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Abstract

We show that short-term borrowing by intermediaries creates a rollover-coordination

problem endogenously. We then introduce ambiguity and show that the coordina-

tion outcome is discontinuous in ambiguity attitude: starting from neutrality, any

aversion implies a complete collapse for every value of fundamentals for which co-

ordination matters, whereas any ambiguity loving causes successful coordination

for all such values of fundamentals - a “lending euphoria.” These help clarify credit

booms even when backed by sub-prime assets as well as sudden credit freezes at

the advent of bad news even for borrowers investing in non-sub-prime assets.

JEL CLASSIFICATION: G2, C7, E5.

KEYWORDS: Rollover coordination, global games, ambiguity, ambiguity-sensitivity,
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1 Introduction

In the run up to the financial crisis of 2007-08, much of the funding raised by financial

intermediaries was supplied through arrangements that were inherently fragile. Inter-

mediaries made widespread use of short-term credit sources such as repo markets,

auction-rate securities markets and asset-backed commercial paper markets. Since

short-term loans must be rolled over frequently, and funding liquidity is maintained

only if enough lenders roll over loans, such markets depend critically on coordina-

tion among lenders. The consequent vulnerability to runs due to coordination failure

makes such markets fragile.1 A further crucial aspect of such markets was that the un-

derlying assets had, in many cases, weak fundamentals. For example, a significant pro-

portion of asset-backed securities issued in the years preceding the crisis were backed

by subprime mortgages. A natural question, then, is why do such fragile arrangements

proliferate successfully and further, why do they succeed even when backed by assets

with relatively weak fundamentals?

Related questions arise from the subsequent collapse of coordination among lenders

across markets. Once the crisis arrived in 2007 following bad news from housing mar-

kets, financial markets experienced multiple rounds of systemic runs in short-term

credit markets. As Gorton and Metrick (2012) document, there was a run on repo

markets which spread from subprime housing assets to non-subprime assets with no

direct connection to the housing market. A similar run took place in the asset-backed

commercial paper market, even for paper not exposed to subprime mortgages.2 Fur-

ther, a widespread freeze of liquidity markets followed the failure of Lehman Brothers

in September 2008. A run ensued on money-market mutual funds and the interbank

market was severely disrupted. Further questions, then, are why might liquidity mar-

1In a typical repo arrangement, a financial intermediary purchases an asset (e.g. a mortgage-backed

security) with face-value 100 (say) and finances the purchase by borrowing. A lender is willing to lend

with a certain haircut (say 10% - i.e. the lender willing to lend 90), with the asset held by the lender as

the collateral. The arrangement is short-term and must be rolled-over frequently to maintain funding.

As Gorton and Metrick (2012), Gorton (2012) explain, a repo loan is similar to a bank deposit, and

if lenders, concerned by some bad news about the collateral, raise the haircut, the intermediary faces

a sudden withdrawal of funds - a scenario similar to a bank run. Similar coordination-dependence

and consequent fragility characterized markets such as those for asset-backed commercial paper and

auction-rate securities.
2See Covitz, Liang and Suarez (2009).
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kets freeze suddenly, why runs spread to non-subprime assets, and why the failure of

Lehman Brothers had a such a large negative impact across liquidity markets.

In this paper, we first show that a dependence on lender coordination for funding –

and consequent fragility – arises endogenously. Given such dependence on coordi-

nation, we then show that a common thread of explanation ties the questions posed

above. If the environment becomes characterized by ambiguity, the coordination out-

come changes discontinuously when lender outlook changes and the equilibrium be-

comes “detached from fundamentals” in the following sense. Under an (even slightly)

optimistic outlook, a “lending euphoria” ensues, so that lending coordination succeeds

for every value of fundamentals for which coordination matters. Thus even borrow-

ers investing in projects with relatively weak fundamentals find it easy to raise and

rollover funds. However, once some bad news arrives so that the outlook becomes

(even slightly) pessimistic, lenders act in a panic-stricken manner so that lending col-

lapses across all values of fundamentals, implying even borrowing based on prime

assets is not immune to runs. Thus for every value of fundamentals, there are two

extreme equilibria, and equilibrium selection is tied to lender outlook. This is a com-

plete departure from the usual unique equilibrium under global games without ambi-

guity. We identify the precise mechanism accounting for such dramatically different

outcomes under ambiguity. Further, we show that the a consequence of the discon-

tinuous change in coordination is that policy itself might act as a trigger for liquidity

crises, and clarify why this accounts for the Lehman Brothers failure having a large

negative impact on liquidity.

We clarify the results and their implications below.

First, we establish the emergence of a coordination problem among lenders as an en-

dogenous outcome. In the literature on panic-driven bank runs following the seminal

work of Diamond and Dybvig (1983), a coordination problem is typically assumed to

arise. In a three-period model, funding is raised and invested initially, with invest-

ments maturing in the last period. In the middle period, success or failure of coor-

dination among lenders decides whether funding continues or a run arises requiring

liquidation of investments. Here we adopt this model, but allow intermediaries to in-

vest in liquid assets alongside illiquid ones in the initial period. Enough aggregate

liquidity would allow liquidation of assets in the middle period without a fire-sale,

rendering rollover coordination irrelevant and removing the possibility of runs. We

2



then show that, nevertheless, optimal liquidity choice of intermediaries is such that a

coordination problem necessarily arises in equilibrium. Fragility of funding is therefore

an endogenous outcome.

Second, we investigate how the coordination outcome responds to the emergence of

ambiguity when agents are ambiguity-sensitive. As is well known, in a complete in-

formation setting, multiple coordination equilibria arise: for all values of fundamentals

for which coordination matters, there is an equilibrium characterized by coordination

success and another by failure and runs.3 These are sunspot equilibria detached from

fundamentals and the theory cannot say what guides the choice of equilibrium. The

literature on global games4 shows, in contrast, that introducing a small amount of

incomplete information can remove the indeterminacy and a unique equilibrium ob-

tains for every value of fundamentals. Here, we model coordination using a standard

global game: there is a unit measure of lenders to each intermediary, and each such

lender receives a signal of the state of fundamentals θ for that intermediary with some

noise. There is an interval [θ, θ] over which coordination matters, and (as standard

in the global games literature) in the case without ambiguity, there is an equilibrium

threshold θ∗ in the interval such that coordination succeeds for and only for values of

θ above the threshold. We then introduce ambiguity in signals and show that the na-

ture of the coordination outcome in global games changes completely. Specifically, we

model preference towards ambiguity using the well-known α-maxmin representation5

which captures the degree of ambiguity aversion or loving parsimoniously through the

parameter α: an agent is ambiguity averse, neutral or loving according as α exceeds,

is equal to or lower than 1/2. We introduce ambiguity in the global games setting by

assuming that each agent perceives a possible bias (positive or negative) in their own

signal relative to that of others. As the noise goes to zero, the bias vanishes as well,

but at a slower rate. Then, for small values of noise,6 we show that if lenders are even

slightly ambiguity-loving (i.e. for any α < 1/2), coordination succeeds for all values of

θ in the interval [θ, θ]. We call this case “lending euphoria.” Similarly, for any α > 1/2,

3See, for example, Diamond and Dybvig (1983).
4See, for example, Morris and Shin (1998, 2003).
5See ?, ?, ?. In the α-maxmin representation, an agent puts a weight α on the most pessimistic outcome

and the remaining weight on the most optimistic outcome. The maxmin expected utility representation

(Gilboa and Schmeidler, 1989) obtains as a special case with extreme ambiguity aversion (α = 1).
6in other words, the results hold not just in the limit as noise goes to zero, but away from the limit as

well.
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coordination collapses for all such values of θ. Figure 1 shows how the coordination

outcome varies discontinuously as a function of the ambiguity-sensitivity parameter

α.
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Figure 1: The diagram shows how the coordination threshold (the value such that coordina-

tion succeeds for and only for higher values of fundamentals) changes discontinuously with

ambiguity attitude. If lenders are insensitive to ambiguity (α = 1/2), there is a unique equilib-

rium for all θ as in the case without ambiguity: rollover succeeds above a threshold θ∗a ∈ [θ, θ].

Any degree of ambiguity aversion (any α > 1/2) then leads to a complete collapse of coor-

dination for all values of θ for which coordination matters, i.e. for all θ ∈ [θ, θ]. In this case

the threshold jumps up to θ. Similarly, any degree of ambiguity loving (any α < 1/2) leads to

coordination success for all values of θ in the interval so that the threshold jumps down to θ.

Note that in the global games model without ambiguity, the coordination outcome de-

pends on fundamentals: success is achieved only if the fundamentals are high enough.

The results here show that, once we introduce ambiguity in a global game setting, the

coordination outcome becomes detached from fundamentals: for all values of funda-

mentals for which coordination matters we again obtain the same multiple equilibria

as under complete information, but with one crucial difference: now the equilibria are

not sunspot driven – they are tied fully to a preference parameter related to ambiguity-

attitude (or degree of pessimism/optimism). This allows us to predict the choice of

equilibrium under different circumstances and show when a lending euphoria or col-

lapse might occur. These results also contribute to the literature on global games.
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The mechanism that gives rise to both euphoria and collapse works as follows. Under

ambiguity, if agents are even slightly pessimistic (or ambiguity averse), each agent tries

to take the coordinating action “after others” - i.e. if an agent perceives that other agents

will coordinate for values of fundamentals above θ̂, their optimal strategy would be to

take the coordinating action above some
̂̂
θ > θ̂. Since all agents try to get above the

coordinating threshold of others in this way, coordination naturally unravels for all

values of fundamentals, giving rise to an indiscriminate panic. Since this is true for any

degree of ambiguity aversion, this is a discontinuous break in coordination. Similarly,

with even the slightest degree of optimism (or ambiguity loving), each agent tries to

take the coordinating action “before others” - i.e. in this case
̂̂
θ < θ̂. All agents trying

to get below the coordinating threshold of others then leads to coordination success for

all values of fundamentals - an indiscriminate “euphoria” in lending.

Finally, we discuss implications of our results for policy. We show that the results imply

that policy itself can precipitate a sudden liquidity freeze when it does not conform to

market expectations, which sheds light on the fact that the policy decision not to rescue

Lehman Brothers had a large negative impact on liquidity markets. The results further

suggest that breaking up large banks (a course of action that has been suggested by

some policymakers) might worsen systemic stability.

1.1 Related literature

Rochet and Vives (2004) and Vives (2014) study global game coordination models of

loan rollover in the standard three-period framework. Here we study a global game

model and show that a coordination problem among lenders arises endogenously

through insufficient equilibrium liquidity choice in the intermediation sector. Further,

the focus of our work is different: we study the interaction between the coordination

outcome and ambiguity in signals.

More direct antecedents in studying coordination under ambiguity are papers by Ui

(2009) and ?, who study the effect of ambiguity in a two-player global game with play-

ers’ preferences represented by maxmin expected utility. In these models, a small de-

gree of ambiguity has a small effect in reducing coordination. Our model assumes a

continuum of agents, and our results on the relation between ambiguity attitude and

the nature of coordination outcome (collapse or euphoria in lending) and the fact that
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the coordination outcome gets detached from fundamentals are new and very differ-

ent from results in these papers. We also clarify the precise mechanism behind the

collapse and euphoria: when agents think their own signal might be biased (upwards

or downwards) relative to signals of others, even an arbitrarily small degree of ambi-

guity aversion (loving) results in each agent adopting the coordinating action above a

threshold that is above (below) the coordination threshold of others, destroying (mak-

ing a success of) the possibility of coordination. This is again very different from the

papers mentioned. However, in terms of modeling ambiguity and results for the case

of ambiguity aversion, there are some similarities and differences with ? worth men-

tioning. ? assumes a perceived bias in signals with a fixed interval of values for the bias

and shows that ambiguity reduces coordination, and when signal noise goes to zero,

so that ambiguity-to-noise ratio goes to infinity, coordination breaks down. Our mod-

elling of ambiguity is similar: we assume a perceived bias in signals, but also allow the

bias to vanish with signal noise, albeit more slowly. Our results are then derived for

small noise - so our collapse and euphoria results are not limiting results, but also hold

for a finite ambiguity-to-noise ratio.

Papers by Angeletos, Hellwig and Pavan (2006), Angeletos and Werning (2006), An-

geletos, Hellwig and Pavan (2007) have shown that multiple equilibria can arise in a

global games setting. This paper shows another reason for multiplicity to arise: under

signal ambiguity, two extreme equilibria arise for each value of fundamentals - one

with successful coordination and the other with runs. This multiplicity is similar to

that under complete information with the crucial difference that these are not sunspot

equilibria - equilibrium choice is tied down by the preference parameter capturing am-

biguity attitude.

The question of market freezes has been studied by Acharya, Gale and Yorulmazer

(2011). In their work, a freeze arises from the evolution of debt-capacity of assets in

repeated rounds of rollovers. Here, the model is of a traditional “panic.” Since the

seminal work of Diamond and Dybvig (1983), panics have been modeled as selecting

the “bad” equilibrium out of multiple coordination equilibria. The global games ap-

proach7 allows linking equilibrium choice to fundamentals, and derivation of a unique

equilibrium for every value of fundamentals. The contribution of this paper is to show

that once ambiguity is introduced in a global games setting, the results change dra-

7See the important contribution of Goldstein and Pauzner (2005).
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matically. For every value of fundamentals for which coordination matters, the unique

outcome is a collapse of coordination under any degree of pessimism, and success-

ful coordination under any degree of optimism. Thus, in sharp contrast with the case

without ambiguity, the coordination outcome becomes independent of fundamentals

and depends entirely on ambiguity attitude.

Finally, it worth mentioning the important literature – largely developed since the last

crisis – that focuses on amplification of crises through spirals of asset price movements

arising through changes in the balance sheets of intermediaries (see Brunnermeier and

Pedersen, 2009, Adrian and Shin, 2010).8 Our work complements this approach in the

sense that euphoric coordination under optimism sets-up the scenario for a subsequent

fall, and once some bad news turns optimism to even slightest pessimism, coordination

collapses completely, which would lead to fire sales, and subsequent spirals of loss

could then further exacerbate the problem.

2 The model

Let us first summarize the model and results. We study a three period model in which

large numbers of lenders extend short term loans initially (period 0) to a unit measure

of intermediaries. Intermediaries invest 1 unit in a long term project and also decide

how much liquidity to hold. In period 1, each lender to an intermediary must decide

whether to rollover their loan. If enough lenders decide not to rollover loans to an inter-

mediary, it faces liquidation in period 1. Assets of a liquidated intermediary are sold in

the secondary market to other intermediaries at a “cash-in-the-market” price. If inter-

mediaries carry enough aggregate liquidity, the secondary market price is high, so that

those that are liquidated do not face a fire sale of assets. In this case lenders to an in-

termediary face no coordination problem (rolling over becomes a dominant strategy).

We show that this cannot happen in equilibrium. In equilibrium, markets are necessar-

ily illiquid to some extent and therefore a coordination problem arises endogenously.

Later we introduce the possibility that in period 1, the environment becomes charac-

terized by ambiguity and show that the coordination outcome varies discontinuously

with respect to ambiguity attitude.

8See also Brunnermeier (2009) for an overview of the approach, and Shleifer and Vishny (2011) for a

discussion of fire sales in general.
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Our modelling of the secondary market for assets (intermediaries buying assets of liq-

uidated intermediaries at cash-in-the-market prices) follows Acharya and Yorulmazer

(2008). The difference is that in our model the choice of liquidity held by an intermedi-

ary is endogenous.9

Let us now specify the model in detail.

The banking system comprises a unit measure of identical financial intermediaries.

Each intermediary has a project that is operated over three periods, 0, 1 and 2. Each

intermediary’s project requires 1 unit of funding initially, which must be maintained

in period 1. In period 2 the returns are realized. If in period 1 investment by the

intermediary falls below 1, the project must be liquidated. Instead of this risky project,

the intermediary can also invest in a safe asset at the initial period. The risk-free net

return is normalized to 0.

There is a large mass of potential lenders. Lenders are risk neutral. Each lender to an

intermediary lends 1 unit of funds initially, and must decide in period 1 whether to

rollover the unit to the intermediary or to withdraw and invest in the safe asset.

For simplicity, this type of short term funding is assumed to be the only source of funds

for an intermediary. Initially intermediary i borrows funds of 1 + ψi, where ψi > 0.

Out of this, 1 unit is invested into the long-term project and ψi is held in liquid assets,

which, in this case, is the risk-free asset.10 We refer to ψi as the “liquidity carried by

intermediary i.” We assume that ψi can be chosen from the interval [0, ψ], where ψ is

large in the sense that if all intermediaries held a liquidity of ψ, the market in period 1

would have enough market liquidity so that there would be no rollover problem.11

If in period 1 sufficient funds are rolled over so that the project of intermediary i does

not have to be liquidated (i.e. the 1 unit of investment can be maintained in period 1),

the return of intermediary i in period 2 depends on the fundamentals of its project, cap-

tured by project “type” θi. Each intermediary i draws a project type θi independently

from a uniform distribution on [0, 1].

9Indeed, in concluding their paper, Acharya and Yorulmazer remark that it would be interesting to

endogenize banks’ ex ante choice of a portfolio of liquid and illiquid assets. This is precisely what we

do here.
10We show later that in equilibrium there is reason to choose ψi > 0.
11We state this assumption more formally later (as assumption 1 in section 3.2) once the model is

fleshed out and all relevant notation has been introduced.
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Specifically, if the project of intermediary i is not liquidated in period 1, in period 2 it

returns R > 1 (success state) with probability θi , and 0 (failure state) with the residual

probability.

In the event the project of an intermediary is liquidated, its assets are sold off to other

intermediaries (those not facing liquidation). The price is determined through “cash-

in-the-market” pricing12, which is the total available liquidity held by non-liquidated

intermediaries divided by the total assets in liquidation. This is determined endoge-

nously.

Notation In the following analysis, we consider the problem of a typical intermediary

i. Some of the variables are choice variables of i (e.g. i chooses to hold liquid assets

of ψi), while other relevant variables are determined by aggregate actions or actions

of intermediaries other than i. To distinguish these from variables that i can control,

such variables are denoted by adding a hat. For example, the liquidity held by other

intermediaries is denoted by ψ̂ and the cash-in-the-market price of liquidated assets,

which depends on the entire profile of liquidity across the intermediation sector, is

denoted by m̂.

The cash-in-the-market price and liquidation payoff of lenders and intermediary

The asset does not grow between the initial and the first period so that, for any inter-

mediary, 1 unit of asset is liquidated in the event sufficient funds are not successfully

rolled over. Thus total assets on sale in the secondary market is simply the measure

of liquidating intermediaries (times 1). The cash-in-the-market price of assets in the

secondary market is given by

m̂ =
Available liquidity in equilibrium

Total assets on sale

=
Total liquidity carried by non-liquidating intermediaries

Measure of liquidating intermediaries
.

We assume that an intermediary operates under a sequential service constraint. Lenders

who do not rollover their loan at the start of period 1 are placed in a queue. Initially,

lenders are returned 1 using the liquid assets ψi. If this runs out and there are still more

12See Allen and Gale (1994) and Allen and Gale (1998).
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lenders who did not rollover, the intermediary must liquidate the project which yields

m̂. All remaining lenders (including those who did rollover) get paid an equal share of

m̂. Note that once ψi is used to pay off a measure ψi of lenders, remaining lenders are

measure 1. Therefore they each get paid m̂.

Note that if all lenders (measure 1 + ψi) to intermediary i withdraw at the start of

period 1, a fraction ψi/(1 + ψi) get paid 1 and the rest get paid m̂. In this case the

liquidation payoff of a lender to intermediary i is
ψi

1+ψi
+ 1

1+ψi
m̂.

The liquidation payoff of intermediary i is zero.

The payoff of intermediary and lenders if rollover succeeds Now consider the pay-

off of an intermediary that does not need to liquidate in period 1. Such an intermediary

earns a return in period 2 from two sources: its original investment project as well any

assets purchased in period 1.

We assume that each unit of assets purchased by an intermediary is used to augment

the intermediary’s own investment project and adds to its returns by δR, where δ < 1

represents some loss of returns due to change in hands (or due to the fact that assets

from one project does not fit exactly with another project).

Therefore, in the event its own project is not liquidated, intermediary i with liquid-

ity ψi buys ψi/m̂ units in the secondary market, and gets a return of R +
ψi

m̂
δR with

probability θ (and 0 with the residual probability).13

Note that the lenders to intermediary i get paid only if i succeeds (probability θi). It

follows that if a lender rolls over his loan to intermediary i, and the project of the

intermediary continues to period 2, the payoff of the lender is θir − 1.

13Here we assume that the purchased assets are subsumed in the own project of the intermediary -

and a positive return arises only when the intermediary’s own project succeeds. The interpretation is

that the success probability is determined by factors such as management efficiency which then applies

to the purchased assets as well. This makes for the simplest model. However, we could alternatively

assume that the purchased assets generate a return independently of the original project, so that the

intermediary gets R with θ, and
ψi
m̂

δR with an independent probability θ′. This would complicate the

algebra but the qualitative conclusions of the model would remain unchanged.
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2.1 The timeline

The timeline of the model is as follows.

Period 0: Intermediaries simultaneously choose how much liquidity to carry, i.e. each

intermediary i chooses ψi, and borrows (1 + ψi). Of the funds raised, 1 is in-

vested in the long-term project and ψi is carried as liquid asset. Each intermedi-

ary promises to pay a rate of return of (1 + r) in period 2 if the project survives

(i.e. sufficient funds are rolled over in period 1) and succeeds.

Period 1: Each intermediary needs total funds of 1 to continue with the project. If

lenders renew funds of at least 1, investment proceeds as normal. Otherwise, the

investment is liquidated at the cash-in-the-market price m̂ (determined endoge-

nously in equilibrium).

Period 2: If the investment survived in period 1, the intermediary augments own project

by buying assets from the liquidated intermediaries. The project of intermediary

i succeeds with probability θi and in the event of success, the lenders are paid the

promised returns.

2.2 The structure of the argument

The structure of the argument in section 3 is as follows.

1. Note that in equilibrium, the aggregate choice of liquidity holding by intermedi-

aries in period 0 drives the value of m̂, which is the secondary market value of

assets that an intermediary receives in period 1 in the event of liquidation. Any

given intermediary i is atomistic and takes m̂ is given: its own actions cannot

change m̂. To solve for the equilibrium, initially we take m̂ as given and solve the

rollover coordination game in period 1 for intermediary i.

We model the period 1 rollover problem using a global game coordination model.

Each lender receives a signal of θi with a small noise. We consider monotone

equilibria, and show that a unique equilibrium exists. We derive the equilibrium

as noise vanishes. This gives us a threshold function θ∗i (m̂): for any given m̂,

rollover succeeds if and only if θi > θ∗i (m̂).

11



2. Once we have solved the period 1 rollover problem, we fold back to analyze

the problem of choosing liquidity holding ψi in period 0. Once ψ∗
i is known

for all intermediaries, we can calculate aggregate liquidity which gives us the

equilibrium value m̂. Substituting this in θ∗i (m̂), we get the equilibrium value

θ∗i of the coordination threshold. Our main result in this part of the paper is

that the choice of liquidity and therefore the value of m̂ is such that a non-trivial

coordination problem necessarily arises for every intermediary in equilibrium.

Once we establish the endogenous coordination problem and derive the equilibrium

coordination threshold (section 3), we introduce ambiguity (section 4) and show that

the nature of the coordination outcome changes dramatically. Section 5 then discusses

implications for policy, and section 6 concludes.

3 Endogenous Coordination Problem

In this section we characterize the equilibrium behavior of lenders to any intermedi-

ary. Using a global games approach, we first analyze (in section 3.1) the rollover prob-

lem in period 1 for any given value of secondary market price m̂. We then fold back

and analyze the liquidity choice problem in period 0 (in section 3.2), and establish the

equilibrium value of m̂, which then allows us to characterize the equilibrium rollover

problem in period 1. The main result is that the optimal liquidity choice in period 0

leads to a value of m̂ such that a rollover-coordination problem necessarily arises in

equilibrium.

3.1 Solving the rollover problem in period 1

First, we specify a global game model of rollover coordination among lenders to any

intermediary i. We then solve for the equilibrium coordination threshold for any given

m̂.
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3.1.1 Incomplete Information and Signals

As noted in section 2 above, the state of fundamentals θi for intermediary i is drawn

from a uniform distribution on the interval [0, 1].

For intermediary i, when rollover succeeds for a project of type θi, a lender to i receives

an expected payoff of θi r. It follows that not rolling over is a dominant strategy for

θi < θ where θ r = 1, i.e.

θ =
1

r
(1)

For any θi < θ, the net expected return from rolling over is negative even if all others

roll over. Therefore not rolling over is the dominant strategy in this case.

Next, we assume that for any i, when θi is close enough to 1, outside investors with

plenty of liquidity enter the market in period 1 to buy any assets from liquidation.

In this case the asset market is liquid, so that m̂ > 1. This assumption provides an

upper bound to the coordination problem region. Specifically, we assume that there is

a (small) ∆ > 0 such that for θi > 1 − ∆, the asset market is liquid at date 1 so that

m̂ > 1. We have

θ = 1 − ∆. (2)

For any θi > θ, the net expected return from rolling over is non-negative even if the

project is liquidated. Therefore rolling over is the dominant strategy in this case.

For θi ∈ [θ, θ], whether investment proceeds depends on the size of the total funds

raised. In this interval a coordination problem arises, and would give rise to multiple

equilibria if θi were common knowledge. Here, we model the coordination problem as

a global game: the type θi of an intermediary is not common knowledge - lenders to

any intermediary receive signals as follows.

Each lender to any intermediary i receives a signal x of θi in period 1, where x is drawn

from a uniform distribution on [θi − εi, θi + εi], εi > 0. Conditional on the true state θi,

the signals are independent across agents. After receiving the signal, lenders simulta-

neously decide whether to roll over their loan or withdraw. The decisions made result

in aggregate loan rollover of Li(θi) to each intermediary i.

Finally, a technical requirement. To ensure that the signal intervals are well defined at

the boundaries of the relevant range of fundamentals, we assume that 1/r > 2εi and

θ + 2εi < 1, which can be rewritten as 2εi < ∆.
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3.1.2 Equilibrium

We consider monotone equilibria. In a monotone equilibrium, there is a threshold x∗

such that agents rollover their loan if and only if x > x∗, and there is a threshold value

of fundamentals θ∗ such that rollover is successful if and only if θ > θ∗.14

There are two possibilities. First, the ψi values chosen in period 0 could be high so m̂ is

at least 1. Second, ψi values could be such that m̂ < 1.

Consider the first case. It is easy to see that in this case no coordination problem would

arise in period 1.

Lemma 1. If m̂ > 1, intermediary i faces no coordination problem in period 1, so that θ∗i = θ.

Proof: The expected payoff of a lender to intermediary i who rolls over the loan is

either θr > 1 (in the case loans are rolled over in period 1 so the investment proceeds

to the final stage), or m̂ (if not enough loans are rolled over so investment is liquidated

in period 1). If m̂ > 1, it is obvious that for a lender, rolling over the initial loan of 1 is

a dominant strategy (the payoff is 1 or more irrespective of whether rollover succeeds

or fails, i.e. irrespective of the actions of other lenders). It follows that intermediary i

faces no coordination problem and θ∗i = θ.‖

Next, we derive the coordination threshold θ∗i in the second case where m̂ < 1. Later

when we analyse the first stage at which ψi is chosen, we show that the in equilibrium

we must have m̂ < 1 so that this case is the relevant one, also implying that a non-

trivial coordination problem necessarily arises in equilibrium.

To reduce notation, we suppress the subscript i in the following calculation. Later

we reintroduce the subscript.

The aggregate size of the loan to an intermediary is the mass of agents who receive

14The restriction to monotone equilibria is without loss of generality. The unique monotone equi-

librium in the model is also the only equilibrium irrespective of the strategies considered. From the

uniqueness proofs of Morris and Shin (2003, 2004), it follows directly that investing for and only for

x > x∗ is the only strategy that survives iterative elimination of strictly dominated strategies.
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x > x∗. Thus

L(θ) =





0 if θ < x∗ − ε,

θ + ε − x∗

2ε
if x∗ − ε 6 θ < x∗ + ε,

1 if θ > x∗ + ε.

Clearly, total rollover increases in θ.

First, given any signal cutoff x∗, let us calculate the threshold θ∗ such that successful

rollover occurs if and only if θ > θ∗. This is given by

(1 + ψ)L(θ∗) = 1.

Solving,

x∗ = θ∗ − ε

(
1 − ψ

1 + ψ

)
. (3)

Next, given that rollover succeeds if and only if θ > θ∗, let us calculate the signal cutoff

x∗. The expected payoff of an agent with signal x who rolls over his loan (advanced in

period 0) at the start of period 1 is given by

Pr(θ > θ∗|x)E
(

θr|{θ > θ∗, x}
)
+ Pr(θ < θ∗|x)E

(
m̂|{θ < θ∗, x}

)
− 1

Recall that if all lenders (measure 1 + ψ) withdraw at the start of period 1, a fraction

ψ/(1 + ψ) get paid 1 and the rest get paid m̂. Therefore, if an agent does not rollover

at the start of period 1, their payoff is

Pr(θ > θ∗|x) + Pr(θ < θ∗|x)
(

E
( ψ

1 + ψ
+

1

1 + ψ
m̂|{θ < θ∗, x}

))
− 1

Comparing the two expressions above, the net benefit from rollover is

V(θ∗, x) = Pr(θ > θ∗|x)E
(

θr − 1|{θ > θ∗, x}
)

− Pr(θ < θ∗|x)E
(
(1 − m̂)

ψ

1 + ψ
|{θ < θ∗, x}

)
(4)

For any given θ∗, x∗ solves the indifference condition

V(θ∗, x∗) = 0. (5)

Using equation (3) to write x∗ in terms of θ∗, and substituting in the expression for

V(θ∗, x∗) from above, then using (5), we get a single equation in θ∗.
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Let us now reintroduce the subscript i.

Solving the single equation in θ∗i , we get following (unique) rollover threshold.

θ∗i =
1

r
+

(1 − m̂)

(1 + ψi)r
− εi

(
ψi

1 + ψi

)
. (6)

The details of the derivation is in the appendix.

Taking the limit of the right hand side of equation (6) as εi → 0, we get the following

result.

Lemma 2. As noise vanishes, the unique rollover threshold is given by

θ∗i =
1

r
+

(1 − m̂)

(1 + ψi)r
(7)

In other words, lenders successfully coordinate to roll over funds for any intermediary i for

whom θ > θ∗i , and investment is liquidated otherwise.

Note that if m̂ = 1, θ∗i = 1/r = θ. In this case there is no coordination problem - it is

dominant strategy to rollover for any value of θ > 1/r. We now solve the problem of

liquidity choice in period 0, and show that in equilibrium we must have m̂ < 1 so that

a non-trivial coordination problem necessarily arises in period 1.

3.2 Equilibrium liquidity choice in period 0

Having solved the equilibrium in the rollover coordination game in period 1, we now

solve the problem of choosing liquidity in period 0. Recall that ψ is chosen from [0, ψ].

We want to show that in equilibrium liquidity holding in period 0 is such that a coor-

dination problem necessarily arises in period 1. For this result to be non-trivial, there

must be scope for liquidity to be high enough so that this does not hold.

Recall from Lemma 1 that if m̂ > 1, no coordination problem arises, so that θ∗i = θ for

all intermediaries i. Accordingly we assume the following.

Assumption 1. The upper limit ψ is high enough so that if all intermediaries hold liquidity of

ψ, the cash-in-the-market price is m̂ > 1.

Next, holding liquidity ψi benefits intermediary i in two ways. First, a higher ψi lowers

θ∗i , allowing rollover coordination to succeed for more values of θi. Second, in the event
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rollover does succeed, intermediary i can buy, in period 1, assets of intermediaries who

liquidate in that period. These assets then augment i’s project. If i’s project succeeds in

period 2, the net secondary market benefit from holding ψi is δRψi/m̂ − rψi.

Now, if the net benefit is always strictly positive, the model would only have uninter-

esting equilibria in which all intermediaries hold a lot of liquidity in period 0 (in our

model, each intermediary would choose ψi = ψ), the market price m̂ is at least 1, and

there is no rollover coordination problem in period 1. For there to be even the possibil-

ity of a coordination problem in period 1, it must be that r exceeds Rδ.15 Accordingly,

we make the following assumption.

Assumption 2. δR < r.

Now, given the threshold θ̂∗j for intermediary j 6= i, the available liquidity from inter-

mediary j in the market is (1 − θ̂∗j )ψ̂j. Therefore total available liquidity is
∫

j∈[0,1](1 −
θ̂∗j )ψ̂jdj. Total assets on sale is the measure of liquidating intermediaries given by
∫

j∈[0,1] θ̂∗j dj. It follows that the cash-in-the-market price of assets in the event of liq-

uidation at date 1 is given by

m̂ =

∫
j∈[0,1](1 − θ̂∗j )ψ̂jdj
∫

j∈[0,1] θ̂∗j dj
. (8)

We show next that there is a unique symmetric equilibrium in the liquidity choice

problem in period 0 which implies that a coordination problem must arise in period 1.

Proposition 1. (Endogenous coordination problem) Under assumptions 1 and 2, there

is a unique symmetric equilibrium in which each intermediary holds liquidity ψ∗ ∈ (0, ψ).

Further, in equilibrium, the cash-in-the-market price for liquidated assets in period 1 satisfies

m̂ < 1, so that a non-trivial rollover coordination problem necessarily arises among lenders to

any intermediary.

15To see this is necessary, suppose δR > r. Then for any m̂ < 1, δR
m̂

> r. In this case, payoff of

intermediary i increases in ψi, so that each intermediary would optimally choose ψ, which implies m̂ >

1, which makes it a dominant strategy to rollover all loans so that there is no rollover coordination

problem. Another way to say this is that if r were determined within a larger model in which we did

not impose an upper limit ψ exogenously, any equilibrium would involve an inequality such as the one

stated in the assumption - as aggregate demand for liquidity would be unboundedly high otherwise,

pushing up r.
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From the result above we know that the unique equilibrium is a symmetric equilibrium

in which all intermediaries hold liquidity ψ∗
i = ψ∗ in period 1. From equation (7),

it follows that each intermediary has the same success threshold θ∗i = θ∗. As noise

vanishes, this is given by

θ∗ =
1

r
+

1 − m̂

(1 + ψ∗)r
.

Further, from equation (8), the value of m̂ becomes

m̂ =
(1 − θ∗)ψ∗

θ∗
. (9)

Using the value of m̂ in the equation for θ∗ above, we can solve for the value of θ∗. This

is shown in the result below.

Proposition 2. The unique symmetric rollover threshold across intermediaries is given by θ∗

where θ < θ∗ 6 θ. As noise vanishes, this is given by

θ∗ = min

[
1 − ∆,

1

r

(
1 +

√
1 − r ψ∗

1 + ψ∗

)]

Further, for ∆ small, θ∗ < θ.

4 Lender Coordination under Ambiguity

We now introduce ambiguity in the model. Suppose, after initial liquidity decisions are

made, the environment becomes characterized by ambiguity in period 1, and lenders

are ambiguity sensitive. We study the effect of such ambiguity on the coordination

problem in period 1 and show that coordination either succeeds for all values of funda-

mentals for which coordination matters (optimistic agents), or breaks down completely

for all such values of fundamentals (pessimistic agents). For each value of fundamen-

tals there are, therefore, multiple equilibria. However, these are not sunspot equilibria:

equilibrium is determined completely by ambiguity attitude.

Let θ∗a denote the coordination-success-threshold value of fundamentals under am-

biguity. We show that starting from any coordination threshold θ∗a ∈ [θ, θ) under

ambiguity-neutrality (in which case there is a unique equilibrium for every value of

fundamentals as in the case without ambiguity), the threshold jumps discontinuously

to θ under ambiguity-aversion (or pessimism) and jumps down discontinuously to θ
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under ambiguity-loving (optimism). This also implies that under ambiguity-sensitivity,

multiple extreme equilibria obtain for every value of fundamentals for which coordi-

nation matters.

4.1 Preference under ambiguity

Suppose in period 1 lenders face ambiguity about the quality of their own signal.

Specifically, suppose lenders think that their signal might have some bias relative to

the signals received by others.

Suppose lender k to intermediary i believes that their signal is drawn from some dis-

tribution from a set of distributions with means θi + ηk, where the bias ηk ∈ [−ε
β
i , ε

β
i ],

where 0 < β < 1.16 Note that as signal noise εi → 0, ε
β
i also vanishes, but at a slower

rate.

The preferences of the buyers follow the well-known α-maxmin expected utility rep-

resentation.17 The α-maxmin expected utility of agent k lending to intermediary i is

given by

Uk(θ
∗
a , x|α) = α min

ηk∈∈[−ε
β
i ,ε

β
i ]

Vk(θ
∗
a , x|ηk) + (1 − α) max

ηk∈[−ε
β
i ,ε

β
i ]

Vk(θ
∗
a , x|ηk) (10)

We suppress the subscript i in the following for clarity of notation. Since we are

simply analyzing the problem faced by lenders to intermediary i, this causes no inter-

pretation problems.

Consider a bias ηk > 0 for agent k. Perceiving own signal bias ηk, the agent with signal

x thinks θ is distributed uniformly on [x− ηk − ε, x− ηk + ε]. The net payoff Vk(θ
∗
a , x|ηk)

from rolling over under such a signal is then given by an expression analogous to

16Here we are assuming that i perceives own signal to have a bias relative to others, who get an

unbiased signal. This is the simplest way to introduce a perception of own-signal-bias. However, we

could assume that i perceives everyone’s signal to have some common bias, but own signal to have a

further bias in either direction - this would not change anything other than introducing an extra term

denoting perceived common bias. All that matters is that there is a perceived relative bias.
17See ?, ?, ?. In the α-maxmin representation, an agent puts a weight α on the most pessimistic outcome

and the remaining weight on the most optimistic outcome. The maxmin expected utility representation

(Gilboa and Schmeidler, 1989) obtains as a special case with extreme ambiguity aversion (α = 1).
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equation (4).

Vk(θ
∗
a , x|ηk) = Pr(θ > θ∗a |x)E

(
θr − 1|{θ > θ∗a , x}

)

− Pr(θ < θ∗a |x)E
(

G|{θ < θ∗a , x}
)

=
1

2ε

∫ x−ηk+ε

θ∗a
(θ r − 1) dθ − 1

2ε

∫ θ∗a

x−ηk−ε
G dθ (11)

where

G ≡ (1 − m̂)
ψ

1 + ψ
. (12)

Note that G > 0.

It is straightforward to see that Vk(θ
∗
a , x|ηk) is decreasing in ηk. Therefore the minimiz-

ing case obtains when ηk = ε
β
i and the maximizing case obtains when ηk = −ε

β
i .

The intuition for this is clear: for a positive bias ηk, the agent with signal x thinks θ is

distributed uniformly on [x − ηk − ε, x − ηk + ε]. In other words, the perceived interval

over which θ is distributed is shifted down, making for a lower perceived probability

that θ exceeds θ∗a (i.e. a lower probability that coordination succeeds), leading to a

lower payoff. Similarly, a negative bias shifts the perceived distribution up and raises

the perceived probability that coordination succeeds. Therefore the minimizing case

obtains under the highest positive bias, and the maximizing case obtains under the

most negative bias.

Using this in equation (10), The α-maxmin net expected utility of agent k from rolling

over is therefore given by

Uk(θ
∗
a , x) = αVk(θ

∗
a , x|ηk = ε β) + (1 − α)Vk(θ

∗
a , x|ηk = − ε β) (13)

where the expressions for Vk are given by substituting the appropriate value of ηk in

equation (11).
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4.2 Lending euphoria and sudden liquidity freeze

Proposition 3. (Coordination under ambiguity) Suppose each lender k to intermediary

i maximizes α-maxmin expected utility assuming a bias in own signal of ε
β
i relative to other

lenders to i, where 0 6 β < 1.

1. (Sudden liquidity freeze) For any α < 1/2, there is a ε1(α) > 0 such that for εi < ε1(α),

coordination breaks down for all values of θ ∈ [θ, θ).

2. (Lending euphoria) For any α > 1/2, there is a ε2(α) > 0 such that for εi < ε2(α),

coordination succeeds for all values of θ ∈ [θ, θ).

3. For α = 1/2, equilibrium is the same as without ambiguity: a unique equilibrium obtains

for all θ, with coordination success for and only for θ > θ∗a , for some θ∗a ∈ [θ, θ].

Figure 1 (in the introduction) shows the equilibrium coordination outcome as a func-

tion of α.

The result shows that under ambiguity, for small noise, coordination collapses for all

values of θ for which coordination matters if investors are even slightly ambiguity

averse or pessimistic (i.e. for any α > 1/2). Similarly, for all such values of θ, lenders

successfully coordinate to rollover loans if they are ambiguity loving or optimistic (i.e.

for any α < 1/2).

Under ambiguity neutrality, the result is qualitatively the same as in the case without

ambiguity. There is a unique equilibrium for every value of fundamentals: coordina-

tion succeeds if and only if θ exceeds a threshold. Clearly the coordination outcome

in this case depends directly on the value of fundamentals. The result above shows

that with ambiguity-sensitive agents the coordination outcome no longer depends on

fundamentals. For every value of the fundamentals in the coordinating interval, co-

ordination succeeds or fails in equilibrium according as α is lower or higher than 1/2.

Thus there are multiple extreme equilibria for every value of fundamentals. This is just

as under complete information, but with one crucial difference: under complete infor-

mation we get sunspot equilibria whereas here the equilibrium is not indeterminate -

equilibrium selection depends entirely on the ambiguity attitude encapsulated by the

parameter α.
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Intuition: Suppose an agent calculates that other agents would rollover loans above a

signal threshold y∗. In the case of ambiguity aversion or pessimism, an agent puts more

weight on own signal to be biased upwards relative to others. We show that for even

the slightest degree of ambiguity aversion, the agent optimally wants to rollover using

a higher signal threshold compared to others. In other words, the agent rolls over own

funds only when others have established a coordination threshold y∗, and then sets

own threshold a little above y∗. Note that this agent is not contributing to coordination

at all. If everyone behaves this way, it is impossible to have an interior solution for y∗,

implying that coordination necessarily fails for any value of fundamentals for which

it matters. Here rollover happens only when it is a dominant strategy for each agent

to roll over, i.e. when θ > θ. Similarly, even for the slightest degree of ambiguity

loving or optimism, an agent wants to take the coordinating action using a threshold

that is below y∗. If everyone behaves this way – taking the coordinating action before

others – the only possibility in equilibrium is that coordination succeeds for all values

of fundamentals for which it matters, i.e. for all θ > θ. In this case coordination fails

only when it is a dominant strategy for each agent not to rollover.

The proof outline: The proof steps reflect the intuition discussed above. Consider

the problem of lender k to intermediary i who receives signal x and considers y∗ to be

the rollover signal threshold for all other lenders to intermediary i. To get an interior

threshold in equilibrium, we need all lenders to rollover above (and only above) a

common threshold. For this to be true, we therefore need k to be indifferent between

rolling over and not rolling over at signal x = y∗. The proof calculates the net α-

maxmin expected utility from rolling over at x = y∗ and shows that for α 6= 1/2,

i.e. in the case where agents are sensitive to ambiguity, the indifference condition is

not met. In particular, for small values of ε, the net utility from rolling over is strictly

negative if α > 1/2 and strictly positive if α < 1/2. It follows that, for α > 1/2, the

optimal signal threshold for agent k is x∗k > y∗. Since this is true for every agent k,

coordination collapses for all values of fundamentals for which coordination matters -

i.e. the threshold value of fundamentals above which coordination succeeds becomes

θ. Similarly, for α < 1/2, we have x∗k < y∗. Since this is true for all agents, the only

possible equilibrium outcome is that lender rollover always succeeds (the threshold

value of fundamentals above which coordination succeeds becomes θ).
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4.3 Proof of Proposition 3

Consider the problem of lender k to intermediary i who receives signal x. Henceforth,

we suppress the subscript i to reduce notational clutter. Since all variables relating to

the intermediary refers to intermediary i, this causes no interpretation problems.

Recall that Uk(θ
∗
a , x), given by equation (13), denotes the α-maxmin net expected utility

from rolling over for agent k. We now derive the value of θ∗a in terms of y∗ and substi-

tute in the expression for Uk(θ
∗
a , x). Clearly, y∗ is such that (1 + ψ)L(θ∗a |y∗) = 1, which

implies (using equation (3))

(1 + ψ)
θ∗a + ε − y∗

2ε
= 1. (14)

Substituting the value of θ∗a from above in the expression for Uk(θ
∗
a , x), we get an ex-

pression for α-maxmin net expected utility from rolling over as a function of y∗ and x,

denoted by Uk(y
∗, x).

The result below considers Uk(y
∗, x) at x = y∗.

Lemma 3. There is ε∗ > 0 such that for any ε < ε∗,

Uk(y
∗, y∗) < 0 if α > 1/2 and

Uk(y
∗, y∗) > 0 if α < 1/2

Further, for α = 1/2, the statement in item 3 in proposition 3 holds.

The proof, which requires going through several steps of algebra to derive the expres-

sion for Uk(y
∗, y∗), is relegated to the appendix. The result proves the third part of

proposition 3. To prove the first two, we proceeds as follows.

Let x∗k denote the signal threshold for agent k. This is given implicitly by Uk(y
∗, x) = 0.

Let us now show that the lemma above implies that the optimal choice of x∗k cannot be

equal to y∗ for an interior y∗. Consider first the case of ambiguity aversion.

Case 1: α > 1/2. In this case Uk(y
∗, y∗) < 0 for small ε. Since payoff of agent k is

increasing in own signal, we can only have Uk(y
∗, x∗k ) = 0 where x∗k > y∗. Given any

signal cutoff y∗ above which others lend, each agent k wants to lend above a cutoff

x∗k > y∗. It follows that the only possible equilibrium involves agents rolling over only

when it is dominant strategy to do so, implying that θ∗ = θ.
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Next, consider the case of ambiguity loving.

Case 2: α < 1/2. In this case Vk(y
∗, y∗) > 0 for small ε. Since payoff of agent k is

increasing in own signal, we can only have Vk(y
∗, x∗k ) = 0 where x∗k < y∗. Then the

only possibility in equilibrium is that agents roll over loans unless it is a dominated

strategy. This implies that rollover succeeds for all values of θ for which coordination

matters (i.e. for all θ ∈ [θ, θ)), implying θ∗ = θ.

Finally, the lemma above proves the claim for the case of α = 1/2. This completes the

proof.‖

5 Policy implications

5.1 Policy as trigger for a systemic liquidity freeze

So far we have assumed intermediaries are atomistic. Suppose now that the intermedi-

ation sector comprises of a total measure γ ∈ (0, 1) of a few large intermediaries, and

measure (1 − γ) of atomistic ones. Liquidation of an atomistic intermediary has no

impact on the secondary market. However, a large intermediary is systemic in the fol-

lowing sense. If such an intermediary is liquidated in period 1, the secondary market

supply of assets would increase, pushing down the cash-in-the-market price of assets.

Since this could happen with positive probability, this would reduce liquidation payoff

for all intermediaries ex ante, causing an upward jump up in their coordination thresh-

old θ∗i . In other words, the possibility of liquidation of a large intermediary leads to a

reduction in coordination success for all.

In view of such systemic importance, suppose all agents expect large intermediaries

to be given liquidity support with probability 1 in the event they face liquidation. We

refer to such intermediaries as too unexpected to fail (TUTF). Clearly, if policy were to

follow market expectation, such intermediaries would never need to liquidate. Irre-

spective of ambiguity in signals about fundamentals, the net payoff from rolling over

a loan to a TUTF intermediary is then simply θr − 1, and it is a dominant strategy to

lend for any θ > 1/r = θ. In other words, for any TUTF intermediary, coordination

succeeds for every value of fundamentals for which coordination matters, irrespective

of ambiguity and ambiguity attitude.
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Suppose now that a shock hits a TUTF intermediary reducing its fundamentals to

θ < 1/r. In this case not rolling over the initial loan is a dominant strategy for each

lender and therefore the intermediary faces liquidation. As noted above, the market

expectation is that liquidity support would be forthcoming.18 The regulator can either

provide liquidity support, or act against market expectation and choose not to do so

(perhaps because the regulator feels θ is so low that it is optimal to let the intermediary

go into liquidation). In the latter case, what is the impact on the market?

A policy that deviates from market expectation is likely to reduce market expectation

of the probability that other large intermediaries in a similar position would be res-

cued from 1 to some p < 1. Lenders now expect that with positive probability large

intermediaries will be exposed to lender coordination. As we show in the result below,

under signal ambiguity, this is enough to give rise to the same cases as discussed in

Proposition 3. Since an environment where a large intermediary receives a shock to

returns is likely to be a downturn, lenders are likely to be ambiguity averse. In such a

situation, small intermediaries already face a collapse of lender coordination. A change

in market expectation about rescue of large intermediaries causes lenders to run on all

large intermediaries as well. Thus a systemic run on liquidity is triggered by the policy

decision. This helps explain the sudden sector-wide collapse of liquidity in the wake

of the Lehman Brothers failure.

Corollary 1. (Sudden liquidity freeze triggered by policy) Suppose an unexpected reg-

ulatory action (or inaction) reduces market expectation about the probability of rescue of large

intermediaries from 1 to p < 1. In the presence of signal ambiguity and ambiguity-averse

lenders, lender coordination collapses for every value of fundamentals for which coordination

matters across large intermediaries as well.

5.2 Too-big-to-fail and too-unexpected-to-fail

While our work shows the importance of considering market expectations, a different

issue, much discussed in the literature, is the consequence of a financial institution

being too big to fail (TBTF). What does our work imply about the notion of TBTF?

18Indeed, so long as θ > 1/R, the intermediary is solvent but illiquid, and liquidity support is the

efficient policy. Such a region of fundamentals where intermediaries are solvent but illiquid is a standard

feature of coordination models. See, for example, Rochet and Vives (2004), Vives (2014).
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In particular, does a large institution regarded as TBTF help with or exacerbate the

crisis? It is quite likely that TBTF intermediaries are also TUTF. In this case having a

TBTF institution is helpful in limiting the systemic spread of a liquidity crisis, assuming

policy conforms to market expectations. The same reasoning shows why breaking up a

TBTF institution exacerbates the systemic crisis. If broken up, none of the parts might

be TUTF, in which case, assuming lenders are pessimistic (or ambiguity-averse) in a

downturn, all parts experience liquidity runs. This increases systemic vulnerability.

Corollary 2. (Breaking up TUTF intermediaries increases systemic risk) So long as

policy conforms to market expectations, having TUTF intermediaries is insurance against sys-

temic run. A policy of breaking up too-big-to-fail intermediaries might reduce systemic stability

if the large intermediaries in question are also TUTF.

6 Conclusion

We analyse a model of short-term lending and show that a coordination problem

among lenders arises endogenously. We show that the introduction of ambiguity has

a dramatic effect on the nature of the coordination outcome. Without ambiguity, we

have the standard global games result that there is a unique equilibrium for every

value of fundamentals: coordination succeeds if and only if the value of fundamen-

tals exceeds a threshold. The introduction of ambiguity changes this completely. First,

equilibria become detached from fundamentals: for every value of fundamentals for

which coordination matters, there are two extreme equilibria - one in which coordi-

nation succeeds and another with complete unravelling of coordination. Indeed, this

multiplicity is reminiscent of the indeterminacy under complete information, in which

case there are exactly these two equilibria for every value of fundamentals. However,

the crucial difference is that, unlike the case of complete information, equilibria under

ambiguity are not sunspot equilibria - equilibrium selection is completely determined

by ambiguity preference. Second, the coordination outcome varies discontinuously

with respect to ambiguity attitude (as shown in figure 1) around ambiguity neutral-

ity. When agents are ambiguity neutral, there is no qualitative difference in the nature

of equilibrium under ambiguity compared to the case without ambiguity. However,

for even the slightest ambiguity aversion, coordination unravels completely (irrespec-

tive of fundamentals) and even the slightest ambiguity loving preference makes every
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lender rollover loans, making for successful rollover coordination (again, irrespective

of fundamentals). We identify the precise mechanism that causes such extreme out-

comes to arise under even slight ambiguity-sensitivity.

The results explain why lending arrangements are typically fragile, why a lending eu-

phoria can emerge under an optimistic outlook so that rollover succeeds even when

an intermediary might be investing in sub-prime assets, why such arrangements can

break down suddenly if the lender outlook changes and why a run can arise for loans

funding not just subprime assets, but also prime ones.

Our results also show that policy itself can act as a trigger for a systemic liquidity

freeze. If lenders expect some intermediaries to be rescued by the central bank (or

some other liquidity provider of last resort), they would be immune to the problem of a

lender-coordination-collapse. However, if policy does not follow market expectations

and thereby alters the latter, there is again a breakdown of coordination implying a

liquidity freeze. Since the Lehman Brothers failure was a shock to market expectation

about Fed rescue policy, our results explain the sudden widespread liquidity freeze

triggered by this event.

The results imply that there are two ways for regulatory policy to reduce the systemic

vulnerability to ambiguity. Any policy that reduces the coordination problem helps

improve the system’s defence against ambiguity. Further, any policy that creates an

expectation that an intermediary would be rescued in a crisis also has the same effect.

Examples of policies that belong to the first category include requiring banks to hold

more liquid assets - for example the liquidity coverage ratio requirement of Basel III;

requiring banks to fund projects fully or partially with stable funds (long term debt,

equity, insured deposits) - for example the net stable funding ratio requirement of Basel

III. A policy of explicit or implicit promise of liquidity support belongs to the second

category.

Gorton (2012) defines systemic risk as loss of investor confidence in financial interme-

diary debt. The theory presented here articulates this idea. The paper shows how the

interaction of a coordination problem and ambiguity leads to a lending euphoria, fol-

lowed by a sudden loss of confidence and collapse of liquidity at the advent of some

bad news. In future research, we hope to pursue richer models using this core idea.
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Appendix: Proofs

A.1 Derivation of equation (6)

To reduce notational clutter, throughout the following calculations, we suppress the

subscript i.

From equation (4), the net benefit for intermediary i from rollover is

V(θ∗, x) =
1

2ε

∫ x+ε

θ∗
(θ r − 1) dθ − 1

2ε

∫ θ∗

x−ε
G dθ

where G = (1 − m̂) ψ
1+ψ . Integrating and simplifying, we get

V(θ∗, x) =
1

4ε

(
r
(
(x + ε)2 − (θ∗)2

)
+ 2(θ∗ − x)(1 − G)− 2(1 + G)ε

)
.

For any given θ∗, x∗ solves the indifference condition V(θ∗, x∗) = 0. Using equation (3)

to write x∗ in terms of θ∗, and substituting in the expression for V(θ∗, x∗) from above

and equating that expression to 0, we get the following single equation in θ∗:

ψ

(1 + ψ)2

(
(r θ∗ − 1)(1 + ψ) + εrψ

)
− G

1 + ψ
= 0.

Using the value of G, this becomes

ψ

(1 + ψ)2

(
(r θ∗ − 1)(1 + ψ)− (1 − m̂) + εrψ

)
= 0.

Solving this gives us the expression for θ∗i in equation (6).

A.2 Proof of Proposition 1

We prove that each intermediary i has a well-defined best-response function mapping

the liquidity choice of others to choice of ψi. We show that the best response function

satisfies all the requirements for Brouwer’s fixed-point theorem, from which the proof

follows. But first, we need to establish the signs of some terms. This is done in sec-

tion A.2.1. Then in section A.2.2 we establish the best response function. Section A.2.3

then completes the proof.
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Let ψ̂ denote the aggregate liquidity others decide to hold in stage 1. This is given by

ψ̂ =

∫

j∈[0,1],j 6=i
ψjdj.

Note that if each j 6= i chooses ψj = 0, ψ̂ = 0 and if ψj = ψ for all j 6= i, we have ψ̂ = ψ.

Therefore ψ̂ ∈ [0, ψ].

A.2.1 Preliminaries

The proof proceeds through the following lemma.

Lemma 4. The following properties hold:

1. θ∗i is decreasing in ψi and ψ̂.

2.
∂θ∗i
∂ψi

is increasing in ψi and ψ̂.

Proof:

1. First, consider the derivative of θ∗i with respect to ψi:

∂θ∗i
∂ψi

= − (1 − m̂)

r(1 + ψi)2
< 0. (A.1)

Next, note that ψ̂ enters θ∗i only through m̂. It follows that

∂θ∗i
∂ψ̂

=
∂θ∗i
∂m̂

∂m̂

∂ψ̂
.

Now, from the expression for θ∗i (equation (7)) it is clear that the first term on the right

hand side is strictly negative, Further, it is clear from the expression for m̂ (equation (8))

that an increase in ψ̂ raises m̂, so that the second term is strictly positive. It follows that
∂θ∗i
∂ψ̂

< 0.

2. From equation (A.1),
∂2θ∗i
∂ψ2

i

=
2(1 − m̂)

r(1 + ψi)3
> 0. Further, it is clear that

∂θ∗i
∂ψi

is strictly

increasing in m̂, which is strictly increasing in ψ̂. It follows that
∂2θ∗i

∂ψ̂∂ψi

> 0. This

completes the proof of lemma 4.‖
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The payoff of intermediary i from holding liquidity ψi > 0 is

Πi = Pr(θ > θ∗i )E(θi |θi > θ∗i )
(

R +
ψi

m̂
R α − (1 + ψi)r

)

=

(∫ 1

θ∗i

θdθ

)(
R − r + ψiẐ

)

where

Ẑ ≡ 1

m̂
R α − r. (A.2)

Note that Ẑ is independent of ψi.

We prove the following result next.

Lemma 5. In equilibrium R − r + ψiẐ > 0.

Proof: Note first that profit must be strictly positive in equilibrium. This can be seen

as follows. If ψi = 0, θ∗i = θ = 1 − ∆. The first component of the expression for

profit above is still strictly positive. The second component is R − r > 0. Since profit is

strictly positive at ψi = 0, it cannot be zero at any ψi > 0 (or i could deviate profitably

by reducing ψi). Since Πi > 0, and since the first component in the expression for Πi is

always strictly positive, it follows that the second component is strictly positive.‖

The proof now proceeds through the following lemma.

Lemma 6. In equilibrium Ẑ 6 0.

Proof: Suppose not. Then Ẑ > 0. Consider the problem of choosing ψi at stage 0. By

raising ψi, θ∗i falls which improves the expected payoff. Further, the marginal cost per

unit of liquidity is r, while the secondary market generates a benefit of 1
m̂

R α per unit

of liquidity. If Z > 0, the benefit from a unit of liquidity therefore exceeds the cost.

Therefore each i would like to hold ψi = ψ. From assumption 1, this implies m̂ > 1.

Therefore 1
m̂

R α 6 Rδ < r, where the second inequality follow from assumption 2,

which in turn implies Ẑ 6> 0. Thus we have a contradiction.‖

The next step is to show that there is a well-defined, continuous best response function

for intermediary i mapping ψ̂ values to ψi values. Once we establish this, and given

that this is a mapping from a compact convex set onto itself, we can invoke a fixed-

point theorem to establish the existence of an equilibrium.
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First, we need to sign the second derivative of Πi with respect to ψi and the cross partial

with respect to ψi and ψ̂.

We have
∂Πi

∂ψi
= −θ∗i

∂θ∗i
∂ψi

(
R − r + ψiẐ

)
+

(∫ 1

θ∗i

θdθ

)
Ẑ (A.3)

It follows that

∂2
Πi

∂ψ2
i

=

(
R − r + ψiẐ

)(
−
(

∂θ∗i
∂ψi

)2

− θ∗i
∂2θ∗i
∂ψ2

i

)
+ Ẑ

(
−θ∗i

∂θ∗i
∂ψi

)
,

∂2
Πi

∂ψ̂∂ψi

=

(
R − r + ψiẐ

)(
−
(

∂θ∗i
∂ψ̂

)(
∂θ∗i
∂ψi

)
− θ∗i

∂2θ∗i
∂ψ̂∂ψi

)

− θ∗i
∂θ∗i
∂ψi

(
ψi

∂Ẑ

∂ψ̂

)
+

∂Ẑ

∂ψ̂

(∫ 1

θ∗i

θdθ

)
+ Ẑ

(
−θ∗i

∂θ∗i
∂ψ̂

)
.

Using the signs of terms from lemmas 4, 5 and 6, it follows that all right hand side

terms in both equations are non-positive, with some being strictly negative in each

equation (e.g. the first term in each equation). Therefore

∂2
Πi

∂ψ2
i

< 0, (A.4)

∂2
Πi

∂ψ̂∂ψi

< 0. (A.5)

A.2.2 Best response function

The previous section established signs of certain terms. Using these, the next lemma

now establishes crucial properties of the best response of intermediary i given actions

by other intermediaries.

Lemma 7. 1. Suppose other intermediaries set ψ̂ = ψ. The best response of intermediary i

is given by Bi(ψ) = 0. Further, the same best response of 0 applies to values of ψ̂ close to

ψ.

2. Suppose other intermediaries set ψ̂ = 0. The best response of i is Bi(0) = ψ. Further,

the same best response of ψ applies to values of ψ̂ close to 0.
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Proof:

1. If intermediaries other than i choose ψ̂ = ψ, from assumption 1, m > 1. In this case,

we have θ∗ = θ for all intermediaries, and the payoff of intermediary i becomes

Πi =

(∫ 1

θ
θdθ

)(
R − r + ψi

(
Rδ

m̂
− r

))
.

Here, θ does not change when ψi changes. Therefore the first term does not depend on

ψi. Since Rδ < r (from assumption 2) and m̂ > 1, the coefficient of ψi in the second term

is strictly negative. It follows that
∂Πi

∂ψi
< 0. Therefore, if others choose high liquidity

ψ, the optimal choice for i is Bi(ψ) = 0. By continuity,
∂Πi

∂ψi
< 0 also for values of ψ̂

close to ψ. Therefore Bi(ψ̂) = 0 for ψ̂ at or close to ψ.

2. Next, as ψ̂ goes to zero and θ̂∗ rises to θ = 1 − ∆, the payoff of intermediary i is

Πi =

(∫ 1

θ∗i

θdθ

)(
R − r + ψi

(
Rδ

m̂
− r

))

In this case only a small measure ∆ survive in period 1. The market price m̂ for the

assets of liquidated intermediaries goes to ψ̂∆/(1 − ∆) which goes to zero with ψ̂.

In this case, clearly, the coefficient of ψi in the second term is strictly positive. It then

follows that both terms on the right hand side are increasing in ψi, implying that
∂Πi

∂ψi
>

0. Therefore, Bi(ψ̂) = ψ for ψ̂ close to and equal to 0.‖

Constructing the best response Let us now construct the best response of interme-

diary i as ψ̂ varies over [0, ψ]. The rest of this section shows that the best response of

intermediary i is a function, and is as depicted in figure 2 below, which satisfies all con-

ditions for applying Brouwer’s fixed point theorem. The next section then completes

the proof by invoking the fixed point theorem to establish existence.

Step 1: The point L: Fix ψi = ψ and consider how ∂Πi
∂ψi

varies as ψ̂ varies over [0, ψ].

We know from Lemma 7 above that for ψ̂ = 0, ∂Πi
∂ψi

> 0 for all values of ψi, including

ψi = ψ. Further, we also know that for values of ψ̂ close to ψ, ∂Πi
∂ψi

< 0 for all ψi,

including ψi = ψ. Further, ∂Πi
∂ψi

is continuous in ψ̂. Therefore, fixing ψi = ψ, as ψ̂
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Figure 2: Best response function of intermediary i

increases from 0, there is some value of ψ̂ for which ∂Πi
∂ψi

= 0. Next, since ∂Πi
∂ψi

is strictly

decreasing in ψ̂, (inequality (A.5)), this value is also unique.

Let this unique point be ψ̂ = L (shown in figure 2).

Step 2: The point H : Now fix ψi = 0 and again consider how ∂Πi
∂ψi

varies as ψ̂ varies

over [0, ψ]. Using the same arguments as in step 1 above, it follows that there is a

unique value H (as shown in figure 2) such that, fixing ψi = 0, ∂Πi
∂ψi

= 0 at ψ̂ = H.

Step 3: Constructing the best response function: From step 1, we know that for

ψ̂ 6 L, ∂Πi
∂ψi

> 0 for all values of ψi and therefore, for ψ̂ 6 L, the unique response is

Bi(ψ̂) = ψ. Similarly, from step 2, it follows that for ψ̂ > H, the unique best response

is Bi(ψ̂) = 0.

Next, we need to derive the best response of i for ψ̂ ∈ (L, H).

We know from above that, with ψi = ψ, ∂Πi
∂ψi

= 0 for ψ̂ = L. Next, with ψi = 0, ∂Πi
∂ψi

= 0

for ψ̂ = H.

From inequality (A.5), ∂Πi
∂ψi

decreases strictly in ψ̂.
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It then follows that, with ψi = ψ, the derivative ∂Πi
∂ψi

< 0 for any value of ψ̂ ∈ (L, H).

Similarly, with ψi = 0, the derivative ∂Πi
∂ψi

> 0 for any value of ψ̂ ∈ (L, H).

Further, from inequality (A.4), ∂Πi
∂ψi

is strictly decreasing in ψi. Therefore for any ψ̂ ∈
(L, H), there is a unique ψi at which ∂Πi

∂ψi
= 0.

This proves that for any ψ̂ ∈ (L, H), there is a unique best response Bi(ψ̂) ∈ (0, ψ)

given by
∂Πi

∂ψi
= 0. (A.6)

We have established that there is a well-defined best-response function

Bi : [0, ψ] 7→ [0, ψ].

Step 4: Bi(·) is continuous: Πi is continuous in ψi and ψ̂, and ψi is chosen from a

non-empty compact set [0, ψ]. It then follows from Berge’s Maximum Theorem that

the best response function is continuous.

It remains to be shown that the best response function is downward sloping over

(L, H).

Step 5: Bi(·) decreases over (L, H): How does the best response of i change as ψ̂

varies over (L, H)? To see this, recall that the equation (A.6) above implicitly defines

Bi(ψ̂). Totally differentiating equation (A.6), we get

∂2
Πi

∂ψ2
i

∂Bi

∂ψ̂
+

∂2
Πi

∂ψ̂∂ψi

= 0

implying that

∂Bi

∂ψ̂
= −

(
∂2

Πi

∂ψ̂∂ψi

)
/

(
∂2

Πi

∂ψ2
i

)
< 0,

where the last inequality follows from inequalities (A.4) and (A.5).

Therefore, the best response function is a strictly decreasing function over (L, H). This

completes the derivation of the best response function, which is depicted in figure 2.

We are now ready to complete the proof of the result.
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A.2.3 Proof of Proposition 1 (Completed)

We know from above that the best response function Bi(ψ̂) is continuous and maps the

compact and convex set [0, ψ] to itself. From Brouwer’s fixed point theorem, we know

that there exists ψ∗ such Bi(ψ
∗) = ψ∗. Any such ψ∗ in a symmetric equilibrium.

Further, we know from lemma 7 that if ψ̂ is high so that m̂ > 1, the best response is

Bi(ψ̂) = 0. It follows that any fixed point must occur at some value of ψ̂ for which

m̂ < 1. In other words, if each intermediary choosing ψ∗ is an equilibrium then it

must be that ψ∗ is such that m̂ < 1, implying that a non-trivial coordination problem

necessarily arises in equilibrium.

Finally, from the best-response function in figure 2 it is clear that there is a unique fixed

point, so that the equilibrium is unique. Formally, this can be shown by making use of

the contraction mapping theorem as follows.

Define B−1
i (0) = L and B−1

i (ψ) = H. Let f ≡ B−1. Then f maps the closed interval

[0, ψ] into itself. Let K = H−L
ψ

. Note that K < 1.

Now,

f (ψ)− f (0) = H − L = K(ψ − 0).

Next, for any a, b ∈ (0, ψ) where b > a, we have

f (b)− f (a) < H − L = K(ψ − 0) < K(b − a)

Therefore, the function f satisfies the Lipschitz condition

| f (b) − f (a)| 6 K|b − a|

where K < 1. Then f is a contraction mapping, and therefore, from the contraction

mapping theorem, has a unique fixed point f (ψ∗) = ψ∗.

Since no fixed points can be located if ψi = 0 or ψi = ψ, it follows that there is a unique

fixed point ψ∗ = Bi(ψ
∗), where ψ∗ ∈ (0, ψ). This completes the proof.‖
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A.3 Proof of Proposition 2

Substituting the value of m̂ (from equation (9)) on the right hand side of equation (7),

we get

θ∗ =
1

r

(
1 + (1 − ψ∗

θ∗(1 + ψ∗)

)
.

The solutions are

θ∗ =
1

r
(1 ±

√
D)

where

D = 1 − rψ∗

1 + ψ∗ . (A.7)

Recall that in equilibrium we must have m̂ < 1. We know from equation (9) that in

equilibrium, m̂ = (1− θ∗)ψ∗/θ∗. Since this is true for any value of θ∗ ∈ [θ, θ], this must

hold at θ = 1/r. Using this, we have
rψ∗

1+ψ∗ < 1. Using this inequality in the expression

for D above (equation (A.7)), it follows that D > 0.

Now consider the solution θ∗1 = 1
r (2 −

√
D). Since D > 0, θ∗1 <

1
r . Therefore θ∗1 < θ

and therefore this solution is rejected. The right solution is therefore given by

θ∗ =
1

r
(1 +

√
D)

where D is given by equation (A.7). It is clear that θ∗ >
1
r = θ. Also, by construction,

θ∗ 6 θ.

Next, consider the second part of the result.

Suppose in equilibrium θ∗ = θ. Let us show this leads to a contradiction. We know,

from Proposition 1 that in equilibrium ψ∗ ∈ (0, ψ).

Now, suppose intermediary i holds liquidity ψi. Recall that any intermediary gets a

positive payoff only if it successfully rolls over loans in period 1 and succeeds in period

2. In the success state, the payoff of i is R − (1 + ψi)r + Rδ
ψi

m̂
. Note that only types at

or above θ = 1 − ∆ successfully rollover loans in period 1. Therefore a measure 1 − ∆

of intermediaries are liquidated in period 1. It follows that the secondary market price

of assets is

m̂ =
∆ψ∗

1 − ∆
.
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Using this, the payoff of an intermediary i in the success state is R − (1 + ψi)r +

Rδ 1−∆

∆

ψi
ψ∗ , which can be rewritten as

R − r + ψi

(
Rδ

1 − ∆

∆

1

ψ∗ − r

)
.

Since ψ∗
< ψ, ψ∗ is bounded above. It follows that the coefficient of ψi is strictly posi-

tive for ∆ small. This implies that the optimal ψi is ψ 6= ψ∗, which is a contradiction.

This implies that if ∆ is small, in equilibrium we must have θ∗ < θ. This completes the

proof.‖

A.4 Proof of Lemma 3

Step 1. First, we calculate the value of Uk(y
∗, y∗).

From equation (11), we know that

Vk(θ
∗
a , x|ηk) =

1

2ε

∫ x−ηk+ε

θ∗a
(θ r − 1) dθ − 1

2ε

∫ θ∗a

x−ηk−ε
G dθ

Integrating, we get

Vk(θ
∗
a , x|ηk) =

r

4ε

(
(x − ηk + ε)2 − (θ∗a )

2

)

− 1

2ε

(
(x − ηk + ε)− θ∗a

)
− G

2ε

(
θ∗a − (x − ηk − ε)

)

Let

γ ≡ 1 − ψ

1 + ψ
(A.8)

From equation (14),

θ∗a = y∗ + γε (A.9)

Using this value of θ∗a in the expression for Vk(θ
∗
a , x) above, we get

Vk(y
∗, x|ηk) =

r

4ε

(
(x − ηk + ε)2 − (y∗ + γε)2

)

− 1

2ε

(
(x − ηk + ε)− (y∗ + γε)

)
− G

2ε

(
(y∗ + γε)− (x − ηk − ε)

)
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Putting x = y∗, and simplifying, we get

Vk(y
∗, y∗|ηk) =

r

4ε

(
ε(1 − γ)− ηk

)(
2y∗ + ε(1 + γ)− ηk

)

− 1

2ε

(
ε(1 − γ)− ηk

)
− G

2ε

(
ε(1 + γ) + ηk

)

=
1

2ε

((
ε(1 − γ)− ηk

)(
(2y∗ + ε(1 + γ)− ηk)

r

2
− 1

))
− G

2ε

(
ε(1 + γ) + ηk

)

=
1

2ε

((
ε(1 − γ)− ηk

)(
(y∗r − 1) +

r

2
(ε(1 + γ)− ηk)

))
− G

2ε

(
ε(1 + γ) + ηk

)

Let

A(ηk) ≡ (y∗r − 1) +
r

2
(ε(1 + γ)− ηk) (A.10)

Using this, rearranging terms, and simplifying

Vk(y
∗, y∗|ηk) =

1

2

(
(1 − γ)A(ηk)− (1 + γ)G

)
− ηk

2ε

(
A(ηk) + G

)
(A.11)

We know from section 4.1 that the minimizing case obtains when ηk = ε
β
i and the

maximizing case obtains when ηk = −ε
β
i . It follows that the α-maxmin net expected

utility from rolling over at signal x = y∗ is given by

Uk(y
∗, y∗) = αVk(y

∗, y∗|ηk = ε β) + (1 − α)Vk(y
∗, y∗|ηk = − ε β)

Substituting the appropriate value of ηk in equation (A.11),

Uk(y
∗, y∗) =

1

2

(
(1 − γ)

(
αA(ε β) + (1 − α)A(− ε β)

)
− (1 + γ)G

)

− α

2
ε β−1

(
A(ε β) + G

)
− (1 − α)

2

(
− ε β−1

) (
A(− ε β) + G

)

Let A0(ε) denote the first term in the expression on the right hand side above. Using

this and simplifying,

Uk(y
∗, y∗) = A0(ε)−

ε β−1

2

((
αA(ε β)− (1 − α)A(− ε β)

)
+ (2α − 1)G

)

Substituting the value of the A terms from equation (A.10) and simplifying,

Uk(y
∗, y∗) = A0(ε) + ε β−1

((
1

2
− α

)(
(y∗r − 1) + G +

r

2
ε(1 + γ)

)
+

r

2
ε β

)
(A.12)
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Step 2. Let us now show that for ε small, this expression is negative or positive ac-

cording as α ≷ 1/2.

To see this, note that lim
ε→0

A(ε β) = lim
ε→0

A(− ε β) = y∗r − 1. From the value of θ∗ derived

in equation (A.9), we know that y∗ → θ∗ as ε → 0. Further, since θ∗ > θ = 1/r, it

follows that

lim
ε→0

A(ε β) = lim
ε→0

A(− ε β) = θ∗r − 1 > 0.

It follows that the term A0(ε) in equation (A.12) is finite and goes to a finite limit as ε

goes to zero.

Next, consider the coefficient of ε β−1 in equation (A.12). We know from above that

(y∗r − 1) → (θ∗r − 1) > 0. This, combined with the fact that G > 0 (equation (12))

implies that as ε → 0, this coefficient term goes to

(
1

2
− α

)
(θ∗r − 1 + G). It is then

clear that for small ε, this term is finite and strictly positive for α < 1/2 and strictly

negative for α > 1/2.

Now, ε β−1 increases without bound as ε vanishes. Therefore, for small values of ε, the

sign of Uk(y
∗, y∗) depends on the sign of the second term, which in turn depends on

the sign of the coefficient of ε β−1.

It follows that for ε small enough, Uk(y
∗, y∗) < 0 if α > 1/2, and Uk(y

∗, y∗) > 0 if

α < 1/2.

Step 3. Finally, we consider the case of α = 1/2. Putting α = 1/2 in equation (A.12),

Uk(y
∗, y∗|α = 1/2) =

1

2

(
(1 − γ)

(
(1/2)A(ε β) + (1/2)A( − ε β)

)
− (1 + γ)G

)
+ ε 2β−1 r

2

=
1

2

(
(1 − γ)

(
(y∗r − 1) +

r

2
ε(1 + γ)

)
− (1 + γ)G

)
+ ε 2β−1 r

2

Equating the above to 0 and solving,

y∗ =
1

r
+

1

r

1 + γ

1 − γ
G − ε 2β−1

2(1 − γ)
− 1 + γ

2
ε

Using equations (A.9), (12) and (A.8) and simplifying,

θ∗a = θ∗ − ψ

1 + ψ
ε − 1 + ψ

4ψ
ε 2β−1
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where θ∗ is the coordination-success-threshold in the case without ambiguity, given by

equation (7). Note that as ε → 0, θ∗a → θ∗ if 2β − 1 > 0, i.e. β > 1/2. If, on the other

hand, β < 1/2, the third term goes to negative infinity as ε → 0, implying that for

β < 1/2, θ∗a = θ for small values of ε.19 Finally, for β = 1/2, θ∗a → max
{

θ, θ∗ − 1+ψ
4ψ

}
.

This completes the proof.‖

A.5 Proof of Corollary 1

This follows in a straightforward manner from the proof of Proposition 3. We include

the details for completeness.

Let θ∗∗a denote the rollover-success threshold for a large intermediary expected to re-

ceive liquidity support with probability p if lenders fail to rollover funds, and let

Ûk(θ
∗∗
a , x) denote the α-maxmin net expected utility of lender k from rolling over. This

is given by

Ûk(θ
∗∗
a , x) = α

(
pE(θr − 1|ηk = εβ) + (1 − p)Vk(θ

∗∗
a , x|ηk = εβ)

)

+ (1 − α)
(

pE(θr − 1|ηk = − εβ) + (1 − p)Vk(θ
∗∗
a , x|ηk = − εβ)

)

Now,

E(θr − 1|ηk) =
1

2ε

∫ x−ηk+ε

x−ηk−ε
(θr − 1)dθ = 2xr − 1 − 2ηk

It follows that

Ûk(θ
∗∗
a , x) = p(2xr − 1 + 2εβ(1 − 2α)) + (1 − p)Uk(θ

∗∗
a , x)

where Uk(θ
∗∗
a , x) is the α-maxmin net expected utility of agent k from rolling over for

an intermediary that does not expect to receive liquidity support.

Now, in the case without liquidity support, the α-maxmin net expected utility from

rolling over at signal x = y∗ is Uk(y
∗, y∗) given by equation (A.12). From the above, it

is clear that the same for an intermediary with liquidity support is given by

Ûk(y
∗, y∗) = p

(
2y∗r − 1 + 2εβ(1 − 2α)

)
+ (1 − p)Uk(y

∗, y∗)

19In other words, for β > 1/2 the coordination outcome is as shown in figure 1. For β < 1/2, θ∗a is

also equal to θ for small values of ε, so that the coordination outcome jumps from full-coordination to

complete collapse as α changes from any value less than or equal to 1/2 to any value above 1/2.
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The first term is finite and goes to a finite limit of p(2θ∗r − 1) as ε → 0. However, as

the proof of Lemma 3 shows, for α > 1/2 (α < 1/2), Uk(y
∗, y∗) decreases (increases)

without bound as ε vanishes. Therefore, if p < 1, for small values of ε, Ûk(y
∗, y∗) ≶ 0

according as α ≷ 1/2. Then the same proof as Proposition 3 applies, implying that

coordination collapses for α > 1/2 (ambiguity aversion). This completes the proof.‖

41



References

Acharya, Viral V. and Tanju Yorulmazer, “Cash-in-the-Market Pricing and Optimal

Resolution of Bank Failures,” Review of Financial Studies, 2008, 21 (6), 2705–2742. 8

, Douglas Gale, and Tanju Yorulmazer, “Rollover Risk and Market Freezes,” Journal

of Finance, 2011, 66 (4), 1177–1209. 6

Adrian, Tobias and Hyun Song Shin, “Liquidity and Leverage,” Journal of Financial

Intermediation, 2010, 19 (3), 418–437. 7

Allen, Franklin and Douglas Gale, “Liquidity Preference, Market Participation and

Asset Price Volatility,” American Economic Review, 1994, 84, 933–955. 9

and , “Optimal Financial Crises,” Journal of Finance, 1998, 53, 1245–1284. 9

Angeletos, George-Marios and Iván Werning, “Crises and Prices: Information Aggre-

gation, Multiplicity and Volatility,” American Economic Review, 2006, 96 (5). 6

, Christian Hellwig, and Alessandro Pavan, “Signaling in a Global Game: Coordi-

nation and Policy Traps,” Journal of Political Economy, 2006, 114 (3), 452–484. 6

, , and , “Dynamic Global Games of Regime Change: Learning, Multiplicity and

Timing of Attacks,” Econometrica, 2007, 75 (3), 711–756. 6

Brunnermeier, Markus K., “Deciphering the Liquidity and Credit Crunch 2007-2008,”

Journal of Economic Perspectives, 2009, 23 (1), 77–100. 7

and Lasse Heje Pedersen, “Market Liquidity and Funding Liquidity,” Review of

Financial Studies, 2009, 22 (6), 2201–2238. 7

Covitz, Daniel, Nellie Liang, and Gustavo Suarez, “The Anatomy of a Financial Cri-

sis: The Evolution of Panic-Driven Runs in the Asset-Backed Commercial Paper

Market,” 2009. Working Paper 2009-36, Board of Governors of the Federal Reserve.

1

Diamond, D.W. and P.H. Dybvig, “Bank Runs, Deposit Insurance and Liquidity,” Jour-

nal of Political Economy, 1983, 91, 401–419. 2, 3, 6

Gilboa, Itzach and David Schmeidler, “Maxmin expected utility with non-unique

prior,” Journal of Mathematical Economics, 1989, 18, 141–153. 3, 19

42



Goldstein, Itay and Ady Pauzner, “DemandDeposit Contracts and the Probability of

Bank Runs,” Journal of Finance, 2005, 60 (3), 1293–1327. 6

Gorton, Gary B., Misunderstanding Financial Crises, Oxford University Press, 2012. 1,

27

and Andrew Metrick, “Securitized Banking and the Run on Repo,” Journal of Finan-

cial Economics, 2012, 104 (3), 425–451. 1

Morris, Stephen and Hyun Song Shin, “Unique Equilibrium in a Model of Self-

Fulfilling Currency Attacks,” American Economic Review, 1998, 88, 587–597. 3

and , “Global Games: Theory and Applications,” in L. Hansen M. Dewatripont

and S. Turnovsky., eds., Advances in Economics and Econometrics (Proceedings of the

Eighth World Congress of the Econometric Society), Cambridge, England: Cambridge

University Press, 2003. 3, 14

and , “Coordination Risk and the Price of Debt,” European Economic Review, 2004,

48, 133–153. 14

Rochet, Jean-Charles and Xavier Vives, “Coordination Failures and the Lender of Last

Resort: Was Bagehot Right After All?,” Journal of European Economic Association, 2004,

2, 1116–1147. 5, 25

Shleifer, Andrei and Robert Vishny, “Fire Sales in Finance and Macroeconomics,”

Journal of Economic Perspectives, 2011, 25 (1), 29–48. 7

Ui, Takashi, “Ambiguity and Risk in Global Games,” 2009. Working paper. 5

Vives, Xavier, “Strategic Complementarity, Fragility, and Regulation,” Review of Finan-

cial Studies, 2014, 27 (12), 3547–3592. 5, 25

43


	Introduction
	Related literature

	The model
	The timeline
	The structure of the argument

	Endogenous Coordination Problem
	Solving the rollover problem in period 1
	Incomplete Information and Signals
	Equilibrium

	Equilibrium liquidity choice in period 0

	Lender Coordination under Ambiguity
	Preference under ambiguity
	Lending euphoria and sudden liquidity freeze
	Proof of Proposition 3

	Policy implications
	Policy as trigger for a systemic liquidity freeze
	Too-big-to-fail and too-unexpected-to-fail 

	Conclusion
	Derivation of equation (6)
	Proof of Proposition 1
	Preliminaries
	Best response function
	Proof of Proposition 1 (Completed)

	Proof of Proposition 2
	Proof of Lemma 3
	Proof of Corollary 1


