology of Carlo Besta Neurological Institute 

in Milan, Italy, which is a tertiary referral center for the diagnosis and therapy of pediatric 

movement disorders.  
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Sixty-five subjects (30 females, 35 males) with childhood-onset dystonia, followed over a time-

frame of about 30 years were included in the study. All patients were of Caucasian (Italian) 

ethnicity but one (Patient 14), who was born to Venezuelan parents of European descent.  Inclusion 

criteria were: 1) onset of dystonia before 18 years of age, being the only or most relevant finding on 

examination; 2) exclusion of secondary causes of dystonia (traumatic brain injury, treatment with 

dopamine receptor blocking drugs, metabolic causes); 3) absence of pathogenic mutations in known 

dystonia-associated genes. 

Mutation negative cases had been previously studied by targeted re-sequencing using a customized 

gene panel including 67 genes associated with dystonia and other movement disorders (full list of 

genes available upon request: disturbimovimento@istituto-besta.it).  

Parental consent to perform genetic analyses and for video recordings was obtained in all cases; this 

included consent to perform additional genetic analyses for any newly discovered movement 

disorder-related gene. DNA was stored in the movement disorder biobank located at the Molecular 

Neurogenetics Unit of Carlo Besta Institute.  

For most patients included in the study, videos from previous clinical assessments allowed to 

evaluate the disease course over several years of follow-up.  

Genetic Analyses 

DNA was extracted from peripheral white blood cells according to standard procedures.  

52 patients were analyzed by WES. Exomes were captured using Illumina’s Nextera Rapid Capture 

according to the manufacturer’s recommendations. Indexed and pooled libraries were then 

sequenced on Illumina’s HiSeq3000 (100 bp, paired-end). Bioinformatics analysis of WES data was 

performed as previously described9. In brief, reads were aligned using BWA10. Duplicate read 

removal, format conversion, and indexing were performed with Picard 

(http://broadinstitute.github.io/picard). The Genome Analysis Toolkit (GATK) was used to 

recalibrate base quality scores, perform local realignments around possible indels, and to call and 

mailto:disturbimovimento@istituto-besta.it
http://broadinstitute.github.io/picard#_blank
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filter the variants, according to GATK good practice11. Annotated variant files were generated using 

ANNOVAR12. 

After the identification of KMT2B mutations in childhood-onset dystonia, we included this gene in 

our customized gene panel for movement disorders.  

13 additional patients were then screened for KMT2B mutations with this updated version of the 

panel. Target regions of interest (coding sequence + UTR) were amplified and the amplicons 

generated were sequenced through the MiSeq platform (Illumina) as previously described4. 

Detected KMT2B variants were considered only if coding or affecting canonical splice-sites and if 

they had minor allele frequency (MAF) < 0.001 in gnomAD browser 

(https://gnomad.broadinstitute.org)13. 

Copy Number Variations (CNVs) were analyzed using Excavator14 and Cn MOPS tool15 for WES 

and targeted resequencing data, respectively. Multiple Ligation Probe Amplification (MLPA) 

technique could not be used to detect KMT2B CNVs as no kit is commercially available at present. 

All variants were confirmed by Sanger sequencing in probands and segregation analysis was 

performed in available relatives. Prediction of pathogenicity of missense variants was assessed 

based on in silico prediction programs (Polyphen2, SIFT, Mutation Taster, Combined Annotation 

Dependent Depletion (CADD) Phred score)16. Conservation of altered amino acids and nucleotides 

was investigated with BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) and PhyloP 

(http://compgen.cshl.edu/phast)17, respectively.   

In silico modelling 

In silico modelling was performed to better characterize the potential pathogenic effects of some 

missense variants on KMT2B structure and function. Known protein domains were assigned to the 

full-length KMT2B sequence using the Pfam database18. Proteins of known structure sharing 

similar sequence and structural properties were identified using HHpred19. The selected templates 

had more than 99% probability (based on HHpred alignment score) of being structurally related to 

https://gnomad.broadinstitute.org)/
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specific domain segments of KMT2B. MODELLER20 was used to model different regions of 

KMT2B based on the structures of templates identified and HHpred alignments were used to guide 

the modeling. 150 models were generated for each domain region using MODELLER loop 

optimization protocol and the best model was selected based on the normalized DOPE score21.  

The structure of the PHD-like domain (residues 1574-1688) was modelled using the second 

extended PHD domain in Plant Homeodomain Finger-6 (PHF6) protein as template22 (PDB id: 

4NN2). The sequence identity between the two homologous domains is ~25% but the zinc finger 

motifs are well conserved. The modeled domain is an extended PHD with three zinc-binding motifs, 

where a zinc finger (pre-PHD) precedes the PHD domain. 

Some missense variants were located in regions of KMT2B that could not be modeled due to the 

lack of known structural information on the specific protein sequence.  

 

Results 

Molecular characterization of KMT2B variants 

The full list of identified genomic KMT2B variants is shown in Table 1 and their location along the 

protein structure in Fig. 1. All variants identified in this study were not reported in gnomAD (last 

access August 2018). 12 out of 14 variants were novel, whereas two (p.Arg1705Gln and 

p.Lys553Glnfs*46) were previously reported in affected subjects6,23-24.  

Three patients carried frameshift mutations causing a premature stop codon and a truncated protein. 

p.Ser2070Argfs*20 and p.Ala2139Glyfs*6, located in KMT2B exon 28, arose de novo. 

p.Lys553Glnfs*4623,24 was absent in the proband’s unaffected mother and brother; the patient’s 

unaffected father was not available for genetic testing. One patient carried a de novo, in-frame 24-

nucleotide deletion within exon 26 (p.Gln1802_Ala1808del) causing a partially truncated protein 

lacking eight amino acids outside known functional domains.  
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Nine patients carried KMT2B missense variants. The CADD Phred score was >23 for 8 out 9 

variants, supporting a deleterious effect (Table 1). 

Segregation analysis confirmed that three of these variants, p.Ala1632Val, p.Arg1705Gln and 

p.Leu1753Pro had arisen de novo. The p.Ala1632Val variant (located within the PHD-like domain) 

and the p.Arg1705Gln variant (located outside known functional domains) affect highly-conserved 

amino acids based on BLAST and PhyloP scores and have a CADD Phred score of 32. The 

p.Ala1632Val is predicted to affect the correct folding of this protein region destabilizing the whole 

structure of KMT2B by in silico modeling. Thp.Leu1753Pro missense mutation causes the 

substitution of a highly-conserved leucine located within the FYRN domain of KMT2B and is 

predicted to be pathogenic in silico (CADD Phred 33).  

For two variants, p.Arg1777Pro and p.Ser1615Leu, segregation analysis was incomplete. However, 

they both involve highly conserved amino acids located in functional domains of the protein and 

have CADD Phred score higher than 23, suggesting a disease-causing effect. The p.Ser1615Leu is 

predicted to have a destabilizing effect on the folding of PHD domain by in silico modeling. 

Furthermore, both variants were absent in all healthy relatives available for testing (Fig. 2)  

Four additional KMT2B missense variants were inherited from an unaffected parent, which may 

suggest incomplete penetrance of the variants.  

The p.Arg1003Gln variant affects a highly-conserved Arginine located in the CXXC zinc-finger 

domain of KMT2B and is predicted to be pathogenic (CADD Phred 32). In silico modeling predicts 

that substitution of Arg1003 to Gln is has a destabilizing effect on DNA binding in this protein 

domain. The proband (Video 1) inherited the missense substitution from his unaffected father; his 

two sisters did not show dystonia but one had short stature and carried the same variant, whereas the 

other was wild type and had a normal neurological examination and somatic development.  

The p.Leu2431Ser variant is predicted to be disease-causing (CADD Phred 28.7) and affects a 

moderately conserved amino acid (down to mus musculus) within the FYRC domain. The 
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proband’s motor phenotype was strongly similar to previously reported cases. In silico modelling 

predicted a destabilizing effect of this variant on the protein structure affecting the normal 

association of FYRN and FYRC domains. Segregation analysis demonstrated that two out of three 

siblings carried the same missense variant and both had mild to moderate intellectual disability 

without dystonia; one healthy brother and the unaffected father were wild type. The proband’s 

mother, reported to be unaffected, had deceased at the time genetic testing was performed.  

The p.Asp1144Val variant, located in exon 10, is predicted to be disease-causing (CADD Phred 

28.2), is absent in gnomAD and affects an amino acid falling out of functional protein domains, but 

fully conserved in mammalian species. The patient inherited the variant from her unaffected 

mother.   

The p.Gln747Arg substitution, located outside of KMT2B functional domains, was predicted to be 

tolerated in silico (CADD Phred 18.42), but was not found in gnomAD. Although the patient’s 

phenotype was consistent with KMT2B dystonia, this variant can at present be classified as a VUS 

according to the ACMG guidelines25, thus caution must be used in the interpretation of its 

pathogenicity. 

Patient 14 carried a de novo 1.3 Mb deletion at 19q13.2 spanning 46 genes, including KMT2B, that 

was confirmed by CGH array.  

 

In silico modeling 

In silico modeling was performed to better characterize the potential pathogenic effects of some 

missense variants on KMT2B structure and function.  

According to Pfam domain assignments18, KMT2B has a CXXC zinc finger domain, followed by 

multiple PHD/PHD-like domains and a FYRN domain. The FYRC region and SET catalytic 

domain are located within the C-terminus. The FYRN (F/Y rich N-terminus) and FYRC domains of 

KMT2B (residues 1730-1807 and 2415-2494) are particularly common in histone H3K4 
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methyltransferases, especially in the family of proteins that include Mixed Lineage Leukemia 

(MLL). The structures of these domains were modeled using the crystal structures of transforming 

growth factor beta regulator 1 (TBRG1) domains (PDB id:2WZO) as templates. The FYRN and 

FYRC domains are separated by about 600 amino acids but they are likely to interact together to 

form a compact structural unit (Fig. 3A-C). This is observed in MLL as well, where these two 

domains interact to maintain the active structure after the proteolytic cleavage between FYRN and 

FYRC domains, by taspase126,27.  

The amino acid contacts involving the residues Leu2431, Arg1777 and Leu1753 are thought to 

stabilize the association between FYRN and FYRC domains. Leu1753 forms inter-domain contacts 

to support the bound conformation of these domains (Fig. 3A) while Arg1777 and Leu2431 are 

involved in intra-domain interactions (Fig. 3B-C).  

p.Leu1753Pro (Patient 8) is expected to result in the loss of hydrophobic interactions involving 

Leu1753 (Fig. 3A). Arg1777 forms a salt bridge with Asp1738 in the FYRN-FYRC complex (Fig. 

3B). It is also involved in backbone hydrogen bonds that stabilize the beta sheet in the FYRN 

domain. Substitution to Proline (p.Arg1777Pro; Patient 7) is likely to disrupt the backbone 

hydrogen bond at this position as it lacks one hydrogen bond donor. The mutation is thus predicted 

to have a destabilizing effect on the sheet structure and potentially affects the association of FYRN 

and FYRC domains. p.Leu2431Ser (Patient 11) results in a shorter side chain at this position and 

causes loss of hydrophobic contacts involving Leu2431 that stabilizes the bound form of FYRC 

(Fig. 3D). 

Arg1003 is part of a zinc finger motif that selectively binds DNA, with a known crystal structure 

(PDB ID: 4PZI). Arg1003 forms a salt-bridge with Asp977 (Fig 3E), stabilizing the DNA-bound 

form of the domain. Mutation of Arg1003 to Gln (Patient 12) will eliminate these interactions 

stabilizing DNA binding. 
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The fold of the PHD-like domain (residues 1574-1688) is stabilized by a hydrogen-bond interaction 

between Ser1615 and Thr1650 (Fig 3F). Mutation of this Ser1615 to Leu (Patient 9) will eliminate 

this interaction and Leu having a relatively longer and branched side-chain, can affect the residue 

packing in this region destabilizing the fold of this domain and possibly the entire protein. 

Ala1632 is also at the core of the PHD-like domain and forms van der Waals contacts with Ser1615 

(Fig 3G). Mutation of Ala1632 to Val (Patient 13) adds a branched side-chain that is likely to affect 

the conformations of neighboring residues, including Ser1615 and Glu1617, and the interactions 

involving these residues. Ser1615 forms a hydrogen bond with Thr1650, while Glu1617 forms a 

hydrogen bond with the backbone of Ala1632. Disruption of these two interactions is likely to 

destabilize the fold of this domain and the entire protein. 

 

Clinical characterization of KMT2B-mutation carriers  

We identified 14 out of 65 patients (21.5%; 8 females, 6 males; Table 2) carrying KMT2B variants, 

of which 13 were predicted to be pathogenic based on available evidence, thus indicating an overall 

mutational frequency of 20%. The median age of onset of dystonia was 6 years (range 3-13 years); 

median age at last examination was 23 years (range 10-52 years), with a median disease duration of 

18 years (range 3-42 years). No family history of dystonia was reported in any of these patients. 

Motor milestones were normally achieved in all patients, whereas delayed language was reported in 

three cases. Lower limbs were the site of onset of dystonia in 11/14 patients (78.5%), presenting as 

foot in-turning, abnormal plantar flexion or tip-toe walking. Generalization of dystonia occurred in 

all but one patient (93%) over a time frame of 2-4 years after onset. The only subject showing 

persistent focal distribution of dystonia (torticollis) has the shortest disease duration (3 years) in our 

series, thus we cannot rule out generalization in the future. Laryngeal dystonia, either of an abductor 

or adductor type became evident early during disease course in 11/14 cases (78.5%), progressing to 

scarcely intelligible speech or even complete anarthria in four patients (Patients 2, 8, 9, 11; Video 
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2). Oromandibular dystonia presented in 8/14 patients (57%) as clenched jaw associated with 

hypomobility of the tongue and reduced jaw opening that worsened speech quality. When 

generalization occurred, the upper body and axial involvement was particularly severe in all cases, 

whereas lower limb dystonia was not the major source of disability in any patient, even several 

years after disease onset. Worsening of dystonia lasting hours to days was triggered in some 

patients (11/14) by fever, infections, emotional stress or menstruation. None of mutation carriers 

experienced status dystonicus during disease course.  

Additional neurological signs included myoclonus (with electrophysiological features consistent 

with subcortical origin) in the neck and upper limbs in one case, mild palpebral ptosis in two, 

microcephaly in two and asymmetric akinetic-rigid parkinsonism in one, that developed some years 

after DBS. Pyramidal signs in the lower limbs with normal muscular strength were relatively 

frequent (6/14 patients, 43%). 

A formal psychometric assessment (WISC-R or Raven’s Progressive Matrices) was available in 13 

patients and mild intellectual disability was diagnosed in 6 cases, whereas 3 patients tested in the 

low-average range of intelligence (IQ ≤ 77). Cognitive decline was not documented in any patient 

during the follow-up either clinically or by formal testing. 

Short stature with harmonic somatic development recurred in more than half of KMT2B variant 

carriers (9/14; 64%). Short stature was defined as height below the expected genetic target 

calculated from parents’ height or two standard deviations or more below the mean height for 

individuals of the same sex and age. Psychiatric disturbances were not diagnosed in any patient. 

Minor facial dysmorphic features were observed in 9 out of 14 patients (64%), and included 

bulbous nasal tips, low-set ears, thin upper lip, mild palpebral ptosis, broad nasal bridge and 

elongated face. 

Brain MRI was performed in all patients at different disease stages and no abnormalities were 

reported. In particular, basal ganglia showed normal signal in all sequences (including Diffusion 
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Weighted- and Susceptibility Weighted Images) in all patients. In only one case (Patient 5) mild, 

static hypoplasia of cerebellar vermis was observed.  

 

Pharmacological treatment and Deep Brain Stimulation efficacy  

All patients were treated with different combinations of trihexyphenidyl, benzodiazepines, baclofen, 

levodopa and pimozide with various clinical responses. High doses of trihexyphenidyl (30-40 

mg/day) produced mild to excellent clinical improvement in some cases (Video 3). A combination 

of trihexyphenidyl and clonazepam was the most effective pharmacological strategy in most 

patients. Overall, laryngeal dystonia was not improved by pharmacological treatment. All patients 

were given a trial of levodopa/carbidopa for at least three months, but a dramatic and sustained 

response to low doses (3 mg/kg/day) was observed only in Patient 10.  

Eight patients presenting unsatisfactory response to multiple antidystonic medications underwent 

stereotactic bilateral DBS targeting the somatosensory portion of Internal Globus Pallidus. At the 

time of surgery, median disease duration was 6.5 years (range 4-31 years) and patients’ median age 

was 10 years (range 8-38 years). Clinicians were blind to patients’ genetic status when performing 

the BFMDRS-M scale pre-operatively, since all patients were operated before KMT2B discovery. 

At the last post-operative follow-up, raters were still blind to the genetic diagnosis in most cases but 

not blind to the DBS status (on/off/no DBS).  

In one case (Patient 5) DBS implant was removed 2.5 years after surgery because of recurrent 

infections unresponsive to antibiotics. Excluding this patient, the median post-operative follow-up 

time was 12 years (range 8-17 years). Due to left electrode fracture, Patient 13 had it replaced 3 

years after DBS and she experienced intracranial bleeding during this procedure, causing a mild 

right-sided hemiparesis and expressive aphasia.  

In all cases clinical and functional improvement was immediately evident after surgery, with 

progressive amelioration in the following 3-12 months. The median decrease of BFMDRS-M score 
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at the last follow-up was 38.5% (range 81% -2.4%). In only one case (Patient 8), after a substantial 

clinical improvement following DBS (BFMDRS-M score -38% after one year) a slow but constant 

worsening was observed, with the BFMDRS-M score returning comparable to the pre-operative 

levels 12 years after surgery (-2.4% at last follow-up). Before the implant removal, also Patient 5 

showed a substantial improvement of dystonia following DBS, and Patient 13 experienced 

significant amelioration of dystonia for three years after the initial DBS procedure (BFMDRS -

62%); at last follow-up, BFMDRS was not applicable but dystonia appeared to be still substantially 

improved in the trunk and cervical region. Reduction of dystonia severity was documented in all 

anatomical districts (Videos 4 and 5), but laryngeal dystonia did not show relevant improvement 

regardless of stimulation parameters, and some patients even developed laryngeal dystonia after 

DBS.   

 

Discussion 

In this study, we screened a cohort of 65 patients with genetically undefined childhood-onset 

dystonia with whole-exome sequencing (WES) or a customized gene panel, with the aim of 

identifying pathogenic mutations in KMT2B and other dystonia-related genes and defining the 

relative prevalence, clinical findings and disease course of patients carrying KMT2B mutations. 

Previous work indicated a highly variable KMT2B mutational frequency in childhood-onset 

dystonia, from 1.3 to 38%6. In our series, 21.5% of patients with genetically undefined early-onset 

dystonia carried KMT2B variants; 13 (20%) carried variants classified as pathogenic based on 

available evidence. We acknowledge that the overall KMT2B mutational frequency in our study 

might be have been underestimated since the methods used to detect CNVs are suboptimal for 

detection of small single or multiple exonic deletions or duplications.  
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We also identified bi-allelic ATM mutations and a de novo GNAO1 mutation in two additional 

patients (Table 2; Supplementary material), allowing 23% of patients to receive a definitive 

genetic diagnosis.  

47 KMT2B variants have been reported to date, including microdeletions encompassing KMT2B as 

well as missense, nonsense, frameshift and splice-site mutations5-6,23-24,28-36. Of these, 35 (74.5%) 

arose de novo, 5 (10.5%) were dominantly inherited and 7 (15%) had an unknown inheritance 

pattern. With our series, the number of KMT2B variants reported increases up to 61.  

Childhood-onset dystonia is an almost universal clinical manifestation in KMT2B mutation carriers, 

as reviewed by Gorman et al.37 However, a small number of patients is asymptomatic5,28 or present 

with moderate-to-severe intellectual disability without dystonia24,31-32. This suggests incomplete 

penetrance of some KMT2B mutations and a phenotypic spectrum extending beyond movement 

disorders.  

Our results highlight that mutations in KMT2B are a frequent cause of generalized childhood-onset 

dystonia; however, it is of note that a substantial proportion of patients are left without a genetic 

diagnosis even after extensive screening, indicating the likely presence of pathogenic mutations in 

other unknown genes causing dystonia.  

With regard to the patients’ phenotype, DYT-KMT2B dystonia appeared similar to DYT-TOR1A 

dystonia for age at onset and initial lower limb involvement41; however, unlike DYT1 dystonia, the 

larynx and oromandibular region were almost universally affected during the generalization 

process, that occurred 2-4 years after onset with a body distribution that mimicked DYT-THAP1 

dystonia. Dystonia was severely disabling in most patients, making surgical treatment the preferred 

option in more than half of our cases. We calculated a median long-term decrease of BFMDRS-M 

score of 38.5% following DBS, providing a quantification of motor improvement after surgery, with 

a median post-operative follow-up of 12 years. Our data confirm that carriers of KMT2B mutations 

show an excellent, long-lasting motor response to pallidal DBS, and that improvement is rapidly 
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observed particularly in the limbs and trunk, but not in the larynx. Different genetic causes of 

isolated and combined dystonia are emerging as poor or favorable prognostic factors for DBS 

outcome39,40; our series fully supports KMT2B mutations as a positive prognostic factor for a good 

functional outcome after DBS, similarly to DYT-TOR1A patients. Aside from dystonia, KMT2B 

variants were frequently associated with additional neurological features such as mild intellectual 

disability, short stature, brisk reflexes in the lower limbs and minor facial dysmorphic features. 

Consistently, among six mutation carriers reported by Zech et al., short stature was observed in 

three, and intellectual disability in four5, whereas Meyer et al. reported these features in 55% and 

11% of cases, respectively6.  

Unlike previously reported mutation carriers6,37, MRI basal ganglia alterations were not observed at 

any disease stage, thus our data do not confirm a characteristic radiological signature in KMT2B 

mutation carriers. Six probands’ family members were found to carry KMT2B missense variants, 

and three had normal examination (Fig. 2). Four asymptomatic carriers have been previously 

reported5,33,37, suggesting incomplete disease penetrance of some KMT2B mutations, a well-known 

mechanism described for other dystonia-related genes, such as DYT1 and THAP141,42. Somatic 

mosaicism may explain incomplete disease penetrance in asymptomatic carriers; however, no cases 

of KMT2B somatic mosaicism has been reported so far. Additional biological samples from 

unaffected mutation carriers were not available and alternative techniques to detect somatic 

mosaicism were not performed in our study, thus we cannot rule out that mosaicism was detectable 

in any of these subjects.  

In our cohort, three family members carrying KMT2B missense variants showed mild to moderate 

intellectual disability or isolated short stature in absence of dystonia (Fig. 3). Similarly, de novo or 

dominantly inherited KMT2B mutations have been previously found in few patients with 

developmental delay and moderate-to-severe intellectual disability with or without a family history 

of dystonia24,31-32. 
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These observations suggest a role of KMT2B not only in the pathogenesis of dystonia, but also in 

growth retardation and intellectual disability, supporting the theory of dystonia as a 

neurodevelopmental disorder43,44. Heterozygous mutations in genes belonging to the KMT2 family 

underlie different human disorders all sharing various degrees of intellectual disability and 

developmental delay as a core feature, associated with other disease-specific neurological and non-

neurological abnormalities, such as Wiedmann-Steiner syndrome (MIM 605130, linked to KMT2A 

mutations45), Kabuki syndrome (MIM 147920, due to KMT2D mutations46), and Kleefstra 

syndrome (MIM 610253, due to KMT2C mutations47). A possible genotype-phenotype correlation 

explaining the variety of clinical features observed in KMT2B mutation carriers might emerge in the 

future, although no definite conclusions in this regard can be drawn so far. 

It is conceivable that the abundant expression of KMT2B in areas responsible for motor control 

during embryonic development and in the adult brain may be related to the pathogenesis of dystonia 

in mutation carriers, and additional genetic and environmental factors might contribute to the 

disease penetrance and clinical expressivity of KMT2B mutations. 

Our series also further expands the GNAO1 phenotypic spectrum to include childhood-onset 

myoclonus-dystonia with predominant upper body distribution and psychiatric disturbances in 

adulthood, a phenotype highly resembling DYT-SGCE myoclonus-dystonia. Unlike previously 

reported GNAO1 patients48, our case had no intellectual disability, recurrent status dystonicus, 

epilepsy or brain MRI alterations.  

 

In conclusion, KMT2B variants are a relevant cause of childhood-onset dystonia, with a 21.5% 

prevalence in our series. We observed a variety of clinical manifestations in mutation carriers 

ranging from severe generalized isolated dystonia to intellectual disability or short stature in 

isolation, thereby expanding the phenotypic spectrum of KMT2B mutations beyond movement 
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disorders. Different phenotypes were observed even within the same family, in line with other 

recent reports24.  

We recommend KMT2B genetic screening for patients with childhood-onset dystonia without 

DYT1-mutations, in particular when (1) dystonia first presents in the lower limbs with subsequent 

generalization and severe involvement of the truncal, oro-mandibular and laryngeal districts 

(leading to complete anarthria in some patients); and (2) dystonia is accompanied by either 

microcephaly, short stature, intellectual disability or minor dysmorphic facial traits.  

In line with previous reports, we observed a dramatic and long-lasting response to pallidal DBS in 

patients with KMT2B mutations. Hence, reaching a molecular diagnosis of DYT-KMT2B dystonia 

has critical prognostic and therapeutic implications. In cases with unsatisfactory response to drugs, 

an early surgical treatment may in fact prevent the severe and disabling generalization characteristic 

of DYT-KMT2B dystonia and improve patients’ motor performances and quality of life.   
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Video legend 

Video 1. Patient 12. Generalized dystonia with severe laryngeal involvement associated with 

microcephaly, minor facial dysmorphic traits, short stature (calculated as genetic target) and brisk 

reflexes in the lower limbs. 

Video 2. Patient 9 and 11. Examples of severe dysarthria/anarthria in KMT2B mutation carriers. 

Video 3. Patient 3. Long-term positive motor outcome after administration of high doses of 

trihexyphenidyl, with persistence of speech dystonia.  

Video 4. Patient 1: disease course before and after DBS. Severe generalized dystonia with excellent 

long-term motor outcome after pallidal DBS. The early laryngeal involvement (whispering 

dysphonia) persisted after surgery.  

Video 5. Patient 7: disease course before and after DBS. Severe generalized dystonia significantly 

improved after DBS; the patient slowly regained the ability to walk unassisted. Oromandibular and 

laryngeal dystonia persisted in the long-term. 

 

Figure legend 

Figure 1: Position of KMT2B variants identified in the study along the protein structure.  

Figure 2: Family trees of patients carrying KMT2B variants. Black symbols indicate patients 

affected by dystonia; grey symbols indicate subjects with other isolated clinical features (short 

stature and/or intellectual disability). n.i.: not investigated. 

Figure 3: Predicted effect of KMT2B variants on structure-function properties. The FYRN and 

FYRC domains are shown in orange and pink respectively. (A) Hydrophobic packing involving 

Leu1753 (blue), at the interface of FYRN/FYRC domains. Residue side chains are shown as 

spheres highlighting van der Waals contacts. (B) The salt bridge interaction between Arg1777 and 

Asp1738 in the FYRN domain is shown. (C) Hydrophobic contacts involving Leu2431 are shown 

and (D) the loss of contacts as a result of Leu2431Ser variant is highlighted (yellow circle). (E) The 
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zinc finger domain of KMT2B bound to DNA. The salt bridge between the Arg1003 (cyan) and 

Asp977 is shown. The DNA backbone phosphate is shown in orange. (F) PHD-like domain of 

KMT2B (purple) showing the location of Ser1615 (cyan) and its hydrogen bond between with 

Thr1650. (G) The contact involving Ala1632 (cyan) are shown and Ser1615 (both shown with 

sphere representation of atoms). Hydrogen bonds involving the neighboring residues Ser1615 and 

Glu1617 are also shown.  

 


