
BIROn - Birkbeck Institutional Research Online

Luo, G. and Wei, J. and Hu, W. and Maybank, Stephen J. (2019) Tangent
Fisher vector on matrix manifolds for action recognition. IEEE Transactions
on Image Processing 29 , pp. 3052-3064. ISSN 1057-7149.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/30050/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/30050/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 1

Tangent Fisher Vector on Matrix Manifolds for
Action Recognition

Guan Luo, Member, IEEE , Jiutong Wei, Weiming Hu, Senior Member, IEEE ,
and Stephen J. Maybank, Fellow, IEEE

Abstract—In this paper, we address the problem of representing and recognizing human actions from videos on matrix manifolds.
For this purpose, we propose a new vector representation method, named tangent Fisher vector, to describe video sequences in
the Fisher kernel framework. We first extract dense curved spatio-temporal cuboids from each video sequence. Compared with the
traditional ’straight cuboids’, the dense curved spatio-temporal cuboids contain much more local motion information. Each cuboid is
then described using a linear dynamical system (LDS) to simultaneously capture the local appearance and dynamics. Furthermore,
a simple yet efficient algorithm is proposed to learn the LDS parameters and approximate the observability matrix at the same time.
Each video sequence is thus represented by a set of LDSs. Considering that each LDS can be viewed as a point in a Grassmann
manifold, we propose to learn an intrinsic GMM on the manifold to cluster the LDS points. Finally a tangent Fisher vector is computed
by first accumulating all the tangent vectors in each Gaussian component, and then concatenating the normalized results across all the
Gaussian components. A kernel is defined to measure the similarity between tangent Fisher vectors for classification and recognition of
a video sequence. This approach is evaluated on the state-of-the-art human action benchmark datasets. The recognition performance
is competitive when compared with current state-of-the-art results.

Index Terms—Action recognition, Fisher vector, Grassmann manifold, Hankel matrix, matrix manifold.

F

1 INTRODUCTION

MODELING and recognizing human activities from
videos is a key component in many promising

applications including visual surveillance, human com-
puter interaction, and video summarization. In the past
couple of decades, many papers on human activity
analysis have been published. The surveys by Aggarwal
and Ryoo [1] and Weinland et al. [2] provide a broad
overview of these efforts. However, the challenges of
understanding human actions still remain, due in part
to the diversity of human movements and the variations
of dynamic environments.

In much recent work, dynamical system methods [3],
[4], [5], [6] are used to model the human movements
and activities in video. In particular, linear dynamical
systems (LDSs) are used widely because of their sim-
plicity and efficiency. In addition, LDSs have the merit
of capturing both action appearance and dynamics by
decoupling video sequences into subspace poses and la-
tent dynamics. Recent advances in system identification
theory for measuring the distance between LDSs [7], [8],
[9], [10] have made LDSs even more successful for the
classification of high-dimensional time-series data. State-
of-the-art results are achieved in applications ranging
from classifying non-rigid dynamic textures [11], [12]

• G. Luo, J. Wei and W. Hu are with the National Laboratory of Pattern
Recognition, Institute of Automation, Chinese Academy of Sciences, No.
95, Zhongguancun East Road, PO Box 2728, Beijing, 100190, P.R. China.
E-mail: {gluo, wmhu}@nlpr.ia.ac.cn.

• S. J. Maybank is with the Department of Computer Science and Informa-
tion Systems, Birkbeck College, Malet Street, London WC1E 7HX, United
Kingdom. E-mail: sjmaybank@dcs.bbk.ac.uk.

to recognizing highly articulated human actions [3], [6],
[13], [14].

On modeling a motion sequence with LDSs, the mod-
el parameters or the associated infinite observability
matrix are generally used descriptors. However, these
descriptors do live in a matrix manifold rather than a
Euclidean vector space. In order to compare two LDSs,
a distance or kernel metric needs to be defined by the
system methods [7], [8], [9], or using geodesics on the
matrix manifold [6], [15], [16]. Once a distance metric
is defined, one way to achieve action recognition is to
model the whole video sequence as an LDS [3], [14].
Then classifiers such as KNNs or SVMs are used to
categorize a query video based on the pairwise distance
matrix of the training videos. However, for complex
human actions, it is no longer reasonable to model
the whole video sequence with only one LDS. This is
because complex human actions usually contain many
spatio-temporal nonlinearities. One way to address this
issue is to use nonlinear dynamical systems (NLDSs) [4],
[5], [9], [17]. However, NLDSs usually require large
amounts of training data to learn the model parameters.
This makes it hard to balance the model accuracy and
generalization. In addition, measuring distances between
NLDSs is much more difficult than LDSs.

In this paper, we develop a new action representation
method, named tangent Fisher vector (TFV), to com-
bine the strengths of the dense local spatio-temporal
features [18] and the Fisher kernel framework [19]. The
main motivation behind this method has two aspects.
First, we model each video sequence using a set of
LDSs other than only one LDS or a NLDS, by extracting

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 2

1 1(,)Q S

2 2(,)Q S

(,)K KQ S

1v

2v

Kv

(a)

(b)

(c)(d)

Dense cuboid Hankel matrix

TFV= []

GMM

iq

(,)A C=M

()d M

(

dd (

)

(

)

Fig. 1. System diagram of the proposed method. The
system is composed of four main parts: (a) construct-
ing dense cuboids, (b) learning observability matrices of
LDSs, (c) fitting an intrinsic GMM, and (d) computing the
tangent Fisher vector.

dense local spatio-temporal cuboids and describing each
cuboid with an LDS. The spatio-temporal cuboids are
generally small in size in both the spatial and temporal
domains, thus the inherent dynamics in each spatio-
temporal cuboid can be well approximated by an LDS.
In this way, the action recognition problem reduces
to classifying a set of LDSs. Second, considering that
the LDSs are specified by points in a non-Euclidean
matrix manifold, we extend the traditional Fisher kernel
framework and propose an intrinsic GMM to aggregate
the set of LDSs of a video sequence into a tangent Fisher
vector (TFV). We demonstrate that the combination of
dense LDSs and TFVs achieves state-of-the-art results on
very challenging public data sets.

Fig. 1 gives an overview of the proposed method,
which is composed of four main parts: constructing
dense cuboids, learning observability matrices of LDSs,
fitting an intrinsic GMM, and computing the tangent
Fisher vector. Given a video sequence, we first densely
sample and track optical flow fields to form dense
trajectories [18]. The curved spatio-temporal cuboids are
constructed as the local space-time volumes along the
trajectories. Then we use a Hankel matrix approach
to efficiently compute the observability matrix of an
LDS for each cuboid to capture the local appearance
and dynamics. Next an intrinsic GMM on the matrix
manifold is learned to cluster the observability matrices.
Finally, each LDS is classified by a Gaussian component,
by viewing the learned GMM as a codebook. A tangent
Fisher vector is computed by aggregating the gradient
vectors with respect to the Karcher mean and covariance
in each Gaussian component. A trace kernel of two TFVs
is used to measure the similarity between two video
sequences for classification and recognition.

The main contributions of this paper are summarized
as follows:

• We propose a TFV representation on a matrix man-
ifold to describe video sequences. To the best of

our knowledge, this is the first work which mod-
els non-Euclidean descriptors in the Fisher kernel
framework.

• We propose an intrinsic GMM learning algorithm
on the matrix manifold to construct the codebook
for the observability matrices.

• We carry out extensive experiments on eight public
action data sets. We evaluate the performance with
respect to the LDS parameters, the cuboid size and
the number of Gaussians in the GMM. We compare
the TFV representation of the LDS descriptor with
five baseline descriptors and four baseline clustering
algorithms. The results demonstrate the significant
advantages of our method.

The remainder of this paper is organized as follows:
Section 2 reviews related work on the LDS, matrix mani-
folds and extensions of the Fisher vector framework. Sec-
tion 3 introduces the LDS descriptor, namely the observ-
ability matrix and describes how the observability matrix
is learned. Section 4 introduces the matrix manifold,
and proposes an intrinsic GMM clustering algorithm on
the manifold. Section 5 presents the computation of the
tangent Fisher vector. Section 6 shows the experimental
results, including comparisons with competing methods
for learning human actions. Section 7 is a conclusion of
the paper.

2 RELATED WORK

Section 1 briefly reviewed the work on LDS descriptors
and the Fisher vector representation in order to make
clear the motivation for this paper. In this section, these
methods are reviewed in detail in order to put the work
into context.

The modeling of human movements by LDSs has been
studied for a long time [20]. In early works, an LDS is
learned using complex Bayesian modeling and inference.
In more recent work, suboptimal LDS parameters are
learned in closed form [11], and the similarity between
LDSs is measured by defining distance metrics in the
model space [7], [8], [9], [10]. Turaga et al. [21] segment
a video sequence in the temporal dimension, and learn
an LDS for each segment. They compute the pairwise
distances among all the LDSs, and cluster them using
normalized cuts. The video sequence is then modeled
as a cascade of cluster labels, and repetitive patterns
are mined using a regular expression grammar. The
segments produced by Turaga et al. [21] are usually
insufficient for motion analysis. This suggests the use of
dense cuboids obtained by segmenting in both spatial
and temporal dimensions. Bissacco et al. [3] model se-
quential data with a non-Gaussian LDS by assuming that
the noise process of the LDS is temporally independent
and white. They decompose the observation sequence
into a deterministic process and a stochastic process, and
design a suboptimal algorithm to estimate the model
parameters. They define a novel kernel-based distance
to classify human gaits by considering the dynamics,

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 3

initial conditions, and input distribution. Considering
that the non-Gaussian model is very difficult to identify
and that describing a video sequence using only one
linear model is not reasonable for most complex videos,
we extract a large number of local cuboids in each video
and describe them using linear Gaussian models. Li et
al. [22] reformulate the observation sequence as a Hankel
matrix, and model it as the output of an LDS. They
do not estimate the LDS parameters, but exploit the
subspace spanned by the columns of the Hankel matrix.
They use the discriminant canonical correlations (DCC)
between two subspaces to measure the distance of two
video sequences for action recognition. We follow their
ideas by further exploring the geometry of the subspace
of the Hankel matrix, and represent LDSs as points in a
matrix manifold.

The characterization of human actions using matrix
manifolds has been a recent focus in the literature. Veer-
araghavan et al. [23] model human silhouette shapes on a
spherical manifold. A shape sequence is first normalized
using dynamic time warping (DTW). Then a tangent
space at the Procrustes mean shape is constructed, and
an ARMA model is exploited to describe the shape
sequence. The model distance is employed to compare
different sequences for gait recognition. Considering that
the silhouette or shape features are difficult to obtain on
unconstrained human action data sets, most recent meth-
ods use the raw pixel values. Turaga et al. [6] describe
the video sequence using ARMA model parameters.
They compute the observability matrix, and interpret it
as a point in a Grassmann manifold. They investigate
the statistical modeling and Procrustes representation on
the manifold, and learn class conditional densities and
intrinsic K-means for classification and clustering on the
tangent space of the Grassmann manifold. Lui et al. [16]
use a modified high-order singular value decomposi-
tion (HOSVD) on the video sequence to obtain three
factor matrices to capture the appearance, horizontal
motion, and vertical motion respectively. These three
factor matrices are points on a special matrix manifolds.
They compute the distances on three tangent spaces, and
put them together on a tangent bundle to define the
intrinsic distance between two sequences. Guo et al. [24]
employ the covariance matrix, which naturally lies on a
Riemannian manifold, to describe the optimal flow fea-
tures. They map the covariance matrix to a vector space
using the matrix logarithm, and employ a sparse linear
representation to encode the human actions. Zhang et
al. [25] propose a multi-hypergraph learning algorithm
to recognize multi-view 3D objects, where the 3D objects
are formulated in a manifold, and the correlation among
the objects is estimated by label propagation on the
manifold structure. We follow these work by describing
each local cuboid as a point in a Grassmann manifold,
and developing a tangent Fisher vector computational
method to aggregate the resulting set of points to obtain
a single point that represents the video sequence.

Previous attempts for aggregating a set of LDS points

mostly resort to using the bag-of-words (BOW) frame-
work. To this end, it’s necessary to cluster a set of given
LDSs to form the codewords. Considering that the LDSs
are points in a matrix manifold, the traditional clus-
tering techniques that rely on Euclidean representation
can not be applied directly. There are currently three
ways to address this issue. The first way is to find a
low-dimensional Euclidean embedding of the points by
means of dimension reduction on the pairwise distance
matrix. Then the traditional Euclidean clustering algo-
rithms such as K-means are applied to find the cluster
centers in the Euclidean space. Finally the LDS code-
words are chosen as those LDSs whose corresponding
low-dimensional representations are closest to the cluster
centers in the low-dimensional space [26]. The second
way is to employ clustering algorithms that directly
work with the pairwise distance matrix. Examples in-
clude K-medoid [12] and normalized cuts [21]. The third
way is to perform clustering on the matrix manifold
by using the Karcher mean to represent the LDS code-
words [6]. The Karcher mean is defined as the centroid
of a density, and is here computed as the point that
minimizes a sum of squares of geodesic distances. An
intrinsic K-means clustering algorithm on the manifold
is used to achieve unsupervised clustering. Ravichan-
dran et al. [12] present a bag-of-systems framework by
using LDSs to model the spatio-temporal cuboids, and
compare dimension reduction plus K-means and K-
medoid methods on the pairwise distance matrix to form
the codebook. Turaga et al. [21] use normalized cuts to
cluster a cascade of LDSs, and quantize the cascade of
LDSs into a cascade of codewords to investigate the
repetitive patterns. Li et al. [27] build Hankel matrices
on the dense tracklets extracted from a video sequence,
and present a bag-of-Hankelets framework by modeling
each cluster by a Gamma distribution.

The Fisher kernel framework proposed by Jaakkola
and Haussler [19] has many advantages over the above
BOW-like framework. First, it encodes high-order statis-
tics of the descriptors. When the distribution is modeled
as a parametric generative model, say a GMM, the Fisher
vector describe how the set of descriptors of a video
deviates from the underlying distribution. Second, the
computational expense for the Fisher vector is much
less than for the BOW, because it generally requires
a smaller codebook. On the other hand, the Fisher
kernel framework can be understood as an extension
of the BOW framework. The BOW representation is
the frequency histogram over the codebook obtained
by counting the number of occurrences of codewords.
The Fisher vector representation is the gradient of the
sample’s likelihood with respect to the parameters of
the underlying generative model. The generative model
can be understood as a probabilistic codebook. From
this point of view, the BOW encodes the zero-order
statistics of the sample distribution, while the Fisher
vector encodes the high-order statistics. The Fisher k-
ernel framework proves its effectiveness over the BOW

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 4

L

Fig. 2. Illustration of a interest points trajectory and its
associated curved spatio-temporal cuboid. Each cuboid
is N ×N pixels in space and L frames long in time.

framework on both recognition performance and com-
putational expense. Perronnin and Dance [28] apply
the Fisher kernel framework to image categorization by
modeling the underlying generative model as a GMM.
An image is then represented as a gradient vector with
respect to the mean and variance of the GMM. Jégou et
al. [29] develop an non-probabilistic Fisher vector, named
VLAD, to represent images for large scale image search.
Wang and Schmid [30] use Fisher vectors to encode
the visual and motion descriptors for human action
recognition. In this paper, the Fisher kernel framework
is extended to incorporate the non-Euclidean descriptors
obtained from points in a matrix manifold. We propose
a tangent Fisher vector representation method on the
matrix manifold, and validate its effectiveness on a wide
range of human action data sets.

3 LINEAR DYNAMICAL MODEL AND HANKEL
MATRIX REPRESENTATION

In this section, it is shown how a spatio-temporal cuboid
is modeled as the output sequence of an LDS in the
context of column matrix and Hankel matrix representa-
tion. It is then explained what the Hankel matrix repre-
sentation really does with respect to action recognition.
Finally, the observability matrix of an LDS is introduced
and an efficient algorithm is proposed to compute it.

3.1 Hankel Matrix Representation for an Observa-
tion Sequence
Each curved spatio-temporal cuboid is assumed to be
the output sequence of an underlying linear dynamical
system. Without loss of generality, let the size of each
cuboid be N × N pixels in space and L frames long in
time. We use the column matrix

Y1:L = [y1, y2, . . . , yL] ∈ Rp×L, (1)

where p = N ×N , to represent the observation sequence
of raw pixel values. Fig. 2 shows how a curved spatio-
temporal cuboid is configured in space and time. Con-
sidering that the cuboid is generally small in size on both
spatial and temporal domains, it can be modeled by an
LDS.

Let A ∈ Rn×n be the system dynamic matrix, and
C ∈ Rp×n be the subspace mapping matrix. Here p and n
are the dimensions of the observation space and the state
space, respectively. Then a linear time-invariant dynam-
ical system, which generates the observation sequence

Fig. 3. Original sequence (left) and synthesized se-
quence (right) generated by an LDS model learned with a
walking silhouette sequence from the Weizmann dataset.
The model dimension is set to n = 25. The synthesis
sequence is generated by setting the initial state equal to
the first state of the learned state sequence and evolving
24 steps ahead.

Y1:L, is represented by the parameters M = (A,C), and
evolves in time according to the following equations [31]{

xt+1 = Axt + vt
yt = Cxt + wt,

(2)

where t = 1, 2, . . . , L is the discrete time index, xt ∈
Rn is the latent state variable, yt ∈ Rp is the vector of
pixel values observed at time t, vt and wt are the system
noise and observation noise, respectively. It is assumed
that vt ∼ N (0, Q) and wt ∼ N (0, R). Here Q and R are
covariance matrices. To learn the parameters of an LDS,
a robust algorithm is proposed by [32].

According to the above definition in (2), an LDS can be
regarded as a generative model. To show the generation
of observations by LDSs, we show in Fig. 3 an original
walking sequence and the synthesized one generated by
a learned LDS. We first use the raw silhouette data (left)
as input to learn the model. Then we use the model
parameters to synthesize a new sequence (right) by an
evolving process. We see that the synthesized sequence
is not only perceptually close to the original one, but also
captures the periodic characteristics of walking actions.

In order to explore the observability matrix of an LDS,
we reformat the column matrix representation in (1)
by introducing a Hankel matrix representation for the
observation sequence. Given an observation sequence
Y1:L, its associated block Hankel matrix Hd,r(Y1:L) is a
linearly structured matrix of the form [33]

Hd,r(Y1:L) =

y1 y2 · · · yr
y2 y3 · · · yr+1

...
...

. . .
...

yd yd+1 · · · yL

 ∈ Rpd×r, (3)

where d, r ∈ {1, 2, . . . , L} and r = L− d+ 1.
Each column of the Hankel matrix is a subsequence of

the full observation sequence with one time step offset
relative to its adjacent columns, and the entries along
the block anti-diagonals are the same. The overlapping
columns of the Hankel matrix represent the different
realizations of the same LDS in response to different
initial conditions. The Hankel matrix plays many roles
in diverse areas of mathematics, communication and
control engineering. Recently, it is also introduced to
model the dynamics of visual process, such as dynamic

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 5

(a) (c)(b)

1
y

2
y

3
y Ly

1
y

2
y

2
y

3
y

3
y

4
y

2Ly -

Ly

1Ly -

11 22 rr

N

N

L
d

Fig. 4. Illustration of the Hankel matrix representation of
an example cuboid extracted from the UCF sports data
set. (a) A spatio-temporal cuboid of size N×N×L. (b) The
column matrix representation Y1:L ∈ Rp×L. Here p = N ×
N . (c) The Hankel matrix representation Hd,r ∈ Rpd×r.
Here d = 3, r = L− 2.

texture [34] and human activity [22], [27]. Li et al. [27]
show that the columns of the Hankel matrix span a
subspace that is invariant under changes in the initial
conditions and affine transformations of the observation
sequence.

According to the realization theory [35], the order or
dimension n of an LDS can be expressed as the rank
of the associated Hankel matrix, provided that d, r ≥ n.
This suggests a new way to solve the LDS by directly
applying stable estimation of the Hankel matrix. In
practice, a low order model is generally desired because
it is easier and cheaper to analyze. Thus n is typically
chosen to be in the range 3-10. The parameters d, r are
chosen such that the block Hankel matrix is as near
square as possible.

3.2 What Hankel Matrix Does for Action Recognition
Fig. 4 illustrates the reformatting process from the col-
umn matrix representation of a cuboid to the Hankel
matrix representation for action recognition. The Hankel
matrix is constructed by stacking d successive frames for
each cuboid frame, till the r frame, where r = L− d+1.
With this nonlinear expansion, the Hankel matrix models
multiple realizations of the same underlying LDS with
different initial conditions. In such a way, the LDS states
incorporate information about the future observations.
This is particularly helpful for prediction when the
motions are periodic. Furthermore, the Hankel matrix
implicitly encodes the slowly varying trend and oscil-
latory nature of the original observation sequence. The
slowly varying trend is reported to have much potential
for complex action recognition [36].

3.3 Learning the Observability Matrix of an LDS
In Eq. (2), LDS implicitly models the observation se-
quence Y1:L with a subspace mapping matrix C and
a dynamic matrix A. The columns of C describe the
principal appearance components, while A represents
the state dynamics. The LDS parameters M = (A,C) are
commonly estimated via the singular value decomposi-
tion (SVD) to the column matrix Y1:L, while constraining
the dynamic matrix A to be stable with all its eigenvalues
inside the unit circle. The system observability matrix
O∞(M) is defined as

O∞(M) = [CT (CA)T (CA2)T . . .]T ∈ R∞×n. (4)

This infinite observability matrix measures how well the
hidden states of an LDS can be inferred from its outputs.
In practice, a finite observability matrix

Od(M) = [CT (CA)T . . . (CAd−1)T]T ∈ Rpd×n (5)

is used to approximate the infinite observability matrix
O∞(M). The subspace angles between column spaces of
the observability matrices are generally used to define
the distance [8] for comparing different LDSs.

To learn the finite observability matrix Od(M), a s-
traightforward way is to first estimate the model param-
eters (A,C), and then construct Od(M) as defined in (5).
However, this approach does not consider the special
structure of the Hankel matrix, and thus is not compu-
tationally efficient. The observability matrix Od(M) is
obtained in an efficient way using the Hankel matrix
representation.

According to Eq. (2), the expected observation variable
satisfies

E(yt) = CAixt−i, ∀i ∈ {0, 1, . . . , t− 1}. (6)

Substituting (6) into the Hankel matrix (3) yields

E(Hd,r) =

C
CA

...
CAd−1

 [x1 x2 . . . xr] = Od(M)X1:r. (7)

This indicates that the expected value of Hd,r can be fac-
torized into an observability matrix and a state sequence.
To compute the observability matrix, we decompose the
Hankel matrix with the SVD

Hd,r = UΣV T . (8)

Then the observability matrix Od(M) and the state se-
quence X1:r are given as

Od(M) = U, X1:r = ΣV T . (9)

Thus the observability matrix is computed in an efficient
way from the Hankel matrix.

Considering the noise assumption in (2), the columns
of the orthonormal matrix U span an approximation to
the subspace spanned by the columns of the infinite
observability matrix. Since this subspace is a point on
a Grassmann manifold, the associated LDS can thus be
viewed as a point on the Grassmann manifold.

4 GEOMETRY AND STATISTICS ON MATRIX
MANIFOLDS
Given an LDS M = (A,C) of dimension n and its
associated finite observability matrix Od(M), the column
space of Od(M) is an n-dimensional subspace of Rpd.
The set of all n-dimensional linear subspaces of Rm is
called the Grassmann manifold, and denoted as Gm,n.
Each point on Gm,n is specified by an m×n orthonormal
matrix, such that the columns of the matrix form an
orthonormal basis for the point. In this context, an LDS
is represented as a point on the Grassmann manifold
Gpd,n.

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 6

QQQ

q O

 M

 ()OT M

Fig. 5. Illustration of the relation between matrix manifold
and tangent space. A point Q on the manifold M is
mapped to a point q on the tangent space TO(M) at point
O.

4.1 Tangent Space of a Matrix Manifold

To measure distances on the Grassmann manifold, we
use the fact that the manifold is locally Euclidean and
is endowed with a differential structure. This provides a
map from a subset of the manifold to the tangent space
at a point, and an inverse map from a subset of the
tangent space to the manifold. Fig. 5 shows the geometric
relation between the matrix manifold and the tangent
space.

Formally, let M be the Grassmann manifold and
O ∈ M be a point on the manifold. The tangent s-
pace at O is denoted as TO(M). The exponential map
expO : TO(M)→M, which maps q in the tangent space
TO(M) onto M, is given by [37]

expO(q) = OV cosΣ + U sinΣ, (10)

where UΣV T represents the tangent vector q in the
tangent space TO.

Conversely, the logarithmic map logO :M→ TO(M),
which is the inverse map from M to TO(M), is defined
in the neighborhood of O by [16], [37]

logO(Q) = UΘV T , (11)

where UΣV T = (I − OOT)Q(OTQ)−1, Θ = arctan(Σ),
and I is the identity matrix.

Given the above geometry of M, we can study the
statistics, such as sample mean and covariance, and
derive probability densities, such as GMM, to describe a
set of sample points on M.

4.2 Intrinsic GMM Learning Algorithm

In this section, it is shown how the sample mean and
covariance are estimated on a Grassmann manifold. An
intrinsic GMM learning algorithm is then described.

Let {Q1, Q2, . . . , Qk} be a set of sample points on
M. The Karcher mean is defined to be the point that
minimizes the sum of squares of geodesic distances

Q̄ = arg min
Q∈M

1

k

k∑
i=1

d(Q,Qi)
2. (12)

To numerically compute the Karcher mean, an iterative
algorithm based on the Gauss-Newton gradient descen-
t [38] is commonly used. The iterative updating scheme

Algorithm 1 Intrinsic GMM Learning Algorithm on the
Matrix Manifold
Input: Given a set of points {Q1, Q2, . . . , QN} in the manifold,

the number K of Gaussians, and maximum number Nitr

of iterations;
1: Initialize K Gaussians λ

(0)
j = (π

(0)
j , Q̄

(0)
j ,Σ

(0)
j), j =

1, 2, . . . ,K randomly. For ∀j, π
(0)
j = 1/K, Q̄

(0)
j ∈

{Q1, Q2, . . . , QN}, Σ(0)
j = I. nItr = 0;

2: repeat
3: %%% E-step %%%
4: for i = 1 : N, j = 1 : K do
5: Compute the tangent vector qij = log

Q̄
(nItr)
j

(Qi);

6: Compute the Mahalanobis distance dM (qij) =

(qTijΣ
(nItr)
j

−1
qij)

1/2;
7: Make the hard assignment γij = 1 if j =

argminj dM (qij), and γij = 0 otherwise;
8: end for
9: %%% M-step %%%

10: nItr = nItr + 1;
11: for j = 1 : K do
12: Update the Gaussian weight π(nItr)

j =
∑

i γij/N ;
13: Update the Gaussian mean Q̄

(nItr)
j using (13);

14: Update the Gaussian covariance Σ
(nItr)
j using (14);

15: end for
16: until Convergence of

∑
i

∑
j γijdM (qij), or nItr > Nitr

Output: λj = (πj , Q̄j ,Σj), j = 1, 2, . . . ,K.

is given by

Q̄t+1 = expQ̄t(ϵqt), qt =
1

k

k∑
i=1

logQ̄t(Qi), (13)

where t is the iteration step, and ϵ is the step size which
is usually set equal to 0.5.

To define and compute the sample covariance, we use
the fact that the tangent space TQ̄(M) at the mean point
is a vector space with an inner product. Thus we can
use classical statistics in Euclidean space to estimate the
covariance. On mapping all the sample points into the
tangent space TQ̄(M), the covariance matrix is given as

Σ =
1

k − 1

k∑
i=1

qiq
T
i , qi = logQ̄(Qi). (14)

Once the Karcher mean Q̄ and covariance matrix Σ
are obtained, a Gaussian distribution is defined on the
tangent space by

N (q|Q̄,Σ) =
1√

(2π)D|Σ|
exp{−1

2
d2M (q)}, (15)

where D is the dimension of the tangent vector, and
dM (q) =

√
qTΣ−1q is the Mahalanobis distance of q from

the origin of the tangent space.
To learn a K-components GMM for a set of training

points {Q1, Q2, . . . , QN} on the matrix manifold, we seek
to estimate K Gaussian clusters with model parameters
(Q̄j ,Σj) and mixture weights πj for j = 1, 2, . . . ,K,
so that the weighted sum of squares of Mahalanobis
distances is minimized. For this purpose, we propose

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 7

an EM-based approach as illustrated in Algorithm 1. We
initialize the algorithm by randomly selecting K points
as the Gaussian means, and setting all the covariance
matrices to be I. In the E-step, we assign each point
to the nearest Gaussian with respect to its Mahalanobis
distances to the K Gaussian centers. In the M-step,
we update each set of Gaussian parameters using the
Karcher mean and covariance computation algorithm in
(13) and (14).

5 TANGENT FISHER VECTOR

Let Q = {Qi, i = 1, 2, . . . , s} be the set of manifold
points computed from a video sequence. We model the
underlying generative model of Q as an intrinsic GMM
uλ. Thus Q can be described by the gradient vector with
respect to the parameters λ [29]

GQ
λ =

1

s
∇λ log uλ. (16)

The Fisher vector of Q is defined as the normalized
gradient vector

FQ
λ = F

−1/2
λ GQ

λ , (17)

where Fλ is the Fisher information matrix of uλ.
Considering that the intrinsic GMM is defined on a

set of tangent spaces centered at the Gaussian means, we
call this special Fisher vector the ”Tangent Fisher Vector”
to differentiate from the traditional Euclidean Fisher vec-
tor. Without loss of generality, Let λj = (πj , Q̄j ,Σj), j =
1, 2, . . . ,K be the learned GMM on the tangent space at
Q̄j . Let qij be the lift of the point Qi into the tangent
space at Q̄j . The point Qi is assigned to the Gaussian
component for which the Mahalanobis distance is a
minimum. Let {Qi, i = 1 : sj} be the set of points that
explain Gaussian λj , and let {qij , i = 1 : sj} be the
corresponding tangent vectors. Then for each Gaussian
λj , we compute the Fisher vector vj with respect to the
mean Q̄j and covariance Σj

vQ̄,j =
1

s
√
πj

∑s
i=1 γijσ

−1
j qij ,

vΣ,j =
1

s
√

2πj

∑s
i=1 γij(σ

−2
j q2ij − 1).

(18)

where σ2
j = diag(Σj) is the diagonal covariance.

Considering that the assignment γij = 1 for j =
argminj dM (qij), and γij = 0 otherwise, we have

vQ̄,j =
1

s
√
πj

∑sj
i=1 σ

−1
j qij ,

vΣ,j =
1

s
√

2πj

∑sj
i=1 (σ

−2
j q2ij − 1).

(19)

This suggests that in order to compute the tangent
Fisher vector vj , we only need to take care of the points
assigned to Gaussian λj .

Once we obtain all the vj , j = 1 : K in all Gaussian
components, the tangent Fisher vector of Q is defined as
the concatenation of the vjs

V = [vTQ̄,1 vTΣ,1 vTQ̄,2 vTΣ,2 · · · vTQ̄,K vTΣ,K]T . (20)

1
Q

1
v

 M

2
Q

K
Q

2
v

Kv

1iq

2iq

iKq

Fig. 6. Illustration of the computation of the tangent
Fisher vector. The manifold points obtained from a video
sequence are classified using a learned GMM according
to the Mahalanobis distance. Then for each Gaussian
component, the Fisher vector is computed by aggregating
the gradient vectors with respect to the Karcher mean
and covariance. Finally, concatenation of the normalized
Fisher vectors gives the tangent Fisher vector.

To normalize the tangent Fisher vector V , we apply the
intra-normalization [39] followed by the Frobenius norm

vj ←
vj√

tr(vTj vj)
. (21)

We show in Fig. 6 the computation of the tangent Fisher
vector on the matrix manifold.

Let U and V be the tangent Fisher vectors of two
video sequences, respectively. To measure the similarity
between them, we define a trace kernel for uj and vj
based on the inner product on the tangent space

ker(uj , vj)M = tr(uT
j vj). (22)

The final kernel between U and V is computed as

ker(U, V)M =
K∑
j=1

ker(uj , vj)M. (23)

To recognize video sequences, an SVM classifier is firstly
trained based on a kernel matrix obtained by computing
the pairwise kernels between the TFVs of the training
data. A test video sequence is then classified by feeding
its TFV to the SVM to yield the class label.

6 EXPERIMENTS

To evaluate the performance of the proposed method
for human action recognition, detailed experiments are
carried out on 10 public action data sets, namely UCF
sports, IXMAS, Olympic sports, Hollywood2, HMDB51,
UCF50, UCF101, THUMOS14, Kinectics400 and Activi-
tyNet v1.2. The experimental setup is introduced and
then the results are described and discussed.

6.1 Experimental Setup
6.1.1 Dense Curved Spatio-Temporal Cuboid
To construct the dense curved spatio-temporal cuboids,
we use the same parameters as in [18]. Given a video
sequence, dense points are first sampled on a grid in
each frame using a sampling step size of 5 pixels. Then
a dense optical flow field for each frame is computed

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 8

w.r.t. its next frame, and dense trajectories are tracked by
applying a 3 × 3 median filter on the optical flow field.
The curved spatio-temporal cuboids are constructed as
the local space-time volumes along the trajectories, and
the size of the cuboid is 32 × 32 pixels in space and 15
frames long in time.

6.1.2 Observability Matrix of LDS

To learn the observability matrix of an LDS, the ob-
servation sequence Y1:L ∈ R1024×15 is first assembled
into a Hankel matrix Hd,r. Considering the constraint
r = L − d + 1, and the empirical rule that d, r should
have similar values, we set d = 8, r = 8 in all the
experiments. The model dimension n of the LDS, is set to
n = 3 by considering the trade-off between recognition
performance and computational cost. As a result, the
dimensions of the observability matrix are given by
Od(M) ∈ R8192×3.

6.1.3 Baseline Descriptors

To quantify the improvement obtained with the LDS, we
compare to five baseline descriptors, namely HOG, HOF,
MBH, HOG+HOF, and HOG+MBH in both the BOW
and FV frameworks. To compute the baseline descrip-
tors, each cuboid is divided into 2×2×3 cells as in [18].
The final descriptor size is 96 for HOG, 108 for HOF,
and 192 for MBH. For the HOG+HOF and HOG+MBH,
different descriptors are combined by summing their
RBF-χ2 kernel matrices normalized by their respective
mean distance in the BOW framework, or concatenating
their normalized Fisher vectors in the FV framework.

6.1.4 Baseline BOW Framework

For the BOW framework, a codebook is trained for each
descriptor (HOG, HOF, MBH, and LDS) by randomly
selecting a subset of 100, 000 features from the training
set, and setting the number of codewords to 4, 000. Each
video is represented as a frequency histogram over the
codebook for each descriptor. A RBF-χ2 kernel SVM is
used for classification.

6.1.5 FV/TFV Framework

For the FV framework, a GMM is trained for each
descriptor (HOG, HOF, and MBH) by randomly selecting
a subset of 256, 000 features from the training set, and
setting the number of Gaussians to 256. Each video is
represented as a Fisher vector over the GMM for each
descriptor. A linear SVM is used for classification.

For the TFV framework, an intrinsic GMM is trained
by randomly selecting a subset of 256, 000 features from
the training set, and setting the number of Gaussians to
256. For each video sequence, each LDS is assigned to
one of the Gaussians, and the Fisher vector vj is com-
puted for each Gaussian. The video sequence is finally
represented as a tangent Fisher vector by concatenating
all the vjs. A trace kernel SVM is used for classification.

6.1.6 Baseline Clustering Algorithms
To quantify the improvement obtained with the intrinsic
GMM in the TFV framework, a comparison is made with
four baseline clustering algorithms, namely MDS+K-
means [12], K-medoid [12], Normalized cuts [21], and
Intrinsic K-means [6] on LDS in both the BOW and TFV
frameworks. For the first three methods, as they do not
treat the LDS as a point in a Grassmannian, but work
directly with the pairwise distance matrices, they are
only implemented in the BOW framework. For the last
method, as it is designed to work on the Grassmannian,
it is compared to both the BOW and TFV frameworks.

6.2 Experimental Results
6.2.1 Evaluation of LDS Parameters
Fig. 7 shows the impact of the LDS parameters in the
TFV framework. The mean AP on the Hollywood2 data
set and the average accuracy on the HMDB51 data set are
reported. These two data sets are chosen for evaluation
because they are comparatively more challenging, and
the results have large margins for improvement.

The recognition performance with respect to LDS di-
mension n is shown in Fig. 7a. For both Hollywood2 and
HMDB51 data sets, the performance increases rapidly
with the increase of n up to n = 3. After that, the
performance saturates with minor variations around the
result obtained at n = 3. Though the best results are
observed at n = 7 for Hollywood2, the computational
cost becomes prohibitive. Thus the value n = 3 is chosen
for all the experiments, in order to save computation
time with only a minor loss in the recognition rate.

Fig. 7b shows the recognition results as a function of
the Hankel matrix dimension d from d = 3 to d = 10.
Increasing d improves the performance up to d = 8.
Further increases in d do not yield better results. This
is expected in that the block Hankel matrix is square
when d = 8. Thus d = 8 is used as the default parameter
in all the experiments unless stated otherwise.

6.2.2 Evaluation of Cuboid Size and the Number of
Gaussians
Fig. 8a shows the evaluation results for various sizes of
the cuboids in the TFV framework. In particular, nine
combinational cuboid sizes obtained from three different
spatial sizes (N = 16, 32, 64) and three different temporal
sizes (L = 10, 15, 20) are evaluated on both Hollywood2
and HMDB51 data sets. It is seen that: 1) longer cuboids
generally perform better than shorter ones up to L = 15.
This is because, on the one hand, the LDS needs a
minimum length to capture the motion dynamics, on
the other hand, long cuboids are very likely to contain
some nonlinearities; 2) larger cuboids generally perform
better than smaller ones, but the performance saturates
after N = 32. This is probably because, on the one hand,
large cuboids contain more appearance information, on
the other hand, oversize cuboids form an over-complete
representation of the video sequence. Further increases

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 9

1 2 3 4 5 6 7 8
LDS Dimension n (d=8)

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
ea

n
A

P
 -

-
H

ol
ly

w
oo

d2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
ve

ra
ge

 A
cc

ur
ac

y
--

 H
M

D
B

51

Hollywood2
HMDB51

(a)

3 4 5 6 7 8 9 10
Hankel matrix dimension d (n=3)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
ea

n
A

P
 -

-
H

ol
ly

w
oo

d2

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
ve

ra
ge

 A
cc

ur
ac

y
--

 H
M

D
B

51

Hollywood2
HMDB51

(b)

Fig. 7. Evaluation of the LDS parameters on the Hollywood2 and HMDB51 data sets. (a) LDS dimension n, (b) Hankel
matrix dimension d.

16 16 10
16 16 15

16 16 20
32 32 10

32 32 15
32 32 20

64 64 10
64 64 15

64 64 20

Cuboid Size N N L

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

M
ea

n
A

P
 -

-
H

ol
ly

w
oo

d2

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

A
ve

ra
ge

 A
cc

ur
ac

y
--

 H
M

D
B

51

Hollywood2
HMDB51

(a)

2 4 8 16 32 64 128 256 512 1024
Number of Gaussians K

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

M
ea

n
A

P
 -

-
H

ol
ly

w
oo

d2

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
ve

ra
ge

 A
cc

ur
ac

y
--

 H
M

D
B

51

Hollywood2
HMDB51

(b)

Fig. 8. Evaluation of the dense cuboid size and the number of Gaussians in the GMM on the Hollywood2 and HMDB51
data sets. (a) Cuboid size N ×N × L, (b) number K of Gaussians.

in cuboid size do not yield better results. Large cuboids
result in the increase in the dimensions of the LDS
parameters, and as a result, an increase in the computa-
tional cost.

Fig. 8b illustrates the relationship between the recog-
nition performance and the number of Gaussians in the
TFV framework. On both Hollywood2 and HMDB51
data sets, the performance increases with the number
of Gaussians up to K = 1024, but it shows some sign of
plateau when the value of K is over 256. Meanwhile, if K
is too large, the dimension of the tangent Fisher vector
becomes very high, which increases the computational
expense dramatically. It is interesting to notice that an
mAP of 67.22% is obtained on the Hollywood2 data set
and an average accuracy of 66.57% is obtained on the
HMDB51 data set at K = 256. These results are even
better than the ones obtained in the BOW framework
with 4000 codewords (60.10% and 47.47% respectively).

6.2.3 Evaluation of Computation Efficiency
In Table 1, we evaluate the computation efficiency of TFV
on UCF101 data set with single core CPU. The TFV main-
ly consists of four modules: constructing dense cuboids,
learning observability matrices of LDSs, fitting intrinstic

TABLE 1
Testing Speed of TFV Stages on UCF101 data set (FPS)

160px 320px 480px

LDS (feature extraction) 18 5 2
TFV (feature encoding) 80 16 8

Performance 82.1% 90.6% 91.5%

GMM and computing the TFV. We divide the process
into two stages, i.e. the first two modules, summarized
as LDS feature computation and the last two modules,
summarized as TFV feature encoding. We record the
test time at different stage with three different video
resolutions, because the resolution affects the number of
features, which in turn affects the computation time. The
classification stage is very fast and its time is negligible.

We see that as the resolution increases, the FPS drops
sharply, but the performance has an obvious improve-
ment. When the resolution is 160px, the TFV can be
achieved in real-time, at the cost of moderate perfor-
mance. In general, LDS is much more time-consuming
than TFV, because extracting dense cuboids requires cal-
culation of optical flow, which is very time consuming.
To this end, we can use pre-computed cached optical

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 10

flow for acceleration.

6.2.4 Comparison to Baseline Descriptors
Table 2 compares the LDS descriptor to five baseline
descriptors, namely HOG, HOF, MBH, HOG+HOF, and
HOG+MBH in both the BOW and FV/TFV frameworks.
The LDS descriptor consistently outperforms all the
baseline descriptors on all the data sets. This is mainly
because the LDS descriptor intrinsically combines action
appearance and dynamics, and thus outperforms HOG,
HOF, and MBH, and even their combinations.

HOG is known to capture the static appearance in-
formation, and thus gives better results on UCF sports
and IXMAS data sets. However, HOG performs poorly
on the other data sets, especially on Hollywood2 and
HMDB51, because they are recorded in unconstrained
environments with large camera motions and cluttered
backgrounds.

HOF is designed to encode the motion information,
and thus outperforms HOG on nearly all the data sets. A
significant improvement of around 4%−13% is observed
on all the data sets in the BOW framework except
UCF sports, and an improvement of around 4% − 8%
is observed on all the data sets in the FV framework
except IXMAS.

MBH encodes the relative motion over HOF, and
thus consistently performs better than HOF on all the
data sets. It is observed that MBH gives an average
2% improvement over HOF in both the BOW and FV
frameworks, and the improvement is more significant
on realistic data sets, e.g., 6% on HMDB51 and UCF50.

HOG+HOF and HOG+MBH slightly improve the per-
formance by around 2% on all the data sets. This is ex-
pected, in that the combinations are more discriminative
than the individual descriptors, because they capture
both appearance and motion information.

LDS consistently outperforms all the baseline descrip-
tors on all the data sets in both the BOW and FV/TFV
frameworks. The LDS outperforms all the descriptors by
a considerable margin, and improves the best results by
around 5%.

In general, the improvement is minor on UCF sports
and IXMAS across all the descriptors. This is probably
because the performance on these data sets is nearly sat-
urated, and leaves little or no margin for improvement.
On the other hand, on realistic data sets, such as Holly-
wood2 and HMDB51, the improvement is apparent.

6.2.5 Comparison of FV/TFV and BOW Frameworks
The FV/TFV and BOW frameworks on the LDS and
baseline descriptors are compared in Table 2. It is seen
that the FV/TFV outperforms the BOW on all the de-
scriptors. This is mainly because the FV/TFV encodes
the high-order statistics of the descriptors.

For HOG, the improvement varies from 7% to 14%.
On UCF50, the result of HOG in the FV framework
is even comparable to the result of HOG+MBH in the
BOW framework. For HOF, the improvement is trivial on

controlled data sets, but significant on realistic data sets,
e.g., 10% on Olympic sports and 5% on Hollywood2.
The same behavior is also observed for MBH on the data
sets. For HOG+HOF and HOG+MBH, the improvement
is significant across all the data sets, and reaches 15% on
Olympic sports.

For LDS, the improvement is around 5% on all the data
sets. On Olympic sports, the improvement is over 8%. It
is worth noting that in the TFV framework, LDS achieves
results above 90% on nearly all the data sets except the
Hollywood2, HMDB51 and THUMOS14. This indicates
that the TFV representation of the LDS descriptor is
successful over a wide range of action data sets.

6.2.6 Comparison of Different Clustering Algorithms
Table 3 compares different clustering algorithms on the
LDS descriptor in both the BOW and TFV frameworks.
The intrinsic GMM in the TFV framework achieves the
best results on all the data sets.

In general, the performance difference between the
baseline algorithms is small in the BOW framework.
The MDS+K-means and Normalized cuts perform s-
lightly better than the K-medoid. This is mainly because
the former methods consider the geometric property
of the pairwise distance matrix, while K-medoid does
not do so. However, K-medoid is more computationally
efficient than the former ones, because it simply opti-
mizes the cluster centers based on the sum of squared
distances. The intrinsic K-means gives the best results
in the BOW framework. This is because it computes
geometrically accurate cluster centers on the matrix man-
ifold, while the other methods use approximations to the
cluster centers given by the points in the training set.

The intrinsic clustering algorithms in the TFV frame-
work significantly outperform the other methods in the
BOW framework. The improvement is around 5% on
all the data sets. On Olympic sports, the performance
gain is over 8%. In addition, the performance difference
between the two algorithms is clear. The intrinsic GMM
outperforms the intrinsic K-means by around 4% across
all the data sets. This is mainly because the intrinsic
GMM encodes the high-order statistics of the points on
the matrix manifold.

6.2.7 Comparison to Deep Learning Methods
For neural network framework, different backbones, in-
put streams and training strategies will all affect the final
performance. Generally speaking, The more layers there
are in a neural network, the better performance the deep
learning methods will achieve. But at the same time,
the training cost and demand for computing resources
will also increase. More importantly, compared with
the proposed TFV method, deep learning methods are
mostly less explanatory. We compare in three aspects
the potential of TFV method with recent deep learning
methods.

First, TFV performs better than deep learning methods
using some backbones. Table 4 compares TFV to the

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 11

TABLE 2
Comparison to baseline descriptors on eight data sets in both BOW and FV Frameworks (%)

Data sets U.sports IXMAS O.sports Hollywood2 HMDB51 UCF50 UCF101 THUMOS14

Bag-of-words (BOW)
HOG 84.00 84.79 66.68 39.50 28.89 69.51 67.11 37.57
HOF 82.67 88.24 74.87 52.73 40.44 77.79 74.89 45.23
MBH 85.33 91.70 77.37 54.53 47.30 83.23 81.20 55.24
HOG+HOF 84.00 92.97 78.96 56.92 45.23 82.20 81.98 55.78
HOG+MBH 88.00 92.18 75.24 60.10 47.47 83.76 82.12 62.36

LDS 90.67 93.33 83.88 61.69 58.68 87.01 85.32 62.65

Fisher vector (FV/TFV)
HOG 82.67 91.15 76.94 46.41 39.28 83.21 81.55 47.79
HOF 85.33 86.73 84.83 57.45 47.43 85.57 83.26 50.98
MBH 88.00 95.58 89.51 59.47 53.20 88.76 86.78 52.47
HOG+HOF 88.00 95.27 88.02 62.61 52.72 89.69 87.43 61.89
HOG+MBH 89.33 96.61 90.80 63.87 56.45 91.21 89.12 62.56

LDS 97.33 98.79 92.67 67.22 66.57 93.58 91.55 69.89

TABLE 3
Comparison of different clustering algorithms on LDS descriptor in both BOW and TFV Frameworks (%)

Data sets U.sports IXMAS O.sports Hollywood2 HMDB51 UCF50 UCF101 THUMOS14

Bag-of-words (BOW)
MDS+K-means [12] 89.33 92.97 82.16 59.11 53.90 86.81 84.16 60.25
K-medoid [12] 87.36 91.64 81.42 58.76 52.57 84.98 81.78 57.74
Normalized cuts [21] 90.67 92.18 83.57 60.07 55.22 85.19 83.76 61.28
Intrinsic K-means [6] 90.67 93.35 83.88 61.69 55.68 87.01 86.56 63.56

Tangent Fisher vector (TFV)
Intrinsic K-means [6] 92.65 96.73 89.92 63.74 58.75 89.88 88.15 65.76
Intrinsic GMM 97.33 98.79 92.67 67.22 66.57 93.58 91.55 69.89

hidden two-stream CNNs [40] the classification accuracy
on four contemporary datasets. We see that when the
backbone is temporal segment networks (TSN) [41], the
classification results on HMDB51, UCF101, THUMOS14
and ActivityNet1.2 are 66.8%, 93.2%, 74.5% and 87.9%
respectively. However when the backbone is VGG16, the
experimental results are 60.5%, 90.3%, 66.7% and 77.8%,
which are worse than TFV results (66.57%, 91.55%,
69.89% and 79.56%). This is because the network bias
is reduced when selecting suitable backbone. There-
fore, deep learning method requires comparing different
backbones to achieve better results.

Second, different input streams also affect the perfor-
mance of neural network. In Table 5, we compare the
results on the UCF101 dataset of TFV to two-stream
CNNs [42] and TSN [41] with different input streams.
We see that when RGB or optical flow are used alone,
the performance are worse than TFV. Multiple streams
fusion helps to achieve better results, but increases the
model complexity.

Finally, improper training strategy of neural network
will degrade the performance. Table 6 illustrates the
results of different training strategies on UCF101 when
taking two-stream CNNs [41] as the benchmark. It can
be seen that when the neural network does not conduct
pre-training or uses some regularization methods, its
performance will drop significantly, and even worse than
TFV. This indicates that deep learning method has much
higher requirements on the training data.

6.2.8 Comparison to State-of-the-art Results
In this section, we compare our proposed method to
the state-of-the-art on five challenging action recognition
datasets as shown in Table 7. We compare to the most
recent related work in the past five years, including
both shallow and deep methods. It is observed that our
approach has advantages over the shallow methods and
some deep methods, but there is still a large margin for
improvement compared to the latest deep learning work.

Among the shallow methods, we compare with the
most related approaches such as improved dense tra-
jectories [43], stacked Fisher vectors [44] and multi-
skip feature stacking [45]. These methods either propose
well-designed features or improve the feature coding
methods. Basically our method belongs to this category
because the proposed TFV is based on the traditional
Fisher vector framework. We observe that our method
outperform their results on all the datasets.

For the deep methods, we compare to the most re-
cent state-of-the-art approaches, such as AdaScan [46],
ActionVLAD [47], Temporal CNN [48], Keyless Atten-
tion [49], Hidden Two-Stream [40], MARS [50] and T-
SN [41]. Our results are close to some results published
before 2018. But after that, the results of deep learning
method have developed dramatically both in perfor-
mance and efficiency.

It is worth noting that our method performs better
than the traditional two-stream approach [51], and this
approach has inspired many recent deep learning meth-

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 12

TABLE 4
Comparison to Hidden Two-Stream CNNs using Different Backbones (%)

HMDB51 UCF101 THUMOS14 ActivityNet1.2

Hidden two-stream (VGG16) [40] 60.5 90.3 66.7 77.8
Hidden two-stream (TSN) [40] 66.8 93.2 74.5 87.9

TFV 66.57 91.55 69.89 79.56

TABLE 5
Comparison to Deep Learning Methods with Different

Input Streams on UCF101 (%)

Input Two-Stream CNNs [42] TSN [41] TFV

RGB 84.5 87.7 -
Flow 87.2 - -
RGB+Flow 92.4 94.9 -
LDS - - 91.55

TABLE 6
Comparison to Deep Learning Methods with Different

Training Strategies on UCF101 (%)

Training setting Two-Stream [41] LDS

From scratch 82.9 -
Pre-train spatial 90.0 -
+Cross modality pre-training 91.5 -
+Partial BN with dropout 92.0 -

TFV - 91.55

ods for action recognition.

7 CONCLUSIONS

LDSs have attracted much research interest in recent
years because of their simplicity and efficiency in mod-
elling processes in video sequence. They have the merit
of capturing both action appearance and dynamics in
an implicit way. In this paper, we further strengthened
this merit by encoding the LDS in the tangent Fisher
vector framework on a matrix manifold. We introduced
a Hankel matrix representation method to assemble the
observation data, and proposed an efficient algorithm to
simultaneously learn the LDS parameters and observ-
ability matrix. We then treated an LDS as a point in a
Grassmann manifold, and proposed an intrinsic GMM
learning algorithm to cluster the set of LDSs. We finally
computed the tangent Fisher vector as the concatenation
of the gradient vectors with respect to the GMM centers.
We employed the tangent Fisher vector representation
of the LDS descriptor on ten public action data sets
for human action recognition, and obtained competitive
results. In general, the TFV method has a gap in accu-
racy and efficiency compared to the most recent deep
learning methods. The process of LDSs extraction and
TFV encoding must be carefully designed, and it is not
in an end-to-end manner. In addition, the LDSs only
model the local appearance and dynamic information,
global information must also be considered. Future work
includes few-shot or zero-shot learning against deep
learning approaches.

ACKNOWLEDGMENTS

This work is supported by the NSFC-general technol-
ogy collaborative Fund for basic research (Grant No.
U1636218), the Natural Science Foundation of China
(Grant No. 61751212, 61721004), Beijing Natural Science
Foundation (Grant No. L172051), the Key Research Pro-
gram of Frontier Sciences, CAS, Grant No. QYZDJ-SSW-
JSC040, the CAS External cooperation key project, and
the National Natural Science Foundation of Guangdong
(No. 2018B030311046).

REFERENCES

[1] J. Aggarwal and M. Ryoo, “Human activity analysis: A review,”
ACM Comput. Surv., vol. 43, no. 3, pp. 16:1–16:43, 2011.

[2] D. Weinland, R. Ronfard, and E. Boyer, “A survey of vision-
based methods for action representation, segmentation and recog-
nition,” Computer Vision and Image Understanding, vol. 115, no. 2,
pp. 224–241, 2011.

[3] A. Bissacco, A. Chiuso, and S. Soatto, “Classification and recog-
nition of dynamical models: The role of phase, independent
components, kernels and optimal transport,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 29, no. 11, pp. 1958–1972, 2007.

[4] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process
dynamical models for human motion,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 2, pp. 283–298, 2008.

[5] R. Chaudhry, A. Ravichandran, G. Hager, and R. Vidal, “His-
tograms of oriented optical flow and Binet-Cauchy kernels on
nonlinear dynamical systems for the recognition of human ac-
tions,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2009, pp. 1932–1939.

[6] P. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa,
“Statistical computations on Grassmann and Stiefel manifolds for
image and video-based recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 11, pp. 2273–2286, 2011.

[7] R. J. Martin, “A metric for ARMA processes,” IEEE Trans. Signal
Process., vol. 48, no. 4, pp. 1164–1170, 2000.

[8] K. De Cock and B. De Moor, “Subspace angles between ARMA
models,” Systems and Control Letter, vol. 46, pp. 265–270, 2002.

[9] S. V. N. Vishwanathan, A. J. Smola, and R. Vidal, “Binet-Cauchy
kernels on dynamical systems and its application to the analysis
of dynamic scenes,” Int’l J. Computer Vision, vol. 73, no. 1, pp.
95–119, 2007.

[10] B. Afsari, R. Chaudhry, A. Ravichandran, and R. Vidal, “Group ac-
tion induced distances for averaging and clustering linear dynam-
ical systems with applications to the analysis of dynamic scenes,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2012,
pp. 2208–2215.

[11] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic tex-
tures,” Int’l J. Computer Vision, vol. 51, no. 2, pp. 91–109, 2003.

[12] A. Ravichandran, R. Chaudhry, and R. Vidal, “Categorizing dy-
namic textures using a bag of dynamical systems,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 2, pp. 342–353, 2013.

[13] P. K. Turaga, A. Veeraraghavan, and R. Chellappa, “From videos
to verbs: Mining videos for activities using a cascade of dynamical
systems,” in Proc. IEEE Conf. Computer Vision and Pattern Recogni-
tion, 2007, pp. 1–8.

[14] G. Luo and W. Hu, “Learning silhouette dynamics for human
action recognition,” in Proc. IEEE Conf. Image Processing, 2013, pp.
2832–2836.

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 13

TABLE 7
Comparison of recognition performance to state-of-the-art methods (%)

HMDB51 UCF101 THUMOS14 Kinectics400 ActivityNet1.2

Stacked Fisher Vectors [44] 2014 shallow 66.8 - - - -
iDT+CNN [TH14 Rank1] 2014 fusion - - 71.0 - -
Two-Stream [51] 2014 deep 59.4 88.0 66.1 61.0 71.9
Multi-skip Feature Stacking [45] 2015 shallow 65.1 89.1 - - -
iDT+FV [43] 2016 shallow 60.1 86.0 63.1 - 66.5
AdaScan [46] 2017 deep 66.9 93.2 - - -
ActionVLAD [47] 2017 deep 69.8 93.6 - - -
Temporal CNN [48] 2018 deep 66.3 92.5 - - -
Keyless Attention [49] 2018 deep - 94.5 - 77.0 78.5
Hidden Two-Stream [40] 2018 deep 78.7 97.1 80.6 - 91.2
MARS [50] 2019 deep 80.9 98.1 - 74.9 -
TSN [41] 2019 deep 71.0 94.9 80.1 75.7 89.6

TFV+LDS 66.57 91.55 69.89 65.81 79.56

[15] A. Veeraraghavan, A. Srivastava, A. K. Roy-Chowdhury, and
R. Chellappa, “Rate-invariant recognition of humans and their
activities,” IEEE Trans. Image Process., vol. 18, no. 6, pp. 1326–1339,
2009.

[16] Y. M. Lui, “Tangent bundles on special manifolds for action
recognition,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 6,
pp. 930–942, 2012.

[17] V. Pavlović and J. M. Rehg, “Impact of dynamic model learning
on classification of human motion,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2000, pp. 788–795.

[18] H. Wang, A. Kläser, C. Schmid, and C. L. Liu, “Dense trajectories
and motion boundary descriptors for action recognition,” Int’l J.
Computer Vision, vol. 103, no. 1, pp. 60–79, 2013.

[19] T. Jaakkola and D. Haussler, “Exploiting generative models in
discriminative classifiers,” in Proc. Ann. Conf. Neural Information
Processing Systems, 1998, pp. 487–493.

[20] C. Bregler, “Learning and recognizing human dynamics in video
sequences,” in Proc. IEEE Conf. Computer Vision and Pattern Recog-
nition, 1997, pp. 568–574.

[21] P. Turaga, A. Veeraraghavan, and R. Chellappa, “Unsupervised
view and rate invariant clustering of video sequences,” Computer
Vision and Image Understanding, vol. 113, no. 3, pp. 353–371, 2009.

[22] B. Li, M. Ayazoglu, T. Mao, O. I. Camps, and M. Sznaier, “Activity
recognition using dynamic subspace angles,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2011, pp. 3193–3200.

[23] A. Veeraraghavan, A. Roy-Chowdhury, and R. Chellappa,
“Matching shape sequences in video with applications in hu-
man movement analysis,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, no. 12, pp. 1896–1909, 2005.

[24] K. Guo, P. Ishwar, and J. Konrad, “Action recognition using sparse
representation on covariance manifolds of optical flow,” in Proc.
IEEE Int’l Conf. Advanced Video and Signal Based Surveillance, 2010,
pp. 188–195.

[25] Z. Zhang, H. Lin, X. Zhao, R. Ji, and Y. Gao, “Inductive multi-
hypergraph learning and its application on view-based 3d ob-
ject classification,” IEEE Transactions on Image Processing, vol. 27,
no. 12, pp. 5957–5968, 2018.

[26] A. Ravichandran, R. Chaudhry, and R. Vidal, “View-invariant
dynamic texture recognition using a bag of dynamical systems,”
in Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2009,
pp. 1651–1657.

[27] B. Li, O. I. Camps, and M. Sznaier, “Cross-view activity recog-
nition using hankelets,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2012, pp. 1362–1369.

[28] F. Perronnin and C. Dance, “Fisher kernels on visual vocabularies
for image categorization,” in Proc. IEEE Conf. Computer Vision and
Pattern Recognition, 2007, pp. 1–8.

[29] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Perez, and
C. Schmid, “Aggregating local image descriptors into compact
codes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 9, pp.
1704–1716, 2012.

[30] H. Wang and C. Schmid, “Action recognition with improved
trajectories,” in Proc. IEEE Int’l Conf. Computer Vision, 2013.

[31] Z. Ghahramani and G. E. Hinton, “Parameter estimation for linear
dynamical systems,” Dept. Computer Science, Univ. of Toronto,
Technical Report CRG-TR-96-2, 1996.

[32] G. Luo, S. Yang, G. Tian, C. Yuan, W. Hu, and S. J. Maybank,
“Learning human actions by combining global dynamics and
local appearance,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,
no. 12, pp. 2466–2482, 2014.

[33] P. Van Overschee and B. De Moor, “N4SID: Subspace algorithms
for the identification of combined deterministic-stochastic sys-
tems,” Automatica, vol. 30, no. 1, pp. 75–93, 1994.

[34] F. Xiong, O. I. Camps, and M. Sznaier, “Low order dynamics
embedding for high dimensional time series,” in Proc. IEEE Int’l
Conf. Computer Vision, 2011, pp. 2368–2374.

[35] M. Moonen, B. D. Moor, L. Vandenberghe, and J. Vandewalle,
“On- and off-line identification of linear state space models,” Int’l
J. Control, vol. 49, pp. 219–232, 1989.

[36] Z. Zhang and D. Tao, “Slow feature analysis for human action
recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 3,
pp. 436–450, 2012.

[37] P.-A. Absil, R. Mahony, and R. Sepulchre, “Riemannian geometry
of Grassmann manifolds with a view on algorithmic computa-
tion,” Acta Applicandae Mathematicae, vol. 80, no. 2, pp. 199–220,
2004.

[38] X. Pennec, “Statistical computing on manifolds: From Riemannian
geometry to computational anatomy,” in Proc. Emerging Trends in
Visual Computing, 2008, pp. 347–386.

[39] R. Arandjelović and A. Zisserman, “All about VLAD,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2013, pp. 1578–
1585.

[40] Y. Zhu, Z. Lan, S. Newsam, and A. Hauptmann, “Hidden two-
stream convolutional networks for action recognition,” in Asian
Conference on Computer Vision, 2018, pp. 363–378.

[41] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. V. Gool, “Temporal segment networks for action recognition in
videos,” IEEE Trans. Pattern Anal. Mach. Intell., vol. Early Access,
2019.

[42] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. Van Gool, “Temporal segment networks: Towards good prac-
tices for deep action recognition,” in European Conference on Com-
puter Vision, 2016, pp. 20–36.

[43] H. Wang, D. Oneata, J. Verbeek, and C. Schmid, “A robust
and efficient video representation for action recognition,” Int’l J.
Computer Vision, vol. 119, no. 3, pp. 219–238, 2016.

[44] X. Peng, C. Zou, Y. Qiao, and Q. Peng, “Action recognition with
stacked fisher vectors,” in Proc. European Conf. on Computer Vision,
2014, pp. 581–595.

[45] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj, “Beyond
gaussian pyramid: Multi-skip feature stacking for action recogni-
tion,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2015, pp. 204–212.

[46] A. Kar, N. Rai, K. Sikka, and G. Sharma, “AdaScan: Adaptive
scan pooling in deep convolutional neural networks for human
action recognition in videos,” in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2017.

[47] R. Girdhar, D. Ramanan, A. Gupta, J. Sivic, and B. Russell,
“ActionVLAD: Learning spatio-temporal aggregation for action
classification,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2017.

[48] S. Cho and H. Foroosh, “A temporal sequence learning for

IEEE TRANSACTIONS ON IMAGE PROCESSING, MANUSCRIPT 14

action recognition and prediction,” in IEEE Winter Conference on
Applications of Computer Vision (WACV), 2018, pp. 352–361.

[49] X. Long, C. Gan, G. de Melo, X. Liu, Y. Li, F. Li, and S. Wen,
“Multimodal keyless attention fusion for video classification,” in
AAAI Conference on Artificial Intelligence, 2018, pp. 7202–7209.

[50] N. Crasto, P. Weinzaepfel, K. Alahari, and C. Schmid, “MARS:
Motion-Augmented RGB Stream for Action Recognition,” in Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2019, pp. 1–10.

[51] K. Simonyan and A. Zisserman, “Two-stream convolutional net-
works for action recognition in videos,” in Advances in Neural
Information Processing Systems 27, 2014, pp. 568–576.

Guan Luo received the BEng, MEng and PhD
degrees in Electronic Engineering from North-
western Polytechnical University in 1998, 2001
and 2004, respectively. He worked as a Se-
nior Research Associate in RCMT, School of
Creative Media, City University of Hong Kong
from Jun 2004 to Aug 2005. He is currently
an Associate Professor in National Laboratory
of Pattern Recognition (NLPR), Institute of Au-
tomation, Chinese Academy of Sciences. His
research interests include activity recognition,

video analysis, and time-series data mining.

Jiutong Wei received the bachelor’s degree in
electronic information engineering from Harbin
Institute of Technology at Weihai, in 2018. He is
currently working toward the Ph.D degree at Na-
tional Laboratory of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of
Sciences. His research interests include image
captioning and video understanding.

Weiming Hu received the PhD degree from De-
partment of Computer Science and Engineering,
Zhejiang University in 1998. From April 1998 to
March 2000, he was a postdoctoral research
fellow with the Institute of Computer Science
and Technology, Peking University. Now he is a
professor in the Institute of Automation, Chinese
Academy of Sciences. His research interests in-
clude visual surveillance, and filtering of Internet
objectionable information.

Stephen J. Maybank received the BA degree in
mathematics from Kings College Cambridge in
1976 and the PhD degree in computer science
from Birkbeck College, University of London in
1988. Now he is a professor in the Department
of Computer Science and Information Systems,
Birkbeck College. His research interests include
the geometry of multiple images, camera cali-
bration, visual surveillance, etc.

