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Abstract

The query optimiser in a database management system (DBMS) is responsible for

finding a good order in which to execute the operators in a given query. However, in

practice the query optimiser does not usually guarantee to find the best plan. This is

often due to the non-availability of precise statistical data or inaccurate assumptions

made by the optimiser. In this thesis we propose a robust approach to logical query

optimisation that takes into account the unreliability in database statistics during

the optimisation process. In particular, we study the ordering problem for selection

operators and for join operators, where selectivities are modelled as intervals rather

than exact values. As a measure of optimality, we use a concept from decision theory

called minmax regret optimisation (MRO).

When using interval selectivities, the decision problem for selection operator or-

dering turns out to be NP-hard. After investigating properties of the problem and

identifying special cases which can be solved in polynomial time, we develop a novel

heuristic for solving the general selection ordering problem in polynomial time. Ex-

perimental evaluation of the heuristic using synthetic data, the Star Schema Bench-

mark and real-world data sets shows that it outperforms other heuristics (which take

an optimistic, pessimistic or midpoint approach) and also produces plans whose re-

gret is on average very close to optimal.

The general join ordering problem is known to be NP-hard, even for exact se-

lectivities. So, for interval selectivities, we restrict our investigation to sets of join

operators which form a chain and to plans that correspond to left-deep join trees.

We investigate properties of the problem and use these, along with ideas from the

selection ordering heuristic and other algorithms in the literature, to develop a

polynomial-time heuristic tailored for the join ordering problem. Experimental eval-

uation of the heuristic shows that, once again, it performs better than the optimistic,

pessimistic and midpoint heuristics. In addition, the results show that the heuris-

tic produces plans whose regret is on average even closer to the optimal than for

selection ordering.
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Chapter 1

Introduction

1.1 Motivation

Queries in database systems are usually submitted in a declarative format. In other

words, users describe what they want via some query language such as SQL, but

do not specify how the database management system (DBMS) should evaluate the

query. Therefore, the submitted query needs to go through various steps and trans-

formations before the DBMS evaluates the query. First, the query is parsed and

its syntax validated [47]. Then an internal representation (e.g. relational algebra)

of the query is generated. After that logical query optimisation is performed. The

logical query optimisation phase evaluates many equivalent plans in order to find

a suitable one [38, 85]. Data can be accessed in a variety of ways depending on

the available access paths and indices for example [28]. Therefore, physical query

optimisation is performed next in order to find a physical execution plan which will

be used at run-time to retrieve the answer of the query [38, 52]. Our work in this

thesis takes place at the logical query optimisation stage.

At logical query optimisation, the optimiser translates a user’s query to a log-

ical plan. Usually there are many equivalent logical plans for a given query [106],

so the optimiser compares them with the aim to find the best plan. An optimiser

typically uses statistical data collected by the DBMS when comparing equivalent

plans [64]. However, in practice this statistical information may not be accurate or

even available at optimisation time [31]. Examples of these situations are when sys-

18
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tems are confronted with skewed or very unevenly distributed data values, correlated

predicates or when working in highly dynamic environments [31, 68,79].

There are different causes for inaccuracy and many challenges for DBMSs to

provide or maintain accurate statistical information. In some cases, the statistical

information is out-dated due to infrequent updates [46, 64]. Some DBMSs do not

update statistical information automatically and rely on database administrators to

trigger an update command [108]. The inaccuracy sometimes results from the source

of the information, such as statistics based on user feedback, transmission noise or

delay/error in processing transactions [18,74,89]. Some statistics are derived based

on inaccurate assumptions, such as that the data is uniformly distributed, the values

of attributes are independent, or the selectivity of a predicate is always the inverse

of the number of distinct values of the attribute involved [12, 46, 47, 64, 76, 113].

Moreover, some information may not be available at optimisation time, such as for

user-defined queries or when information is related to the run-time environment

[46,68].

The inaccuracy of statistical data influences the quality of plans chosen by the

optimiser [64,76]. This may lead to suboptimal execution plans which can be orders

of magnitude worse than the optimal plan in practice [46, 99]. One of the major

challenges for query optimisers is error propagation, where inaccurate estimation of

parameters required to evaluate operators in a query has a transitive effect on the

subsequent operators, ultimately resulting in inefficient query evaluation [64]. The

problem becomes much harder when the optimiser deals with expensive predicates

or complex queries (e.g. subqueries) [61]. Consequently, an optimiser should take

the unreliability of statistical data into consideration during the optimisation pro-

cess. Moreover, instead of striving for the optimal plan, an optimiser should try to

avoid bad plans based on unreliable statistical data. Numerous studies have been

conducted to improve database query optimisation [18,23,39,63,68], although fewer

studies deal with query optimisation in the presence of inaccuracy [31,51,55,76].

In this thesis, we assume that the statistical data used by the optimiser is not

known exactly, but instead is known to fall within intervals. Specifically, we assume

that the selectivity of each selection and join operator falls within the interval [0, 1].
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The use of intervals has been proposed previously in the database literature. For

example, a recent study uses intervals to bound error estimation of selectivities in

a histogram in order to improve the quality of optimisers [86]. Intervals have also

been used to model the level of uncertainty in estimated statistics in a DBMS [18].

These approaches, and others, will be discussed in more detail in Section 2.6.

As an example of a situation in which interval selectivities may arise, let us con-

sider a database in which equi-height histograms of attribute values are maintained

(more discussion about histograms will be provided in Section 2.3). In general, his-

tograms approximate the data distribution of attribute values [66, 99]. This can be

done by dividing the values for an attribute into k buckets/ranges and counting the

frequency of tuples that fall into each range [28]. The aim in equi-height histograms

is that each range has same number of tuples [99]. To build an equi-height his-

togram, the values are sorted in ascending order first [96]. Then k + 1 step values

are chosen to specify the range of values for each of the k buckets, such that each

bucket has the same number of tuples. Typically, Step(0) and Step(k) indicate the

smallest and largest value for the attribute respectively. An advantage of this setting

is that we know that 100% of tuples satisfy the predicate attribute ≤ Step(k), while

( i
k
∗ 100)% of tuples satisfy attribute < Step(i), for 1 ≤ i < k. More importantly,

using equi-height histograms, the upper and lower selectivity can be estimated fairly

well and quickly [96]. Example 1.1.1 below, adapted from [96], illustrates with con-

crete values the calculation of selectivity bounds for a given predicate.

Example 1.1.1 Consider a histogram for an age attribute, with 10 buckets (i.e.

k = 10) as shown in Table 1.1. Assume that the attribute’s value ranges from 10

to 60. From Table 1.1 we notice that Step(0) = 10 and Step(10) = 60 since, the

values 10 and 60 are the smallest and largest age values stored for the age attribute.

The selectivity interval for the predicate age < 39, for example, can be calculated

as follows.

Piatetsky-Shapiro and Connell show that in an equi-height histogram the selec-

tivity bounds for any predicate attribute < x, where x falls between Step(i) and
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step # attribute value total % of tuples

0 10 0 %

1 19 10 %

2 21 20 %

3 22 30 %

4 23 40 %

5 28 50 %

6 32 60 %

7 35 70 %

8 37 80 %

9 44 90 %

10 60 100 %

Table 1.1: Histogram for attribute age in Example 1.1.1.

Step(i+ 1), can be found as follows [96]:

i

k
< s ≤ i+ 1

k
; where s is the selectivity

In this example, the value 39 falls between 37 and 44 represented by Step(8) and

Step(9) respectively. Therefore using the above inequality, the selectivity bounds

for age < 39 are given by: 0.8 < s ≤ 0.9. 3

In this thesis, we aim to study query optimisation that takes into account the

unreliability of database statistics and tries to avoid potentially bad plans. For this

purpose we use a decision theory technique known as minmax regret optimisation

(MRO). When executing a query, the DBMS encounters a particular instance of

concrete parameter values, such as selectivities of operators, called a scenario. The

problem is that, during the optimisation step, the optimiser does not know which

scenario the DBMS will face during the execution step. Even at query execution

time, the DBMS may not know which scenario it faces because of inaccurate or out-

of-date statistics. Moreover, it is highly unlikely that there is a single execution plan

that will yield the optimal cost for every potential scenario. For each scenario, there
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is a plan with the smallest cost known as the optimal plan for the scenario. The

regret of a plan under a scenario is the difference between the plan’s cost and the

cost of optimal plan for the considered scenario. MRO tries to find the plan whose

maximum regret is minimum. This means that when the plan is confronted with its

worst-case scenario, it will have the best performance among all other plans (when

confronted with their worst-case scenarios). Consequently, our goal is to choose a

logical query execution plan that performs reasonably well regardless of the scenario

it encounters.

Minmax regret optimisation (MRO) is a well-known criterion for decision making

in environments with imprecise parameters [3, 69]. It has been used in fields such

as economies, statistics, psychology, politics and social science [30, 45, 60, 95], as

well as in computer since to deal with problems where parameters may be imprecise

such as knapsack, shortest path, spanning tree, assignment and scheduling problems

[2, 3, 7, 14, 25, 36]. This criterion is suitable for optimising critical systems which

should function well regardless of the scenario encountered (even under a worst case

scenario) [3].

When database parameters are estimated by single values, cost-based database

query optimisers choose the plan with the smallest estimated cost as the optimal plan

[28]. In terms of optimisation under inaccuracy, this case is the same as optimising

under a single realisation or scenario. The problem is more complicated if we want

to consider the possible range of values for imprecise parameters which renders many

different scenarios. One option at optimisation time is to assume that inaccurate

parameters take their largest, median (i.e. midpoint) or smallest estimated values.

However, this means that the optimisation is performed using a single scenario

without taking into consideration all other possible scenarios. One problem with

this approach is that a single scenario is given more attention or credit over the

others, while in reality there is no knowledge which scenario the system will face

at execution time. Another problem of optimising under a single scenario is that

an optimal plan for one scenario may be a worst plan for another. Therefore, the

query optimiser should be aware of the different scenarios when choosing an optimal

plan. By using MRO, the aim is to find the plan that works well regardless of the
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Scenario

Criteria Plan

x1 x2 x3 x4

s1 s1 s1 s1

s2 s2 s2 s2

s3 s3 s3 s3

s4 s4 s4 s4

MRO σ2σ1σ3σ4 0.225 0.203 0.2 0.15

Optimistic σ1σ2σ3σ4 0.895 0.003 0.0 0.92

Midpoint σ2σ3σ1σ4 0.039 0.383 0.38 0.026

Pessimistic σ2σ3σ4σ1 0.0 0.488 0.527 0.0

Table 1.2: The regret under some scenarios in Example 1.1.2.

encountered scenario. The following example explains the differences between MRO

and the other criteria.

Example 1.1.2 Let S = {σ1, σ2, σ3, σ4} be a set of selection operators which are to

be applied to a relation R. Suppose the selectivity si of each operator σi is known

to fall within an interval [si, si], where si and si are the minimum and maximum

selectivities respectively, as follows: s1 = [0.1, 0.97], s2 = [0.2, 0.3], s3 = [0.35, 0.7]

and s4 = [0.6, 0.8]. So the selectivity s1 for operator σ1, for example, can take any

value between 0.1 and 0.97 (inclusive). For simplicity, assume that all operators

have the same cost of 1 and that the relation R has cardinality 1 (the method used

to calculate the cost of a plan under any scenario is given in Section 2.4). The

goal is to produce a plan for S, i.e. an order in which to evaluate the four selection

operators.

Table 1.2 shows four different criteria for choosing a plan and their performance in

terms of regret under a few different scenarios (where a scenario consists of choosing

the minimum or maximum selectivity of each operator)1. Apart from the MRO

criterion, the other criteria are the optimistic, midpoint and pessimistic criteria,

1More details will be provided in Chapter 3, including how Table 1.2 can be generated.
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which only consider the smallest, median and largest estimated selectivity values.

The optimal plan for a particular scenario is one in which the operators appear in

increasing order of selectivity. So the optimistic criterion produces a plan that is

optimal for the scenario in which each operator has its minimum selectivity, while the

pessimistic criterion produces the optimal plan for the one in which each operator

has its maximum selectivity. We can see from Table 1.2 that there is no solution

which is optimal for all scenarios. The optimistic and pessimistic solutions are

optimal (i.e. with a regret value of 0) under one and two scenarios respectively,

but their performance in terms of regret varies considerably from one scenario to

another. It is true that the MRO solution is not optimal for any scenario in this

example, but it has a more stable performance over all scenarios compared to the

optimistic, midpoint and pessimistic solutions. Therefore, using the MRO solution

is a wise choice because it has good overall performance and its worst regret value

of 0.225 is better than the optimistic, midpoint and pessimistic solutions, whose

worst-case regret values are 0.92, 0.383 and 0.527 respectively (shown in bold face

in Table 1.2).

3

Our proposed query optimiser approach can add an overhead at the logical opti-

misation stage. However, the heuristics we develop run in time which is polynomial

in the number of operators in the query oppose to other existing approaches dealing

with single scenario and run in exponential time (such as those which require ac-

cess to exponential join enumeration schemes) [61]. The overhead of our approach

improved the quality of the result. So this overhead is traded for quality as we will

discussed in Sections 5.5 and 8.4.

In the following section, we present the main contributions of this thesis. After

that, the structure of the thesis is described.

1.2 Contributions

In this thesis we propose a robust approach to logical query optimisation that takes

into account unreliability in the statistical information provided by the DBMS during
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the optimisation process. In particular, we study the problems of applying MRO

to sets of selection operators and sets of join operators in the presence of interval

selectivities. We refer to these two problems as the selection ordering problem and

the join ordering problem. The following are the main contributions of the thesis.

For the selection ordering problem:

• We formalise the selection ordering problem when the selectivities of the selec-

tion operator predicates are given as intervals. We assume that predicates are

independent of each other. We identify a number of useful properties of the

problem. For example, instead of considering the entire selectivity interval,

our study shows that it is sufficient to consider only the minimum and maxi-

mum selectivity of each selection predicate. We also investigate a number of

special cases which can be solved in polynomial time. For example, based on

the selectivity intervals of the selection operators, we define the relationship

of domination between operators. We show that the optimal solution for the

selection ordering problem, in which all pairs of operators have a domination

relationship between them, can be found in polynomial time by sorting the

operators in non-decreasing order according to their minimum or maximum

selectivities.

• The associated decision problem for the general selection ordering problem

turns out to be NP-hard, so we develop a novel heuristic for the selection

ordering problem that runs in polynomial time.

• We evaluate our heuristic for solving the selection ordering problem experi-

mentally using three different data sets: a synthetic data set, the Star Schema

Benchmark (SSB) and the Enron email data set. The heuristic was compared

to three different baseline heuristics and the experimental results demonstrate

the effectiveness of our heuristic over the others. In the SSB data set for exam-

ple, our heuristic finds the exact, optimal solution in 90% of the cases. More

importantly, it avoids bad plans and, considering the experimental evaluation

over all data sets, in the worst case the solution found by our heuristic has a

regret value 1.27 times the optimal minmax regret.
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• We applied our selection ordering heuristic to a related NP-hard problem,

namely finding the MRO solution for minimising the total flow time of jobs on

a single machine, where the job processing times are given as intervals. Our

heuristic was tested experimentally on a synthetic data set and compared with

a well-known 2-approximation algorithm which only considers the midpoint of

each processing time interval. Our heuristic performs better than the ap-

proximation algorithm. For example, the approximation algorithm found the

optimal solution in just 56.6% of the tested cases, while our heuristic found

the optimal solution in more than 82% of the cases.

For the join ordering problem:

• We formalise the join ordering problem where the selectivity of join predicates

are known to fall in intervals and are independent of each other. Since the

general join ordering problem (without intervals) is known to be NP-hard,

we restrict our attention to chain queries for which join ordering (without

intervals) can be solved in polynomial time. More specifically, we limit the

search space for optimal plans to the class known as left-deep join trees. We

investigate a special property of the problem, called the precedence adjacency

property, which allows us to identify the relative order of neighbouring relations

in so-called precedence graphs relating to a query.

• We develop an effective heuristic for the join ordering problem which runs in

polynomial time. The heuristic exploits the precedence adjacency property

mentioned above to improve the quality of results and reduce the number of

plans it has to consider.

• We evaluate the join ordering heuristic experimentally on a synthetic data

set, and compare it with three other heuristics. The experimental evaluation

shows that our heuristic outperforms the other heuristics. For example, our

heuristic finds the optimal solution in 98% of the tested cases, and in the worst

case found plans with a maximum regret no more than 1.23 times the optimal

MRO solution.
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1.3 Thesis outline

The structure of the thesis is as follows:

Chapter 2 presents an overview of related work. It reviews background re-

search on query languages in general and the relational algebra in particular. Then

we discuss query processing as well as query optimisation and evaluation. More-

over, we review related problems faced by query optimisers and their influence on

the quality of the resulting execution plans. After that, definitions related to the

selection ordering problem and the join ordering problem are given. In addition, the

chapter discusses optimisation under inaccuracy, and the approaches used in this

field. Minmax regret optimisation (MRO) from decision theory is used in this thesis

to deal with inaccuracy in the selection ordering and join ordering problems. We

review decision theory in this chapter as well as the MRO approach. Moreover, we

review some related problems that use MRO.

Chapter 3 presents the formal definition of the selection ordering problem where

the selectivities of selection operator predicates are known to fall within intervals.

The minmax regret optimisation approach for the selection ordering problem is

defined, along with the associated brute force approach to find an optimal plan.

In addition, a number of properties of the problem are identified, as well as some

special settings which can be solved in polynomial time.

Chapter 4 describes our novel heuristic, max-min, for solving the selection or-

dering problem. It can be considered as a template for a number of algorithms

based on the chosen parameters of the heuristic. The chapter discusses the possible

options for the parameters of the heuristic. Two versions of the heuristic are pre-

sented. Both use the same overall method but the second reduces its computational

complexity.

Chapter 5 presents an experimental evaluation of the max-min heuristic for

selection ordering. The quality of plans produced by the heuristic are compared to

optimal plans computed by the brute-force approach as well as to plans produced by

three baseline heuristics, namely the midpoint, pessimistic and optimistic heuristics,

based on a number of measuring criteria. Three different data sets were used to

evaluate the max-min heuristic.
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Chapter 6 discusses applying our max-min heuristic for selection ordering to

a job scheduling problem where the target is to minimise the total flow time when

the processing time of each job is known to fall within an interval of values. It eval-

uates the heuristic experimentally, comparing its performance with other baseline

heuristics, namely the midpoint, pessimistic and optimistic heuristics.

Chapter 7 considers the join ordering problem when the selectivities of join

predicates are assumed to fall in intervals. It presents the precedence adjacency

property which is used in our novel heuristic for the join ordering problem, which is

also described in this chapter.

Chapter 8 presents the experimental evaluation of our heuristic for the join or-

dering problem. Similar to Chapter 5, the quality of plans produced by the heuristic

is compared with the MRO optimal plans and those produced by the midpoint, pes-

simistic and optimistic heuristics.

Chapter 9 concludes the thesis by summarising its main contributions, and

then discussing directions for future research.



Chapter 2

Background and Related Work

This chapter first describes the state of the art in query languages and query process-

ing. Moreover, it discusses query optimisation and evaluation. Then it introduces

the formal definitions of the selection ordering problem and the join ordering prob-

lem. It also discusses optimisation under uncertainty in the statistical information.

After that, decision theory is discussed along with the minmax regret optimisation.

In addition, this chapter describes some related problems that we studied in order

to improve our understanding of minmax regret optimisation.

2.1 Query languages

The relational model is one of the best known and most popular database models

used these days. It was first introduced by Codd in 1970 [34]. Since then many

query languages have been designed for it. A query language is a language that

expresses queries or functions which are then submitted to the database in order to

extract some information [27]. Most query languages allow users to describe what

they want without specifying how their query is processed. Such query languages are

known as declarative query languages [105]. A well known example of a declarative

query language is the Structured Query Language (SQL) which was introduced in

the nineteen seventies [101].

Other query languages, such as relational calculus and relational algebra, are

popular for theoretical investigations, while SQL is considered as a practical query

29
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language [105]. Relational calculus is based on mathematical logic, while relational

algebra is based on an algebra of operators equivalent to the calculus [101]. Re-

lational calculus and SQL queries can be represented as relational algebra expres-

sions [105]. In fact, many DBMS translate SQL queries to relational algebra ex-

pressions, which are then processed by the query optimiser to generate an execution

plan for that query [44].

Originally the relational algebra had five basic operators [101]. These operators

were selection, projection, union, cross-product, and difference. Other operators

were defined with the use of relational algebra in databases; these included rename

and join, which can be viewed as a cross-product followed by a selection [101]. In

this thesis, we focus on the selection and join operators. Consider the following

relational algebraic expression with selection operator: σp(R). This expression is

defined formally as σp(R) = {t ∈ R : p(t)} which selects or retrieves all tuples

t from relation R that satisfy the predicate p. On the other hand, consider the

following relational algebraic expression comprising a join operator: R1 1p R2. This

can be expressed formally as: R1 1p R2 = σp(R1 × R2), where × is the Cartesian

product of the two relations. The result of this expression is a new relation with

tuples from R1 associated with tuples from R2 based on satisfying the predicate p.

More details about both selection and join operators will be provided in Sections 2.4

and 2.5 respectively.

2.2 Query processing

After considering the query languages in the previous section, let us discuss how

a query is processed in general by the database management systems (DBMSs).

Query processing is a term usually refers to the activities that start with accepting

and processing a submitted query in a high-level language, up until retrieving the

result of the query [108]. Figure 2.1 presents the main steps of query processing.

Once a query is submitted to the DBMS in a high-level language such as SQL,

it is first parsed and validated [47]. This validation includes checking the syntax of

the query as well as that of attribute and relation names. After that the system
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Figure 2.1: Query processing steps.

generates a parse-tree representation of the query called the query tree or query

graph. The parse-tree is translated to an internal representation and passed to the

query optimiser. In some DBMSs, the internal representation is relational algebra.

A single relational-algebra expression can have many equivalent execution plans [47].

If two plans produce the same result on every database instance, then they are de-

scribed as equivalent execution plans [108]. Different execution plans have different

costs at run-time when retrieving the result of the query [108]. The optimiser is re-

sponsible for finding the equivalent execution plans and choosing a suitable one based

on statistical information stored in the database-system catalog [59]. This highlights

the importance of the optimisation step in choosing a plan that has good execution

performance. Sometimes this stage is called logical query optimisation [38,85]. Our

work tries to enhance optimisation at this step. More discussion about query opti-

misation is provided in Section 2.3.

There are various ways to access the data in a DBMS, such as using an index

or performing a scan of a relations to find relevant tuples [85]. Therefore, the query

execution engine or the code generator processes the execution plan chosen by the

optimiser and generates the code for executing the query at run-time [28]. The
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execution code consists of a set of physical operators that produce the result of a

query as a data stream. External sort, sequential scan, index scan, nested-loop join

and sort-merge join are examples of physical operators [28]. This step sometimes is

called physical query optimisation [38,85]. It is important to mention that different

DBMS may have different query processing steps. For example, some DBMSs pass

an annotated parse-tree driven by the structure of the SQL query directly to the

query optimiser instead of passing a relational-algebra expression [108].

2.3 Query optimisation and evaluation

Although query optimisation in database management systems (DBMSs) has been

a topic of research for decades, there are still important unresolved issues. The need

for a query optimiser comes from the way the databases are designed as well as their

adoption of the data independence principle, which separates the logical data model

and how/where the data is stored in the database. Typically, the goal of the query

optimiser is to come up with the best plan after computing equivalent plans [106].

There are different approaches to query optimisation. One optimisation ap-

proach uses heuristic rules to order operations to satisfy an execution strategy such

as applying selection operators before join operators [47, 61]. Another well-known

optimisation approach is to use a cost model which assigns an estimated cost to each

equivalent execution plan in order to distinguish between them [47]. The parameters

that are used by the cost model can be classified in two main categories: param-

eters related to system resources and parameters related to workload profile [120].

Examples of system resource parameters include disk accesses, CPU time, buffer

size and communication cost (e.g. in distribution databases) [108]. On the other

hand, workload profile parameters are concerned with the data and its properties,

such as relation cardinality and the number of distinct attribute values, as well as

information about queries such as the operators’ selectivities and costs [12,28,120].

Our work focuses on the cost model optimisation approach dealing with workload

profile parameters.

In term of evaluating a query, especially with multiple operators, there are two
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main approaches: materialised evaluation and pipelined evaluation [47]. In mate-

rialised evaluation, the system evaluates one expression/operator at a time. After

evaluating a single operator in the plan, the result is temporarily stored as a rela-

tion to be considered as an input for a subsequent operator. Obviously, the main

disadvantage of this approach is the overhead of storing the temporary relations on

disk (except for cases where the relation is small and can fit in main memory) and

reading these relations again for subsequent operators [108]. On the other hand,

in pipelined evaluation, the tuples resulting from evaluation of an operator are di-

rectly forwarded to the subsequent operator in the plan. Therefore, there is no need

for temporary storage in this approach which tends to make the evaluation process

faster than in the materialised approach [108].

Query optimisers usually employ statistics stored in the system catalog to es-

timate the cost of a query plan [68]. For typical workloads, a DBMS can compile

statistical data over time to obtain a reasonable estimate. Relation cardinality,

predicate selectivity and cost as well as the number of distinct values of attributes

are some of the main statistical parameters used by optimisers [12, 47, 76]. The

number of distinct values of an attribute is often used to estimate the selectivity

of a predicate which in turns predicts the cardinality of the result of applying the

predicate [47]. For example, the selectivity of a predicate which asks for an exact

match with a single attribute value can be estimated for an attribute with 6 distinct

values as 1/6 = 0.167. In general, optimisers use selectivities to schedule those oper-

ators that reduce the intermediate result before those that do not. This reduces the

cost of query evaluation and reduces the consumption of system resources (e.g. I/O,

CPU and buffering at run time) [47, 96, 108]. Unfortunately, in practice, statistical

information is not precise at all times [64,108]. A brute-force solution to guarantee

up-to-date statistical data is to force the system to update the statistics every time

the data is changed (e.g. every update, add or delete on a relation) [108]. However,

this is not practical and in real life statistics are only updated occasionally [108].

Therefore, optimisers in practice use an estimated cost in the absence of the exact

cost. Chaudhuri states that an optimiser is “only as good as its cost estimates” [28].

There are other challenges facing query optimisers when evaluating equivalent
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plans, apart from the accuracy of the statistics [64]. Query optimisers sometimes

have insufficient information about the run-time environment, such as the available

resources, or when they have to handle user-defined queries. The situation also

becomes difficult when systems are confronted with very unevenly distributed data

values or predicates that are complex or correlated. All these situations influence

the effectiveness of the query optimiser [68].

Trying to estimate selectivities in dynamic settings, such as data streams [112], or

in non-relational contexts, such as XML databases [98,122], also poses challenges. It

may even be impossible to obtain any statistical data, because the query is running

on remote servers [121]. Detailed information may also not be available because

a user issues an atypical ad-hoc query or utilises parameter markers in a query

[61, 68]. Section 2.6 will discuss the main approaches that deal with inaccuracy in

the statistical data used by optimisers.

Inaccurate statistics provided to query optimisers lead to them choosing poor

execution plans [18,64]. Leis et al. show experimentally that even good optimisation

algorithms perform poorly in the case of inaccurate statistical information [76].

A number of techniques can be used to improve the accuracy of the statistics in

the system catalog. The main examples of these techniques are sampling [74, 93],

histograms [63,96,99] and probabilistic methods [55,113]. Histograms can be used for

estimating relation size or selectivity of predicates [12,23]. This technique has been

adopted by some well-known DBMSs such as DB2, Oracle and SQL Server [12,63].

More recent research utilises probabilistic approaches such as probabilistic wavelet

synopses, which were originally used in signal and image processing [55].

We now describe histograms in more detail. Having accurate and exact informa-

tion about data distributions is helpful yet infeasible since it requires huge storage

space. Histograms are useful in this case to give good approximations [99]. More-

over, they are used for selectivity estimation and other database operations such

as partition-based temporal join execution [63, 96]. In general, histograms are an

approach to approximate a data distribution by calculating the frequency of an at-

tribute value [66]. They divide the values of an attribute into k buckets/ranges and

count the number of tuples that lie within the range of each bucket [99]. Usually,
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the distinct values of an attribute assist in defining the range of histogram’s buck-

ets [99, 108]. The value of k can be fixed or changed dynamically [28]. The value

of k determines the level of accuracy. The bigger the value of k, the more accurate

the estimate is but the more memory that is required [28]. In general, histograms

are loaded in the memory and this is why they should not required much memory.

A practical example of the use of histograms and how they are generated will be

provided in Section 5.3. There are two main types of histograms: equi-width and

equi-height (or equi-depth) [28,96,108]. In an equi-width histogram, all buckets have

the same size, which means that each bucket covers the same number of distinct val-

ues. On the other hand, the aim in an equi-height histogram is that each bucket

has the same number of tuples, which may mean that buckets cover different ranges

of distinct values. If the cardinality of the considered table is Ω, then each bucket

in an equi-height histogram has approximately Ω/k tuples.

The general assumption in histograms is that the values of each bucket are uni-

formly distributed [28, 99]. Correlations between attributes is one of the biggest

challenges for optimisers. An attempt to overcome this problem is the use of multi-

dimensional histograms [23,50,63]. However, applying this automatically in practice

is not straightforward since the number of possibly correlated attributes is large and

finding the right balance between the need for joint information and minimising the

size of histograms is not a trivial task [28].

Guy Lohman states that in practice, inaccurate estimation for parameters in

a cost model is considered as one of the major causes of poor performance and a

common challenge for most query optimisers [79]. One of the practical examples

of challenges facing DBMSs is a query with unknown parameters, such as ‘Age

BETWEEN x AND y ’. Such a query still poses a challenge for the optimiser even

with good histograms, since the performance of the selected plan differs from one

execution to another based on the values of x and y. Lohman also discusses errors in

selectivity estimation, especially for join operators and their implication in real life.

For example having a new database with a few months of data in a date attribute

with 100 years causes a skewed data which leads to inaccurate selectivity estimate.

Indexes can help in this case but to have accurate estimates, the system should
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perform frequent maintenance which adds extra cost and overhead for the system.

Identifying the number of distinct values for an attribute is used by some optimisers

to predicate the selectivity of a predicate, as we discussed earlier. Consider a case

where an attribute has 6 distinct values, while 99.99% of rows that satisfy a predicate

have the same value. Some optimisers, such as DB2, calculate the selectivity of the

predicate as 1

|distinct values|
which is 0.167 in this case; however the true selectivity

is 0.9999 [79]. This huge difference between the estimated selectivity and the true

selectivity leads to the optimiser choosing a suboptimal plan.

Determining the selectivity of correlated attributes remains a hard problem for

optimisers to solve since it requires pre-knowledge about the nature of the data.

Usually optimisers under-estimate predicate involving correlated attributes which

leads to suboptimal solutions. For example, in a cars database with 10 makers

and 100 models, the usual selectivity estimate for the predicate: ‘Model = Accord

AND Make = Honda’ is 1/100 × 1/10 = 0.001. However, the actual selectivity

is 1/100 = 0.01 due to the correlation between the Make and Model attributes,

since only Honda makes the Accords model. Currently to avoid such problems,

database administrators should deliberately update the selectivity of correlated

predicates [79]. These kinds of errors result in query execution plans far from op-

timal. Consequently, an optimiser should try to avoid potentially bad plans rather

than strive for an optimal plan based on unreliable information [79]. In this thesis,

we propose an optimisation approach that tries to avoid bad plans.

2.4 Selection ordering

In this thesis, one of the problems we are interested in is the selection ordering

problem. The selection operator, denoted by σ in the relational algebra, is an

operator common to many data querying languages [101]. It is also known as a filter

in other contexts such as data stream processing [16,19,42] and sensor networks [43,

48, 57, 97], where there is renewed interest in improving the efficiency of processing

these operators. A very common setting is determining the order in which to apply a

set of commutative filters to a stream or a set of data items, e.g. tuples of a relation,
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so as to keep the processing costs to a minimum. In the following, we introduce

some basic definitions and discuss the selection ordering problem.

2.4.1 Basic definitions

This section presents a formal definition of the basic selection ordering problem,

where both the predicates selectivities and costs of operators are assumed to be

known exactly. The selectivity of the predicate p is defined as the probability that

a tuple passes through the predicate filter, or alternatively, as the fraction of tuples

filtered by the selection predicate [37]. In general, when the selectivity increases, the

run-time of the query increases as well [31]. The cost of a selection operator refers

to the cost of applying the selection operator to a single tuple [37]. From now on, we

will strip out the predicates from the definition of the problem and only refer to their

selectivities. The problem can be viewed as ordering a set of selection operators or

as considering a single operator with a conjunction of predicates in which we need

to order the predicates. The former is what we consider in the following definitions.

However, more insight about the two views will be provided in Section 2.4.2.

Definition 2.4.1 Given a set S = {σ1, σ2, . . . , σn} of selection operators, for 1 ≤

i ≤ n, each selection operator σi has a selectivity si ∈ [0, 1] and a cost ci ∈ R+.

Definition 2.4.2 For a selection operator σi with selectivity si and cost ci, the rank

ri of operator σi is defined as [37,73]:

ri =
si − 1

ci
(2.4.1)

The rank plays an important role in finding the optimal order for a given set of

selection operators as we will discuss in the following section. Let πn be the set of all

possible permutations over 1, 2, . . . , n. For πj ∈ πn, πj(i) denotes the i-th element

of πj.

Definition 2.4.3 A query execution plan pj is a permutation σπj(1), σπj(2), . . . , σπj(n)

of the n selection operators. The set of all possible query execution plans is given

by:

P = {p | p = σπ(1), σπ(2), . . . , σπ(n) such that π ∈ πn}.
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Let Ω be the cardinality of the relation on which we execute the selection oper-

ators. The cost of evaluating plan pj is given by [61]:

Cost(pj) = Ω

(
cπ(1) + sπ(1)cπ(2) + sπ(1)sπ(2)cπ(3) + · · · +

n−1∏
i=1

sπ(i)cπ(n)

)

= Ω

(
n∑
i=1

(
i−1∏
j=1

sπ(j)

)
cπ(i)

)
(2.4.2)

The assumption in the above formula is that the selectivities of the predicates are

independent of each other. For the joint selectivity of multiple attributes, much early

work and many systems make the attribute value independence (AVI) assumption.

This assumes that the selectivity of a set of operators {σi1 , σi2 . . . σim} is equal to

si1×si2×· · ·×sim . If instead a system stores (some) joint selectivities (it is infeasible

for it to store all of them), we can use the AVI assumption to “fill in the gaps” or

use the estimation approach advocated in [81].

2.4.2 Selection ordering problem

There exist techniques for ordering a set of selection predicates at logical optimisa-

tion stage to filter out as many tuples as early as possible at the lowest possible cost,

by using the concept of ranking [62,73]. Sorting the operators in non-decreasing or-

der of their ranks results in the minimal expected pipelined processing costs [62].

Assuming we have accurate values for both si and ci, we can use Equation (2.4.1)

to calculate the rank ri of σi. Clearly, the computation of the ranks and the sorting

can be done in polynomial time. Basically, ordering selection operators optimally is

a solved problem, but only when given exact values for the si and ci.

These techniques that use the ranking concept rely on having accurate values

for the operators’ selectivities, i.e. the percentage of tuples passing a filter, and

their processing costs (per tuple). Getting the estimation of selectivities (and/or

costs) wrong can lead to high overall costs for the pipelined execution. As we

discussed in Section 2.3, estimating the selectivities of simple predicates on base

relations in a relational database is fairly well understood and can be done quite

accurately [55,63]. However, the situation changes once we are confronted with very

unevenly distributed data values or predicates that are complex or correlated, such
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as cases with dynamic settings like data streams [112]. It is also hard to estimate

statistical data in non-relational contexts [98, 122]. It may also be hard to obtain

some statistical data because the query is running on remote servers or heterogeneous

DBMS due to a delay in the network or the availability of the server [121].

Similar optimisation problems have been studied in the context of sequential

testing. Here the goal is to find faulty components as quickly as possible by testing

them one by one. Each component has a probability of working and a cost for testing

it. One of the earliest proposed solutions [67] relies on ranking the components and

then ordering them by their ranks, very similar to the selection ordering described

above.

There has been a renewed interest in pipelined filter ordering recently. Babu et

al. investigate the effect of correlated selection predicates on the adaptive processing

of data streams [19], while Neumann et al. avoid the multiple evaluation of common

subexpressions in selection predicates [92]. Finally, Condon et al. present algorithms

for pipelined filter processing in a distributed setting [37]. The problems discussed

in the first two papers are NP-hard, while for the problems discussed in the last

paper efficient algorithms have been developed.

Finding the right order of a set of selection operators is vital for both materialised

and pipelined evaluations. As we mentioned earlier, an optimal plan should filter

out as many tuples as early as possible. If we think about the selection ordering

problem as applying one operator at a time using materialised evaluation, then using

the optimal plan will minimise the sizes of the intermediate tables that are generated.

This in turn reduces the cost and time of storing and reading the intermediate tables

from disk and eventually results in faster execution [52]. On the other hand, if we

think about the ordering problem in terms of a conjunction of predicates and employ

pipelined evaluation, then when processing a tuple it is important to discard it as

soon as possible if it does not satisfy the conjunctive condition. Therefore, assuming

the cost of testing each predicate is the same, the optimal plan should test predicates

with smaller selectivity values before those with larger selectivity values. Such an

ordering leads to fewer comparisons and hence faster query execution.
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2.5 Join ordering

In this thesis, we also study the join ordering problem. The join operator is a

common operator to many querying languages [11, 21]. Usually it is denoted by 1

in relational algebra [101]. Studying the join operator is important since it is known

to be one of the expensive operators in query optimisation [24]. Finding an efficient

order for a set of join operators is still a challenge for query optimisers [61]. The join

ordering problem still attracts much attention in the literature. Some papers study

the complexity of the problem [33, 87, 94], while others consider heuristics to solve

the problem [24,62]. In order to study the join ordering problem, three parameters

should be specified: the allowed query graph structure, the possible join trees to

be used as logical query plans and the cost criteria [24, 28]. These parameters play

a major role in identifying the complexity of the problem and possible approaches

to solve the problem. The following sections define these parameters for the join

ordering problem considered in this thesis.

2.5.1 Join ordering problem

This section introduces some basic definitions related to the join ordering problem.

Similar to Section 2.4, the assumption here is that the cardinalities of the relations

and the selectivities of the join predicates are known exactly.

Definition 2.5.1 A join query Q is a pair (R,P ), where R = {R0, R1, . . . , Rn} is a

set of n + 1 relations, n ≥ 1, and P is a set of join predicates pi,j ∈ P representing

a join between relations Ri and Rj, 0 ≤ i, j ≤ n. Each predicate pi,j has a corre-

sponding selectivity si,j which is defined as the fraction of tuples from the Cartesian

product of Ri and Rj which satisfy the predicate pi,j. Each relation Ri ∈ R has a

cardinality ri which is defined as the number of tuples in Ri. [73]

The assumption here is that there is at most one predicate between each pair

of relations. We also assume that the predicate uses a basic comparison operator

(i.e. one of the following comparison operators: =, 6=, <,>,≤ or ≥). Therefore,

the output cardinality after joining Ri and Rj with a given join predicate pi,j of
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selectivity si,j is [73]:

|Ri 1pi,j Rj| = si,j × |Ri| × |Rj| = si,j × ri × rj (2.5.1)

It can be noticed from the above equation that if si,j = 1, then the join is a Cartesian

product. On the other hand, if si,j = 0 then the output cardinality will be zero and

no tuples will be produced after joining Ri and Rj. We assume that the selectivities

of predicates are independent of each other.

A join query Q can be represented as a graph, known as a join query graph.

Definition 2.5.2 Given a join query Q = (R,P ), the join query graph GQ = (V,E)

for Q is an undirected graph, where each node in V represents a relation from R and

there is an edge between Ri and Rj in E if there is a join predicate pi,j in P [49].

Join query graphs, or simply query graphs, can take different forms. The ones

that we consider in this thesis are acyclic query graphs and in particular chain query

graphs.

Definition 2.5.3 An acyclic query graph is a query graph with no cycles, while a

chain query graph is an acyclic query graph in which each node (i.e. relation) has

at most two incident edges (i.e. predicates).

Definition 2.5.4 Given a join query graph GQ = (V,E) for a join query Q = (R,P )

as defined in Definition 2.5.2, where R = {R0, R1, . . . , Rn}, GQ is called a connected

chain query graph if it is a chain query graph and there is a path from R0 to Rn.

Figure 2.2 shows three different forms of acyclic query graph. Both Figures 2.2(b)

and (c) are chain query graphs while Figure 2.2(a) is not. The only connected chain

query graph is the one in Figure 2.2(c).

In this study we consider only connected chain query graphs. This means that

the join query can be evaluated without having to perform a Cartesian product

between any two relations. This implies that if there are n + 1 relations in R then

there are n predicates in P . Let us now consider the following definitions about join

trees.
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(a)

(b)

(c)

Figure 2.2: Acyclic query graphs.

Definition 2.5.5 A join tree is a binary tree that represents the algebraic expres-

sion of a join query, where leaf nodes represent relations and non-leaf nodes repre-

sent join operators.

There are different types of join tree and generally they are classified into two

classes: linear trees and non-linear trees [38]. In linear trees, each join has at least

one base relation. Left-deep and right-deep trees are examples of linear trees, while

bushy trees are non-linear trees [38,73]. Each type of join tree may require a different

optimisation approach [24]. Therefore, it is important to specify what join trees will

be considered before optimising any given join problem. For example some studies

consider bushy trees, while others use left-deep trees [87]. Ioannidis and Kang state

that sometimes, for example when using probabilistic algorithms, finding optimal

bushy trees can be easier than finding optimal left-deep trees [65]. In our study,

we consider linear trees and more specificity we use left-deep join trees which are

defined next [52].

Definition 2.5.6 A left-deep join tree (LDJT) is a join tree where the right child

of each non-leaf node represents a relation Ri ∈ R.
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Linear trees (and therefore LDJTs) have a number of useful properties. One

property is that there is only one intermediate result at any stage to be considered

by the query optimiser [73,85]. Therefore, the cardinality of the intermediate results

can be estimated relatively easily, since each join involves at least one base relation.

Another property is that there is one-to-one mapping between a linear tree and a

(logical) execution plan [85]. An execution plan is the order in which operators are to

be performed at execution time. For example, the LDJT of Figure 2.3 corresponds to

the execution plan ((((R0 1 R1) 1 R2) . . . ) 1 Rn). Moreover, the number of possible

linear trees is considerably less than the number of bushy trees [52,85]. For example,

the number of left-deep join trees for a query graph with n relations is n! when

Cartesian products are allowed. However, if we consider a chain query graph with

no cross products, then the number of left-deep join trees is 2n−1 [85]. On the other

hand, the number of bushy trees is
(2n− 2)!

(n− 1)!
[52,85].

Our aim is to find the left-deep join tree of minimum cost. The following property

is very useful in finding the optimal LDJT, as will be shown in the following sections.

Definition 2.5.7 The optimality principle states that if tree T is an optimal join

tree for a set of relations R, then any sub-tree T ′ of T is optimal for the relations

in T ′ [85].

The join ordering problem is far from trivial. Therefore, in order to study the

problem under inaccurate statistics we decided to start using a basic setting and

find the LDJT that minimises the cost of evaluation a chain query. As mentioned

in Section 2.2, we are also only considering logical query optimisation. Moreover,

as we will discuss in the next section, the cost that we consider is symmetric (i.e.

Cost(Ri 1 Rj) = Cost(Rj 1 Ri)). Therefore, under these assumptions, it is easy

at this stage to transfer any LDJT to a right-deep join tree as they are both linear

join trees [85]. The optimal LDJT that is chosen by the optimiser and its cost

are passed to the physical query optimiser as inputs [38, 52]. These inputs along

with other parameters, such as index availability and access paths, as well as the

implementation algorithm of the join (e.g. index scan or nested-loop join) that is

adopted during physical query optimisation, influences the choice of query evaluation
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approach [38, 47]. For example, pipelined query evaluation cannot be used if the

physical optimisation step uses a sort-merge algorithm to perform the joins [38].

Moreover, restricting the space of logical query plans to be generated from LDJTs

undoubtedly influences and sometimes limits the choice of approaches to be used at

physical query optimisation. For example, using parallelism to build hash tables at

the physical optimisation stage is possible with right-deep join trees but not with

LDJTs [104].

2.5.2 Cost formalisation

Optimisers usually aim to minimise resource usage such as disk access in order to

reduce query execution time [38]. Moreover, there are a number of different measures

for calculating the cost of a given join tree T . Some measure the cost based on the

number of pages fetched [62]. Another well-known measure is to consider the size

of the intermediate results generated by the joins [49]. This measure is denoted by

Cout(T ), representing the summation of the cardinalities of the results in sub-tree

T . It is sufficient to use a relatively simple cost measure as long as the statistical

information provided is reasonably accurate or the optimiser takes into account the

inaccuracy of the statistical information [76]. For a given tree T , Cout(T ) is defined

as follows [49]:

Cout(T ) = 0 if T is a single relation

Cout(T ) = |T |+ Cout(T1) + Cout(T2) if T = T1 1 T2

Next we formulate the cost function for a left-deep join tree which is produced

from a given connected chain query graph. Assume that a set R = {R0, R1, . . . , Rn}

of n+ 1 relations is given where each relation has a cardinality ri. Consider a con-

nected chain query graph with a set of predicates. Given the set S = {s1, s2, . . . , sn}

of n selectivities, the selectivity si represents the predicate selectivity between Ri−1

and Ri. This simplifies our previous convention in Section 2.5.1 where si−1,i repre-

sents the predicate selectivity between Ri−1 and Ri. For a given left-deep join tree T

(see Figure 2.3), there are n sub-trees. A sub-tree Ti, where 1 ≤ i ≤ n, is associated

with the join that has relation Ri as the right branch. Considering this left-deep
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Tn = 1

Tn−1 = 1

...

T2 = 1

T1 = 1

R0 R1

R2

...

Rn−1

Rn

Figure 2.3: Left-deep join tree T

join tree T , the Cout cost formula can be reformulated as follows:

Cout(T ) =
n∑
i=1

|Ti| (2.5.2)

Equation (2.5.2) can be used to calculate the cardinality of the sub-trees. Let us

define an auxiliary selectivity s0 = 1 which simplifies the cost formulation and does

not affect the result. The cardinality calculations for T1 and T2 in the left-deep join

tree of Figure 2.3 are as follows:

|T1| = |R0 1 R1| = s0 × r0 × s1 × r1

|T2| = |(R0 1 R1) 1 R2| = s0 × r0 × s1 × r1 × s2 × r2

From the above example, we see that the cardinality of any given sub-tree Ti

is simply the product of the relation cardinalities and the join selectivities that are

involved in the sub-tree. Consequently, the cardinality for any sub-tree Ti can by

computed as follows:

|Ti| =
i∏

j=0

(sj × rj)

Since Cout is the sum of the cardinality of all n sub-trees, Equation (2.5.2) can
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be rewritten as follows:

Cout(T ) =
n∑
i=1

(
i∏

j=0

(sj × rj)

)
(2.5.3)

The Cout cost measure satisfies the optimality principle, where if tree T is an

optimal join tree base on Cout, then any sub-tree T ′ of T is also an optimal tree

[85]. Another property of Cout is symmetry, where for any relations Ri and Rj,

Cout(Ri 1 Rj) = Cout(Rj 1 Ri) [85].

The simplicity of a cost formula and its ease of calculation are desirable properties

in query optimisation [76]. As seen above, the Cout cost formula is relatively simple

and this is one of the reason we chose it for our study. Moreover, it has some useful

theoretical properties such as symmetry and satisfying the optimality principle, as

we will see in the next section. Since we are studying minmax regret in the context

of query optimisation, we chose a simple single measure for cost to start with before

considering other more complicated measures.

2.5.3 Finding an optimal left-deep join tree

Let Q = (R,P ) be a connected chain query, where R = {R0, R1, . . . , Rn} is a set

of n + 1 relations such that n ≥ 2 and P is a set of join predicates. We present in

this section a polynomial time algorithm that finds the optimal left-deep join tree

for Q [53, 62, 73, 88]. Before we discuss the proposed algorithm, we introduce some

basic definitions and lemmas.

Definition 2.5.8 A precedence graph Gi = (Vi, Ei) of Q = (R,P ) is a tree where

each node in Vi represents a relation in R, each edge in Ei represents a predicate in

P , and the root is Ri ∈ R [85].

Let GP = {G0, G1, . . . , Gn} be the set of all precedence graphs for the connected

chain query graph Q. Since Q is a chain query, a precedence graph is a tree with a

maximum of two branches such as those shown in Figure 2.4. Precedence graphs G0

and Gn are always chains, as illustrated in Figures 2.4(a) and 2.4(c) respectively.

Since we have a maximum of two branches in a precedence graph Gi, we use

πiL(j) and πiR(j) to identify the index (i.e. position) of any relation in the left and
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Rn−1
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(a) G0

Rn−2

Rn−3

...
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(b) Gn−2

Rn

Rn−1

...

R1

R0

(c) Gn

Figure 2.4: Sample precedence graphs.

right branches of Gi respectively. Therefore, the children of Ri in Gi have the index

of πiL(1) and πiR(1). For example, for Gn−2 in Figure 2.4(b), π(n−2)L(1) = Rn−3 and

π(n−2)R(2) = Rn. In the case of precedence graphs for G0 and Gn, we can use either

πiL(j) or πiR(j) to indicate the positions of any relations in G0 and Gn. However, we

prefer to use πiR(j) with G0 and πiL(j) with Gn. We can generally say that πiL(u)

and πiR(v) are used to identify the index of any relation in any given precedence

graph Gi where 0 ≤ i ≤ n such that u ∈ [1, i] and v ∈ [1, n− i].

Based on the given precedence graph Gi, the cost formula Cout for any relation or

sequence of relations can be defined in a recursive way by introducing the following

functions:

C(Ri) = 0 if Ri is the root

C(Rj) = rj × sj if Rj is any relation other than the root

C(MN) = C(M) + Γ(M)× C(N) where M and N are sequences of relations

Γ(N) =
∏

Rj∈N (rj × sj)

Definition 2.5.9 The rank for any sequence of relations N is computed as follows:

Rank(N) =
Γ(N)− 1

C(N)
(2.5.1)
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The following lemma defines a property of the cost formula Cout that allows us

to use the rank formula to decide the relative order of any sequences of relations in

the optimal plan.

Lemma 2.5.10 The cost formula Cout has the adjacent sequence interchange (ASI)

property. Therefore, for any sequences of relations L, M , N and O, where M and

N are non-empty sequences, the following is true given that both (LMNO) and

(LNMO) are consistent with the given precedence graph:

Cout(LMNO) ≤ Cout(LNMO) ⇔ Rank(M) ≤ Rank(N)

Proof : This proof is based on [62,73]. Using the recursive formulation for Cout,

we break down the cost calculations of Cout(LMNO) and Cout(LNMO) as follows:

Cout(LMNO) = C(L) + Γ(L)× C(M) + Γ(L)× Γ(M)× C(N)

+ Γ(L)× Γ(M)× Γ(N)× C(O)

Cout(LNMO) = C(L) + Γ(L)× C(N) + Γ(L)× Γ(N)× C(M)

+ Γ(L)× Γ(N)× Γ(M)× C(O)

If we subtract the two costs we get:

Cout(LMNO)− Cout(LNMO) = Γ(L) (C(M) + Γ(M)× C(N))

− Γ(L) (C(N) + Γ(N)× C(M))

Cout(LMNO)− Cout(LNMO) = Γ(L)× C(M)× C(N)

(
Γ(M)− 1

C(M)
− Γ(N)− 1

C(N)

)

Cout(LMNO)− Cout(LNMO) = Γ(L)× C(M)× C(N) (Rank(M)−Rank(N))

(2.5.2)

The sign of Equation (2.5.2) is determined by the result of the difference in ranks

since the other terms are always positive. As a result, the cost Cout has the ASI

property and we have the following:

Cout(LMNO) ≤ Cout(LNMO) ⇔ Rank(M) ≤ Rank(N)
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2

Now let us introduce some new terminology which will be used next. A node in a

precedence graph is a single relation or a group of relations. Consider the following

lemma which states that if a parent node in any given precedence graph Gi has a

rank greater than or equal to the rank of its child, then the child node will appear

immediately after the parent node in the optimal plan with no node in between

them. The proof for Lemma 2.5.11 can be found in [88].

Lemma 2.5.11 For any given precedence graph Gi, if there exist two nodes M and

N such that πiL(u) = M and πiL(u + 1) = N where 1 ≤ u ≤ i − 1 (or πiR(v) = M

and πiR(v + 1) = N where 1 ≤ v ≤ n− i− 1) with Rank(M) ≥ Rank(N), then in

the optimal plan, M will be followed immediately by N with no relation in between.

This is called precedence adjacency property.

We now present an algorithm that finds the optimal LDJT for a connected chain

query graph using an ASI cost formula. This algorithm is based on one that was first

introduced by Ibaraki and Kameda [62] and then extended by Krishnamurthy et al.

to cover further cost functions which have the ASI property [73]. This algorithm is

relevant since some aspects of it are used in our novel heuristic for the join ordering

problem with interval selectivities discussed in Chapter 7.

The algorithm is stated formally as Algorithm 1, but let us describe the general

idea here. We find the optimal plan for each precedence graph and the overall

optimal plan is the one with the smallest cost among them. In other words, we

consider each relation as a starting point for building the optimal plan, after which

we choose the plan with the smallest cost among them to be the overall optimal

plan.

In order to find the optimal plan for a given precedence graph Gi we first nor-

malise the two branches of Gi. The purpose of the normalisation step is to sort

the nodes on each branch in non-decreasing order according to their ranks. If there

exists an index u such that Rank(πiL(u)) ≥ Rank(πiL(u+ 1)) where 1 ≤ u ≤ i− 1

(or an index v such that Rank(πiR(v)) ≥ Rank(πiR(v+ 1)) where 1 ≤ v ≤ n− i− 1

for the right branch), then we combine both πiL(u) and πiL(u + 1) into one node
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Algorithm 1: FindingOptimalLDJT

1 getQueryOptimalLDJT(Q)

Input: Connected chain query graph Q

Output: Optimal LDJT solution optSol for Q

// Let G0, . . . , Gn be the precedence graphs for Q

2 optSol = getTreeSolution(G0);

3 for 1 ≤ i ≤ n do

4 tempSol = getTreeSolution(Gi);

5 if Cost(optSol) > Cost(tempSol) then

6 optSol = tempSol;

7 return optSol;

1 getTreeSolution(Gi)

Input: precedence graph Gi

Output: Optimal LDJT solution sol for Gi

2 normLeft = normalise(left branch of Gi);

3 normRight = normalise(right branch of Gi);

4 normalisedSequence = Ri + merge(normLeft, normRight);

5 return denormalise(normalisedSequence);

1 normalise(C)

Input: A chain C of relations

Output: A normalised sequence for C

2 while there is a node M with child N such that Rank(M) ≥ Rank(N) do

3 Group M and N in a new node;

4 return C;
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R0 R1 R2 R3

s1 s2 s3

Figure 2.5: The connected chain query graph Q in Example 2.5.1.

R1

R0 R2

R3

Figure 2.6: The precedence graph G1 in Example 2.5.1.

and recalculate the rank for the new node. This process continues until the end

of the branch. As a result, the nodes of the branch are sorted according to their

ranks (normalised). Once the two branches are normalised, we merge the nodes on

them in non-decreasing order according to their ranks. The optimal plan for the

precedence graph Gi is Ri followed by the unpacked (denormalised) sorted sequence.

For precedence graphs G0 and Gn, there is only one plan to consider which will be

their optimal plan. This is because G0 and Gn are chains of relations.

Example 2.5.1 Let Q be a connected chain query graph as shown in Figure 2.5.

Let R = {R0, R1, R2, R3} be set of relations involved in Q with the cardinalities

of the relations as follows: r0 = 200, r1 = 2000, r2 = 10000 and r3 = 100. Let

S = {s1, s2, s3} be a set of selectivities for the join predicates, where s1 = 0.01,

s2 = 0.2 and s3 = 0.5.

Algorithm 1 starts by passing the query graph Q to getQueryOptimalLDJT .

This function considers all precedence graphs for Q and finds the optimal plan for

each of them. The plan with the smallest cost is considered as the overall optimal

solution. The function getTreeSolution is used to find the optimal plan for a specific

precedence graph.

In this example, let us consider finding the optimal plan for the precedence

graph G1 (shown in Figure 2.6) using getTreeSolution. Two lists are created by

getTreeSolution to hold the normalised order of each branch using normalise. Since



2.5. Join ordering 52

the left branch consists of only one relation, it is already normalised. Therefore,

normLeft = R0. In order to normalise the right branch, the rank for each relation

should be calculated first. The following are the rank calculations using Equa-

tion (2.5.1):

Rank(R2) =
(10000× 0.2)− 1

10000× 0.2
= 0.9995

Rank(R3) =
(100× 0.5)− 1

100× 0.5
= 0.98

From the above equations, we notice that Rank(R2) > Rank(R3) which means

that the parent relation has a greater rank than its child. Therefore, R2 and R3

should be grouped (i.e. combined) in a new node, say R2,3, and the new rank calcu-

lated as follows:

Rank(R2,3) =
Γ(R2,3)− 1

C(R2,3)
=

Γ(R2,3)− 1

C(R2) + Γ(R2)× C(R3)

=
(r2 × s2 × r3 × s3)− 1

r2 × s2 + r2 × s2 × r3 × s3
= 0.9804

Now the right branch is normalised, so normRight = R2,3. The overall solution

for G1 will be the root R1 followed by the nodes from lists normLeft and normRight

sorted in non-decreasing order of their ranks. Therefore, in this case we need to find

the correct order for R0 and R2,3. We already know the rank for R2,3; the following

is the calculation of the rank for R0:

Rank(R0) =
(200× 0.01)− 1

200× 0.01
= 0.5

The temporary solution for G1 is normalisedSequence = R1, R0, R2,3, since

Rank(R0) < Rank(R2,3). The last step is to denormalise normalisedSequence

(i.e. unpack the nodes to a sequence of relations) to find the overall solution for G1,

which is R1, R0, R2, R3.

The above process is repeated for each precedence graph in order to find its

optimal plan. The algorithm then chooses the plan with the smallest cost (among

the solutions for all precedence graphs) as the overall optimal solution for the query

graph Q. 3
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2.6 Optimisation under inaccuracy

Most database query optimisers use cost models to estimate the costs of query plans

and to choose an efficient one [12, 22, 44, 59, 105]. Obviously, in cost models some

parameters may be inaccurate or even unknown as we discussed in Section 2.3.

Clearly, without any information to go on, it will be difficult to perform query

optimisation, so in the following we cover different assumptions on the available

data and how to make use of it.

There are number of approaches for dealing with inaccuracy in parameters during

the query optimisation process. Some suggest modelling the inaccuracy using a

probability distribution over a random variable [4, 5]. However in many real-life

problems there is a lack of information about the accuracy of parameter estimate

and its probability distribution [32,99]. In the presence of inaccuracy, some use the

mean based on the probability information [68,119]. However, this is not suitable for

cases where a high quality solution is required. Some DBMSs use pre-defined default

values for situations where the selectivity of some predicates is unavailable [12].

Alternatively some DBMSs perform what is called dynamic statistics which is a

technique that runs an SQL query to scan a small random part of a table in order

to get a selectivity estimation for some predicates [12].

Using the mean or modal value of the parameters to find the plan with least

cost under the assumption that this value remains constant during query execu-

tion is called Least Specific Cost (LSC) in [32]. As Chu et al. point out in [32],

if the parameters vary significantly, this does not guarantee finding the plan of

least expected cost. An alternative is to use probabilistic information about the

parameters, an approach known as Least Expected Cost (LEC) [32]. (A discussion

regarding the circumstances under which LEC or LSC is best appears in [31].) In

decision-theoretic terms, we are making decisions under risk, maximising the ex-

pected utility. However, probability distributions for the possible parameter values

are needed to make this approach work, whereas in our case we assume that we do

not have this information.

In parametric query optimisation several plans can be precompiled and then,

depending on the query parameters, one plan can be selected for execution [51].
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Moreover, in a dynamic environment, such as stream processing, one can more

quickly switch to a better plan when the parameters change. However, if there is a

large number of optimal plans, each covering a small region of the parameter space,

this becomes problematic. First of all, we have to store all these plans. In addition,

constantly switching from one plan to another in a dynamic environment (such as

stream processing) just because we have small changes in the parameters introduces

a considerable overhead. In order to amend this, researchers have proposed reducing

the number of plans at the cost of slightly decreasing the quality of the query

execution [39]. The MRO approach we use in this thesis can be seen as an extreme

form of parametric query optimisation by finding a single plan that covers the whole

parameter space.

Another approach to deal with the lack of reliable statistics is adaptive query pro-

cessing, in which an execution plan is re-optimised while it is running [16,18,68,82].

It is far from trivial to determine at which point to re-optimise, and adaptive query

processing may also involve materialising large intermediate results. More impor-

tantly, this means modifying the whole query processing engine; in our approach

no modifications of the actual query processing are needed. A gentler approach is

the incremental execution of a query plan [91]. In this approach, a query optimiser

starts with an initial plan. If the considered plan introduces an error above a certain

threshold, the optimiser considers that part of the plan which has a major influence

on the overall cost (under the inaccurate environment), re-optimises it and starts

build the solution incrementally. However, deciding on how to decompose a plan

into fragments and putting them together is a complex task.

Wu et al. state that predicate estimations are mostly provided as single values,

but that the inaccuracy should be indicated with estimations modelled as intervals

[118]. The use of intervals to estimate parameter values also appears explicitly

in [18] and implicitly in [86]. Babu et al. [18] use intervals to model the inaccuracy

of a single-point estimate. The uncertainty level L of the estimate E is represented

by a value from 0 (none) to 6 (very high) based on the source of estimation. For

example, if the estimation is obtained from the catalog, then it is considered as

less uncertain and hence L = 1. The estimation interval [El, Eu], where El and
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Eu are the lower and upper bounds respectively, is calculated using the the single-

point estimate E and the uncertainty value L such that El = E ∗ (1 − 0.1 ∗ L)

and Eu = E ∗ (1 + 0.2 ∗ L). During optimisation, only three scenarios, those using

the low estimates El, the single-point estimates E and the high estimates Eu, are

considered and a single plan for each of them is stored. The paper uses a proactive

re-optimisation approach where multiple plans are chosen at optimisation time and

one of them is used at run-time based on the environment. Therefore, these plans

from the three scenarios are considered as robust and switchable in order to avoid

re-optimisation at run-time. On the other hand, in our approach we consider all

scenarios as opposed to the three in this approach and choose only one of them at

optimisation time. Babu et al. mention that the choice of scenarios and number of

scenarios to be considered still need further study [18].

As mentioned on Section 2.3, histograms can be used to find the range/interval

of parameters under inaccurate statistical information. Moerkotte et al. [86] study

histograms which provide so-called q-error guarantees. Given an estimate ŝ for

parameter s, the q-error of ŝ is max(s/ŝ, ŝ/s). An estimate is q-acceptable if its

q-error is at most q. So if an estimate ŝ is q-acceptable, the true value s lies in the

interval 1/q× ŝ ≤ s ≤ q× ŝ, but there is no knowledge about any distribution within

the interval. The authors of [86] show that these histograms can be implemented

efficiently in real-world systems such as SAP HANA. We should mention that the

technique of using intervals can be applied to other approximate or error-tolerant

queries as well. All we need is the selectivity for an exact query as the lower bound

and the selectivity for a query that determines a candidate set with false positives

as the upper bound.

For another situation in which interval selectivities arise, consider estimating the

selectivities of string predicates which perform substring matching using SQL like,

a problem known to be difficult [29]. Let us consider a database in which email

messages are stored in a relation emails, with attributes such as sender, subject

and body (the textual contents of the email). Assume that many queries use selection

predicates such as subject like ‘%invest%’, so the database maintains indexes

on words and on 2-grams (say) of words which allow it also to provide selectivities
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for these.

Although the database maintains an index on words, the selectivity for the word

‘invest’ will be an underestimate for the selectivity of subject like ‘%invest%’

since the strings ‘reinvest’ and ‘investigation’ (and many others) also match this

predicate. Even if we are able to enumerate all words containing the string ‘invest’,

we do not know how to combine their individual selectivities into a single selectivity.

Instead we can use an interval selectivity with the exact match as a lower estimate.

As the upper estimate, we can use the minimum selectivity of all the 2-grams of

‘invest’ since any string containing ‘invest’ must contain all of its 2-grams as well.

Example 2.6.1 As a concrete example, consider the following query on the Enron

email data [35]:

select sender

from emails

where body like ‘%action%’ and

body like ‘%like%’ and

subject like ‘%use%’;

Let us abbreviate the three predicates by A, L and U (for ‘action’, ‘like’ and ‘use’).

The interval selectivities for the three predicates, as computed using the method

proposed above and explained in more detail in Section 5.4.1, are [0.03, 0.68] for A,

[0.17, 0.27] for L and [0.0008, 0.06] for U . Even if we consider only the upper and

lower bounds of these intervals, they give rise to 8 possible scenarios. No single

plan (order) is optimal for all 8 scenarios, so the best we can do is find the plan

which minimises the maximum regret. It turns out that this plan corresponds to

the order UAL. The maximum regret for this plan arises in the scenario when U

has its maximum selectivity (0.06), while A and L have their minimum selectivities

(0.03 and 0.17, respectively). The optimal plan for this scenario is AUL. 3

Notions of robustness in query optimisation have been considered in [17,18,82].

Babcock and Chaudhuri [17] use probability distributions derived from sampling

as well as user preferences in order to tune the predictability (or robustness) of

query plans versus their performance. For Markl et al. [82], robustness is measured
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by checking the estimated cost against the actual cost from query execution in a

progressive manner (i.e. oscillating between optimization and execution steps). If

the difference is larger than a certain value, then the generated plan is considered as

sub-optimal and the system stop execution to perform re-optimisation. On the other

hand, Babu et al. [18] consider a plan to be robust only if its cost is within e.g. 20%

of the cost of the optimal plan. None of these papers consider robustness in the sense

of minmax regret optimisation (MRO), which is the focus of this thesis. Moreover,

these techniques need additional statistical information to work. We propose to use

techniques from decision theory for making decisions under ignorance (more details

will be provided in Section 2.7), meaning that we know what the alternatives and

their outcomes are, but we are unable to assign concrete probabilities to them [95].

Our measure of optimality is the minimisation of the maximum regret as we will

discuss in the following sections.

2.7 Decision theory

Decision theory is a well-known area that generally studies how decisions can be

made using imprecise information. Some argue that decision theory was formally

introduced and used by the philosopher Condorcet in 1793, while others argue that it

is as old as the existence of humanity, since decision making is part of human activity

[60]. In many cases, there is a lack of sufficient information when taking a decision.

Moreover, defining the “best” decision varies from one person to another and from

one circumstance to another [95]. Since the middle of the 20th century, decision

theory has been used in different fields such as economies, statistics, psychology,

politics and social science [30,45,60,95].

In general each action in the process of decision making leads to different out-

comes which affect the following course of action. Decision theory is a well known

approach for taking a decision or a sequence of decisions in situations where there is

a lack of information or inaccurate information. Therefore, decision theory is used

to take a decision under risk, ignorance or uncertainty. When the probabilities of

the outcomes are known, then it is called decision under risk [95]. However, if the
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probabilities are unknown, then it called decision under ignorance [60,95], and this

is the assumption in our work. Decision under uncertainty is sometimes used as a

synonym for decision under ignorance or refers to decision under both risk and igno-

rance [95]. Peterson surveys different criteria for making decisions under ignorance

in decision theory [95], one of the criteria being the minmax regret approach which

is what we consider here. The minmax regret criterion was first introduced in the

statistics field by Savage in the nineteen fifties [103]. It also known as minimax risk,

minimax loss or simply minimax [60].

Decision theory also considers the decision maker’s view or preference with re-

spect to the problem [45]. Sometimes a decision maker has an optimistic view when

taking a decision, while others may have a pessimistic view. As a result, decision the-

ory has both optimistic and pessimistic criteria [30]. In the optimistic criterion, the

decision is taken assuming that the best situation is most likely to happen. On the

other hand, in the pessimistic criterion, the assumption is that the worst situation

is most likely to occur and the decision is taken under that situation [30, 45]. Both

optimistic and pessimistic criteria have been used in our experimental evaluation

and compared with the minmax regret criterion in Chapter 5.

2.8 Minmax regret optimisation

Recently there has been renewed interest in studying minmax, minmax regret and

minmax relative deviation/regret criteria for various combinatorial optimisation

problems, as well as studying their complexity and approximation [2, 3, 13, 40, 69].

Minmax regret optimisation (MRO) has been applied to a number of optimisation

problems where some of the parameters are (partially) unknown [3].

The difference between the minmax and minmax regret criteria is discussed in

[3, 119] and is as follows. The aim of minmax criterion is to find the solution that

performs best in its worst case scenario when compared with other solutions under

their worst case scenarios. On the other hand, by considering all scenarios, the aim

in the minmax regret criterion is to find the solution which minimises the maximum

difference between the cost of the plan and the cost of the optimal plan of the
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corresponding scenario. The relative deviation of a plan p under some scenario s

can be calculated by dividing the difference between the cost of p and the cost of

the optimal plan for s by the cost of the optimal plan for the s [3,119]. The minmax

relative deviation measure considers an optimal plan as a plan that minimises the

maximum relative deviation over all scenarios [40]. Yang, Kouvelis and Yu discuss

the differences between the three measures and their use in some combinatorial

optimisation problems [72,119].

In general minmax, minmax regret and minmax relative regret criterion are

suitable for critical systems which should function well even under a worst case

scenario [3]. These criteria aim to minimise the impact of a worst case scenario

when it occurs. The minmax criterion is appropriate for non-repetitive decision

making, and for precautionary measures in vital systems such as nuclear accidents or

public health where the goal must be met under any variation in the parameters. In

applications where the decision maker evaluates the performed decision, the minmax

regret criterion is useful as an indicator of how the decision could be improved if

the imprecision in the parameters are resolved [3]. Moreover, the minmax regret

criterion is useful for cases where the objective is to find a solution that can perform

as close as possible to the optimal value under all scenarios. This is also true for

the minmax relative regret criterion. The minmax relative regret criterion is used

to find the ratio of the cost of the chosen plan compared to the cost of the optimal

plan, which can be considered as the percentage deviation of the given plan from

the optimal one [15]. Therefore, it measures the degree of (sub) optimality of a plan

under a scenario. This criterion is more appropriate when the decision maker is

interested in the percentage of loss rather than the actual value [15].

An important advantage for minmax, minmax regret and minmax relative regret

criteria is that they only need basic information about the imprecise parameters (i.e.

the interval of the minimum and maximum expected value of the parameter) unlike

other approaches which require more information such as the probability distribution

of values [3, 119]. On the other hand, these criteria are not appropriate where the

target is to find the best possible plan or when the decision maker is optimistic and

willing to take some risk and find a better solution [3]. Moreover, in an environment
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where the worst case scenario rarely occurs, then these criteria are not recommended.

The minmax criterion is viewed as a pessimistic approach since it compares plans

just under their worst scenarios assuming that parameters taking their worst values.

Such approach has been considered in our work among others and compared with

MRO as we will see in Chapters 5 and 8. We applied minmax regret criterion in our

work because we want to know how good/bad a plan compared to the optimal plan

for a scenario. Moreover, in query optimisation the aim is to find a plan that can

perform as close as possible to the optimal value under all scenarios and minmax

regret criterion is suitable for such cases as mentioned before.

The complexity of the MRO version of a problem is often higher than that

of the original problem [75]. Many optimisation problems with polynomial-time

solutions turn out to be NP-hard in their MRO versions [3]. It is believed that,

in general, optimising the minmax regret version of a problem is harder than the

original problem [2]. In addition, if the number of scenarios is not constant, then

it is highly likely that the minmax regret version is NP-hard even if the original

problem is solvable in polynomial time [2].

Aissi et al. considered the minmax and minmax regret to the shortest path and

minimum spanning tree problems [2]. An approximation algorithm is provided for

these two problems [2]. The complexity of applying minmax and minmax regret

on problems such as shortest path, spanning tree, assignment and knapsack are

also considered in [3, 14], as are approximation algorithms for some of the NP-hard

problems discussed [3].

In his book, Kasperski studies further problems that use minmax and minmax

regret as measuring criteria and associated approximation algorithms [69]. Averbakh

studied the minmax regret version of the problem of choosing p elements out of m

elements, p ≤ m, such that the total weight is minimum [13]. In this problem the

weights of the elements are uncertain and modelled as intervals. The problem is

proved to be NP-hard, and a heuristic algorithm with complexity O((min {p,m −

p})2m) is provided which uses the means of the interval estimates of the weights.
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2.9 Scheduling problems

Machine scheduling problems have attracted considerable attention and study in

computer science. These problems are relevant to our study since the goal in machine

scheduling is to find the optimal order for a set of jobs, while in our case we want

to find the optimal order for a set of operators. In Section 2.9.1 we study a specific

scheduling problem, called the Total Flow Time (TFT) problem, that uses MRO to

deal with imprecise parameters. Then we discuss some optimisation approaches for

the TFT problem in Section 2.9.2. This improves our understanding of MRO for

the problems of selection and join ordering.

Some studies have focused on the complexity of the scheduling problems [54,

77, 78, 114] and their applications [72], while others have focused on approximation

algorithms [36, 75, 84, 116]. Machine scheduling comes in many versions, such as

single-machine job scheduling and multiple-machine scheduling [107]. In some lit-

erature, the problem of job scheduling on multiple machines is known as the load

balancing problem [7].

One exhaustive study on the complexity of different machine scheduling problems

was undertaken by Lenstra et al. [77]. A more recent study is by Allahverdi et al. [6].

Lenstra et al. identify which machine scheduling problems are polynomial-time solv-

able and which are NP-complete. The paper classifies machine scheduling problems

according to their objective functions and to the number of machines and. The

NP-completeness proofs for some problems, such as minimising the total weighted

completion time in single-machine scheduling and maximising the completion time

in a flow-shop on multiple-machines are also provided. In [78], it is proven that

scheduling jobs with precedence constraints on a single-machine according to the

completion time or due date criteria is NP-complete.

2.9.1 Total flow time scheduling problem

Now let us consider the problem of job scheduling on a single machine where the

objective is to find the order which minimises the total flow time (defined below).

In the case where the processing time for each job is known, the ordering problem
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is a deterministic problem [80]. The optimal solution in this case can be found by

sorting the jobs in non-decreasing order according to their processing time. Now let

us discuss the case where each job has a processing time that is uncertain [75]. We

studied this problem because it is somewhat similar to the selection order problem

we consider in this thesis.

Definition 2.9.1 We are given a set J = {j1, j2, . . . , jn} of n jobs where n ≥ 2.

Each job has a processing time ti = [ti, ti] where ti ≥ 0 and ti ≤ ti. The set J is

processed on a single machine. Assigning a specific value to each ti, where 1 ≤ i ≤ n,

is called a scenario. A scenario is called an extreme scenario if each 1 ≤ ti ≤ n is

either equal to ti or ti.

Definition 2.9.2 Given two jobs ji, jj ∈ J , job ji is nested in job jj if tj < ti and

ti < tj.

Let X = {x | x ∈ [t1, t1]×[t2, t2]×· · ·×[tn, tn]} be the set of all possible scenarios.

Let P = {u1, u2, . . . , um}, such that m = n!, be the set of all scheduling plans which

are formed from the permutations of jobs, where uk = (juk(1), juk(2), . . . , juk(n)).

Definition 2.9.3 The total flow time (TFT) of plan uk under scenario x is [69]:

f(uk, x) = (tuk(1)) + (tuk(1) + tuk(2)) + (tuk(1) + tuk(2) + tuk(3)) + · · ·+
n∑
i=1

tuk(i)

= (n)tuk(1) + (n− 1)tuk(2) + (n− 2)tuk(3) + · · ·+ tuk(n)

=
n∑
i=1

(n− i+ 1)tuk(i) (2.9.1)

For every scenario, there is a scheduling plan where the total flow time is min-

imum. Let this be represented as: f ∗(x) = minuk∈Pf(uk, x). The absolute regret

γ(uk, x) for any plan uk under scenario x is:

γ(uk, x) = f(uk, x)− f ∗(x) (2.9.2)

The optimal regret R(P,X) which minimises the maximal regret for the set P

of scheduling plans under the set X of all possible scenarios is as follows:

R(P,X) = min
u∈P

(max
x∈X

(γ(u, x))) (2.9.3)
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Given set of J jobs, let P (J) be the set of possible plans for J and X(J) be the set of

possible scenarios. The minmax regret optimisation problem for J , which denoted

as MRO(J), is to find a plan whose maximum regret matches R(P (J), X(J)).

Applying a brute-force approach to find the optimal minmax regret scheduling

plan for n jobs requires considering all n! possible scheduling plans in set P under all

scenarios in set X. Daniels and Kouvelis [40] proved that it is sufficient to consider

only the extreme scenarios (i.e. 2n scenarios). Therefore, the total flow time f(uk, x)

of every plan uk under each of 2n different scenarios x can be computed first. For

each scenario x, the optimal plan f ∗(x) for scenario x is used to calculate the regret

γ(uk, x) of plan uk under scenario x using Equation 2.9.2. After calculating the regret

of each plan under each scenario, the maximum regret of each plan is identified.

Finally, the MRO optimal plan is the one that has the smallest maximum regret.

2.9.2 TFT minmax regret optimisation approaches

The total flow time formula in Equation (2.9.1) is simpler than the cost formula

for the selection ordering problem as shown in Equation (2.4.2), since it consists of

only a summation of simple terms, while the cost formula for the selection ordering

problem is a summation of products, each of which depends on prevouse terms in

the formaul. Nevertheless, studying the TFT problem enhanced our understanding.

A special case of applying MRO to the TFT problem is studied in [75]. It con-

siders the case of nested intervals of uncertain processing times, where all intervals

have the same midpoint equal to zero, and it assumes that no two intervals share the

same boundary value. Sorting the jobs in any uniform order (where uniform order

means that the wider intervals are towards the middle of the permutation and the

narrower intervals are toward the ends), solves the problem in O(n log n) time, if the

number of jobs is even, while the problem is NP-hard if the number of jobs is odd.

In addition, the paper shows that if the number of jobs is even, then the worst-case

scenario for a uniform permutation is the one where the first half of the jobs take

their maximum processing times and the last half of the jobs take their minimum

processing times [75]. This propery does not hold for the selection ordering problem

(although it provided insperations for the use of what we call max-min scenarios in
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our heuristic described in Chapter 4).

Using the midpoint of the processing time intervals of the job can be used in an

approximation algorithm for the minmax regret optimisation of the total flow time

problem [40,69–71]. Using the midpoint leads to a 2-approximation: that is, the cost

of the approximated solution is no more than twice that of the optimal solution [70].

The approximate solution can be found in polynomial time by simply sorting the

jobs in non-decreasing order according to the midpoints of their interval processing

times [69]. We tried using this approach for the selection ordering problem. How-

ever, considering only the midpoint selectivities of the selection operators does not

guarantee a MRO solution that does not exceed twice the optimal solution in terms

of regret (more detail is provided in Section 3.4.4). There are many other approaches

to approximate the minmax regret of total flow time job scheduling. Some of these

approaches apply the so-called stability approach to the problem [110,111].

A method known as adjacent pairwise interchange has been used by [88,109] to

solve the problem of the total flow time job scheduling. This method uses a rank to

sort the jobs. The results presented in [109] hold for unconstrained sequencing, i.e.

there are no precedence or preference orderings among the jobs, while in [88] more

general cases are covered. A proven property states that if two adjacent jobs are

not in preference order, then swapping these jobs will result in a better scheduling

without increasing the cost [109]. Therefore, the main idea of this approach is

to compare the cost of a given schedule and the cost of the same schedule but

with the positions of two neighbouring jobs being swapped. A better schedule is

produced if the cost after the swap is smaller than the cost of the original plan

[88]. An enhancement of adjacent pairwise interchange is called adjacent sequence

interchange, which proposes swapping two sequences of jobs instead of swapping two

indeviual jobs. Conditions and limitations are provided in [88]. Adjacent pairwise

interchange is useful in the join ordering problem, as we saw in Section 2.5.3.

For minmax regret total flow time scheduling, [40, 75] show that the worst-case

scenario for any schedule is an extreme one (i.e. contains only minimum and maxi-

mum values). We have proved that the same holds for our selection ordering problem

as we show in Section 3.4.2. In the case where one job ji dominates another job
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jk, [40,75] show that ji must precede jk in the optimal minmax regret solution and

this is the case in our problem as well (more details are provided in Section 3.4.3).

In total flow time scheduling, the worst-case scenario x of any given schedule u

can be easily determined by comparing u to the optimal schedule f ∗(x) [40]. If a

job appears in u before it appears in f ∗(x), then the job will take its maximum

processing time in the worst-case scenario x [69]. However, if the job appears in u

after or at the same position as it appears in f ∗(x), then it will take its minimum

processing time in x [69]. This property does not hold for the selection ordering

problem. Consider the following counter-example:

Example 2.9.1 Let S = {σ1, σ2, σ3, σ4, σ5, σ6, σ7} be a set of selection operators,

with selectivities s1 = [0.0, 1.0], s2 = [0.05, 0.97], s3 = [0.07, 0.92], s4 = [0.247, 0.76],

s5 = [0.248, 0.68], s6 = [0.258, 0.67] and s7 = [0.37, 0.66]. All operators have the

same cost 1 and the relation has cardinality Ω = 1. If we consider plan p =

σ1σ2σ3σ4σ5σ6σ7, we find that its worst case scenario is x = (s1, s2, s3, s4, s5, s6, s7)

and the optimal plan for scenario x is popt(x) = σ6σ7σ5σ4σ3σ2σ1. Operator σ4 appears

in the same position in both p and popt(x), however it is assigned its maximum selec-

tivity in the worst-case scenario. Also, operator σ5 appears in p after its position in

popt(x), however it is assigned its maximum selectivity in the worst-case scenario x.

3

2.10 Conclusion

This chapter has provided a review of relevant related work. We started by review-

ing query languages in general and the relational algebra in particular. Then we

discussed how query is processed in DBMSs. After that the query optimisation and

evaluation are discussed as well as how optimisers work. We considered problems

related to the statistical data that is used by query optimisers, such as its accuracy

and availability, and how these problems affect the quality of plans produced by the

optimiser. We also defined the selection ordering and join ordering problems which

are the focus of this thesis.

Moreover, we have reviewed optimisation under inaccurate statistics and the
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state of the art approaches in this area. In this thesis, we solve the selection/join or-

dering problems under impresice statistica using minmax regret optimisation (MRO),

an approach used in decision theory. We reviewed decision theory and some related

problems, such as the total flow time problem, that use MRO. In the following chap-

ters we will study in more detail the problems of selection ordering and join ordering

under impresise statistics, in addition to presenting the heuristics we developed in

order to solve the both problems.



Chapter 3

The Selection Ordering Problem

This chapter first provides a formal definition of the ordering problem for selection

operators. Then, it defines the minmax regret optimisation problem for selection

operator ordering and explains the brute force approach to solve the problem. After

that, a number of properties of the problem will be identified, followed by some

special cases which are solvable in polynomial time. Some of the work presented in

this chapter has been published in papers [9] and [10].

3.1 Basic problem definition

This section presents a formal definition for the general problem of selection ordering

where the selectivities are defined partially and fall within some particular interval

of values. The costs of operators can also be assumed to be within some interval,

but we will restrict ourselves to partially defined selectivities. As mentioned in

Sections 2.4.1 and 2.4.2, it is important in logical query optimisation to find the

best order in which to evaluate either a conjunction predicates or a set of selection

operators. Similar to Section 2.4.1, in the following definitions we consider the

problem of ordering a set of selection operators.

Definition 3.1.1 Given a set S = {σ1, σ2, . . . , σn} of selection operators, each has

a selectivity si and a cost ci. Each selectivity is defined by a closed interval: for

1 ≤ i ≤ n, si = [si, si] with si, si ∈ [0, 1] and si ≤ si. For 1 ≤ i ≤ n, ci ∈ R+

represents the cost of σi for processing an input tuple.

67
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Due to imprecise statistics in DBMSs, the selectivity si can take any value in the

closed interval [si, si]. Similar to other works (e.g. [18,28,37,46,81]), we start solving

the selection ordering problem by assuming that the selectivities of operators are

independent of each other. It is true that this assumption is a limitation, however

it is still used in some modern optimisers [46, 79]. Various relationships between

two selection operators can be defined based on their selectivity intervals. In the

following we define some relationships that play significant roles, as we will see later

in Section 3.5.

(a) Strictly dominant (b) Dominant overlapped (c) Nested

Figure 3.1: Possible relationships between selection operators.

Definition 3.1.2 Given two selection operators σi, σj ∈ S, we say that σi dominates

σj if si ≤ sj and si ≤ sj. A dominant set is a set of selection operators S =

{σ1, σ2, . . . , σn} where for each pair of operators σi, σj ∈ S, either σi dominates σj

or σj dominates σi.

Figures 3.1(a) and 3.1(b) show different sets of dominant operators, where the

vertical dimension indicates selectivity. The domination relationship has properties

which are helpful in optimising selection orders. This will be discussed in more detail

in the following sections. Now consider the following definition.

Definition 3.1.3 Given two selection operators σi, σj ∈ S, we say that σi and σj

are equal operators if si = sj and si = sj. An equal set is a set of selection operators

S = {σ1, σ2, . . . , σn} where for each pair of operators σi, σj ∈ S, σi and σj are equal.

There are different kinds of domination based on whether a common selectivity

value exists between the dominant operators or not.
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Definition 3.1.4 Given two selection operators σi, σj ∈ S, we say that σi strictly

dominates σj if si < sj. A strictly dominant set S is a set of selection operators

where for each pair of operators σi, σj ∈ S, either σi strictly dominates σj or σj

strictly dominates σi.

Definition 3.1.4 states that operators σi and σj have no common selectivity value

as shown in Figure 3.1(a). However, if they have a common selectivity value, then

we call them dominant overlapped operators.

Definition 3.1.5 Given two selection operators σi, σj ∈ S, we say that σi and σj

are dominant overlapped operators if si ≤ sj ≤ si ≤ sj but σi and σj are not equal.

An dominant overlapped set S is a set of selection operators where each pair

of operators has an dominant overlapped relationship. We usually use the term

dominant overlapped operators to refer to an ordered set of dominant operators

sorted in non-decreasing order according to their maximum/minimum selectivities

where each operator can only overlap with its immediate successor and/or immediate

predecessor. This means that if σi overlaps with σj, and σj overlaps with σk then

σi does not overlap with σk. This case is represented in Figure 3.1(b). However, if

the term “dominant” is used alone, then it refers to domination in general.

Given two selection operators σi, σj ∈ S, if neither σi dominates σj nor σj dom-

inates σi, then σi and σj form a nested pair of operators as shown in Figure 3.1(c)

or an equal pair of operators. The nested relationship can be defined formally as

follows:

Definition 3.1.6 Given two selection operators σi, σj ∈ S, we say that σj is nested

in σi if si ≤ sj and si ≥ sj but σi and σj are not equal. A nested set S is a set of

selection operators where for each pair of operators σi, σj ∈ S, either σi is nested in

σj or vice versa.

In our setting each selectivity is known to be within some interval. However, at

query run time each selection operator will have a specific selectivity value from its

selectivity interval.
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Definition 3.1.7 An assignment of concrete values to all n selectivities is called a

scenario and is defined by a vector x = (s1, s2, . . . , sn), with si ∈ [si, si].

The set of all possible scenarios can be defined as X = {x | x ∈ [s1, s1] ×

[s2, s2]×· · ·× [sn, sn]}. A query evaluator encounters one specific scenario each time

it runs a query. However, it is unaware of which scenario it will encounter during

the optimisation step. In Section 3.4 we will see that not all scenarios in X are

important. Actually there are specific types of scenarios we are interested in which

are defined next [8].

Definition 3.1.8 An extreme scenario is a scenario xext = (s1, s2, . . . , sn) in which,

for each 1 ≤ i ≤ n, si is equal to either si or si.

Recall from Section 2.4.1 that πn is the set of all possible permutations over

1, 2, . . . , n and for πj ∈ πn, πj(i) denotes the i-th element of πj. Recall also a query

execution plan pj which is a permutation σπj(1), σπj(2), . . . , σπj(n) of the n selection

operators where the set of all possible query execution plans is given by:

P = {p | p = σπ(1), σπ(2), . . . , σπ(n) such that π ∈ πn}.

Let us rewrite Equation (2.4.2) to define the cost of evaluating plan pj under a

given scenario x as follows:

Cost(pj, x) = Ω

(
cπ(1) + sπ(1)cπ(2) + sπ(1)sπ(2)cπ(3) + · · · +

n−1∏
i=1

sπ(i)cπ(n)

)

= Ω

(
n∑
i=1

(
i−1∏
j=1

sπ(j)

)
cπ(i)

)
(3.1.1)

where Ω denotes the cardinality of the relation on which we execute the selection

operators, and the selection predicates are assumed to be stochastically independent.

For every scenario x there is an execution plan popt(x) which has the minimal

cost and a permutation πopt(x) associated with this plan. Since the selectivities of

the selection operators are uncertain, a plan pj may potentially face many different

scenarios having an impact on the plan quality. Even though a given plan pj may

be optimal with respect to some scenario x, it may not be optimal when faced with

another scenario y [8]. Therefore, the criterion for evaluating the optimality of a
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plan pj is different to the one used in the classical selection ordering problem. To

determine the quality of a plan, we utilise minmax regret optimisation.

3.2 Minmax regret optimisation

Having defined the general problem of selection ordering, now we define the minmax

regret optimisation problem for selection ordering. The regret of a plan for a given

scenario is defined as follows:

Definition 3.2.1 Given a plan p and a scenario x, the absolute regret γ(p, x) of p

for x is:

γ(p, x) = Cost(p, x)− Cost(popt(x), x) (3.2.1)

The regret of a plan under its worst-case scenario is known as plan’s maximal

regret which can be defined as: maxx∈X(γ(p, x)). The plan with the optimal regret,

denoted R(P,X), is the one that has the smallest maximal regret. It is formally

defined as follows:

Definition 3.2.2 Given the set P of all possible execution plans and the set X of

all possible scenarios, minimising the maximal regret is defined as follows:

R(P,X) = minp∈P (maxx∈X(γ(p, x))) (3.2.2)

Given a set S of selection operators, let P (S) denote the set of possible plans for

S and X(S) denote the set of possible scenarios for S. Now consider the following

definition.

Definition 3.2.3 The minmax regret optimisation problem for S, which we denote

MRO(S), is to find a plan whose maximum regret matches R(P (S), X(S)).

For simplicity, and when there is no confusion, we also use MRO(S) to denote a

plan which minimises R(P (S), X(S)).
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3.3 Brute force approach

Minmax regret optimisation in general tries to find the plan whose maximum regret

is minimum. This means that when the plan is confronted with its worst-case

scenario, it will have the best performance among all other plans (when confronted

with their worst-case scenarios).

The brute force approach simply works as follows. If there are n operators, there

will be n! different execution plans. Then, the cost of each plan can be computed

based on every scenario x in the scenario set X. We show later in Theorem 3.4.2 that

it is sufficient to consider only the extreme scenarios since the worst-case scenario

for any plan is always an extreme one. Hence, if there are n operators, we need

to consider 2n extreme scenarios. For each scenario, the plan with the smallest

cost is known as the optimal plan for this scenario and is used to calculate the

regret of the plan based on this scenario using Equation (3.2.1) in Section 3.2. After

calculating the regret of each plan in each scenario, the maximum regret of each plan

is identified. Finally, the optimal plan is the one that has the smallest maximum

regret. This is illustrated in the following example.

Example 3.3.1 Let S = {σ1, σ2, σ3} be a set of selection operators, with selectiv-

ities s1 = [0.2, 0.8], s2 = [0.3, 0.5] and s3 = [0.1, 0.4]. For simplicity, assume that

all operators have the same cost 1 and that the relation has cardinality Ω = 1 (so

to get the real costs, the numbers in Tables 3.1 and 3.2 have to be multiplied by

the true cardinality). To find the plan which minimises the maximum regret, we

can perform an exhaustive enumeration of all possible execution plans under every

possible scenario. For our example, Table 3.1 shows the 48 cost values for the 6

possible plans under each of 8 extreme scenarios.

For example, consider the first plan p1 = σ1σ2σ3 under scenario x1 = (s1, s2, s3) =

(.2, .3, .1). We first calculate Cost(p1, x1) using Equation (3.1.1) (note that Ω and

each ci is set to 1 here):

Cost(p1, x1) = (1 + .2 + .2× .3) = 1.26

The optimal plan popt(x) for any scenario x is one in which the operators are in non-

decreasing order of their selectivities (assuming that all operators have the same



3.3. Brute force approach 73

Scenario

Plan

x1 x2 x3 x4 x5 x6 x7 x8

s1 s1 s1 s1 s1 s1 s1 s1

s2 s2 s2 s2 s2 s2 s2 s2

s3 s3 s3 s3 s3 s3 s3 s3

p1 = σ1σ2σ3 1.26 1.26 1.3 1.3 2.04 2.04 2.2 2.2

p2 = σ1σ3σ2 1.22 1.28 1.22 1.28 1.88 2.12 1.88 2.12

p3 = σ2σ1σ3 1.36 1.36 1.6 1.6 1.54 1.54 1.9 1.9

p4 = σ2σ3σ1 1.33 1.42 1.55 1.7 1.33 1.42 1.55 1.7

p5 = σ3σ1σ2 1.12 1.48 1.12 1.48 1.18 1.72 1.18 1.72

p6 = σ3σ2σ1 1.13 1.52 1.15 1.6 1.13 1.52 1.15 1.6

Table 3.1: The cost for each plan under each scenario in Example 3.3.1.

cost 1). Alternatively we can visualise the optimal plan for any scenario as the one

with the smallest cost in each column in Table 3.1 which is shown in bold face.

Therefore, the optimal plan for scenario x1 is popt(x1) = σ3σ1σ2 and its cost is:

Cost(popt(x1), x1) = (1 + .1 + .1× .2) = 1.12

The regret of plan p1 under scenario x1 using Equation (3.2.1) is given by:

γ(p1, x1) = Cost(p1, x1)− Cost(popt(x1), x1)

= 1.26− 1.12 = 0.14

In order to find the minmax regret solution, the maximum regret of each plan needs

to be found. For plan p1, the maximum regret is 1.05 which occurs in scenario

x7 = (s1, s2, s3), its worst-case scenario. The maximum regret for each plan is

shown in bold face in Table 3.2.

Finally, we are looking for the plan with the smallest maximum regret (i.e. the

smallest value in the last column of Table 3.2). As a result the minmax regret

solution, MRO(S), is plan p5 = σ3σ1σ2, which has the best performance among all

plans when confronted with their worst-case scenarios. 3
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Scenario

x1 x2 x3 x4 x5 x6 x7 x8

Plan

s1 s1 s1 s1 s1 s1 s1 s1
Maximum

s2 s2 s2 s2 s2 s2 s2 s2
Regret

s3 s3 s3 s3 s3 s3 s3 s3

p1 = σ1σ2σ3 0.14 0 0.18 0.02 0.91 0.62 1.05 0.6 1.05

p2 = σ1σ3σ2 0.1 0.02 0.1 0 0.75 0.7 0.73 0.52 0.75

p3 = σ2σ1σ3 0.24 0.1 0.48 0.32 0.41 0.12 0.75 0.3 0.75

p4 = σ2σ3σ1 0.21 0.16 0.43 0.42 0.2 0 0.4 0.1 0.43

p5 = σ3σ1σ2 0 0.22 0 0.2 0.05 0.3 0.03 0.12 0.3

p6 = σ3σ2σ1 0.01 0.26 0.03 0.32 0 0.1 0 0 0.32

Table 3.2: The regret for each plan under each scenario in Example 3.3.1.

It is clear that applying the brute force approach to find the optimal minmax

regret solution is not practical. Even when it considers only the extreme scenarios

(using Theorem 3.4.2), it still requires n! × 2n calculations for a set of n opera-

tors. However, since MRO(S) is an NP-hard problem (as shown in Section 3.4), we

implemented the brute force approach in order to evaluate the performance of our

heuristic, as will be described in Chapter 5.

Going back to Example 3.3.1, it is interesting to note which scenario gives rise

to the maximum regret for each plan. In this case, each worst-case scenario is such

that the operators at the beginning of the plan take on their maximum selectivity

followed by the remaining operators that take on their minimum selectivity. We call

such a scenario a max-min scenario.

Definition 3.3.1 Let p be the plan σπ(1), σπ(2), . . . , σπ(n). A scenario for p is called

a max-min scenario if there is a 0 ≤ k ≤ n such that for all 1 ≤ i ≤ k, sπ(i) = sπ(i),

and for all k + 1 ≤ i ≤ n, sπ(i) = sπ(i).

This means that the first k operators in p take on their maximum selectivity,

while the rest of the operators take on their minimum selectivity. For a plan p

with n operators, there are n+ 1 max-min scenarios. This special class of scenarios
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is important in some of the cases which can be solved in polynomial time, as we

will see in Section 3.5. Moreover, they play a major role in the heuristic we have

designed, as we will discuss in Chapter 4. However, it is important to mention that,

in general, a max-min scenario may not be the worst-case scenario for a plan.

3.4 MRO properties for selection ordering

Applying the brute-force approach for solving MRO(S) is not practical. Unfortu-

nately, MRO(S) is NP-hard as we show in the next subsection. Therefore, it is

essential to discover some properties of the problem in order to find cases which can

be solved in polynomial time. Moreover, considering these properties allows us to

develop an efficient heuristic. This section highlights some of the main properties1.

3.4.1 Hardness of MRO for selection operator ordering

In this subsection, we show that the decision problem for general MRO(S), which

we call minmax regret, is NP-hard. In this version of the problem, we are given

a set S = {σ1, σ2, . . . , σn} of selection operators, with each operator σi assumed to

have unit cost. We are also given a set X = {X1, X2, . . . , Xm} of scenarios, where

each scenario Xj specifies a selectivity sij for each operator σi, 1 ≤ j ≤ m and

1 ≤ i ≤ n.

To simplify the notation, let us identify a plan p with the permutation π, and

from now on π(i) is used to denote the index of the operator appearing in position

i in plan π.

Below we define the decision problem minmax regret as well as the well-known

NP-complete problems set cover and exact cover by 3-sets.

minmax regret: given a set S of n selection operators, a set X of m scenarios,

and a real number R, is there a plan whose maximum regret is less than R?

set cover: given a finite set A, a collection T of subsets of A, and a positive

1I would like to thank my supervisors for formulating the proofs in this section, which are

included for completeness.
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integer r, is there a subset C = {C1, . . . , Cr} of T such that
⋃
Ci∈C Ci = A, that is,

such that C covers A?

exact cover by 3-sets: given a finite set A with |A| = 3q and a collection T of

3-element subsets of A, is there a subset C of T such that each element of A occurs

in exactly one member of C?

It is known that a restriction of exact cover by 3-sets which requires that

each element of the set A appears in exactly three subsets of T is NP-complete [58].

Since set cover is a generalisation of exact cover by 3-sets, we also have that

restricted set cover, defined below, is NP-complete.

restricted set cover: given finite set A, collection T of subsets of A such that

each element of A appears in exactly three subsets of T , and positive integer r, is

there a subset C = {C1, . . . , Cr} of T such that C covers A?

We show that minmax regret is NP-hard by reducing restricted set cover

to it.

Theorem 3.4.1 minmax regret is NP-hard.

Proof : We reduce restricted set cover to minmax regret. Given an

instance of restricted set cover represented by A, T and r, we construct an

instance of minmax regret as follows. Let |A| = m and |T | = n. Each subset Cj

in T is represented by an operator σj in S, and each element ai ∈ A is represented

by a scenario Xi ∈ X such that the selectivity for operator σj in Xi, that is, sij is

1/(n + 1) if ai ∈ Cj and 1 if ai 6∈ Cj. Since each element of A appears in exactly

three subsets, each scenario Xi ∈ X has three selectivities of 1/(n + 1) and n − 3

selectivities of 1. Hence the optimal plan for each scenario has the same cost, say,

p. We set R to r− p and claim that there is a subset of T of size r which covers A if

and only if there is a plan whose maximum regret over all scenarios is less than R.

Assume there is a subset C = {Ck1 , . . . , Ckr} of T which covers A. Let π be any

plan in which π(i) = σki , 1 ≤ i ≤ r, that is, in which the first r operators correspond

to subsets in the cover. Since C is a cover, for no scenario Xi can it be the case that

the selectivity for each of the first r operators in π is 1. At worst, the first r − 1

operators have selectivity 1, with the r’th operator having selectivity 1/(n+ 1), and
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the remaining n− r operators having selectivity 1. The cost of this plan is therefore

r− 1 + (n− r+ 1)/(n+ 1), which is always less than r. Hence the regret is less than

R = r − p, where p is the cost of the optimal plan.

Now assume no subset of T of size r covers A. In other words, for every subset

of size r, at least one element of A is not in any set in the subset. Hence, for every

plan π, there must be some scenario in which the first r operators have selectivity 1.

Finding a plan which minimises the maximum regret is the same as finding a plan

which minimises the maximum cost since the cost of the optimal plan is the same

for each scenario. Since every plan in this case has cost at least r, there is no plan

whose maximum cost is less than r. Hence there is no plan whose maximum regret

is less than R = r − p, where p is the cost of the optimal plan. 2

Since the decision problem for general MRO(S) of selection operators is NP-

hard, we considered two directions. In one direction we tried to find the exact

minmax regret solution for some special cases in polynomial time, as we will see in

Section 3.5. In the other direction we developed an efficient heuristic for MRO(S),

as we will discuss in Chapter 4.

3.4.2 Extreme Scenarios

The following theorem shows that in order to determine the worst-case scenario of

a plan, i.e., the scenario for which a plan exhibits its largest regret, we only have to

check extreme scenarios.

Theorem 3.4.2 The worst-case scenario for any query plan p is always an extreme

scenario.

Proof : We introduce the following notation to show that our cost formulas are

piecewise linear functions:

Lπx(y) :=

y∑
i=1,i 6=x

(
i∏

j=1,j 6=x

sπ(j)

)

Rπ
x(y) :=

n−1∑
i=y,i6=x

(
i∏

j=1,j 6=x

sπ(j)

)
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where Lπx(y) computes the cost of plan p with the operator permutation π up to the

operator at position y. We skip the operator at position x, i.e., the summand in

which sπ(x) appears first is left out of the sum and sπ(x) is omitted in all products.

Analogously, we define Rπ
x(y) which computes the cost to the end of the plan starting

from position y. If we do not want to skip any operators, we simply write Lπ(y) or

Rπ(y).

Consider a selection operator σm in p such that its selectivity sm is not extreme,

i.e., sm < sm < sm. Expressing the costs of p and popt(x) as a function of sm:

Cost(p, x, sm) = Lπ(v − 1) + smR
π
v (v − 1)

Cost(popt(x), x, sm) = Lπopt(x)(w − 1) + smR
πopt(x)
w (w − 1)

we see that Cost(p, x) is a linear function in sm. Cost(popt(x), x, sm) is linear as long as

sπopt(x)(w−1) ≤ sm ≤ sπopt(x)(w+1). If sm leaves this range, then popt(x) will change,

as all operators are sorted in ascending order of their selectivity. Nevertheless,

Cost(popt(x), x, sm) is a piecewise linear function. Clearly, we can swap the positions

of two operators in an optimal plan without changing its optimality if the operators

have exactly the same selectivity. So if sm = sπopt(x)(w − 1) = · · · = sπopt(x)(w − k),

then we can swap σm with σw−k. Analogously, if sm = sπopt(x)(w + 1) = · · · =

sπopt(x)(w + k), then we can swap σm with σw+k. For the cost of the optimal plan,

this means Cost(popt(x), x, sm)

=



...

Lπopt(x)(w − k − 1) + smR
πopt(x)
w (w − k − 1)

if sπopt(x)(w − k − 1) ≤ sm ≤ sπopt(x)(w − k)

Lπopt(x)(w − 1) + smR
πopt(x)
w (w − 1)

if sπopt(x)(w − 1) ≤ sm ≤ sπopt(x)(w + 1)

L
πopt(x)
w (w + k) + smR

πopt(x)
w (w + k)

if sπopt(x)(w + k) ≤ sm ≤ sπopt(x)(w + k + 1)
...

Figure 3.2 illustrates the cost functions for p and popt(x).

We show that Cost(popt(x), x, sm) is a concave (or convex upwards) function. For

our piecewise linear function this means proving that by increasing sm (moving into
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smsm 10

Cost(popt(x)

Lπ(v−1)

m

m

Cost(p,x,s   )

,x,s   )

Figure 3.2: Visualisation of Cost(p, x, sm) and Cost(popt(x), x, sm)

the next piece) the slope will never increase, while if we decrease sm, the slope will

never decrease.

Increasing sm will change the slope of Cost(popt(x), x, sm) from R
πopt(x)
w (w − 1) to

R
πopt(x)
w (w+k). R

πopt(x)
w (w+k) is less or equal than R

πopt(x)
w (w−1), as they are identical

except for the additional summands w−1 to w+k−1 in R
πopt(x)
w (w−1). Analogously,

decreasing sm will change the slope from R
πopt(x)
w (w−1) to R

πopt(x)
w (w−k−1) (which

is greater or equal).

So γ(p, x) = (Cost(p, x)−Cost(popt(x), x)) is a convex function, whose domain is

restricted to a polyhedral convex set, defined by the lower and upper bounds of the

selectivities. The global maximum of such a function is always found at one of the

extreme points of the polyhedral convex set (Corollary 32.3.4 in [102]). 2

From the above it is clear that, in finding the optimal MRO solution, it is suf-

ficient to consider only the extreme scenarios since the worst-case scenario for any

plan is always an extreme one. That means in the case of n operators, each execution

plan will be confronted with only 2n extreme scenarios.

3.4.3 Domination

Recall Definition 3.1.2, which states that for two operators σa, σb ∈ S, σa dominates

σb if sa ≤ sb and sa ≤ sb. In the following we show that σa precedes σb in the

minmax regret solution if σa dominates σb.
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Theorem 3.4.3 If σa dominates σb, then there exists a plan p minimising the max-

imal regret in which σa precedes σb.

Proof : Assume that p is a plan minimising the maximal regret in which σb

precedes σa: π(w) = b and π(w+k) = a. Furthermore, assume that p′ is constructed

from p by swapping σb and σa: π
′(w) = a and π′(w+k) = b. All the other operators

are in exactly the same order as in p. We assume that p′ does not minimise the

maximal regret.

Let us investigate the difference in regret between p′ and p for any given scenario

x. Since the optimal plan is the same for both regrets

Cost(p′, x)− Cost(p, x) = (sa − sb)
w+k−1∑
i=w

(
i∏

j=1,j 6=w

sπ(j)

)

we only need to check what happens between positions w and w+k−1, as Lπ(w−1)

and Rπ(w+k) (see the proof of Theorem 3.4.2 for the meaning of this notation) are

identical for both p and p′.

Because this holds for every scenario, it also holds for the worst-case scenario y′

of p′. Let us assume first that the selectivities for σa and σb in y′ are either (sa, sb),

(sa, sb), or (sa, sb). Since σa dominates σb, we know that sa ≤ sb, sa ≤ sb, and

sa ≤ sb. Therefore,

(sa − sb)
w+k−1∑
i=w

(
i∏

j=1,j 6=w

sπ(j)

)
≤ 0

which means that the maximal regret of p′ cannot be greater than that of p. This also

holds for strict domination, i.e., when sa ≤ sb. However, this is a contradiction to

our assumption. Thus, for the worst case scenario y′, we must have the selectivities

(sa, sb) with sa > sb.

Let us look at a scenario y′′ which is identical to y′ except for sa = sb = sc with

sa > sc > sb (see Figure 3.3). From Theorem 3.4.2 we know that the regret can

be increased by moving to an extreme scenario. In this case sa has to be increased

from sc to sa and sb has to be decreased from sc to sb to reach the maximal regret

γ(p′, y′).

Clearly, γ(p, y′′) = γ(p′, y′′). The following is illustrated in Figure 3.3. Increasing

sb from sc to sa and decreasing sa from sc to sb for p under scenario y′′ (dotted
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a
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b
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p’: ...
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Figure 3.3: Visualisation for scenario y′′

arrows) will have exactly the same effect as increasing sa and decreasing sb for p′

under scenario y′′ (solid arrows). However, this may not be an extreme case scenario

for p yet. Further increasing sb to sb and decreasing sa to sa can never decrease the

regret (according to Theorem 3.4.2). But that means we have found a scenario for p

which has at least the same regret as the worst-case scenario for p′, which contradicts

our assumption. 2

Applying Theorem 3.4.3 to each pair of dominant operators will place the dom-

inant operators in the correct position relative to each other in the minmax regret

solution. Consequently for a problem with unit cost for each operator and only

dominant operators, the minmax regret solution is the one where the operators are

sorted in non-decreasing order according to their minimum (or maximum) selectiv-

ity value. Obviously finding this solution can be done in polynomial time. We will

have more discussion on this in Section 3.5.

3.4.4 Midpoints of Intervals

For the TFT problem, Kasperski used the simple heuristic of sorting jobs in non-

decreasing order according to the midpoints of their intervals, yielding a 2-approx-

imation [69]. This approach does not guarantee a bound for the MRO(S) selection

ordering, as shown below. The quality of the midpoint solution can become arbi-
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trarily bad. Before showing this, we need the following lemma.

Lemma 3.4.4 Given a query plan p and a scenario x, we have the following re-

lationship between the summands in Cost(p, x) and Cost(popt(x), x), where popt(x) is

the optimal plan for scenario x:

k∏
j=1

sπ(j) ≥
k∏
j=1

sπopt(x)(j) for all k with 1 ≤ k ≤ n− 1

Proof : If there exists an sm = 0, then
∏k

j=1 sπopt(x)(j) = 0 for all k and the

above holds, as si ≥ 0 for all i. This is due to sπopt(x)(1) = sm = 0 (popt(x) sorts

the selections in non-decreasing order of their selectivities according to the ranking

algorithm). Thus, in the following all si > 0.

We assume there is a k for which
∏k

j=1 sπ(j) <
∏k

j=1 sπopt(x)(j) (proof by contra-

diction). Let πk = {π(i) | 1 ≤ i ≤ k} be the set of indexes of the first k selection

operators in p and πkopt(x) = {πopt(x)(i) | 1 ≤ i ≤ k} the set of indexes of the first k

selection operators in popt(x). If πk = πkopt(x), then the two products are equal, which

is a contradiction to our assumption. So in the following we assume πk 6= πkopt(x).

Nevertheless, the intersection between πk and πkopt(x) may be non-empty. In this

case we can discard all the selectivities common to both products:∏
j∈πk∩πk

opt(x)

sj
∏

j∈πk\πk
opt(x)

sj <
∏

j∈πk∩πk
opt(x)

sj
∏

j∈πk
opt(x)

\πk
sj

⇔
∏

j∈πk\πk
opt(x)

sj <
∏

j∈πk
opt(x)

\πk
sj

Therefore, there exists i ∈ πk \πkopt(x) such that si < max(sl | l ∈ πkopt(x) \πk) (or the

inequality would not hold). However, that means σi has appeared in p but not yet in

popt(x). This is a contradiction: the selection operators are sorted in non-decreasing

order in popt(x) and σi should have appeared in popt(x) before the selection operator

with selectivity max(sl | l ∈ πkopt(x) \ πk). 2

To show that using the midpoint does not guarantee a bound for MRO(S), let us

consider the following. Given a set S with 2n+ 1 operators, let the first n operators

have the selectivities si = 0 and si = 1 (1 ≤ i ≤ n), while the next n operators

have the selectivities si = si = 0.5 + ε (n+ 1 ≤ i ≤ 2n) for some small ε. The final
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operator has a constant selectivity of 1 to guarantee that it will always be in last

position, meaning that its selectivity will not impact any further steps.

The midpoint heuristic will give a plan p by ordering the operators in exactly

this way: σ1 · · ·σ2n+1 from 1 to 2n + 1. Clearly, the worst-case scenario x for this

plan is when si is set to 1 for 1 ≤ si ≤ n. In the optimal plan for this scenario x,

the operators σi with n+ 1 ≤ i ≤ 2n will be executed first.

The regret of this plan is computed as follows:

γ (p, x) = 1 + 12 . . . + 1n + f(n)

− (0.5 + ε) − (0.5 + ε)2 . . . − (0.5 + ε)n − g(n)

where f(n) and g(n) stand for the cost of the remaining operators in the plan. Using

Lemma 3.4.4, we know that f(n) ≥ g(n). Therefore, a lower bound for this regret

expression is the following:

Midpoint lower regret bound = n− n(0.5 + ε) = n(0.5− ε) (3.4.1)

With increasing n and having small value for ε, this expression can get arbitrarily

large. Consider the following example.

Example 3.4.1 Using Equation (3.4.1), suppose that n = 10 and ε = 0.001. Then

the lower bound regret for the midpoint solution is as follows:

Midpoint lower regret bound = 10(0.5− 0.001)

= 4.99

3

Despite the above result, we do evaluate the midpoint heuristic in Chapter 5.

3.5 Polynomial solvable cases

In this section we show that, for a set of selection operators S that satisfies some

particular properties, MRO(S) can be found in polynomial time. In some of these

cases we can also characterise the worst-case scenario for the optimal solution. As

before, we assume throughout this section that the cost of each operator is one.

Before introducing the polynomial-time cases, it is helpful to recall the definitions
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of the relationships between the operators from Section 3.1, such as domination

(including strictly and overlapped operators), nested and equal operators.

3.5.1 Constant and dominant operators

Let S be a set of selection operators such that the selectivity of each operator

can be estimated accurately (i.e., each selectivity is constant). Then, according

to Section 2.4, the minmax regret solution can be found in polynomial time by

simply sorting the operators in non-decreasing order according to their rank given by

Equation (2.4.1). However, if all operators have the same cost as in our assumption,

then just sorting the operators in non-decreasing order of their selectivities will find

the optimal solution MRO(S).

Now consider the general case of domination. Recall from Section 3.1 that a

dominant set S of operators is one in which, for each pair σi, σj ∈ S either σi

dominates σj or σj dominates σi. Also recall Theorem 3.4.3 from Section 3.4.3.

This theorem allows us to conclude that the minmax regret solution is one where

the operators are sorted in non-decreasing order according to their minimum (or

maximum) selectivity values. Note that a set of constant operators is a special case

of a dominant set. As a result we can state the following.

Corollary 3.5.1 If S is a dominant set of operators, then MRO(S) can be solved

in O(n log n) time.

The O(n log n) complexity in Corollary 3.5.1 is basically the complexity of sort-

ing. It is interesting to note that the regret value of the minmax regret solution for

a set S of constant or strictly dominant operators is always zero. This is because

the operators in MRO(S) under any scenario are in exactly the same order as the

corresponding optimal plan.

3.5.2 Strictly dominant operators with constant operators

The minmax regret solution for a set S of strictly dominant operators, can be found

in the same way as in the general case of domination. However, the problem becomes

more difficult when we include nested operators. As a step toward solving the general
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problem, here we introduce a single constant operator to be nested within one of

the non-constant strictly dominant operators. Next we will define the problem

formally. Let S = {σ1, σ2, . . . , σn} be a set of dominant selection operators. We say

that S is a set of strictly dominant operators if for all pair of operators σi, σj ∈ S

either σi strictly dominates σj, or σj strictly dominate σi (see Definition 3.1.4 and

Figure 3.1(a)).

Let S be a strictly dominant set and σc be a constant operator nested within

one of the non-constant operators in S, say σi. In this case, we know how to place

the dominant operators relative to each other in MRO(S) but we need to determine

the position of σc in MRO(S). Since si ≤ sc ≤ si, the constant operator σc should

be placed either immediately before or immediately after σi in MRO(S). It turns

out that the position of σc is determined only by comparing its selectivity value and

the midpoint selectivity value of σi, as shown below.

Proposition 3.5.1 Let S be a strictly dominant set of n operators such that

MRO(S) = (σ1, . . . , σn). Let σc be an operator with constant selectivity sc such

that si ≤ sc ≤ si, for some 1 ≤ i ≤ n, and S ′ = S ∪ {sc}. In MRO(S ′), σc is placed

between:

• σi−1 and σi if sc ≤ (si + si)/2, or

• σi and σi+1 if sc ≥ (si + si)/2.

Proof : The operators σi and σc are always neighbours in an MRO solution

(appearing after σi−1 and before σi+1): any operator σh such that 1 ≤ h ≤ i − 1

dominates σc and σi, and σc and σi dominate any operator σj such that i+1 ≤ j ≤ n.

Let us assume that σi has selectivity si in scenario x and selectivity si in scenario

x′. Moreover, let us define plan p that is constructed from MRO(S) by placing σc

before σi, π(v) = c and π(v + 1) = i. Similarly we define plan p′ by placing σc after

σi (i.e. π′(v) = i and π′(v + 1) = c). We consider below the two cases generated

from the scenarios x and x′.

Case 1: The optimal plan popt(x) places σi before σc in scenario x (the operators

are sorted in non-decreasing order of their selectivities), i.e., σi and σc are at position

v and v + 1, respectively. We now compute the maximum regret of p and p′ for
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scenario x:

Cost(popt(x), x) = Lπ(v − 1)(1 + si + sisc) +Rπ(v + 2)

Cost(p, x) = Lπ(v − 1)(1 + sc + scsi) +Rπ(v + 2)

Cost(p′, x) = Lπ
′
(v − 1)(1 + si + sisc) +Rπ

′
(v + 2)

(Recall that the above notation was introduced in the proof of Theorem 3.4.2). As

Lπ(v − 1) = Lπ
′
(v − 1) and Rπ(v + 2) = Rπ′(v + 2), we can compute the regret of p

and p′ as follows:

γ(p, x) = Lπ(v − 1) (sc − si) (3.5.1)

γ(p′, x) = 0 (3.5.2)

So for scenario x, plan p has a greater regret than p′ and it can be calculated by

Equation (3.5.1).

Case 2: In scenario x′, σi follows σc in popt(x′). For computing the costs of the

different plans, this means:

Cost(popt(x′), x
′) = Lπ(v − 1)(1 + sc + scsi) +Rπ(v + 2)

Cost(p, x′) = Lπ(v − 1)(1 + sc + scsi) +Rπ(v + 2)

Cost(p′, x′) = Lπ
′
(v − 1)(1 + si + sisc) +Rπ′(v + 2)

Consequently, the regret of p and p′ is

γ(p, x′) = 0 (3.5.3)

γ(p′, x′) = Lπ(v − 1) (si − sc) (3.5.4)

In this case (scenario x′) plan p′ has a greater regret than p and it is calculated using

Equation (3.5.4).

Comparing both cases we can see that p has a smaller maximum regret than p′

whenever Equation (3.5.1) < Equation (3.5.4). This is the case when sc < (si+si)/2

and then we place σc before σi. Similarly, plan p′ has a smaller maximum regret than

p′ whenever Eq. (3.5.1) > Eq. (3.5.4). We place σc after σi when sc > (si + si)/2.

For the breakeven point, i.e. sc = (si + si)/2, σc can be placed before or after σi.
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If σc comes before σi, then x is the worst-case scenario (σi having a selectivity of

si). Otherwise, when we place σc before σi, then x′ is the worst-case scenario (the

selectivity of σi being si). 2

The following proposition shows that the worst-case scenarios of the MRO(S)

solution described in Proposition 3.5.1 are max-min scenarios.

Proposition 3.5.2 Let S be a strictly dominant set of n operators such that

MRO(S) = (σ1, . . . , σn). Let σc be an operator with constant selectivity sc such

that si ≤ sc ≤ si, for some 1 ≤ i ≤ n, and S ′ = S ∪ {sc}. The scenario

(s1, . . . , sj−1, sc, sj, . . . , sn), in which either σj−1 or σj is equal to σi, is a worst-case

scenario for MRO(S ′).

Proof : From Proposition 3.5.1 we know that if sc ≤ (si+si)/2, then the minmax

regret is computed by Equation (3.5.1) for plan p. In plan p, σi follows σc (so σj = σi)

and the selectivity of σi is si. The other selectivities do not influence the regret, so

we can set the selectivity of the operators σ1 to σj−1 to their upper bounds and the

selectivity of the operators σj+1 to σn to their lower bounds. If sc ≥ (si + si)/2,

then the minmax regret is computed by Equation (3.5.4) for plan p′. In plan p′, σc

follows σi (so σj−1 = σi) and the selectivity of σi is si. Here we choose the upper

bounds for the operators σ1 to σj−2 and the lower bounds for the operators σj to

σn. In both cases this results in a max-min scenario. 2

Proposition 3.5.1 can be extended to the case in which each non-constant strictly

dominant operator has at most one constant operator nested within it. The minmax

regret solution of this case can be formed by grouping each constant operator with

the interval operator in which it is nested and solving each group locally as above.

Analogically to Proposition 3.5.2, the worst-case scenario of the minmax regret

solution of this case is also as the above but with the follow improvements:

• Each interval operator which appears before the first group in the minmax

regret solution should be set to its upper bound.

• Each interval operator which appears after the last group in the minmax regret

solution can be set to its upper or lower bound and we choose the lower bound.
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3.5.3 Dominant overlapped operators

Now let us consider the case of dominant overlapped operators as described earlier in

Section 3.1. Here we assume that, when the operators are sorted in non-decreasing

order of their minimum (or maximum) selectivities, each operator overlaps only with

its immediate predecessor and its immediate successor. So we are looking at cases

such as those shown in Figure 3.1(b). For example, if operator σi overlaps with

operator σj and at the same time operator σj overlaps with operator σk, then σi

and σk do not overlap with each other. It is clear that such setting is a special case

of domination. Therefore, for a given set S of dominant overlapped operators, the

MRO(S) solution can be found in polynomial time by just sorting the operators

in non-decreasing order according to either their maximum or minimum selectivity

values.

Finding the worst-case scenario for the MRO(S) solution is not as straightfor-

ward as we saw in Section 3.5.2 for the case of strictly dominant operators. This is

because any operator σi ∈ S can change its position in the corresponding optimal

solution compared to its position in the MRO(S) solution. The interesting fact in

this setting is that any operator in MRO(S) can move at most one position earlier

in its corresponding optimal plan, and this is true under any scenario. Consider the

following example:

Example 3.5.1 Let S = {σ1, σ2, σ3} be dominant overlapped set of selection oper-

ators with selectivities as follows: s1 = [0.1, 0.3], s2 = [0.25, 0.5] and s3 = [0.4, 0.9].

Since S is a dominant overlapped set, the operators are sorted in non-decreasing

order according to their minimum/maximum selectivities and MRO(S) = σ1σ2σ3.

We notice that σ2 overlaps both σ1 and σ3, but there is no overlap between σ1 and

σ3.

We know that the optimal plan for any given scenario can be easily generated

by sorting the operators in non-decreasing order according to their selectivities.

Now consider scenario xa = (s1, s2, s3); its optimal plan is popt(xa) = σ2σ1σ3. We

notice that σ2 moves only one position earlier in popt(xa) compared to its position in

MRO(S) and this is the farthest move for any operators in this setting. On the other
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hand, there are scenarios such as xb = (s1, s2, s3) with optimal plan popt(xb) = σ1σ2σ3,

where the operators do not change their position compared to MRO(S). 3

We have designed a polynomial time algorithm to find the worst-case scenario

for the MRO(S) solution. Before introducing the algorithm, we first introduce some

terminology and prove some properties. Let S be the set of dominant overlapped

operators that consists of 2n+ 1 non-constant dominant overlapped operators. We

assume that operators in S also do not have equal selectivity intervals or equal

selectivity boundaries. Let plan p be the minmax regret solution MRO(S). The

first operator in p is represented as σF and the rest of the operators are grouped

in n groups, each with a pair of operators represented by σA(i) and σB(i), where

1 ≤ i ≤ n. We assume σA(i) dominates σB(i), 1 ≤ i ≤ n, and σB(i) dominates σA(i+1),

1 ≤ i ≤ n− 1. Let plan p<i represent the partial plan of the minmax regret solution

that only includes operator σF and the first i− 1 groups. Similarly, let x<i denote a

partial scenario for operators in plan p<i. The regret of plan p<i under scenario x<i

is written as γ(p<i, x<i) which we sometimes abbreviate to R<i. The regret after

adding group i with its partial scenario say (sA(i) · sB(i)) to the operator σF and

the first i − 1 groups with scenario x<i is written as γ(p<i+1, x<i · sA(i) · sB(i)). We

define
∏σi to be the product of the selectivites for all operators up to and including

operator σi under the considered scenario. Now consider the following lemma.

Lemma 3.5.2 For a given set S of 2n+1 dominant overlapped operators as defined

above, a worst-case scenario for the minmax regret solution is one that starts with

sF followed by either
(
sA(i) · sB(i)

)
or
(
sA(i) · sB(i)

)
for each group i, 1 ≤ i ≤ n.

Proof : In order to prove this lemma we will use induction on n. For the base

case of n = 1, S includes the operators σF , σA(1) and σB(1).

Base case: We need to prove that there is no scenario with a bigger regret than

the regret under scenarios
(
sF · sA(1) · sB(1)

)
or
(
sF · sA(1) · sB(1)

)
.

This can be verified by looking at the regret of all eight possible extreme scenar-

ios. According to previous results, any scenario for which the operators are sorted
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in non-decreasing order according to their selectivities will make the regret of the

plan zero. Therefore the following are the zero regret scenarios for the base case:

γ
(
p<2, sF · sA(1) · sB(1)

)
= γ

(
p<2, sF · sA(1) · sB(1)

)
= γ

(
p<2, sF · sA(1) · sB(1)

)
= γ

(
p<2, sF · sA(1) · sB(1)

)
= 0 (3.5.5)

The following are the scenarios where the regret is not zero:

γ
(
p<2, sF · sA(1) · sB(1)

)
= γ

(
p<2, sF · sA(1) · sB(1)

)
=

(
sF − sA(1)

)
(3.5.6)

γ
(
p<2, sF · sA(1) · sB(1)

)
= sF

(
sA(1) − sB(1)

)
(3.5.7)

γ
(
p<2, sF · sA(1) · sB(1)

)
= sF

(
sA(1) − sB(1)

)
(3.5.8)

From Equation (3.5.6) we can see that γ
(
p<2, sF · sA(1) · sB(1)

)
is never larger

than γ
(
p<2, sF · sA(1) · sB(1)

)
. From Equations (3.5.7) and (3.5.8) we can see that

γ
(
p<2, sF · sA(1) · sB(1)

)
> γ

(
p<2, sF · sA(1) · sB(1)

)
, since sF > sF . As a result, the

maximum regret for the base case is under scenario
(
sF · sA(1) · sB(1)

)
or scenario(

sF · sA(1) · sB(1)

)
.

Inductive case: Now assume the result holds for a plan with i−1 groups, where

2 ≤ i ≤ n. We show that when adding group i to plan p<i, scenario
(
sA(i) · sB(i)

)
or(

sA(i) · sB(i)

)
will produce the maximum regret for group i.

Due to the special setting of this problem, any operator can move at most one

position earlier in its corresponding optimal plan compared to its position in the

minmax regret solution. So, in order to verify the inductive case, we only need to

study operators σB(i−1), σA(i) and σB(i). This is due to the fact that the rest of the

operators (i.e. operators σF to σA(i−1)) do not change their position in the optimal

plan, no matter what scenario is chosen for group i. Therefore, if there is any change

in the positions of operators in the corresponding optimal plan after adding group

i, it will be only by swapping:
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• σB(i−1) with σA(i) under the scenario that has σB(i−1) assigned its maximum

selectivity and σA(i) assigned its minimum selectivity, or

• σA(i) with σB(i) under the scenario that has σA(i) assigned its maximum selec-

tivity and σB(i) assigned its minimum selectivity.

Now let us study the regret after adding group i and find the partial scenario

x<i+1 which maximises the overall regret. First, we consider the new scenarios (after

adding group i) that are based on scenario x<i which ends with sB(i−1). When σB(i−1)

has its minimum selectivity, there will be no swap between σB(i−1) and σA(i) in the

new optimal plan for scenario x<i+1, since sA(i) and sA(i) are always greater than

sB(i−1). Consequently, the regret of plan p<i+1 in this case will include the value

of γ (p<i, x<i) in addition to the contributed regret value generated by adding σA(i)

and σA(i). The following are the calculations of γ (p<i+1, x<i+1) for each of the four

scenarios when scenario x<i ends with sB(i−1):

γ
(
p<i+1, x<i · sA(i) · sB(i)

)
= γ

(
p<i+1, x<i · sA(i) · sB(i)

)
= γ

(
p<i+1, x<i · sA(i) · sB(i)

)
= R<i + 0 = R<i (3.5.9)

γ
(
p<i+1, x<i · sA(i) · sB(i)

)
= R<i +

σB(i−1)∏ (
sA(i) − sB(i)

)
(3.5.10)

Next, let us consider the new scenarios that are based on x<i which ends with

sB(i−1). When σB(i−1) is assigned its maximum selectivity, its position will be at the

end of plan p<i as well as at the end of the corresponding optimal plan for scenario

x<i, since sB(i−1) is larger than the selectivity of any preceding operator. Moreover,

it can be noticed that the last term in the cost formula (i.e. the product of the

selectivities of all operators) of the plan p<i and the corresponding optimal plan

for scenario x<i will be exactly the same, hence they will cancel out in the regret

formula when the cost of optimal plan is subtracted from the cost of the plan p<i.

As a result sB(i−1) do not appear at the regret of x<i in this case. So γ (p<i, x<i)
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can be rewritten as follows2:

γ
(
p<i, x<i

)
= γ

(
p<i, x<i−1 · sA(i−1) · sB(i−1)

)
= γ

(
p<i, x<i−1 · sA(i−1)

)
= R<i (3.5.11)

Considering Equation (3.5.11), it is clear that even if there is a swap between

sB(i−1) and sA(i) in the new optimal plan for scenario x<i+1 after adding group i,

γ
(
p<i+1, x<i · sA(i) · sB(i)

)
will still include the regret value of γ (p<i, x<i) as it is.

Consequently, the new regret in this case after adding group i will include the regret

value of γ (p<i, x<i) in addition to that of σB(i−1) and that generated by attaching

group i to plan p<i. The following are the calculations of γ (p<i+1, x<i+1) for each

of the four scenarios when x<i ends with sB(i−1):

γ
(
p<i+1, x<i−1 · sAi−1

· sB(i−1) · sA(i) · sB(i)

)
= γ

(
p<i+1, x<i−1 · sAi−1

· sB(i−1) · sA(i) · sB(i)

)
= R<i +

σA(i−1)∏ (
sB(i−1) − sA(i)

)
(3.5.12)

γ
(
p<i+1, x<i−1 · sAi−1

· sB(i−1) · sA(i) · sB(i)

)
= R<i +

σB(i−1)∏ (
sA(i) − sB(i)

)
(3.5.13)

γ
(
p<i+1, x<i−1 · sAi−1

· sB(i−1) · sA(i) · sB(i)

)
= R<i + 0 = R<i (3.5.14)

Clearly the regrets in Equations (3.5.10), (3.5.12) and (3.5.13) are greater than

those in Equations (3.5.9) and (3.5.14). Therefore, partial scenarios
(
sA(i) · sB(i)

)
or(

sA(i) · sB(i)

)
maximise the regret for group i; hence the inductive case holds. 2

Proposition 3.5.3 For a given set S of 2n+1 dominant overlapped operators, any

group i with partial scenario
(
sA(i) · sB(i)

)
in the worst-case scenario of MRO(S) will

be followed by
(
sA(j) · sB(j)

)
for all j > i.

Proof : This proposition can be proved by reconsidering Equations (3.5.9) and

(3.5.10) in the proof of Lemma 3.5.2. These equations show the regret of plan p<i+1

when scenario x<i ends with sB(i−1). They show that the regret γ (p<i+1, x<i+1)

is maximised under the partial scenario (sA(i+1) · sB(i+1)) . As a result, scenario

2Note: in the following formulas sA(i−1) has no overline/underline, which means that operator

σA(i−1) has whatever selectivity it was assigned in scenario x<i.
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x<i+1 ends with an operator assigned its minimum selectivity (sB(i+1)) again. Con-

sequently, all the following groups j, where i < j ≤ n, will have the selectivities(
sA(j) · sB(j)

)
. 2

Proposition 3.5.4 The worst-case scenario for MRO(S), where S is a set of 2n+ 1

dominant overlapped operators, can be found in polynomial time.

Proof : From Lemma 3.5.2 we know that for each group i, only two partial

scenarios
(
sA(i) · sB(i)

)
and

(
sA(i) · sB(i)

)
need to be tested in order to find a maximum

regret. Once the partial scenario
(
sA(i) · sB(i)

)
is found to produce the larger regret,

all subsequent groups will follow the same partial scenario pattern (i.e.
(
sA(i) · sB(i)

)
)

as proven in Proposition 3.5.3.

sF

sA(1) · sB(1)

sA(2) · sB(2)

...

sA(n−1) · sB(n−1)

sA(n) · sB(n) sA(n) · sB(n)

sA(n−1) · sB(n−1)

·sA(n) · sB(n)

· · · sA(n) · sB(n)

sA(2) · sB(2)

· · · sA(n) · sB(n)

sA(1) · sB(1)

· · · sA(n) · sB(n)

Figure 3.4: The left-deep tree for finding the worst-case scenario for MRO(S) where

S comprises 2n+ 1 dominant overlapped operators.

In general, the process of choosing the partial scenario for each group forms a

left-deep tree as shown in Figure 3.4. Overall we only need to consider at most 2n

partial scenarios corresponding to the non-root nodes of the tree. 2

Algorithm 2 shows how the worst-case scenario can be found in polynomial time

for a set of dominant overlapped operators. It takes as input the set S, which consists
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of 2n + 1 non-constant dominant overlapped operators, and the minmax regret

solution p. The algorithm starts by initialising the worst-case scenario worstSce

with the maximum selectivity of the first operator σF in the minmax regret solution

as shown in line 2. Then the algorithm considers each group in turn. For each group

i, where 1 ≤ i ≤ n, the algorithm compares the regret of the partial plan p<i+1 under

the partial scenarios
(
x<i · sA(i) · sB(i)

)
and

(
x<i · sA(i) · sB(i)

)
as seen in line 5. The

one that results in the larger regret value for plan p<i will be assigned to worstSce.

At any stage, if the scenario
(
x<i · sA(i) · sB(i)

)
causes the larger regret, the algorithm

terminates and returns the worst-case scenario obtained by assigning all the following

groups with the same pattern (i.e. sA(j) · sB(j)) as proven by Proposition 3.5.3, and

shown by the for clause on line 6.

3.5.4 Equal interval operators

Now consider the case when S is a set of n operators with equal selectivity intervals,

that is, for each pair of operators σi, σj ∈ S, we have that si = sj and si = sj,

1 ≤ i, j ≤ n. In this case it is obvious that MRO(S) will be given by any permutation

of (σ1, . . . , σn). The following proposition shows that the worst-case scenario for

MRO(S) is a max-min scenario.

Proposition 3.5.5 Let S be a set of operators with equal intervals, where MRO(S)

is given by (σ1, . . . , σn). The worst-case scenario for MRO(S) is given by (s1, . . . , sj,

sj+1, . . . , sn), for some 0 ≤ j ≤ n.

Before proving Proposition 3.5.5 we show the following lemma.

Lemma 3.5.3 Let S be a set of n operators with equal intervals. Consider any

scenario x and plan p which has operators σa and σb with selectivities sa and sb such

that π(v) = a and π(w) = b where 1 ≤ v < w ≤ n. Then a new plan p′ with at

least the same regret for scenario x can be generated from p just by swapping the

positions of σa and σb to be π′(v) = b and π′(w) = a.

Proof : As we are calculating the regret of both plans p and p′ under the same

scenario, the optimal plan does not change. Thus, we can compare the regret of p
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Algorithm 2: To find the worst-case scenario for MRO(S) where S comprises

2n+ 1 dominant overlapped operators.

1 findWorstCaseScenario(S, p)

Input:

• A set S of 2n+ 1 dominant overlapped operators.

• A plan p = σFσA(1)σB(1) · · ·σA(n)σB(n) which is the optimal minmax regret

solution.

Output: The worst-case scenario worstSce for MRO(S).

2 worstSce = sF ;

3 for 1 ≤ i ≤ n do

4 x<i = worstSce;

5 if γ
(
p<i+1, x<i · sA(i) · sB(i)

)
> γ

(
p<i+1, x<i · sA(i) · sB(i)

)
then

6 for i ≤ j ≤ n do

7 worstSce = worstSce · sA(j) · sB(j);

8 return worstSce;

9 else

10 worstSce = worstSce · sA(i) · sB(i);

11 return worstSce;
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and p′ by comparing their costs, which can be computed as follows:

Cost(p, x) = Lπ(v − 1) + saR
π
v (v − 1)

Cost(p′, x) = Lπ
′
(v − 1) + sbR

π′

v (v − 1)

Since Lπ(v−1) = Lπ
′
(v−1), Rπ

v (v−1) = Rπ′
v (v−1), and sa ≤ sb, we can immediately

see that p′ has at least the same regret as p. 2

Now let us come back to Proposition 3.5.5 and prove it as follows:

Proof : This proposition is a generalisation of Lemma 3.5.3. Using Lemma 3.5.3

to perform multiple pairwise swaps of any operator σi with selectivity si preceding

operator σj with selectivity sj, where 1 ≤ i, j ≤ n, until there are no such pairs of

operators left, can only increase the regret and will eventually produce a worst-case

scenario of the required form for MRO(S). 2

This result provides another case in which max-min scenarios play an important

role in finding the worst-case scenario of MRO(S).

3.6 Further investigations

After introducing some properties of the MRO problem for selection operator or-

dering and identifying some polynomial solvable cases, we discuss here some further

investigations. During our study of the selection ordering problem, we noticed that

the case of nested operators is more difficult than others. Obviously, any good

heuristic should cope with this particular case well. Although some of the ap-

proaches investigated in this section do not turn out to lead to a good heuristic for

our problem, they improved our understanding and helped us in designing our novel

heuristic described see in Chapter 4.

3.6.1 Towards an approximation algorithm

We started our investigation by finding a way to represent the selection operators

so we can easily identify the relationships of the operators. Once we identified the

relationships between the operators, we can find the relative order for the domi-

nant operators. After that the target was to design an approximation algorithm
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that can cope well with the nested operators and find the solution with a bounded

approximation.

For a given set of selection operators S = {σ1, σ2, . . . , σn}, two lists are con-

structed. The first, called the Lower list L, has the selection operators sorted in

non-decreasing order according to their minimum selectivity. The second list, called

the Upper list U , has the selection operators sorted in non-decreasing order accord-

ing to their maximum selectivity. Let L(i) and U(i) denote the ith operator in the

list L and U respectively where 1 ≤ i ≤ n. Two operators are called a neighbouring

pair, if they have a consecutive indexes in L or U . The following definition provides

an alternative way of defining a pair of nested operators.

Definition 3.6.1 Let S be a set of selection operators with σj, σk ∈ S be any two

selection operators with U(w) = σj, L(x) = σj, U(v) = σk and L(y) = σk. The

operators σj and σk are entangled if v < w and y > x (as shown in Figure 3.5) or if

v > w and y < x.

U 

L 

  

y 

�� 

�� 

w 

v 

x 

Figure 3.5: Entanglement of operators σj and σk in Definition 3.6.1.

As seen in previous sections, dealing with dominant operators is relatively easy,

since we know their relative order in the optimal plan as, Theorem 3.4.3 states.

However, the ordering problem becomes more complicated in the presence of nested

operators. Therefore, we developed a disentangling algorithm to identify nested
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operators and try to find a suitable order for them. The following definition suggests

how the disentangling algorithm works.

Definition 3.6.2 Let σj, σk ∈ S be an entangled pair as defined in Definition 3.6.1

with U(w) = σj, L(x) = σj and U(v) = σk, L(y) = σk such that v > w and y < x

(as illustrated in Figure 3.5). The operators σj, σk are disentangled by swapping

their positions in either L or U . This means that the disentangling can be done by

either making L(x) = σk and L(y) = σj, or making U(w) = σk and U(v) = σj

If there is an entanglement, then there is at least one neighbouring pair involved

in the Upper and Lower list. One of the good aspects of the disentangling algorithm

is that disentangling a neighbouring pair only removes the entanglement between

these neighbours and does not create any new entanglement.

The disentangling algorithm successively looks for two neighbouring operators

which are entangled. In an attempt to bound the approximation, the algorithm

starts with entangled neighbours which have the smallest selectivity differences in

either the maximum or minimum selectivities. This procedure continues until there

are no more entanglements.

In practice the disentanglements can be done by (slightly) changing the upper or

lower selectivity values of the entangled operators based on in which list, U or L, they

are neighbours. The aim of changing the selectivity value is to convert the nested

operators into dominant operators, so that we can find their relative order in the

optimal plan. The hope is that these changes in the selectivity values do not affect

the quality of the result too much. There are different possible ways to perform the

disentanglements. One way of disentangling two operators σj and σk is by setting

their selectivity to be equal to Max(sj, sk) or Min(sj, sk) if the entanglement is

in U or L respectively. Another possible way is by setting the selectivities of both

operators to the average value of their selectivities, i.e. sj = sk = (sj + sk)/2 if

the entanglement is in U or sj = sk = (sj + sk)/2 if the entanglement is in L. We

implemented and tested this approach of disentanglement.

Unfortunately, keeping control of the changes in the selectivity values through-

out the disentangling algorithm turns out to be difficult. This is because each time
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a disentanglement is performed, a change in the selectivities is produced which in

turn introduces an error. However, estimating this error is not an easy task since

any changed selectivity introduces a multiplicative effect in the following terms in

the cost formula in Equation (3.1.1). Moreover, the changes in the selectivities

mean that the original problem is also changed which may have a significant im-

pact on the quality of the solution. In our experimental evaluation, the result of

the disentangling algorithm was up to three times worse than the optimal solu-

tion. More discussion about this approach, including an example, can be found in

Appendix A.1.

3.6.2 Average midpoint heuristic

As discussed in Section 2.9, by considering the midpoint of the uncertain process-

ing time, a 2-approximation algorithm has been proposed for TFT job scheduling

problem [75]. However, using the midpoint heuristic alone does not work well for se-

lection ordering problem as shown in Section 3.4.4. The average midpoint heuristic

was an attempt to improve the performance of the midpoint heuristic, particularly

for nested operators.

The formal algorithm of the average midoint heuristic, Algorithm 8, is presented

in Appendix A.2. Here we give a brief overview. Basically, the heuristic first calcu-

lates the average midpoint selectivity of all operators in the given set S. This is the

sum of the midpoint selectivities of each operator divided by the number of opera-

tors in S. Next the algorithm sorts the operators in non-increasing order according

to the width of their selectivity intervals. The first operator in this list, which is

the operator with the largest selectivity interval, is considered as the base of the

solution.

Two lists are created, L and R, which hold the left and right parts of the solution

respectively. The final solution will be the concatenation of list L, the operator with

the largest selectivity interval, and list R. At each iteration, the heuristic considers

the operator with the next biggest selectivity interval and if its midpoint is less than

the average midpoint, it is placed in list L, otherwise it is placed in list R. When an

operator is placed in a list, the algorithm makes sure that dominant operators are
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in the correct order. All nested operators placed in L are sorted in non-decreasing

order according to the width of their selectivity intervals, while those in list R are

sorted in non-increasing order according to the width of their selectivity intervals.

Overall the average midpoint heuristic performs better than midpoint heuristic

in handling a set of nested operators. The results of our experimental evaluation

are given in Appendix A.2. Both midpoint and average midpoint heuristics have

difficulty with cases in which all operators have (nearly the) same selectivity mid-

point. In such cases, the average midpoint heuristic cannot decide whether to place

a given operator before or after the operator with the largest selectivity interval. As

a result, the solution produced by both heuristics may be arbitrarily bad. However,

the average midpoint heuristic helped us in understanding the importance of passing

the operators to the heuristic in a particular order. We also learned that we could

gradually build a solution by placing one operator at a time, a technique used in

our max-min heuristic described next in Chapter 4.

3.7 Conclusion

In this chapter we formulated the selection ordering problem under imprecise pa-

rameters. In particular, we considered the problem when the selectivities are known

to fall within some interval of values. We defined minmax regret optimisation for the

selection ordering problem and described a brute force approach to find a solution.

After that, we proved some properties of the selection ordering problem, followed

by considering special settings of the problem in which the optimal minmax regret

solution can be found in polynomial time. Some further investigations were also

described which, along with the identified properties, helped us in designing our

novel heuristic which is presented in the following chapter.



Chapter 4

Max-min Heuristic for Selection

Ordering

As seen in the previous chapter, finding MRO(S) for a set S of selection operators

with interval selectivity using a brute force approach requires exponential compu-

tation and so is impractical. In this chapter we introduce our novel heuristic for

solving the selection ordering problem in polynomial time.

Computing the regret of every selection ordering for every possible extreme sce-

nario using the brute-force algorithm considers are n! different orderings and 2n

extreme scenarios, given n operators. So in order to find an efficient heuristic, we

have to significantly reduce the number of orderings and scenarios. While doing so,

we want to leverage the insights gained from our theoretical investigation.

Two versions of our max-min heuristic are discussed in this chapter. Both use the

same method but the latter improves the computational complexity of the heuristic.

The max-min heuristic can be considered as a template for a number of algorithms by

changing its parameters. These parameters are also discussed in the chapter. Some

of the work presented in this chapter has been published in papers [9] and [10].

4.1 Basic max-min heuristic algorithm

We set three objectives when we designed the max-min heuristic. The first was to

reduce the number of scenarios that the heuristic should consider, the second was

101



4.1. Basic max-min heuristic algorithm 102

reducing the number of tested plans, and the third was that the maximum regret of

the plan produced should be close to that of the MRO optimal plan. The max-min

heuristic manages to accomplish these objectives. Reducing the number of scenarios

by considering a subset of scenarios is a known technique to deal with hard MRO

problems [3, 20,26,41].

Let us first look at the number of possible scenarios. As have seen in Sections

3.5.1, 3.5.2 and 3.5.4, max-min scenarios can play a special role when it comes to

the maximum regret of a given plan p. Intuitively this makes sense, as in an optimal

plan for p an operator σi located towards the beginning of p with selectivity si will

tend to trade places with an operator σj located towards the end of p with selectivity

sj. Consequently, there can be a large difference in cost between the plan p and an

optimal plan for a max-min scenario, leading to a substantial (if not maximal) regret

for p.

Lebedev and Averbakh [75] confirm the importance of max-min scenarios for

MRO of the TFT problem. They identify an important class of job ordering plans,

called uniform plans, for which the worst-case scenario is a max-min scenario. Such

plans are ordered so that the jobs with greater uncertain processing time are in the

middle of the plan, while jobs with smaller uncertain processing time are placed

towards the beginning and the end of the plan. The worst-case scenario for such

a plan is proved to be a max-min scenario, where the processing time for the jobs

in the first half of the plan are assigned their maximum processing time, while the

remaining ones are assigned their minimum processing time. In our heuristic, we

only consider max-min scenarios while aiming to generate plans that perform well

in term of maximum regret. In the max-min heuristic, each plan is tested under

n+ 1 max-min scenarios, as opposed to 2n scenarios in the brute force approach.

In our heuristic we incrementally build the solution instead of considering all n!

possible plans. There are two well-known basic methods for doing this (efficiently).

The first one is constructing a plan by combining partial plans in a way that leads

to a final execution order. Very often putting the partial plans together requires

using a heuristic to solve a combinatorial problem. The second method is to quickly

create a complete plan (e.g., by using a simple heuristic) and then try to improve
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the plan by rewriting it (e.g., by swapping or removing and re-inserting operators).

In our approach we wanted to have both options available, so we decided to develop

different variants. The complexity of our heuristic shows slight differences depend-

ing on the variant we use; however, the algorithms we apply all have polynomial

complexity.

We refer to our max-min heuristic algorithm as H(p, q). It is parameterised by

two inputs: p, a (possibly empty) starting plan, and q, an order in which to process

operators. Clearly, to generate a complete plan the union of p and q has to contain

all the operators. If the intersection of p and q is empty, our algorithm is similar

to insertion sort: we consider in turn each operator in q and place it into p at the

position that minimises the regret over all max-min scenarios. If an operator in

q is already present in p, then we remove it from p before re-inserting it. This is

equivalent to moving an operator to a different position. Again we determine the

position minimising the regret over all max-min scenarios.

Now let us discuss the basic version of the max-min heuristic in more detail.

This version is easy to follow and implement, while an improved algorithm for the

max-min heuristic is discussed in Section 4.3. Algorithm 3 presents the basic max-

min heuristic. The outer for loop considers one operator t from q at a time. The

algorithm checks if the current operator t already exists in the initial plan p. If

so, the operator t will first be removed from the initial plan p. Operator t is then

checked at each position in plan p as a result of the for loop at line 5.

Each time t is placed at a position in p, a new plan is formed. The regret for

such a plan is calculated under all max-min scenarios and this is what the for loop

on line 7 does. Finally, the solution for the current stage will be the plan with the

smallest maximum regret involving t in p. This plan will be the initial plan p for

the next stage and ultimately will form the solution for the heuristic.

It is clear that the max-min heuristic runs in time which is polynomial in the

number of operators n. The for loop on line 1 is executed at most n times. The

if statement on line 2 runs in O(n) time in the worst case but it get dominated by

the complexity of the for loop at line 5. The for loop at line 5 considers operator

t in i + 1 possible positions, i < n, which requires O(n) time in the worst case.
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Algorithm 3: H(p, q)

1 foreach operator t from the sequence q do

2 if t is in p then

3 remove t from p;

4 Assume p currently comprises i operators;

5 foreach position j, 1 ≤ j ≤ i+ 1, in p do

6 Temporarily insert t in position j in p;

7 foreach max-min scenario for p do

8 Calculate the regret of plan p;

9 Store the maximum regret for position j;

10 Choose as the final position for t in p the one that minimises the

maximum regret;

11 Return p;

In each of these positions, the for loop at line 7 considers i + 2 max-min scenarios

which also requires O(n) time in the worst case. Line 8 calculates the regret of

each plan under each max-min scenario. The cost of any plan can be calculated

in O(n) using Formula 3.1.1. However, we need O(n log n) to sort the operators

in non-decreasing according to their selectivities in order to find the optimal plan

for the max-min scenario. Therefore, the complexity for calculating the regret at

line 8 is O(n log n) + O(n) + O(n) = O(n log n), for finding the optimal plan and

calculating its cost as well as calculating the cost of plan p respectively. As a result,

the overall complexity is the complexity of the three nested for loops, which is O(n3),

times the complexity of the regret calculation, which is O(n log n). Consequently,

we have an O(n4 log n) algorithm. However, by computing costs incrementally when

an operator moves position and one max-min scenario moves to the next, we can

implement the heuristic to run in time O(n3) as shown in Section 4.3. Figure 4.1

shows the optimisation time when using the basic max-min heuristic. To measure

the time, we run the algorithm ten times for each number of operators. Then we

report the average time.
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Figure 4.1: Run time of the basic max-min heuristic algorithm.

4.2 Max-min heuristic parameters

As mentioned above, the max-min heuristic H(p, q) has two inputs: p, the initial

plan and q, the order of passing (remaining) operators to the heuristic. In this

section, we consider various criteria for choosing an initial plan and for ordering the

remaining operators.

4.2.1 Choosing an initial plan

Even though we can run our heuristic with an empty initial plan p, i.e., building a

solution by inserting all operators one by one, often it makes sense to start with a

pre-built partial plan.

One particular and important case is that of dominant operators. Given a set

S of operators, if we can identify a subset S ′ ⊆ S of dominant operators, we know
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that we can find an optimal solution p′ for S ′ quickly and that the relative order of

the operators in p′ will not change in any optimal plan for S (see Theorem 3.4.3).

Thus, taking p′ as the initial plan when calling H(p, q) makes good sense. However,

there may be different ways to choose S ′ because in general there may be more than

one such dominant set. If we have more than one dominant set, we can use one of

the following criteria to make a decision:

1. Choose the subset S ′ with the maximum cardinality. This option is denoted

by D:C (Dominant:Cardinality).

2. Choose the subset S ′ whose operators have the largest total width of their

selectivity intervals. This option is denoted by D:W (Dominant:Width).

3. Choose the subset S ′ with the maximum cardinality whose total width of

the selectivity intervals is greatest. This option is denoted by D:CW (first

Dominant:Cardinality, then Width).

The following example demonstrates how the initial plan can be chosen based on

the above criteria.
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Figure 4.2: Selectivity intervals for selection operators in Example 4.2.1.

Example 4.2.1 Let S = {σ1, σ2, σ3, σ4, σ5, σ6, σ7} be set of selection operators as

shown in Figure 4.2. Let the selectivities of these operators be as follows: s1 =

[0.12, 0.14], s2 = [0.10, 0.55], s3 = [0.32, 0.33], s4 = [0.30, 0.60], s5 = [0.52, 0.67],
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Subset Cardinality Total width

S1 = {σ2, σ4, σ6} 3 1.23

S2 = {σ1, σ3, σ5, σ7} 4 0.43

S3 = {σ1, σ4, σ5, σ7} 4 0.72

S4 = {σ2, σ4, σ5 σ7} 4 1.15

Table 4.1: Possible dominant subsets in Example 4.2.1.

s6 = [0.50, 0.98] and s7 = [0.70, 0.95]. Table 4.1 shows the possible dominant subsets

for S.

Referring to Table 4.1, there are different dominant subsets which can be used to

build the initial plan p for the max-min heuristic H(p, q). S1 with total width equal

to 1.23 will be picked if the criterion is D : W , which chooses the set of dominant

operators whose selectivity intervals have the largest total width.

On the other hand, if we are looking for the subsets with the maximum cardi-

nality D : C, then any one of S2, S3 or S4 can be chosen since they have the largest

cardinality of 4. As can be seen, there is more than one option for the D : C cri-

terion so we need to refine our choice. Therefore, we can use the D : CW criterion

instead, which distinguishes between S2, S3 and S4 by choosing the subset with the

largest total width of selectivity intervals. In this case that is S4, with a total width

of 1.15.

Finally, the chosen subset will be used to build the initial plan p for the max-

min heuristic H(p, q). It is interesting that sometimes the subset with the maximum

total selectivity interval width is not the subset with the largest cardinality, as for

S1 in this example. 3

The approach described in Section 3.6.1 can be used to find the subsets of domi-

nant operators. However, in our implementation of the heuristic we used a graph to

represent the domination relationships, where vertices represent selection operators

and each edge represents a domination relationship between two operators. In this

approach, the largest set of dominant operators is identified by finding the longest

path using the Bellman-Ford algorithm (more details can be found in Appendix E.2).
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We have evaluated the max-min heuristic experimentally using all the above

initial plan options. We found that the D:CW approach gave the best overall

results as can be seen in Chapter 5. Furthermore, we can use the output of H(p, q)

as input for another iteration of the heuristic in order to refine this result. We have

examined this option experimentally as well and it shows its worth, as reported

in the next chapter. Moreover, having an initial plan allows us to combine our

algorithm with other heuristics. We can take the output of another algorithm as an

initial plan p and then refine this result by running H(p, q) on it. In our experiments,

we feed the max-min heuristic a solution obtained by the midpoint, pessimistic and

optimistic heuristics as initial plan p. Our heuristic was able to improve the results

considerably. More details are provided in Chapter 5.

4.2.2 Ordering criteria

Since the max-min heuristic H(p, q) originally makes only a single pass over all the

operators when (re-)inserting them into the plan, the ordering of operators in q

may have a significant impact on the final outcome. For example, when inserting

selections into an empty initial plan, operators considered earlier in q are tested in

fewer positions relative to each other compared to those considered later.

We have considered two different major ordering criteria in our experiments:

1. Passing the operators to the heuristic according to the midpoint of their se-

lectivity intervals, denoted by M . Given a selectivity interval s = [s, s], the

midpoint of s is (s+ s)/2. The midpoint ordering itself can be sorted in:

(a) non-decreasing order, denoted by M+.

(b) non-increasing order, denoted by M−.

2. Passing the operators to the heuristic according to the width of their selectivity

intervals, denoted by W . Given a selectivity interval s = [s, s], the width of s

is s− s. The W ordering itself also can be sorted in:

(a) non-decreasing order, denoted by W+.

(b) non-increasing order, denoted by W−.
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Figure 4.3: Selectivity intervals for selection operators in Example 4.2.2.

Operator Selectivity interval Width Midpoint

σ1 s1 = [0.14, 0.58] 0.44 0.360

σ2 s2 = [0.76, 0.81] 0.05 0.785

σ3 s3 = [0.32, 0.90] 0.58 0.610

σ4 s4 = [0.20, 0.26] 0.06 0.230

Table 4.2: Width and midpoint for selectivity intervals of operators in Example 4.2.2.

In our experimental evaluation, we ordered the operators in q using all the above

four criteria. Chapter 5 evaluates the effectiveness of these ordering criteria in more

detail. Example 4.2.2 illustrates the above four ordering criteria using some concrete

values.

Example 4.2.2 Consider the set S = {σ1, σ2, σ3, σ4} of selection operators with

selectivity intervals as follows: s1 = [0.14, 0.58], s2 = [0.76, 0.81], s3 = [0.32, 0.90]

and s4 = [0.20, 0.26] as shown in Figure 4.3.

Table 4.2 gives the width and midpoint selectivity for each operator in set S.

Therefore, according to the ordering criteria and assuming an empty initial plan p,

q in the max-min heuristic H(p, q) will be as follows:

• If the ordering criterion is M+, then q = (σ4, σ1, σ3, σ2).
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• If the ordering criterion is M−, then q = (σ2, σ3, σ1, σ4).

• If the ordering criterion is W+, then q = (σ2, σ4, σ1, σ3).

• If the ordering criterion is W−, then q = (σ3, σ1, σ4, σ2).

3

For the naming convention of the max-min heuristic, H(D : W,W+) for example

means that the initial plan for the heuristic is the set of dominant operators which

has the largest total width. Then the remaining operators are fed to the heuristic

in non-decreasing order according to the width of their selectivity intervals. The

following example describes how the max-min heuristic works.

Example 4.2.3 Recall from Example 4.2.2 the set S = {σ1, σ2, σ3, σ4} of selection

operators, with selectivities s1 = [0.14, 0.58], s2 = [0.76, 0.81], s3 = [0.32, 0.90] and

s4 = [0.20, 0.26]. Suppose that we are using the version H(D : CW,W+) of our

max-min heuristic.

Figure 4.3 shows that there is more than one dominant subset. These dominant

subsets are: {σ1, σ2}, {σ1, σ3}, {σ2, σ4} and {σ3, σ4}. Since D : CW is the chosen

criterion for deciding the initial plan, S ′ = {σ1, σ3} is the subset with the largest

cardinality and maximum total width (see Table 4.2). The optimal plan for S ′ will

be the value of the parameter p in the heuristic. According to Theorem 3.4.3, sorting

the operators of S ′ in non-decreasing order according to their maximum/minimum

selectivity values will form the optimal plan for S ′, therefore p = σ1, σ3.

Once p is specified, the remaining operators are assigned to q according to the

specified order. In this case the order is W+, so the operators are sorted in non-

decreasing order according to the width of their selectivities. Table 4.2 shows the

selectivity width for each operator; hence q = σ2, σ4.

The heuristic then operates as follows. The first operator in q is checked in each

position of p. For each position and resulting plan, the regret is calculated under all

max-min scenarios. In this case σ2 should be checked in three positions: before σ1,

after σ3 and between them. Consider the plan in which σ2 is the last operator of

p, for instance. The regret will be calculated for the max-min scenarios (s1, s3, s2),
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(s1, s3, s2), (s1, s3, s2) and (s1, s3, s2). Assuming that the relation cardinality Ω and

each cost ci is set to 1, the maximum regret for plan σ1, σ3, σ2 is 0.26 which occurs

in scenario (s1, s3, s2). The plan with the smallest maximum regret after placing σ2,

namely σ1, σ3, σ2, will be the intermediate solution.

Now p = σ1, σ3, σ2 and the same procedure will be repeated for σ4 from q,

namely σ4 will be inserted at each position in p, and the regret of the resulting plan

calculated under each max-min scenario. The plan that has the smallest maximum

regret after placing σ4 in p is σ4, σ1, σ3, σ2 with maximum regret of 0.12 under the

scenario (s4, s1, s3, s2). Since there are no more operators in q, this is the final

solution. As a matter of fact, the solution returned by the max-min heuristic is the

same as the actual minmax regret solution in this case. 3

As mentioned in Section 3.4.1, the selection ordering problem under imprecise

statistics is NP-hard. The max-min heuristic is designed to find a good solution

in polynomial time, by reducing the number of tested plans and only considering

certain scenarios (i.e. max-min scenarios) as discussed earlier. This obviously does

not guarantee to find the optimal MRO plan since the worst case scenario might not

be a max-min scenario. It seems to be difficult to measure the improvement of the

heuristic theoretically or to guarantee a bound. However, experimental evaluation

demonstrates the effectiveness of the max-min heuristic parameters, namely choosing

an initial plan and ordering criteria. In our experiments the heuristic in general

finds a solution equivalent to or close to the optimal MRO plan, as we will discuss

in Chapter 5.

4.3 Improved max-min heuristic

This section describes a more efficient version of the max-min heuristic, which re-

duces the complexity of the heuristic to O(n3). It is important to mention that

this version of the heuristic follows essentially the same method as Algorithm 3 and

produces the same result. However, this version is re-engineered to perform calcu-

lations more efficiently by storing various values to be reused in subsequent steps.

This improved version stores the cost of the optimal plans for max-min scenarios
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and reuses them. It also reuses some pre-calculated values to find the cost of a plan.

Therefore, it trades (more) memory for (less) processing time.

Algorithm 4 presents the improved version of the max-min heuristic. Although

the algorithm appears long, a number of computations are repeated. For example,

lines 19–31 are initially the same as lines 1–15. The algorithm in lines 1–15 starts

by considering the first operator σ0 in p. At this stage, various parameters are

initialised, such as optP lan, optCost, minMaxPlan and minMaxRegret, so they

can be used in the subsequent steps including the block from line 19 to line 31 when

considering the rest of the operators in p.

Algorithm 4 starts with some plan p which could be generated by various methods

as discussed in Section 4.2. The plan p is considered under the first max-min scenario

(i.e. j = 0 which means the scenario with no maximum selectivities). The leftSum

array (line 1) is created as described in details later. This will be used in calculating

the cost(p, 0), the cost of p under scenario j = 0, as well as the cost of p under

subsequent max-min scenarios. At the same time, the optimal plan and its cost

for each max-min scenario is stored in the arrays optP lan and optCost respectively,

as shown in lines 10 and 11. The regret of plan p is calculated under each max-

min scenario and the largest regret for p is used to initialise minMaxRegret as

shown in line 14. Then the function checkOperatorAtEachPosition is called to

move the first operator σ0 to each position in plan p. Each time the operator σ0

moves its position one step forward, the optimal plan and cost for only one max-

min scenario is updated in the arrays optP lan and optCost as shown in lines 7

and 8 in function checkOperatorAtEachPosition. If a smaller maximum regret is

found after considering all max-min scenarios, minMaxRegret and minMaxPlan

are updated as shown in line 13. The same process is repeated to test the other

operators in each position as shown by the loop starting at line 16 in Algorithm 4.

Ultimately, the solution of the algorithm will be minMaxPlan with the regret value

stored in minMaxRegret.



4.3. Improved max-min heuristic 113

Now let us consider the algorithm in more details. The following example de-

scribes how optPlan and optCost are initialised.
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Figure 4.4: Selectivity intervals for selection operators in Example 4.3.1.

Example 4.3.1 Let set S = {σ1, σ2, σ3, σ4, σ5} be a set of selection operators with

selectivity intervals: s1 = [0.1, 0.9], s2 = [0.2, 0.3], s3 = [0.35, 0.7], s4 = [0.6, 0.8]

and s5 = [0.4, 0.45] as shown in Figure 4.4. Suppose that we start with the initial

plan p = σ1σ2σ3σ4σ5 and we are considering σ1 at the first position in p. Table 4.3

shows all max-min scenarios for p and the initialisation of the array optPlan as in

Algorithm 4. Note that in line 10, optPlan[j] can be found from optPlan[j-1] by

moving left the operator whose selectivity changed from maximum to minimum.

So in Table 4.3 optPlan[5] is obtained from optPlan[4] by moving s1 left until it

is located in its correct position (i.e. position one). The array optCost will have

the cost values for the optimal plans in optPlan as shown in line 11. The optimal

plan for any scenario can be found by sorting the operators in non-decreasing order

according to their minimum or maximum selectivities as in the second column of

Table 4.3. 3

One of the interesting facts about the max-min heuristic is that when an operator

is moved in a plan p from one position to an adjacent position to form plan p′, only

one max-min scenario (out of n + 1 scenarios) changes between p and p′. So we

only need to update one new optimal plan and calculate its cost. More precisely, let

operator σ be in position i and operator σ′ be in position i+1 in plan p, respectively.
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Algorithm 4: Improved max−min heuristic
Input: Given a set of n operators O = {σ0, σ1, · · · , σn−1}.

Suppose we start with initial plan p = [σ0, σ1, · · · , σn−1].

// Throughout the algorithm z is the index of an operator in plan p,

while j is the number of minimum selectivities in a max-min

scenario.

// Create arrays optP lan and optCost, where optP lan[j] will be the

optimal plan for the max-min scenario starts with j mins in plan p

and optCost[j] will be its cost.

// Consider the first scenario (i.e. j = 0) with all max and no min

selectivities.

1 leftSum = createLeftSumArray(p, 0);

2 cost(p, 0) = leftSum[n− 1];

3 Let optP lan[0] be the optimal plan for max-min scenario with 0 min selectivities;

4 Let optCost[0] be the cost of optP lan[0] calculated using Eq. (3.1.1);

5 regret(p, 0) = cost(p, 0)− optCost[0];

6 maxRegret(p) = regret(p, 0);

7 minMaxPlan = p;

8 for 1 ≤ j ≤ n do

// i.e. consider the max-min scenarios with j mins.

// In each step the selectivity for the operator at position n− j

in plan p changes from max to min.

9 cost(p, j) = getCost(p, j, leftSum);

10 optP lan[j] is generated from optP lan[j − 1] by moving left the operator that

changed from max to min to the correct position such that the optimal plan is

sorted;

11 Let optCost[j] be the cost of optP lan[j] calculated by Eq. (3.1.1);

12 regret(p, j) = cost(p, j)− optCost[j];

13 maxRegret(p) = Max(maxRegret(p), regret(p, j));

14 minMaxRegret = maxRegret(p);

// Now consider σ0 in each following position in p.

15 checkOperatorAtEachPosition(σ0, p);
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// Now consider the rest of the operators (other than σ0) at each

position in plan p under all max-min scenarios.

16 for 1 ≤ z < n do

17 Remove σz from plan p and insert it at position 0 in p;

18 Re-initialise optP lan and optCost to hold the optimal plans and their cost

respectively for the new plan p under its max-min scenarios;

// Consider the 1st scenario with all maxes and 0 min.

19 leftSum = createLeftSumArray(p, 0);

// Get the cost of plan p under scenario 0.

20 cost(p, 0) = leftSum[n− 1];

21 Retrieve the optimal plan cost optCost[0];

22 regret(p, 0) = cost(p, 0)− optCost[0];

23 maxRegret(p) = regret(p, 0);

24 minMaxPlan = p;

25 for 1 ≤ j ≤ n do

// Consider the remaining scenarios.

// In each step the selectivity for the operator at position

n− j in plan p changes from max to min.

26 cost(p, j) = getCost(p, j, leftSum);

27 Retrieve the optimal plan cost optCost[j];

28 regret(p, j) = cost(p, j)− optCost[j];

29 maxRegret(p) = Max(maxRegret(p), regret(p, j));

30 minMaxRegret = maxRegret(p);

// Now consider σz in each following position in p.

31 checkOperatorAtEachPosition(σz, p);

32 return minMaxPlan;
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Algorithm 5: Functions used by Algorithm 4

1 createLeftSumArray(p, j)

Input: The plan p and the number of mins j in its max-min scenario.

Output: Array leftSum that has the partial costs for plan p.

// leftSum[k] is the sum of the products in the cost formula from 0

up to the kth term where (0 ≤ k < n).

2 for 0 ≤ k ≤ p.length do

3 leftSum[k] =
∑k+1

i=1

(∏i−1
j=1 sπ(j)

)
cπ(i);

4 return leftSum;

1 getCost(p, j, leftSum)

Input: Plan p, the number j of minimum selectivities in the max-min scenario,

and the array leftSum that has the partial costs for plan p.

Output: The cost of plan p under its max-min scenario with j minimum

selectivities

2 m = n− j;

3 if m = n− 1 then

4 cost = leftSum[m];

5 else

6 cost = leftSum[m] + (σm/σm) ∗ (leftSum[n− 1]− leftSum[m]);

// Update leftSum[n-1] to be used in the next scenario.

7 leftSum[n− 1] = cost;

8 return (Ω ∗ cost);
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1 checkOperatorAtEachPosition(σ, p)

Input: The operator σ and the plan p where σ will be checked. This function

should have access to: optP lan, optCost, minMaxRegret and

minMaxPlan.

Output: Updated values for minMaxRegret and minMaxPlan after checking

σ at each position in p.

2 for each position 1 ≤ i ≤ n− 1 in plan p do

// i.e. consider operator σ at each position in plan p other

than the 1st position under all max-min scenarios.

// Consider the 1st scenario with all maxes and 0 min.

3 leftSum = createLeftSumArray(p, 0);

// Get the cost of plan p under scenario 0.

4 cost(p, 0) = leftSum[n− 1];

5 regret(p, 0) = cost(p, 0)− optCost[0];

6 maxRegret(p) = regret(p, 0);

// Update the scenario j = n− i.

// Note: Here we assume that operator σz is moving right in

plan p. However, if operator σz is moving left in plan p

then scenario j where j = n− i− 1 will be updated instead.

7 optP lan[n− i] is updated by moving left the operator that changed from

max to min, and moving right the operator that changed from min to max

such that optP lan[n− i] is sorted;

8 Let optCost[n− i] be the cost of optP lan[n− i] calculated by Eq. (3.1.1);

9 for 1 ≤ j ≤ n do

// Consider the remaining scenarios.

// In each step the selectivity for the operator at position

n− j in plan p changes from max to min.

10 cost(p, j) = getCost(p, j, leftSum);

11 regret(p, j) = cost(p, j)− optCost[j];

12 maxRegret(p) = Max(maxRegret(p), regret(p, j));

13 if maxRegret(p) < minMaxRegret then

14 minMaxRegret = maxRegret(p);

15 minMaxPlan = p;
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max-min sorted optPlan

scenarios selectivities index optimal plan

(s1, s2, s3, s4, s5) s2, s5, s3, s4, s1 0 σ2σ5σ3σ4σ1

(s1, s2, s3, s4, s5) s2, s5, s3, s4, s1 1 σ2σ5σ3σ4σ1

(s1, s2, s3, s4, s5) s2, s5, s4, s3, s1 2 σ2σ5σ4σ3σ1

(s1, s2, s3, s4, s5) s2, s3, s5, s4, s1 3 σ2σ3σ5σ4σ1

(s1, s2, s3, s4, s5) s2, s3, s5, s4, s1 4 σ2σ3σ5σ4σ1

(s1, s2, s3, s4, s5) s1, s2, s3, s5, s4 5 σ1σ2σ3σ5σ4

Table 4.3: Max-min scenarios for p = σ1σ2σ3σ4σ5 and the associated optPlan for

Example 4.3.1.

If σ moves from position i in p to position i + 1 to form a new plan p′, then only

scenario n− i needs to be updated for plan p′ by changing the selectivity of σ from

its maximum to its minimum and that of σ′ from its minimum to its maximum.

The remaining elements in optPlan and optCost stay the same. This update is

performed at line 7 in the checkOperatorAtEachPosition function. Therefore, this

update happens once each time an operator changes its position. Since operators

are tested in O(n2) plans, we need to make sure that for each new plan, only O(n)

time is spent in recalculating the optimal plans.

Example 4.3.2 Recall from Example 4.3.1 the set S = {σ1, σ2, σ3, σ4, σ5} of se-

lection operators, with selectivities s1 = [0.1, 0.9], s2 = [0.2, 0.3], s3 = [0.35, 0.7],

s4 = [0.6, 0.8] and s5 = [0.4, 0.45]. In Example 4.3.1, operator σ1 is in the first

position in plan p = σ1σ2σ3σ4σ5. Now let us consider moving operator σ1 to the

second position, forming the plan p′ = σ2σ1σ3σ4σ5.

Table 4.4 shows all the max-min scenarios for p′. By comparing Tables 4.3

and 4.4, it is clear that the max-min scenarios for p and p′ are identical except for

the scenario at index 4 (the row in bold face in Table 4.4). In particular, when

an operator (σ1 in this case) is checked in the next position, arrays optP lan and

optCost can be reused to calculate the regrets of the new plan p′ under its max-min

scenarios after updating the content of optP lan[n− i] and optCost[n− i]. 3
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max-min sorted optPlan

scenarios selectivities index optimal plan

(s2, s1, s3, s4, s5) s2, s5, s3, s4, s1 0 σ2σ5σ3σ4σ1

(s2, s1, s3, s4, s5) s2, s5, s3, s4, s1 1 σ2σ5σ3σ4σ1

(s2, s1, s3, s4, s5) s2, s5, s4, s3, s1 2 σ2σ5σ4σ3σ1

(s2, s1, s3, s4, s5) s2, s3, s5, s4, s1 3 σ2σ3σ5σ4σ1

(s2, s1, s3, s4, s5) s1, s2, s3, s5, s4 4 σ1σ2σ3σ5σ4

(s2, s1, s3, s4, s5) s1, s2, s3, s5, s4 5 σ1σ2σ3σ5σ4

Table 4.4: Max-min scenarios for p′ = σ2σ1σ3σ4σ5 and the associated optPlan for

Example 4.3.2.

Another important feature of the improved algorithm is its efficiency in calculat-

ing the cost of a plan. Since we are testing O(n2) plans and in each plan we consider

n+ 1 max-min scenarios, we need to be able to calculate the cost of a current plan

under a scenario in O(1) time. Before we discuss how the algorithm does this, let

us consider the following definition.

Definition 4.3.1 A partial sum represents the cost up to the kth term of a given

plan p of n selection operators under a scenario as follows:

k+1∑
i=1

(
i−1∏
j=1

sπ(j)

)
cπ(i), where 0 ≤ k < n (4.3.1)

The improved algorithm first computes the partial sums for plan p under its first

max-min scenario (i.e. the one with zero operators having their minimum selectiv-

ity) by calling createLeftSumArray function and stores them in leftSum array

(lines 1 and 19). The createLeftSumArray function uses the cost formula in Equa-

tion (3.1.1) to calculate the partial sums which requires O(n) time. So for the initial

plan p and the first max-min scenario, the cost is the value of leftSum[n−1] (lines 2

and 20). After that, the cost can be updated incrementally as we move from one

scenario to the next. So the partial sums can be reused to calculate the cost of plan

p under the next max-min scenario in O(1) time (lines 9 and 26) using function

getCost in Algorithm 5. When an operator moves to a new position, we can afford



4.3. Improved max-min heuristic 120

leftSum

index partial costs

0 c1 = 1

1 c1 + s1c2 = 1.9

2 c1 + s1c2 + s1s2c3 = 2.17

3 c1 + s1c2 + s1s2c3 + s1s2s3c4 = 2.359

4 c1 + s1c2 + s1s2c3 + s1s2s3c4 + s1s2s3s4c5 = 2.5102

Table 4.5: Initialisation of leftSum array created by createLeftSumArray(p, 0) for

Example 4.3.3.

to perform O(n) time work initially, as long as the time taken to compute the regret

for each scenario is O(1). Example 4.3.3 demonstrates this idea with some concrete

values.

Example 4.3.3 Recall from Example 4.3.1 the set S = {σ1, σ2, σ3, σ4, σ5} of se-

lection operators, with selectivities s1 = [0.1, 0.9], s2 = [0.2, 0.3], s3 = [0.35, 0.7],

s4 = [0.6, 0.8] and s5 = [0.4, 0.45]. For simplicity, assume that the cardinality of

the relation is 1 and the cost for each operator ci is also 1. Any time a new plan

p is considered by the algorithm, an array called leftSum is created by calling

createLeftSumArray as defined in Algorithm 5. Array leftSum represents the

partial sums as defined in Definition 4.3.1. Now consider plan p = σ1σ2σ3σ4σ5.

In line 1, the algorithm calls createLeftSumArray(p, 0) to create the leftSum

array for plan p under the first max-min scenario with index 0 (i.e. all operators

are assigned their maximum selectivity). The createLeftSumArray function uses

Equation (3.1.1) to calculate the partial costs. For a plan with n operators, there

are n partial costs, where leftSum[k] represents the summation of the first k terms

in the cost formula of Equation (3.1.1). Table 4.5 shows the values in leftSum array

after calling createLeftSumArray(p, 0).

Creating leftSum and calculating its elements clearly can be performed in O(n)

time. After creating leftSum, the cost of p under its first max-min scenario

can be found in O(1) time by retrieving the value of leftSum[4], so cost(p, 0) =
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content σ1 σ2 σ3 σ4 σ5

index (m) 0 1 2 3 4

Table 4.6: The array content of plan p in Example 4.3.3.

leftSum[4] (as in lines 2 and 20 of Algorithm 4 as well as in line 4 of function

checkOperatorAtEachPosition). This is because leftSum[4] has the full cost cal-

culation for p under its first max-min scenario.

Recall that j represents the number of minimum selectivities in the max-min

scenario for plan p. The cost of plan p under each subsequent max-min scenario

can also be found in O(1) time using the getCost function in Algorithm 5. Each

time cost(p, j) is calculated, the content of leftSum[n−1] is updated with the same

value as cost(p, j) to be used in calculating the cost of p under the next max-min

scenario as shown in line 7 of getCost in Algorithm 5. The following shows the cost

calculation for plan p under the remaining max-min scenarios with 1 ≤ j ≤ n using

the getCost function. Note that n denotes the total number of selection operators,

while m is the index of an operator in the plan array as shown in Table 4.6.

• (s1, s2, s3, s4, s5): j = 1⇒ m = 4 (i.e. m = n− 1)

getCost(p, 1, leftSum) = leftSum[m]

= 2.5102

• (s1, s2, s3, s4, s5): j = 2⇒ m = 3

getCost(p, 2, leftSum) = leftSum[3] +
sm
sm
∗ (leftSum[n− 1]− leftSum[3])

= 2.359 +
0.6

0.8
∗ (2.5102− 2.359)

= 2.4724

leftSum[n− 1] = 2.4724 // Update leftSum[n− 1] for the next step.
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• (s1, s2, s3, s4, s5): j = 3⇒ m = 2

getCost(p, 3, leftSum) = leftSum[2] +
sm
sm
∗ (leftSum[n− 1]− leftSum[2])

= 2.17 +
0.35

0.7
∗ (2.4724− 2.17)

= 2.3212

leftSum[n− 1] = 2.3212 // Update leftSum[n− 1] for the next step.

• (s1, s2, s3, s4, s5): j = 4⇒ m = 1

getCost(p, 4, leftSum) = leftSum[1] +
sm
sm
∗ (leftSum[n− 1]− leftSum[1])

= 1.9 +
0.2

0.3
∗ (2.3212− 1.9)

= 2.1808

leftSum[n− 1] = 2.1808 // Update leftSum[n− 1] for the next step.

• (s1, s2, s3, s4, s5): j = 5⇒ m = 0

getCost(p, 4, leftSum) = leftSum[0] +
sm
sm
∗ (leftSum[n− 1]− leftSum[0])

= 1 +
0.1

0.9
∗ (2.1808− 1)

= 2.1312

leftSum[n− 1] = 2.1312 // Update leftSum[n− 1] for the next step.

3

In summary different features helped in improving the complexity of the im-

proved max-min heuristic. It trades memory for processing time. In this version

of the heuristic, the cost of the optimal plans for max-min scenarios are stored and

reused in the subsequent steps. Moreover, pre-calculating the partial sums allows

the heuristic to calculate the cost of a plan under max-min scenarios in O(1) time.

As the result, the improved max-min heuristic reduces the complexity to O(n3)

opposed to O(n4logn) for the basic version of the heuristic.
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4.4 Conclusion

This chapter has presented our novel heuristic for solving the problem of selection

operator ordering when selectivities are given as intervals. We used the insight we

gained from studying the problem and its properties as well as some polynomial

solvable cases to develop the max-min heuristic H(p, q). The heuristic considers

only a polynomial number of plans and examines them under max-min scenarios

which play a special role as seen in the previous chapter. This, in turn, reduces the

number of scenarios, yet still produces results with good quality as we will see in

the next chapter.

The complexity of the basic algorithm for the max-min heuristic turns out to

be O(n4logn). However, we also presented an improved version of the heuristic

which reduces the complexity to O(n3) and produces the same result as the basic

algorithm. The next chapter presents an experimental evaluation for the max-min

heuristic using a number of different data sets.



Chapter 5

Experimental Evaluation of the

Selection Ordering Heuristic

The previous chapter introduced our novel heuristic, max-min, which solves the

problem of selection ordering under imprecise database statistical information. This

chapter presents the experimental evaluation of the max-min heuristic and other

heuristics, which consider a single point from each selectivity interval to find the

optimal solution, namely the midpoint, pessimistic and optimistic heuristics. We

used three different data sets to test the max-min heuristic. These data sets are: a

synthetic data set, the Star Schema Benchmark (SSB) [100], and the Enron email

data set [35]. A description of the data sets is provided in this chapter as well as

the results of using the heuristic on these data sets. Some of the work presented in

this chapter has been published in papers [9] and [10].

We have implemented the max-min heuristic and tested the impact of different

parameters on its performance. In addition we have implemented the brute-force

algorithm to find the true optimal solution which is used to measure the quality of

the max-min heuristic. For a case with n operators, finding the optimal plan using

the brute-force algorithm requires calculating the cost of all possible n! plans under

all 2n extreme scenarios, as has been described in Section 3.3. This process takes

a lot of time. Therefore, we were restricted to a maximum of eleven operators in

order to be able to compare the results of the heuristic with those of the brute-force

algorithm. For instance, the brute-force algorithm took over 20 minutes to find the

124
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minmax regret solution for a single case of nine operators. By contrast, the heuristic

took approximately 0.067 seconds for the same case (recall Figure 4.1 in Section 4.1).

Our heuristic works at the logical optimisation level, as mentioned in Section 2.2,

and the submitted logical plan may change at the physical optimisation stage [38,

108]. Therefore, in this experimental evaluation, we stress test our heuristic in

an isolated environment rather than in a database server with the intricacies of

optimisations performed at different levels, known approach used in the litera-

ture [16, 49, 83, 115, 117]. Another reason for doing the evaluation in an isolated

environment is to study the effectiveness of the max-min heuristic with selection or-

dering first, before including other operators and different settings. However, we did

compare our heuristic with approaches that assume a single value for the imprecise

parameters (e.g. using the mean), an assumption made by some optimisers.

A commodity PC, with 8 GB RAM, Intel Core i5 processor running at 3.19

GHz and Windows 7 Enterprise (64-bit), was used to perform the experiments. The

minmax regret brute-force algorithm and max-min heuristic were implemented in

Java and compiled with the Eclipse IDE (Juno release), which is JDK compliant

and uses the JavaSE-1.7 execution environment.

5.1 Measuring criteria

In this section we present the measuring criteria that we used to evaluate the max-

min heuristic. Recall from Chapter 4 that the max-min heuristic has two parameters

namely p, the choice of the initial plan (possibly empty), and q, the order in which the

(remaining) operators are passed to the heuristic. In the experimental evaluation, we

studied the impact of choosing different values for these parameters on the quality

of the plan generated by the heuristic. Moreover, we also investigated the effects

of multiple iterations on the quality of the heuristic. In multiple iterations, the

heuristic is run multiple times, with the result of one iteration passed to the next

iteration as an initial plan.

Recall from Section 3.2 that R(P (S), X(S)) denotes the regret value of the op-

timal plan that minimises the maximum regret for a given set S of selection op-
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erators, where P (S) is the set of possible plans and X(S) is the set of possible

scenarios. Similarly let R(H(p, q), X(S)) be the regret of the plan returned by the

max-min heuristic. The first measuring criterion is the percentage of exact solu-

tions found. For this criterion, we count the number of cases where the heuristic

generates a plan equivalent to the optimal minmax regret solution, i.e. for which

R(H(p, q), X(S)) = R(P (S), X(S)). This is then divided by the total number of

cases in the experiment. Using this measure, the larger the value the better the

performance of the heuristic.

The second measuring criterion is called the regret ratio λ(S), which is the regret

computed by H(p, q) divided by the optimal minmax regret. The regret ratio λ(S)

can be defined formally as follows:

λ(S) =
R(H(p, q), X(S))

R(P (S), X(S))
(5.1.1)

We are aware that the denominator R(P (S), X(S)) may be equal to zero. However,

recall from Section 3.5.2 that the only case where the optimal minmax regret equals

zero is when S is a set of strictly dominant selection operators. In such a case we

do not use this measure. The max-min heuristic always finds the optimal minmax

regret solution for cases where S is a strictly dominating set. Therefore, we define

λ(S) to be one in such cases.

We arranged the experimental cases in groups based on the number of selection

operators, k. Therefore, group k involves all cases which have k selection operators.

In view of having a number of test cases, j, for each group k, we calculate the

average regret ratio and the worst regret ratio (which is simply the maximum value

of λ(S) over the j test cases). Both average regret ratio and the worst regret ratio

are also used as measuring criteria to evaluate the performance of the heuristic.

Smaller values for the average regret ratio and the worst regret ratio indicate better

performance of the heuristic.

For a whole set of experiments (i.e., over all groups), we also calculated the

overall value for the above three measuring criteria, namely the percentage of exact

solutions found, the average regret ratio and the worst regret ratio. For example in

the SSB data set, we generated one hundred test cases (i.e. j = 100) per group k,

where k ∈ [2, 11] selection operators, giving a total of 1000 test cases. We calculated
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the percentage of exact solutions found, the average regret ratio and the worst regret

ratio for the 100 test cases of each group k for various versions of the max-min

heuristic. Then we calculated the overall value for each measuring criteria over the

1000 test cases. To measure the stability of the results, we calculated the variance

and confidence interval for the overall percentage of exact solutions found and the

overall average regret ratio measuring criteria. Since both the variance and estimated

margin of error indicated by the confidence interval were significantly low, we do

not include them in the following discussions of the results. However, full details

can be found in Appendix B.4.

We used as a base case the version of the max-min heuristic H(p, q) with an

empty initial plan p and with the ordered sequence q generated randomly (unlike

other versions of the heuristic where the order of q is pre-defined). Each test case

can be passed to the max-min heuristic in different permutations. For each test case

we run the heuristic ten times with ten different permutations selected randomly.

Then we considered the maximum regret of the ten permutations as the worst regret

ratio for this test case. For the average regret ratio and the percentage of the exact

solutions found, we averaged the ten average regret values and the percentage of the

exact solutions found respectively for the ten permutations. For group 2 and group

3 (i.e. test cases with 2 and 3 selection operators), we tested the heuristic with all

possible permutations, since the total number of permutations in these cases is less

than ten. We denote this version by H(∅, U), with U referring to the fact that the

operator order is essentially unsorted.

In addition, we implemented the midpoint algorithm as discussed in Section 2.6

and Section 2.9, which takes the midpoint of the selectivity interval for each opera-

tor instead of considering the entire selectivity interval. Moreover, we implemented

the pessimistic and optimistic approaches from decision theory, as discussed in Sec-

tion 2.7. The performance of these algorithms is compared with that of the max-min

heuristic.
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5.2 Synthetic data set

This section describes how the synthetic data set was generated. It also discusses

how changing the parameters of the max-min heuristic impacts its performance.

Finally this section presents the main results and analysis of the experimental eval-

uation using the synthetic data set.

5.2.1 Generating test data

We designed a tool to generate random synthetic data sets. This tool was imple-

mented in Java and compiled with the Eclipse IDE (Juno release), which is JDK

compliant and uses the JavaSE-1.7 execution environment. The random generator

tool allowed us to generate synthetic data sets satisfying various conditions, for ex-

ample, a synthetic data set with only strictly dominant operators or one with only

overlapped dominant operators (recall the definitions from Section 3.1).

Now let us describe the main synthetic data set that we used in this experimental

evaluation. This data set used a mixed set of operators, that is not restricted to

one of the special sets of operators defined in Section 3.1. In this data set, each

test case corresponds to a group k of selection operators, with k ranging from 2

to 10. For each group k, we generated one hundred different test cases. While

group 2 (i.e. k = 2) is not particularly hard to solve, it was mainly included for

verification purposes (since any heuristic should be able to find the optimal plan

for this simple case). Obviously, the worst case scenarios of all cases in group 2

are max-min scenarios. For each test case in group k, we determined the lower and

upper bounds of the selectivity intervals for the selection operators by generating 2k

uniformly distributed random numbers between 0 and 1. Then each two consecutive

values from the 2k random numbers were used to form the selectivity interval of one

operator, where the smaller number was associated with the lower bound of the

interval and the larger number was assigned to the upper bound of the interval. Ten

operators was the upper limit for the synthetic data set because, to find the optimal

solution for just one test case in group 10, we need to check 10! · 210 (≈ 3.7 billion)

different costs for each test case.
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The same procedure was used to generate a strictly dominant data set and an

overlapped dominant data set. However for each set of selection operators in the

strictly dominant data set, the 2k uniformly distributed random numbers were sorted

in non-decreasing order. Then each two consecutive values were assigned as the

lower and upper selectivity bounds for each interval. For the overlapped dominant

data set, after sorting the 2k random numbers, the first and third numbers were

repeatedly removed from the list and assigned to the lower and upper selectivity

bounds respectively for each operator. This process continued until only two random

numbers were left in the list; they were assigned to the last operator as its lower

and upper selectivity bounds. Consider the following example which demonstrates

how selectivities were generated in the overlapped dominant data set.

Example 5.2.1 Assume that the tool needs to generate a synthetic test case with

four overlapped dominant operators, so k = 4. The tool generates 8 uniformly

distributed random numbers between 0 and 1, and then sorts the numbers in non-

decreasing order. LetA be the following sorted list of numbers: 0.0916, 0.3458, 0.3463,

0.4302, 0.7336, 0.8760, 0.9076, 0.9980. The following steps demonstrate how the se-

lectivity si of each operator, 1 ≤ i ≤ 4, is chosen:

• Step 0: A = (0.0916, 0.3458, 0.3463, 0.4302, 0.7336, 0.8760, 0.9076, 0.9980).

• Step 1: s1 = [0.0916, 0.3463], A = (0.3458, 0.4302, 0.7336, 0.8760, 0.9076, 0.9980).

• Step 2: s2 = [0.3458, 0.7336], A = (0.4302, 0.8760, 0.9076, 0.9980).

• Step 3: s3 = [0.4302, 0.9076], A = (0.8760, 0.9980).

• Step 4: s4 = [0.8760, 0.9980], A = ().

Therefore, the selectivies of the four overlapped dominant operators are s1 = [0.0916,

0.3463], s2 = [0.3458, 0.7336], ss = [0.4302, 0.9076], s4 = [0.8760, 0.9980].

3
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Figure 5.1: Overall percentage of exact solutions for the synthetic data set.

5.2.2 Synthetic experimental results

We now discuss the experimental evaluation for the max-min heuristic when using

the synthetic data set. As wase mentioned, we generated synthetic data sets with

different settings. However, here we only present the results of the synthetic data

set with a mixed set of operators, and from now on the term “synthetic data set”

will be used to refer to the mixed set of operators unless mentioned otherwise. This

is because the mixed setting seems to be the most representative of real situations in

which we have no prior information on relationships between operators. Moreover,

the baseline version of the max-min heurstic H(∅, U) finds the exact optimal minmax

regret solution for all cases in the strictly dominant and the overlapped dominant

data sets; this shows the power of the max-min heuristic in these cases. For the rest

of this chapter, the max-min heuristic will be referred to simply as (p, q), for initial

plan p and remaining operators q in some specific order.

Before we discuss the results of the max-min heuristic, let us present the results

of the pessimistic and optimistic heuristics that we considered. These heuristics find
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the optimal plan under a single scenario which is the scenario where all operators

are assigned their maximum selectivities or minimum selectivities for the pessimistic

and optimistic heuristics respectively. These heuristics produced very bad results.

The overall worst case ratio for the pessimistic approach is over 17, while that for

the optimistic approach is over 129. We also tested the midpoint heuristic that

simply orders the intervals in non-decreasing order of their midpoints (not going

through all max-min scenarios). It performs much better than both the pessimistic

and optimistic heuristics: its overall worst ratio is approximately 1.86. Therefore,

in the following discussion, the midpoint heuristic is used in comparison with the

max-min heuristic. More detailed results for the experimental evaluation of the

midpoint, pessimistic and optimistic heuristics using synthetic data can be found in

Appendix B.1.3.

We started our evaluation with the baseline version of the max-min heuristic

(∅, U). This version starts with an empty initial plan (∅) and inserts operators

without any specific order (U), where (U) stands for an unordered set. The max-

min heuristic (∅, U) was often better than running midpoint heuristic.

We also wanted to test various orders for passing the operators to the heuristic.

We considered the following orders (recall the following notation from Section 4.2.2):

non-decreasing width (W+), non-increasing width (W−), non-decreasing midpoint

(M+), and non-increasing midpoint (M−). The results for midpoint (M− and M+)

and non-increasing width ordering (W−) show far worse performance than (W+).

For example, (M+) and (M−) generated plans whose regret ratio was above three.

This is because when using the midpoint ordering, two operators with the same mid-

point but different widths cannot be distinguished. Moreover, comparing the (W+)

ordering with the (W−) ordering showed that the (W+) ordering performed much

better than the (W−) ordering. A possible explanation for this is that, when using

(W+), the operator with the smallest width will be processed first and the operator

with the largest width will be processed last. The fact that this last operator is the

most uncertain and that the heuristic considers it in each possible position of the

current plan may explain the improved results. Figures 5.1, 5.2 and 5.3 show im-

provements in the result of (∅,W+) compared to (∅,U) for all of the three measuring
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Figure 5.2: Overall worst regret ratio for the synthetic data set.

criteria: the percentage of exact solutions, the overall worst ratio and the overall

average ratio.

While W+ ordering performs better than M+, M-, and W-, it is still not signifi-

cantly better than the random ordering. In the next phase of our experimental eval-

uation we seeded our heuristic with an initial plan. We tested the heuristic using dif-

ferent criteria for choosing the initial plan. Recall the notation for these criteria from

Section 4.2.1 which can be summarised as follows: (D:C) (Dominant:Cardinality),

(D:W ) (Dominant:Width) and (D:CW ) (Dominant: first Cardinality, then Width).

We also considered the option of using the result of another heuristic (such as mid-

point, pessimistic or optimistic) as the initial plan for the max-min heuristic. The

criterion (D:CW ) stands for choosing the largest subset of dominant operators, and

in case of a tie, choosing the one with the greatest total width of the operators.

The results for (D:CW ) produced the best results. The superiority of (D:CW )

compared to the alternatives can be explained by the fact that (D:CW ) feeds the

heuristic with a partial plan that preserves the relative order of the maximum num-
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Figure 5.3: Overall average regret ratio for the synthetic data set.

ber of dominant operators as they should appear in the optimal plan. In the case

of finding two groups of dominant operators with the same number of operators,

(D:CW ) chooses the one with the greatest total width. The intuition behind choos-

ing the greatest total width is that operators with larger width are more uncertain

than those with smaller width. Hence, preserving their relative order will have a

greater positive impact on the final solution compared to operators with a smaller

width. We obtained better results using (D:CW,W+) compared to (∅,W+) and

(∅,U) when considering the percentage of exact solutions (Figure 5.1) and the aver-

age regret ratio (Figure 5.3). The results for the worst case regret ratio (Figure 5.2)

were rather inconclusive when compared with the result of (∅,W+), so we tried to

improve on this by running multiple phases of our heuristic.

The bar charts in Figures 5.1, 5.2 and 5.3 also show the results for running our

heuristic multiple times. This means that we take the output of running one phase

of our heuristic and use it as the initial plan for the next phase. The figures show

the results for starting off by running (D:CW,W+) first and then executing two

more phases. As can be seen, this variant clearly outperforms the baseline (∅, U)
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algorithm and the other variants in all respects. The overall worst regret ratio for

((D:CW,W+),W+) (i.e. running the heuristic and passing its result as initial plan

for one more iteration) is less than 1.23 and the overall average ratio is approximately

1.005, compared to approximately 1.93 and 1.036, respectively, for (∅, U). The ex-

periments showed that running one additional phase, ((D:CW,W+),W+), improves

the quality of the generated plan significantly, but running another phase after that,

(((D:CW,W+),W+),W+), makes almost no difference. Moreover, the max-min

heuristic using ((D:CW,W+),W+) significantly outperforms the midpoint heuris-

tic in all respects. The midpoint heuristic found the exact solution in only 44.78%

of cases, while ((D:CW,W+),W+) found 73% of the cases. The overall worst ratio

for the midpoint heuristic is approximately 1.86, while its overall average ratio is ap-

proximately 1.089. Comparing these results with the results of ((D:CW,W+),W+),

clearly show that running ((D:CW,W+),W+) always produces higher quality re-

sults. Appendix B.1.2 presents the full results for the discussed variations of the

max-min heuristic.

To investigate the effectiveness of the max-min heuristic, the results of the mid-

point, pessimistic and optimistic heuristics were fed to the max-min heuristic as

initial plans, after which the quality of the resultant solutions were studied. The ex-

perimental results showed the effectiveness of the max-min heuristic in taking a poor

quality plan and improving it with respect to all measuring criteria. The improve-

ment in the results were substantial, as can be seen in Table B.1.3 in Appendix B.

For example, after passing the midpoint, pessimistic and optimistic heuristics to the

max-min heuristic, the worst ratio dropped to less than 1.5 (recall that they were

initially approximately 1.9, 17.2 and 129.2, respectively).

5.3 The Star Schema Benchmark data set

In this section we introduce the Star Schema Benchmark (SSB), describe how the

data set was prepared, and present the main results of evaluating the max-min

heuristic on the SSB data set.
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5.3.1 Preparing the SSB data set

The Star Schema Benchmark (SSB) is a variation of the well-known TPC-H bench-

mark [100]. The benchmark simulates a supply chain business model of a warehouse.

It models the relationships between suppliers, customers, items and orders. We gen-

erated skewed SSB benchmark data with a scaling factor of 1, meaning that the

central facts table, lineOrder, contains 6,000,197 tuples. We then joined the dimen-

sional tables, namely part, customer, supplier and date, to the lineOrder table.

After generating the SSB data set, the next step was to create histograms for

each attribute in the central facts table, lineOrder. This was done by dividing

the domain of an attribute into equi-width buckets, then counting the number of

tuples that fall into each bucket. We did not keep any further information on the

distribution of tuples within each bucket of a histogram. For example, Figure 5.4

shows the histogram for the attribute ordtotalprice. This histogram consists of

20 buckets, each covering roughly 18,000 different values. For example, bucket #1

covers the range from 1 to 17,673 as shown in Table 5.1, which has the full range of

buckets for ordtotalprice with their total numbers of tuples.

After building a histogram for each attribute in the generated table, eleven at-

tributes were chosen to be used in generating random selection operators namely:

orderKey, linenumber, suppkey, quantity, ordtotalprice, revenue, supplycost,

brand, size, container, and custkey. Once again, we were limited to eleven op-

erators, since solving any generated case optimally using the brute-force approach

requires checking 11! ∗ 211 (≈ 81.7 billion) different costs.

The basic information from the histograms allows us to determine intervals for

the selectivities of each selection operator. For a “less than” (<) and “greater than”

(>) operator, we know that all histogram buckets exclusively covering smaller/larger

values have to be included fully. However, for the bucket in which the predicate value

falls, we do not know precisely how many elements will be selected. In extreme cases,

none or all of the elements satisfy the predicate, thus giving us the lower and upper

bounds for the selectivity. Example 5.3.1 below illustrates with concrete values the

calculation of selectivity bounds for given predicates.
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bucket # start value end value total # of tuples

1 1 17673 1301927

2 17674 35346 1329577

3 35347 53019 1388148

4 53020 70692 363752

5 70693 88365 271088

6 88366 106038 310664

7 106039 123711 281044

8 123712 141384 211126

9 141385 159057 144979

10 159058 176730 101674

11 176731 194403 81190

12 194404 212076 69878

13 212077 229749 57902

14 229750 247422 41684

15 247423 265095 25474

16 265096 282768 12736

17 282769 300441 5288

18 300442 318114 1598

19 318115 335787 396

20 335788 353460 72

Table 5.1: Range of values for attribute ordtotalprice histogram.
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Example 5.3.1 Consider the histogram for the ordtotalprice attribute as shown

in Table 5.1. Given the predicate ordtotalprice < 40000, what are the selectivity

interval bounds?

The value 40000 falls into bucket 3. So we know that all tuples in buckets 1 and

2 must be included, with a lower bound given by including nothing from bucket 3,

and an upper bound given by including all tuples from bucket 3. Hence the lower

and upper bounds for the selectivity are computed as follows:

Lower bound =
1301927 + 1329577

6000197
=

2631504

6000197

= 0.4386

Upper bound =
1301927 + 1329577 + 1388148

6000197

=
4019652

6000197

= 0.6699

Therefore, the selectivity interval for the predicate ordtotalprice< 40000 is [0.4386,

0.6699].

Now consider the predicate ordtotalprice > 260000, which covers the six buck-

ets from bucket 15 up to bucket 20. For the lower bound, the total number of tuples

in buckets 16 to 20 will be used, while for the upper bound the total number of

tuples in all six buckets will be considered as follows:

Lower bound =
12736 + 5288 + 1598 + 396 + 72

6000197
=

20090

6000197

= 0.0033

Upper bound =
25474 + 12736 + 5288 + 1598 + 396 + 72

6000197

=
45564

6000197
= 0.0076

As a result, the selectivity interval for the predicate ordtotalprice < 260000 is

[0.0033, 0.0076]. 3
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Figure 5.5: Overall percentage of exact solutions (SSB).

We used our tool to generate random queries with k predicates, where k ∈ [2, 11].

Each query consists of predicates using different attributes. Queries basically con-

sist of a conjunctive predicate whose clauses are made up of the selected attributes

compared to a random value taken from the attribute’s domain, using a less-than

or greater-than operator. The following query is an example generated in our ex-

periments:

orderKey < 2964443 AND linenumber > 5 AND quantity < 29

We used our tool to generate 100 random cases for each query size k, giving a total

of 1000 test cases for all k sizes, where k ∈ [2, 11].

5.3.2 The SSB experimental results

This section presents the experimental results of our heuristics using the SSB data

set. We optimised the generated SSB queries using minmax regret optimisation, as

well as the midpoint, pessimistic and optimistic approaches.
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Figure 5.6: Overall worst regret ratio (SSB).

The pessimistic and optimistic approaches showed much worse performance com-

pared with their performance on the synthetic data set. The overall worst regret

ratios on SSB are over 3204 and 89182 for the pessimistic and optimistic approaches

respectively. In addition, the overall average regret ratio for the pessimistic and op-

timistic approaches in SSB are approximately 12.08 and 555.33 respectively. Once

again both pessimistic and optimistic approaches showed much worse performance

than the midpoint approach. Therefore, we used the midpoint approach to com-

pared with the max-min heuristic. Appendix B.2.2 presents more results about the

experimental evaluation using the SSB data set for the midpoint, pessimistic, and

optimistic approaches.

After finding the optimal minmax regret solution for all generated cases, we

started evaluating the max-min heuristic using the (∅, U) version as a baseline.

Recall that the (∅, U) version of the max-min heuristic starts without any initial

plan (∅) and is passed the operators in no specific order (U). It is interesting to

note that the max-min heuristic performs better on the SSB data set compared

to the synthetic data set, even with the baseline (∅, U). For example, (∅, U) finds
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Figure 5.7: Overall average regret ratio (SSB).

the exact optimal solution in 88.13% of the cases in the SSB data set compared to

approximately 61.53% of the cases in the synthetic data set. (∅, U) outperforms the

midpoint approach when considering the criterion of the overall percentage of exact

solutions (Figure 5.5) and the criterion of the overall average ratio (Figure 5.7).

However, for the overall worst regret ratio criterion (Figure 5.6), the result was

inconclusive since both (∅, U) and the midpoint approach had 1.69 as an overall

worst regret ratio. Therefore, we tested passing the operators in non-decreasing

order according to the width of their selectivity interval (W+). As a result, the

max-min heuristic (∅,W+) showed improvements in all criteria.

Figures 5.5, 5.6 and 5.7 clearly illustrate the improvement in the performance of

the max-min heuristic with respect to all measuring criteria when it was seeded with

initial plan (D:CW ). As before, using the initial plan in the max-min heuristic pro-

duced the best results. Once again, we tested our heuristic with multiple iterations.

Specifically, we passed the result of (D:CW,W+) as an initial plan for a second run

of the heuristic. This improved the results, specially for the worst regret ratio. For

example, the overall worst regret ratio dropped from 1.52 for (D:CW,W+) to 1.27



5.4. The Enron data set 142

for ((D:CW,W+),W+) as shown in Figure 5.6. Similar to the results using the syn-

thetic data set, running a third phase of the heuristic, (((D:CW,W+),W+),W+),

produces almost the same results as ((D:CW,W+),W+). The full results can be

found in Appendix B.2.1.

We also wanted to see how the max-min heuristic performs when it is fed with a

bad initial plan. Therefore, we challenged the max-min heuristic by feeding it with

the results of the midpoint, pessimistic and optimistic results as initial plans. The

improvements were impressive with respect to all measuring criteria. For example,

the worst regret ratio dropped from 1.7, 3205 and 89183 for the midpoint, pessimistic

and optimistic approaches, respectively, to 1.3 and approximately 1.4 for both the

pessimistic and optimistic approaches. The complete results for this experiment can

be found in Appendix B.2.2.

5.4 The Enron data set

The third data set used to evaluate minmax regret optimisation of selection operators

was the Enron email data set. We first discuss the process of preparing the data

set for the experimental evaluation and how the queries were generated. Then the

main results of the experimental evaluation are presented.

5.4.1 Preparing the Enron data set

The Enron data set was originally acquired and made public as a result of the

investigation by the Federal Energy Regulatory Commission after the collapse of the

company. The version of the data set that we used contains over 255000 emails [35].

Estimating the selectivity of string predicates which perform substring matching

using SQL like is known to be difficult [29]. We chose the Enron data set to

test our heuristic in such an environment, where string predicate selectivities are

known to fall within some interval. The Enron email data set records the email

communications sent and received by Enron employees. It has five tables which are

as follows:

• The person table stores employees’ personal details.
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• The email address table stores the email addresses and whether each belongs

to an Enron employee or not.

• The message table includes email details such as the subject and when the

email was sent.

• The emailreceiver table associates each message with its recipient list of

addresses.

• The body table which associates each email message with its body.

In order to prepare the data set for our experiments, we first nominated suitable

string attributes from different tables, since not all string attributes would be useful

for our experiments. For example, we did not use name attributes (i.e. first and last

name) from the person table because the person table has only the names of 156

Enron employees. This would severely limit the size of the data that would be used

in the experiments. On the other hand, we used the subject attribute of the emails

from the message table because it is a string attribute with widely varying values

and each email in the data set has a subject. We chose attributes with a variety

of string lengths, from attributes with relatively short strings, such as the subject

of the emails, to long strings such as the body of emails. Specifically, we chose the

following attributes: sender email address, recipient email addresses, subject

and body of the emails. After choosing these string attributes from different tables,

we joined the tables to form one big table called emailDetails. This allowed us to

perform a select query on a single table.

Before we generated the queries, we needed to model the selectivity ranges of the

predicates. In order to do this, we nominated sets of keywords for each attribute.

These keywords would be used in the queries. While choosing the keywords, we tried

to have a range of keywords, including popular and less popular keywords. This in

turn produced different ranges of selectivity intervals which enabled us to test our

heuristic thoroughly, as we will see in Section 5.4.2.

In our experiments, we assumed that queries use selection predicates such as

subject like ‘%work%’. We also assumed that the database maintains indexes on

words and on the n-grams (e.g. 2-grams) of words which allows the database also
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# 2-gram Selectivity

1 sc 0.46867

2 ch 0.75389

3 he 0.90265

4 ed 0.83887

5 du 0.39394

6 ul 0.60242

7 le 0.84724

Table 5.2: The 2-grams for the keyword ‘schedule’ for the body attribute in Exam-

ple 5.4.1.

to provide selectivities for these predicates. In a predicate such as subject like

‘%work%’ the selectivity for the word ‘work’ will underestimate the true selectivity.

This is because this predicate will not match the word ‘work’ only, but will also

match words such as: ‘network’, ‘working’, ‘workload’ and ‘workday’ (and many

others). Therefore, we form an interval selectivity for a word by considering the

exact match as a lower selectivity estimate. For the upper estimate, we use the

minimum selectivity of all the n-grams of the word (after fixing the value of n).

This is because any string containing the whole word must contain all of its n-grams

as well. The following example illustrates this idea.

Example 5.4.1 Assume we want to find the selectivity interval for the keyword

‘schedule’ for the body attribute. Assume also that the database system stores the

selectivity of all 2-grams for keywords, such as shown in Table 5.2. The 2-grams will

be used to find the upper selectivity range of the keyword.

For the lower selectivity estimate, we consider the number of exact matches for

‘schedule’ divided by the total number of rows, which gives 0.04548. For the upper

selectivity estimate, we need to consider the 2-grams for the word ‘schedule’ as

shown in Table 5.2. The smallest value among the 2-grams, which happens to be

the value of ‘du’ in this case, will be divided by the total number of rows to form

the upper selectivity for ‘schedule’. As a result, the selectivity range for ‘schedule’
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is [0.04548, 0.39394]. 3

We calculated the upper selectivities of the keywords using n-grams for n ∈

{2, 3, 4, 5}. We decided to use 2-grams to calculate the upper selectivities since

larger gram sizes will not help in generating interval selectivities for small words.

For example, using 5-grams to find the upper selectivity for a word with three letters

for instance would end up having the same selectivity as the exact word (i.e. its

minimum selectivity). Moreover, we noticed that the selectivity interval width (i.e.

the difference between the upper and lower selectivity values) when using a bigger

gram size is much smaller than the width when using a smaller grams size. Having

selectivity intervals with different widths is important in testing the effectiveness of

our approach.

We calculated the selectivity intervals for all chosen keywords as explained in Ex-

ample 5.4.1. Due to the nature of the email addresses of the sender and recipients

in this data set, the selectivity intervals for keywords from these attributes are very

small. However, the selectivity intervals of the keywords for the subject and body

attributes are more representative and have a variety of interval widths and selectiv-

ity values. Therefore, the queries were generated using keywords from the subject

and body attributes. This gave rise to a range of intervals, including those with

small values such as [0.0004, 0.01] for the ‘progress’ keyword in the subject at-

tribute, those with larger values such as [0.6, 0.7] for the ‘you’ keyword in the body

attribute, and those with large width such as [0.07, 0.6] for the ‘price’ keyword in

the body attribute.

We developed a tool to generate queries with different numbers of predicates. For

each number of predicates k, where k ∈ [2, 11], we generated 20 queries randomly.

We prepared a list of 40 keywords from the subject attribute and a list of 45

keywords from the body attribute. The full lists of keywords for subject and body

attributes can be found in Table B.5 and Table B.6, respectively, in Appendix B.3.1.

The tool randomly picked one keyword from the subject list to form one predicate

and picked k − 1 distinct keywords from the body list to form a query with k

predicates. Each generated query was checked by the tool to make sure that it

returned a non-empty answer. The following is a sample of a generated query:
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select *

from emailDetails

where body like ’%action%’ AND

body like ’%schedule%’ AND

body like ’%meet%’ AND

subject like ’%market%’ ;

5.4.2 The Enron experimental results

This section presents the experimental results of our heuristics using the Enron data

set. As before, we first found the optimal minmax regret solution for all generated

queries using the brute-force approach.

We started by testing the pessimistic and optimistic heuristics. They continued

to perform poorly when compared with the midpoint heuristic as shown in Table B.8

in Appendix B.3.3. Therefore, the midpoint is used as a basis of comparison with

the max-min heuristic. It is interesting to note that if the selectivities were simply
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calculated based on whole keywords without their n-grams, then that would be

equivalent to considering only the minimum selectivity values of the intervals and

this is exactly what the optimistic approach does. This poor choice of selectivity

by the optimistic approach results in very poor performance, for example a worst

regret ratio of more than 31.

In general the results on the Enron data set showed similar trends to the other

data sets, but were more impressive as shown in Figures 5.8, 5.9 and 5.10. Go-

ing from the baseline of the max-min heuristic (∅, U) to (∅,W+) and then to

(D:CW,W+) showed a good improvement in the results. The max-min heuristic

with multiple iterations also boosted the quality of the results. The ((D:CW,W+),W+)

and (((D:CW,W+),W+),W+) variants of the max-min heuristic found the min-

max optimal solution in 78% and 78.5% of cases respectively, both having a worst

regret ratio of only 1.07, and an average regret ratio of less than 1.001. By contrast,

the midpoint heuristic had a worst regret ratio of over 1.49, an average of 1.06, and,

for example, did not find a single minmax optimal solution in all cases of 10 oper-

ators. Overall the midpoint heuristic found the optimal minmax solution in only
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41.5% of cases. The full results for the max-min heuristic can be found in Table B.7

in Appendix B.3.2.

The max-min heuristic also showed good performance in refining and improving

bad plans by being fed, as initial plan, the results of the midpoint, pessimistic and op-

timistic heuristics. It is interesting that, with the max-min heuristic refinement, the

results of these heuristics became closer to the result of (((D:CW,W+),W+),W+).

For example, the percentage of exact solutions was 41.5% for the midpoint heuris-

tic, and 31.5% for both the pessimistic and optimistic heuristics. However, after the

max-min heuristic refinement the percentage of exact solutions improved to more

than 76%. Table B.8 in Appendix B.3.3 shows the full results for the midpoint,

pessimistic and optimistic heuristics.

5.5 Discussion of experimental results

In order to study the max-min heuristic and the impact of its parameters, namely

the choice of initial plan and the order in which the operators are passed to the
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heuristic, we started with the baseline (∅, U) which has no initial plan and passes the

operators in no specific order. As we discussed in Section 2.3 the aim for most query

optimisers is finding the optimal plan (not avoiding worst plans as in our approach).

Recall also from Section 2.6 that some existing systems use single value estimate

such as the midpoint to deal with imprecision in the statistical information. This

approach is compared to our heuristic in our experimental evaluation. The results of

our experiments showed that even the basic version of the max-min heuristic (∅, U)

outperforms an approach that finds the optimal plan using the midpoint as a single

point estimate in the measures of the percentage of exact solution found and the

average regret ratio. For example on the Enron data set, (∅, U) shows a more than

34% improvement in finding the optimal minmax regret plan when compared to the

midpoint heuristic.

Now let us consider the ordering parameter for the max-min heuristic (recall

the different ordering criteria from Section 4.2.2). The aim of sorting is to pass

the operators to the heuristic based on their selectivity in order to build a good

solution. Our experimental evaluation showed that sorting the operators according

to the width of their selectivities is much better that sorting the operator according

to their midpoint selectivities. One reason for this is that the midpoint criterion does

not reflect the level of imprecision for the selectivities of the operators, since two

operators may have same midpoint selectivity but vary in their selectivity interval

width which cannot be distinguished using the midpoint. The ordering criterion

(W+), which sorts the operators in non-decreasing order according to the width

of their selectivity intervals, showed the best performance. The intuition behind

this is that with (W+), the operator with the smallest width will be processed first

while the operator with the largest width (hence most imprecise and influential in

the cost calculation) will be processed last. This allows the heuristic to consider

the operators with larger selectivity width in more possible positions in the current

plan, helping to improve the result of (∅,W+) when compared with (∅, U).

The results are further improved when using (D:CW,W+), which starts with the

initial plan (D:CW ) and then passes the remaining operators in non-decreasing order

according to the width of their selectivity intervals. Starting with (D:CW ) as an ini-
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tial plan allows the heuristic to find the correct order for the largest set of dominant

operators in terms of operator cardinality. In case of having more than one dominant

set with the same maximum cardinality, the heuristic chooses the one whose total

width of the selectivity intervals is greatest. As a result this dominant set includes

more operators with imprecise selectivities compared to other sets. Starting with the

correct order for such operators, which have the same relative order in the optimal

plan, gives the heuristic a good start and helps to improve the overall solution. The

remaining operators have the chance to be tested in more positions starting from

the least precise to the most imprecise operators. The ((D:CW,W+),W+) version

of the heuristic improves the quality of the result significantly. This takes the good

result of (D:CW,W+) and refines it by adding another iteration which allows the

operators to be tested in further possible positions.

As seen in the experiments, (((D:CW,W+),W+),W+) introduces a slight im-

provement in the overall percentage of exact solutions for both synthetic and Enron

data sets when compared with ((D:CW,W+),W+). However, it does not show any

significant improvements in terms of the overall worst and average regret ratio in all

data sets. One explanation for this is that when we use (((D:CW,W+),W+),W+),

we first find the correct order for the biggest set of dominant operators (D:CW ).

Finding the correct order for such operators provides a good start for building the

solution knowing that this subset of operators preserve their relative order as in

the optimal minmax regret plan. This in turn, allows the remaining operators to

be tested in more possible positions. Eventually after the first and second iteration

(i.e. (D:CW,W+) and ((D:CW,W+),W+) respectively) all operators will find their

best position under the tested max-min scenarios. Therefore, no much room for fur-

ther improvement is left for (((D:CW,W+),W+),W+) and that might explains the

slight improvement after ((D:CW,W+),W+). Moreover, during our experimental

evaluation we noticed that adding more iterations after (((D:CW,W+),W+),W+)

does not improve the results at all. Even though the (((D:CW,W+),W+),W+) is

tested with more iterations using different data sets and with different query sizes

(up to 11 selection operators in our experiment), however it is hard to have a gen-

eral claim that no more improvement will be gained by adding more iterations after
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Measure
Synthetic SSB Enron

mid. max-min mid. max-min mid. max-min

% exact 45% 73% 84% 90% 42% 78%

Worst 1.86 1.23 1.69 1.27 1.49 1.07

Average 1.09 1.01 1.01 1.004 1.06 1.001

Table 5.3: Comparing the max-min heuristic with the midpoint heuristic on all data

sets.

(((D:CW,W+),W+),W+).

It is true that (D:CW,W+) and ((D:CW,W+),W+) require additional com-

putations (see Appendix B.1.2 for sample run times for versions of the max-min

heuristic), but they showed a significant improvement in the quality of results. So,

they trade time for quality. If the aim is to have a quick solution with reasonable

results, then the max-min heuristic versions (∅,W+) or (D:CW,W+) are recom-

mended. On the other hand, if the aim is to have high-quality plans by spending

extra time, then the max-min heuristic ((D:CW,W+),W+) is recommended. The

max-min heuristic runs at query optimisation stage, so the extra time required by

((D:CW,W+),W+) in the optimisation process would not affect the run time but

improves the quality of the result.

The main target in MRO is to avoid bad plans under worst case scenarios. The

max-min heuristic showed impressive results in avoiding such bad plans. In fact it

not only avoids bad plans; it even found the exact optimal minmax regret solution for

a large percentage of cases. For example, it found the exact minmax regret solution

in 89.7% of the cases in the SSB data set. More interesting, even the basic version

of the max-min heuristic (∅,W+) gave very good performance when compared with

the midpoint, pessimistic and optimistic heuristics.

Overall the max-min heuristic performed very well on all data sets. The synthetic

data set was used to stress test the heuristic with cases that might not appear

commonly in real life, such as operators with purely nested selectivity intervals

(recall the definition of nested operators from Section 3.1). This might explain the

slightly reduction in performance on the synthetic data set compared to the SSB
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and Enron data sets for some criteria. Table 5.3 summarises the results of the

max-min heuristic ((D:CW,W+),W+) compared to the midpoint heuristic on all

data sets. It outperforms the midpoint heuristic on all measures. For example, the

((D:CW,W+),W+) shows up to 46.8% improvement (in Enron data set) comparing

to the midpoint heuristic in terms of the percentage of finding the exact optimal

minmax regret plan.

5.6 Conclusion

This chapter has presented an experimental evaluation of various approaches to

optimise the selection ordering problem using MRO. The brute-force approach for

computing the optimal minmax regret solution was used to evaluate the perfor-

mance of the various heuristics. We have compared the performance of our novel

max-min heuristic to other baseline heuristics. The midpoint, pessimistic and op-

timistic heuristics all consider a single point from each selectivity interval of the

selection operators to find the optimal solution. The midpoint heuristic uses the

midpoint selectivity of the selection operators instead of considering the whole se-

lectivity interval. The pessimistic heuristic considers only the maximum value of the

selectivity interval. The optimistic heuristic, on the other hand, uses the minimum

selectivity value of the selectivity interval for the selection operators.

Three different data sets were used in the experimental evaluation. One data

set was generated synthetically, while for the second data set we used the Star

Schema Benchmark (SSB), a variation of the well-known TPC-H benchmark [100].

The third data set was the Enron email data set [35]. This chapter has discussed

the pre-processing of the data sets, how the queries were generated for each data

set, and the measuring criteria that were used in the experimental evaluation. The

experimental evaluation using the three data sets showed that the max-min heuristic

clearly outperforms the other heuristics.



Chapter 6

Applying the Max-min Heuristic

to the Total Flow Time Problem

In Section 2.9.1 we discussed the job scheduling problem on a single machine where

the objective is to find the order which minimises the total flow time (TFT). Then in

Section 2.9.2, we presented the MRO version of the problem with interval processing

times, and discussed some approximation heuristics such as the 2-approximation

algorithm. We mentioned that there are some similarities between MRO for the

TFT problem and MRO for the selection ordering problem. However, the cost

function for the TFT problem is linear (Equation 2.9.1 in Section 2.9.1), while that

for the selection ordering problem is non-linear (Equation 2.4.2 in Section 2.4.1).

Moreover, the midpoint heuristic leads to 2-approximation for the TFT problem,

while it does not guarantee a solution whose regret is no more than twice the optimal

regret for the selection ordering problem, as discussed in Section 3.4.4. Nevertheless,

we decided to apply the max-min heuristic to the TFT problem since it performed

very well on the selection ordering problem, as shown in Chapter 5. This chapter

describes the implementation and experimental evaluation of the max-min heuristic

on the TFT problem.
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6.1 Max-min heuristic

Similar to the selection ordering problem, the brute-force approach to MRO for

job scheduling is not practical, as discussed in Section 2.9.1. This is because it

requires an exponential number of calculations to examine n! scheduling plans and

2n extreme scenarios for a set of n jobs. The max-min heuristic considers only

n+ 1 max-min scenarios for each plan instead of all extreme scenarios. A max-min

scenario in the TFT problem is an extreme scenario in which the first k jobs in a

plan are assigned their maximum processing time and the following n − k jobs are

assigned their minimum processing time, where 0 ≤ k ≤ n.

One motivation to apply max-min heuristic in the job scheduling problem is its

encouraging performance in the selection ordering problem as seen in Chapter 5.

Moreover, max-min scenarios play a special role in MRO for the job scheduling

problem. Lebedev and Averbakh define an important class of job scheduling prob-

lems where the worst case scenarios are max-min scenarios [75]. This class considers

a set of jobs with nested processing times with the same midpoints and no common

interval boundaries (this class was discussed in Section 2.9.2).

In this section, we adapted the basic algorithm of the max-min heuristic as

described in Section 4.1 for the selection ordering problem. Algorithm 6 shows the

implemented max-min heuristic, H(u, q), for the job scheduling problem. Apart

from processing jobs rather than selection operators, the only other difference is the

calculation of the regret in line 8.

As before, the algorithm is parameterised by two inputs: u, a (possibly empty)

starting plan and q, an order in which to process jobs. Algorithm 6 starts with the

outer for loop in line 1 and takes one job at a time from q, checking if it already

exists in u, as seen in line 2. If so, the job is removed from u and tested in each

position in u; otherwise, it directly checks the job in each position in u. Each time

a job is checked in a position, a new plan is formed. This plan is considered under

all max-min scenarios. The solution for the current stage will be the plan with

the smallest maximum regret which in turn will be the starting plan for the next

iteration. Ultimately, the algorithm will return u as a solution.

As for selection ordering, the max-min heuristic can start with some partial plan
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Algorithm 6: H(u, q)

1 foreach job j from the sequence q do

2 if j is in u then

3 remove j from u

4 Assume u currently comprises i jobs;

5 foreach position k, 1 ≤ k ≤ i+ 1, in u do

6 Temporarily insert j in position k in u;

7 foreach max-min scenario for u do

8 Calculate the regret of plan u;

9 Store the maximum regret for position k;

10 Choose as the final position for j in u the one that minimises the

maximum regret;

11 Return u;

u. Section 2.9.2 discussed the importance of the domination relationship between

jobs, since their relative order in any optimal plan is known. Therefore, for a given

set of jobs J with subset J ′ of dominant jobs, we could start by assigning J ′ to

u after sorting the dominant jobs in non-decreasing order. If we have more than

one dominant set, then we could use one of the following: the subset S ′ with the

maximum cardinality denoted by D:C (i.e. Dominant:Cardinality), the subset S ′

whose jobs have the largest total width of their processing time intervals denoted by

D:W (i.e. Dominant:Width), or the subset S ′ with the maximum cardinality whose

total width of the processing time intervals is greatest, which is denoted by D:CW

(i.e. first Dominant:Cardinality, then Width).

The heuristic also accepts different orders for the jobs in q. They can be or-

dered based on the interval width of their processing times and that can be in

non-decreasing or non-increasing order, denoted as W+ and W− respectively. Al-

ternatively, the jobs can have non-decreasing or non-increasing order according to

the midpoints of their processing time intervals, denoted by M+ and M− respec-

tively. As before, the output of H(u, q) can be assigned to u as an initial plan for
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another iteration of the algorithm. In the following section we present the experi-

mental evaluation for various versions of the max-min heuristic.

6.2 Experimental evaluation

The max-min heuristic for TFT has been implemented and tested experimentally.

Moreover, the brute-force algorithm as well as the midpoint (2-approximation) algo-

rithm have been implemented in order to evaluate the performance of the max-min

heuristic. The testing environment (i.e. hardware and software configurations) was

the same as that described in Chapter 5.

Below we first identify the measuring criteria used in the experimental evaluation,

then describe how the data set was generated, and finally present the experimental

results showing the performance of various versions of the max-min heuristic on the

TFT problem.

6.2.1 Measuring criteria

The measuring criteria are the same as those for the selection ordering problem, as

described in Section 5.1. We repeat them here for convenience. The percentage of

exact solutions found is the number of cases where the heuristic generates a plan

equivalent to the optimal minmax regret solution. The regret ratio λ(J) is defined

as follows:

λ(J) =
R(H(u, q), X(J))

R(P (J), X(J))
(6.2.1)

The regret ratio was treated here in the same way as in Section 5.1. We calculated

the average regret ratio for all cases with the same number number of jobs and also

found the worst regret ratio (i.e. the maximum λ(J)) over them.

In order to evaluate the stability of the experiments, the variance and the con-

fidence intervals are calculated for the percentage of exact solutions found and the

overall average regret ratio. The margin of error for the percentage of exact solutions

and the average regret ratio measures was less than ±2 percentage points and ±0.01
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respectively, while their variance was less than 0.02. Full results for the statistical

measures can be found in Appendix C.2.

6.2.2 Generating test data

A synthetic data set was used to evaluate the performance of the max-min heuristic

for the TFT problem. It was generated in a similar way to the one described in

Section 5.2.1.

Each test case consists of a set of k jobs, with k ranging from 2 to 10, and we say

the test case belongs to group k. We generated a hundred different cases for each

group k. In order to generate a single test case with k jobs, we generate 2k uniformly

distributed random numbers from the range [0, 100]. Then we take a pair of values

from the 2k random numbers in order to specify the processing time bounds for a

single job, where the smaller value is associated with the lower bound and the larger

value is associated with the upper bound. We call this setting a mixed setting, which

means that we do not specify any special relationships between the generated jobs

(e.g. nested or dominant). This setting is the most general and so fully tests the

heuristic.

6.2.3 Experimental results

This section presents the results of the experimental evaluation for various versions

of the max-min heuristic for the job ordering problem, comparing them with those

of the midpoint, pessimistic and optimistic heuristics. For simplicity, throughout

this section we will refer to the max-min heuristic with the chosen initial plan u and

order q as simply (u, q) instead of H(u, q).

Let us start with the pessimistic and optimistic heuristics. These heuristics

consider a single scenario to find the solution. The pessimistic heuristic considers

the scenario in which all jobs are assigned their maximum processing time, while the

optimistic heuristic considers only the scenario in which all jobs are assigned their

minimum processing time. Both heuristics find the exact minmax regret optimal

solution for approximately 23% of the cases. However, the pessimistic heuristic has
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Figure 6.1: Overall percentage of exact solutions for the synthetic data set.

an overall worst regret ratio of 8.5, while that for the optimistic heuristic is 11.94.

They are far worse than the midpoint heuristic which sorts the jobs in non-decreasing

order according to the midpoints of their processing times (recall more details from

Section 2.9), where the regret ratio is guaranteed to be no more than 2 [71]. In fact,

the midpoint heuristic outperforms both the pessimistic and optimistic heuristics

on all measures, so we will use it in comparison with the max-min heuristic. The

overall worst regret ratio for the midpoint is 1.68, while its overall average regret

ratio is 1.045689. It found the exact minmax regret optimal solution in 52% of the

cases. The full results for the midpoint, pessimistic and optimistic heuristics can be

found in Appendix C.1.

As for selection ordering, we evaluated the max-min heuristic experimentally

with various settings. These included starting with an empty initial plan and con-

sidering random operator ordering (∅, U), ordering by midpoint (M− and M+)

and ordering by interval width (W− and W+). Overall, the performance of non-

decreasing order (M+/W+) was better than non-increasing order. The experimen-

tal evaluation showed that the W+ ordering (non-decreasing width) performed best,



6.2. Experimental evaluation 159

1.45

1.5

1.55

1.6

1.65

1.7
1.68122

1.64986

1.43623
1.44587 1.44587 1.44587

w
or

st
re

gr
et

ra
ti

o

midpoint

(φ,U)

(φ,W+)

(D : CW,W+)

((D : CW,W+),W+)

(((D : CW,W+),W+),W+)

Figure 6.2: Overall worst regret ratio for the synthetic data set.

so it will be used in this section. We also tested the heuristic by starting with initial

plan D:CW . Recall from Section 6.1 that D:CW stands for the largest subset of

dominant jobs, and, in case of a tie, the one with the greatest total width of process-

ing time will be chosen. Furthermore, we applied multiple phases where the result

of the previous phase is passed into the next phase as an initial plan.

The (∅, U) version is used as a baseline. It outperforms the midpoint heuristic

on all measures as shown in Figures 6.1, 6.2 and 6.3. The (∅, U) version finds the

exact solution in 67.81% of the cases. The (∅,W+) version showed the effectiveness

of ordering. The percentage of exact solutions found jumped to 70.11%, while the

worst regret ratio dropped to 1.44 from 1.65 for (∅, U) and 1.68 for the midpoint

heuristic as shown in Figure 6.2.

Starting with initial plan D:CW improved the percentage of exact solutions

found to more than 74.22%, but did not improve the overall worst regret ratio or the

overall average regret ratio. However, the average regret ratio can be improved by

performing another iteration (i.e. ((D:CW,W+),W+)) which improved the overall

average regret ratio to 1.015 as shown in Figure 6.3. Figure 6.1, shows that the per-
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Figure 6.3: Overall average regret ratio for the synthetic data set.

centage of exact solutions found was also improved using the ((D:CW,W+),W+)

version, reaching 78.44%. The (((D:CW,W+),W+),W+) version does not im-

prove the results when compared to the ((D:CW,W+),W+) version. During our

experimental evaluation, we performed up to six iterations of the max-min heuristic

(D:CW,W+), but the results were the same as for (((D:CW,W+),W+),W+) on

all measures. Table C.1 in Appendix C.1 shows the full results for the max-min

heuristic applied to the job scheduling problem.

6.3 Discussion of experimental results

In our experiments we started with (∅, U) version of the max-min heuristic. By

starting with (∅, U) we could evaluate the basic version of the max-min heuristic

without any parameters (i.e. initial plan and ordering criteria) and then study the

effectiveness of the various parameters. Version (∅, U) outperformed the midpoint

heuristic on all measures. Therefore, if the aim is to find the optimal order or to

avoid bad orders as often as possible, then the basic version of max-min heuristic is
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a better choice than midpoint.

The experimental evaluation shows the effectiveness of choosing an appropri-

ate ordering. Version (∅,W+) improved the results by passing the jobs in non-

decreasing order based on the width (i.e. imprecision) of their processing times.

This makes sense because by using non-decreasing ordering, the max-min heuristic

delays passing the most uncertain jobs to the algorithm, which in turn means they

are tested in more positions and this improves the result. Using initial plan D:CW

improved the percentage of exact solutions found. However, adding an extra itera-

tion using ((D:CW,W+),W+) showed better performance in terms of worst regret

ratio and overall average regret ratio. This extra iteration takes the good result of

(D:CW,W+) and enhances it by allowing all jobs to be tested again, this time in

all positions of the plan.

The experiments show that in a few cases the worst regret ratio for (∅,W+) is

better than that for (D:CW,W+), which in turns affects the average regret ratio.

A possible explanation is that sometimes the initial plan has only a few jobs, yet

large processing time intervals, while the remaining jobs have small processing time

intervals. In these cases, the jobs with big intervals are fixed in their position by

the initial plan, while the jobs with smaller intervals have the chance to be tested

in every position of the plan. This leads to the same flaw as for the non-increasing

order of jobs. Misplacing the jobs with the most uncertain processing times has a

negative impact on the quality of the solution. Therefore, it is better to pass them

to the heuristic later, allowing them to be tested in more positions with a better

chance of finding the correct position.

6.4 Conclusion

An advantage of the midpoint heuristic for job scheduling is that it guarantees

a bound for the generated solution which does not exceed two times the optimal

solution. It is also the case that the max-min heuristic is more complex than the

midpoint heuristic. However, the experimental evaluation showed that the max-

min heuristic gives higher quality results and avoids plans with high regret when
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compared to the midpoint heuristic. According to the experiments, the max-min

heuristic found the exact optimal solution in more than 78% of the cases, while

the midpoint heuristic found just 52%. As a result, the midpoint heuristic can be

used for a quick solution with reasonable quality. However, better results can be

obtained using (∅,W+) at the expense of extra time. On the other hand, if time is

not a constraint, then ((D:CW,W+),W+) is the best option for the highest quality

results.

This chapter applies the max-min heuristic to the TFT problem. Then, it pre-

sented the experimental evaluation for the max-min heuristic with various settings

and compare them to the midpoint, pessimistic and optimistic heuristics. In the next

chapter we discuss the problem of ordering join operators when their selectivities

are only known to fall within intervals.



Chapter 7

The Join Ordering Problem

In previous chapters we studied the selection ordering problem and our proposed

heuristic to solve that problem. We also studied the effectiveness of the developed

heuristic for the selection ordering problem experimentally.

This chapter discusses the join ordering problem, where similarly to the selection

ordering problem, we assume that the selectivity of each join predicate is known

to be in some interval. Using the same conventions and definitions introduced in

Section 2.5, this chapter first defines the minmax regret optimisation problem for

the join ordering problem in Section 7.1, followed by some properties of the problem

in Section 7.2. A heuristic for the join ordering problem, based on the max-min

heuristic for selection ordering and Algorithm 1 in Section 2.5.3, is presented in

Section 7.3.

7.1 Join minmax regret optimisation

Before defining the minmax regret optimisation problem, we define the join ordering

problem where the selectivities of the join predicates are defined partially and fall

within some particular interval of values. For the join ordering problem, we will

consider only connected chain queries (recall Definition 2.5.4 in Section 2.5.1), and

their associated left-deep join trees. Let Q = (R,P ) be a connected chain query,

where R = {R0, R1, . . . , Rn} is a set of relations, P = {p1, p2, . . . , pn} is a set of

predicates, and pi represents the join predicate between Ri−1 and Ri, 1 ≤ i ≤

163
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n. Recall that we can represent the selectivities of join predicates in P as a set

S = {s1, s2, . . . , sn}, where si represents the selectivity between relations Ri−1 and

Ri. Suppose now that each selectivity is defined by a closed interval, such that

si = [si, si] where si, si ∈ [0, 1] for 1 ≤ i ≤ n.

Recall that an assignment of concrete values to all n selectivities is called a

scenario and is defined by a vector x = (s1, s2, ..., sn), with si ∈ [si, si]. Recall also

that X(Q) = {x | x ∈ [s1, s1]× [s2, s2]× · · · × [sn, sn]} denotes the set of all possible

scenarios, and that πn denotes the set of all possible permutations over 1, 2, . . . , n.

For πj ∈ πn, πj(i) denotes the i-th element of πj. Let πv, where πv ⊆ πn, be the set

of all permutations associated with valid left-deep join trees.

Definition 7.1.1 A query execution plan ρj for a connected chain queryQ = (R,P )

is a permutation pπj(1), pπj(2), . . . , pπj(n) of the n join predicates in P . The set of all

possible query execution plans associated with left-deep join trees is given by:

J(Q) = {ρ | ρ = pπ(1), pπ(2), . . . , pπ(n) such that π ∈ πv}.

Recalling the cost formula in Equation (2.5.3), the cost for evaluating plan ρj

under a given scenario x is:

Cost(ρj, x) =
n∑
i=1

(
i∏

j=0

(sj ∗ rj)

)
(7.1.1)

Let ρopt(x) be the optimal plan for scenario x, which is the query execution plan

in J(Q) which has the minimal cost for scenario x, and let πopt(x) be the permutation

of the join predicates for this plan. Since we are facing multiple scenarios, we use

minmax regret optimisation, as in Section 3.2, to determine the quality of a plan ρj.

Definition 7.1.2 Given a plan ρ and a scenario x, the absolute regret γ(ρ, x) of ρ

for x is:

γ(ρ, x) = Cost(ρ, x)− Cost(ρopt(x), x) (7.1.2)

The maximal regret of a plan is the regret for its worst-case scenario and is simply

defined as maxx∈X(γ(ρ, x)).
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Definition 7.1.3 Given the set J(Q) of all possible join execution plans for query

Q and the set X(Q) of all possible scenarios, minimising the maximal regret is done

as follows (where R(J(Q), X(Q)) is the optimal regret):

R(J(Q), X(Q)) = minρ∈J(maxx∈X(γ(ρ, x)))

Then the minmax regret optimisation problem for Q, which we denote MRO(Q),

is to find a plan whose maximum regret matches R(J(Q), X(Q)). For simplicity and

when there is no confusion, we also use MRO(Q) to denote a plan which minimises

R(J(Q), X(Q)).

7.2 Precedence adjacency property

In this section we will study the precedence adjacency property, which was defined

in Lemma 2.5.11, in the case of interval selectivities. This property is useful because

it reduces the number of plans which need to be considered by any heuristic. We

use the precedence adjacency property in our heuristic, as we discuss in Section 7.3.

Consider a precedence graph G where each join predicate is associated with an

interval selectivity. Dependent on the particular precedence graph, relation Ri is

associated with either selectivity si (if its parent in G is Ri−1) or selectivity si+1 (if

its parent in G is Ri+1). Based on the considered scenario, the selectivity for Ri

can be either its minimum or maximum value. For simplicity, we use Rank(Ri) and

Rank(Ri) to refer to the rank for relation Ri when the associated selectivity takes

its minimum and maximum value, respectively. In the following, we define some

relationships between relations in precedence graph Gi based on their rank (recall

Definition 2.5.9).

Definition 7.2.1 Given two relations RM , RN ∈ R in precedence graph Gi, we say

that RM dominates RN if Rank(RM) ≤ Rank(RN) and Rank(RM) ≤ Rank(RN).

The following definitions define two special kinds of domination.

Definition 7.2.2 Given two relations RM , RN ∈ R in precedence graph Gi, we say

that RM strictly dominates RN if Rank(RM) < Rank(RN).
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Definition 7.2.3 Given two relations RM , RN ∈ R in precedence graph Gi, we say

that RM and RN are dominant overlapped operators if Rank(RM) ≤ Rank(RN)

and Rank(RM) ≤ Rank(RN) as well as Rank(RM) ≥ Rank(RN).

Ri

Ri−1

...

RN

RL

...

Ri+1

...

RM

...

Figure 7.1: Precedence graph Gi.

Next we first study the precedence adjacency property in the case of strictly

dominant relations in Gi, before considering the general case of domination in Sec-

tion 7.2.2.

7.2.1 Strict domination

Given a precedence graph Gi with relations RL, RM and RN as shown in Fig-

ure 7.1, suppose that the relationships between the ranks are as follows: Rank(RL) <

Rank(RM) and Rank(RM) < Rank(RN). Therefore, under any scenario RL strictly

dominates RM and RM strictly dominates RN , as illustrated in Figure 7.2. As-

suming that the minmax regret optimal plan starts with Ri, we will show that no

relation can appear between RN and RL in the minmax regret optimal plan.

Lemma 7.2.4 The precedence adjacency property holds for the case of strict dom-

ination.
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𝑅𝑎𝑛𝑘(𝑅𝐿)

𝑅𝑎𝑛𝑘(𝑅𝐿)

𝑅𝑎𝑛𝑘(𝑅𝑀)

𝑅𝑎𝑛𝑘(𝑅𝑀)

𝑅𝑎𝑛𝑘(𝑅𝑁)

𝑅𝑎𝑛𝑘(𝑅𝑁)

Figure 7.2: Strict domination between relations RL, RM and RN .

Proof : Let Gi be a precedence graph with relations RL, RM and RN described

as above. Due to the precedence constraints in Gi, RN must precede RL in any

optimal plan that minimises the maximum regret. For any sequences of relations

A and B, assume plan ρ = ARNRMRLB, in which RM is in between RN and

RL, is a plan that minimises the maximum regret (proof by contradiction). Let us

swap RM with its neighbours to generate the following plans: ρ′ = ARNRLRMB

and ρ′′ = ARMRNRLB. Using Lemma 2.5.10, the following are true under any

scenario x:

Cout(ρ
′, x) < Cout(ρ, x) because Rank(RL) < Rank(RM) (7.2.1)

Cout(ρ
′′, x) < Cout(ρ, x) because Rank(RM) < Rank(RN) (7.2.2)

In order to compare the regret of ρ′ (or ρ′′) with ρ under any scenario x we only

need to compare their costs. This is because the optimal plan for x is the same for

both regrets. Since the inequality in (7.2.1) is true for any scenario, it is also true for

the worst-case scenario y′ of plan ρ′. Using Equation (7.2.1), we get the following:

Cout(ρ
′, y′)− Cout(ρ, y′) < 0 (7.2.3)
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Equation (7.2.3) shows that the maximum regret for plan ρ′ is smaller than the

maximum regret for plan ρ which contradicts the assumption that ρ is the optimal

plan. The same argument can be made analogously using Equation (7.2.2) to show

that the maximum regret for plan ρ′′ is smaller than the maximum regret for plan

ρ which is also a contradiction. Therefore, RN must be followed immediately by RL

in the plan that minimises the maximum regret. 2

7.2.2 Domination

After proving that the precedence adjacency property holds in the case of strict

domination, we investigate the property in the general case of domination. The case

of strict domination is somewhat similar to the case of constant selectivities. This

similarity lies in the fact that the relative optimal order of the strictly dominant

relations, based on rank, is preserved throughout all scenarios, as if the predicates

had constant selectivities. On the other hand, the relative optimal order of dominant

overlapped relations, based on rank, can change depending upon the scenario.

Ri

RN

RL

RM

Figure 7.3: Counter-example precedence graph used in Lemma 7.2.5.

Lemma 7.2.5 The precedence adjacency property does not hold for the general

case of domination.

Proof : We will construct an example to show that the precedence adjacency

property does not hold for overlapped domination. Suppose we are given a chain

query Q with the following order of relations: RL, RN , Ri, RM . Let Gi be the prece-

dence graph with Ri as a root, and relations RL, RM and RN as shown in Figure 7.3,

where all relations have the same cardinality of 1. Let RL strictly dominate RN ,
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si si si si si si si si

sL sL sL sL sL sL sL sL Max

sN sN sN sN sN sN sN sN Regret

sM sM sM sM sM sM sM sM

RiRMRNRL 0.00 0.60 0.00 0.44 0.00 0.45 0.00 0.17 0.60

RiRNRMRL 0.10 0.30 0.50 0.54 0.10 0.15 0.50 0.27 0.54

RiRNRLRM 0.00 0.00 0.32 0.0 0.14 0.00 0.58 0.00 0.58

Table 7.1: The regret for each plan under each scenario for the example in

Lemma 7.2.5.

so sL < sN . Consider the case in which RL dominates RM , and RM dominates

RN , so that sL ≤ sM and sM ≤ sN . Assume that the optimal minmax regret plan

for Q starts with Ri. We note that if we make the difference (sM − sL) large and

make sL as close as possible to sN , then we can generate an optimal minmax regret

plan where RM is in between RN and RL. Consider the following values for Gi as a

counter-example.

Since Ri is the root of Gi, its selectivity is si = [1, 1]. Let sL = [0.2, 0.49],

sM = [0.4, 0.8] and sN = [0.5, 0.9]. Table 7.1 presents the regret of each plan

consistent with Gi under each scenario. The minmax regret solution for this example

is RiRNRMRL which violates the precedence adjacency property. As a result, the

precedence adjacency property does not hold for the general case of domination. 2

7.3 Max-min heuristic for join ordering

This section presents our max-min heuristic for solving the join ordering problem

that was described in Section 7.1. It is important to mention that the heuristic

presented here is different from the one described in Chapter 4. The only common

feature they share is that both use max-min scenarios when finding a solution. Some

concepts from the algorithm discussed in Section 2.5.3, which deals with precise

selectivity values, in addition to the findings from the previous section, are used in

this heuristic.
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R0 R1 R2 R3 R4 R5 R6

s1 s2 s3 s4 s5 s6

Figure 7.4: The graph of the connected chain query Q in Example 7.3.1.

The max-min heuristic for the join ordering problem accepts a connected chain

query graph. It finds a plan that performs well by considering max-min scenarios.

Algorithm 7 presents the max-min heuristic formally. In general, the heuristic con-

siders one precedence graph at a time. For each precedence graph, it finds the best

plan under max-min scenarios, and from those it chooses the plan with the smallest

maximum regret to be the overall solution.

When the heuristic considers a precedence graphGi, it calls getTreeMaxminP lan

in Algorithm 7. This function starts by forming sequence p which consists of the

root followed by the relations of the longer branch, preserving their relative order,

as shown in line 2. The relations of the shorter branch form sequence q as in line 3,

with their relative order also preserved. The union of p and q will eventually form

the complete plan.

In the max-min heuristic, we took advantage of our finding in Lemma 7.2.4 re-

garding the precedence adjacency property in the case of strict domination. This

property states that if there are two relations M and N where N is a child of M and

Rank(M) ≥ Rank(N), then no relation can appear between them in the optimal

plan. The max-min heuristic applies this property. It scans both sequences p and q

and groups together any strictly dominant relations that satisfy the precedence adja-

cency property. The grouping mechanism enables us to place the grouped sequence

of relations together and make sure that no relation (or sequence of relations) can be

placed in between them during the processing of the heuristic. This in turns reduces

the number of possible places in which any relation/sequence needs to be checked

later on as well. The equivalent grouped sequence for p, is assigned to p′ in line 4,

while that for q is assigned to q′ in line 5. The following example demonstrates the

generation of p′ and q′ using some concrete values.

Example 7.3.1 Let Q be a connected chain query whose graph is shown in Fig-

ure 7.4. Let R = {R0, R1, R2, R3, R4, R5, R6} be the set of relations involved in Q,
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Algorithm 7: Max-min Heuristic

1 getQueryPlan(Q)

Input: connected chain query Q

Output: Max-min heuristic plan heuristicP lan for Q

// Let G0, . . . , Gn−1 be the precedence graphs for Q

2 heuristicP lan = getTreeMaxminPlan(G0);

3 for 1 ≤ i ≤ n− 1 do

4 tempP lan = getTreeMaxminPlan(Gi);

5 if Regret(heuristicP lan) > Regret(tempP lan) then

6 heuristicP lan = tempP lan;

7 return heuristicP lan;

1 group(C)

Input: A sequence C of relations

Output: A sequence C ′ comprising groups of relations from C

2 while there is a relation M with a child N such that

Rank(M) ≥ Rank(N) do

3 Combine M and N in one group;

4 return C ′;

1 ungroup(C ′)

Input: A sequence C ′ comprising groups of relations

Output: A sequence C of relations resulting from ungrouping the group

sequence in C ′

2 Let C be the sequence of relations resulting from replacing each group in

C ′ by its equivalent sequence;

3 return C;
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1 getTreeMaxminPlan(Gi)

Input: precedence graph Gi

Output: Max-min heuristic plan treeP lan for Gi

2 Let p be the sequence starting with the root relation followed by the

relations of the longer branch in Gi;

3 Let q be the sequence of relations from the shorter branch in Gi;

4 p′ = group(p);

5 q′ = group(q);

6 treeP lan = p′;

// initialise j with the first position in treeP lan to attempt

inserting a group from q′

7 j = 1;

8 foreach group O in q′ do

9 for j ≤ i ≤ |treeP lan|+ 1 do

10 Temporarily insert O in position i in treeP lan;

11 foreach max-min scenario for treeP lan do

12 Calculate the regret of plan treeP lan;

13 Store the maximum regret for position i;

14 Choose as the final position k for O in treeP lan that which minimises

the maximum regret;

15 j = k + 1;

16 return ungroup(treeP lan);
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R4

R3

R2

R1

R0

R5

R6

Figure 7.5: The precedence graph G4 used in Example 7.3.1.

Ri Rank(Ri) Rank(Ri)

R0 0.9983870968 0.9985074627

R1 0.9999994118 0.9999998701

R2 0.9999996552 0.9999998795

R3 0.6666666667 0.9891304348

R4 root

R5 0.9750000000 0.9850746269

R6 0.9995454545 0.9996666667

Table 7.2: The minimum and maximum ranks for relations in G4 in Example 7.3.1.

with the cardinalities of the relations as follows: r0 = 103, r1 = 107, r2 = 107,

r3 = 102, r4 = 103, r5 = 102 and r6 = 104. Let S = {s1, s2, s3, s4, s5, s6} be the

set of selectivities for the join predicates in Q, with selectivity intervals as follows:

s1 = [0.62, 0.67], s2 = [0.17, 0.77], s3 = [0.29, 0.83], s4 = [0.03, 0.92], s5 = [0.08, 0.67]

and s6 = [0.22, 0.30].

Assume that Algorithm 7 is considering the precedence graph G4 as shown in

Figure 7.5. The first step taken by getTreeMaxminP lan is to generate sequences

p and q. The root, along with the left branch, is assigned to p, since the left

branch is the longer branch, while the right branch is assigned to q. Therefore,

p = R4, R3, R2, R1, R0 and q = R5, R6.
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The next step in getTreeMaxminP lan is to generate sequences p′ and q′ us-

ing group. Table 7.2 shows the ranks for all relations using Equation (2.5.1)1.

The precedence adjacency property holds for one pair only, namely R0 and R1,

since Rank(R1) > Rank(R0). Therefore, they will be grouped in p′, so no rela-

tion/sequence from q′ is placed in between them. As a result, p′ = R4, R3, R2, (R1, R0)

where the grouped relations are enclosed in parentheses, and q′ = R5, R6. 3

The heuristic then takes the first group from q′ and places it in each pos-

sible position in p′ to form a temporary plan, which is what the outer loop in

getTreeMaxminP lan does at line 8. For each temporary plan formed, the regret

is calculated under all max-min scenarios (the inner for loop starting at line 9),

and the plan with the smallest maximum regret is stored (line 14). The chosen plan

from each iteration of the outer loop is used as the basis of the following iteration.

In each subsequent iteration, the next group from q′ is placed at each position after

its parent in the plan that was generated in the previous step. The newly generated

plan is also tested under all max-min scenarios and the plan with the smallest max-

imum regret will be chosen. This process continues until all groups of q′ are placed

in treeP lan. Finally, ungroup is called on the resulting plan to form the heuris-

tic solution. In the ungroup operation, any group is expressed in its original form

as a sequence of relations. Algorithm 7 describes the full process of our max-min

heuristic for the join ordering problem.

It is interesting to note that applying the max-min heuristic is straightforward

for G0 and Gn−1. This is because there is only one plan to consider for both cases.

On the other hand, for any other precedence graph Gi we have i relations on the left

branch and n− i− 1 relations on the right branch. Therefore, if i ≥ n− i− 1 then

the relations on the left branch will be assigned to parameter p in the heuristic and

the relations on the right branch will be assigned to q, or vice versa if i < n− i− 1.

Then the heuristic proceeds as described above.

1The high precision is needed to distinguish between relations’ ranks in Table 7.2 due to the

large cardinality values (recall Equation (2.5.1) for the rank formula). Without high precision,

some relations would incorrectly have same rank, which would adversely affect the quality of the

result.
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R0 R1 R2 R3 R4 R4

s1 s2 s3 s4 s5

Figure 7.6: The graph of the connected chain query in Example 7.3.2.

It is clear that our heuristic runs in polynomial-time. We are considering n + 1

precedence graphs, each one of them being passed to getTreeMaxminP lan. The

initial plan p formed in getTreeMaxminP lan consists of at least dn/2e and at most

n relations. The remaining relations/groups are considered in i+1 possible positions

(that is O(n)) under i + 2 max-min scenarios (i.e. O(n)), where i is the length of

sequence q′. The regret of the considered plan can be computed in O(n2 log n) time

(this complexity is mainly for finding the optimal plan for the considered scenario)

[73]. Therefore, the overall complexity is O(n6 log n). However, in practice we

found that the heuristic runs quickly, especially when it finds relations satisfying

the precedence adjacency property and groups them, which in turn reduces the

number of possible plans. The following example shows that the execution time

of the heuristic at the logical query optimisation stage is a small fraction of the

execution time of the query itself, specially when dealing with queries joining a

number of large relations.

Relation Relation name Cardinality

R0 kind type 7

R1 aka title 361472

R2 title 2528312

R3 cast info 36244344

R4 name 4167491

R5 aka name 901343

Table 7.3: Cardinalities of relations in Figure 7.6.

Example 7.3.2 Join queries are commonly used when querying the Internet Movie

Data Base (IMDB) where users require a combination of information about movies,

genres, actors, directors, producing companies etc. A snapshot of the IMDB from
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2013 has 21 relations and is 3.6 GB in size [76]. The cardinality of the relations

vary, with some containing as many as 36 millions records.

We tested the running time for the chain query in Figure 7.6 which joins the six

relations whose cardinalities are shown in Table 7.3. This query took 30 seconds to

execute, using same testing environment (i.e. hardware and software configurations)

of Chapter 5. However, only 0.2 seconds is needed by our heuristic to find the

optimal minmax regret order in which to join the relations. Spending less than 1%

of the query running time for optimisation is not a large overhead in real life, given

the possible outcomes. 3

7.4 Conclusion

This chapter started by formulating the join ordering problem under imprecise envi-

ronment and defining the minmax regret optimisation version of the problem assum-

ing that the selectivity values are known to fall within intervals. After presenting

some properties of the problem, we introduced our novel heuristic which leveraged

the properties we had found. In the following chapter, we evaluate the max-min

heuristic experimentally.



Chapter 8

Experimental Evaluation of the

Join Ordering Heuristic

The previous chapter introduced the join ordering problem and presented our max-

min heuristic, which we applied to the join ordering problem for a given connected

chain query. This chapter discusses our experimental evaluation of the heuristic.

Similar to the experimental evaluation in Chapter 5 for the selection ordering

problem, we tested the max-min join heuristic in a controlled environment, separate

from the query optimisers in available database servers. This allows us to study the

performance of the heuristic itself before extending it to involve more operators and

integrating it into existing query optimisers.

For the experimental evaluation, we used a commodity PC with a 3.19 GHz

Intel Core i5 processor and 8 GB RAM. The operating system was Windows 7

Enterprise (64-bit). The Java programming language was used to implement both

the minmax regret brute-force algorithm and the max-min heuristic. The Java code

was compiled using the Eclipse IDE (Juno release) that is JDK compliance and uses

the JavaSE-1.7 execution environment.

8.1 Measuring criteria

In order to evaluate the join max-min heuristic, we used the same measuring criteria

that we used in Sections 5.1 and 6.2.1 when conducting the experimental evaluation

177
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for the selection ordering problem and TFT problem respectively. Recall that these

criteria are the percentage of exact solutions found by the heuristic, the average

regret ratio and the worst regret ratio (which is simply the overall maximum regret

ratio value over all test cases).

The join max-min heuristic was also compared with three baseline heuristics

which consider only a single selectivity value for each join predicate instead of con-

sidering the entire selectivity interval. These heuristics are the midpoint, pessimistic

and optimistic heuristics which choose the midpoint, maximum and minimum se-

lectivity value, respectively, for each join predicate.

The statistical measures of variance and margin of error were used to evaluate

the stability of the experimental results. These measures were calculated for the

percentage of exact solutions found as well as for the overall average regret ratio. In

both cases the variance and margin of error were significantly low (see Table D.2 in

Appendix D.2).

8.2 Generating test data

In this experimental evaluation we use a synthetic data set, in which we ran-

domly generate connected chain queries. The selectivities of the join predicates

are generated using an approach similar to that for generating mixed sets of se-

lectivities for the selection operators as described in Section 5.2.1. On the other

hand, the cardinality for each relation in a query is chosen randomly from the set

{10, 102, 103, 104, 105, 106, 107}, which provides for a wide range of cardinalities.

For each generated test case, we checked that each predicate joining a pair of

relations returns at least one tuple; if not, we randomly choose new cardinalities

for the relations and generate a new selectivity interval for the join predicate. The

following example illustrates the problem.

Example 8.2.1 Consider a test case with only one join predicate p1, such that

the cardinalities of R0 and R1 are both 10, while p1 has the selectivity interval

s1 = [0.002, 0.56]. Using Equation 2.5.1 in Section 2.5.1 to calculate the number of

tuples in the result of the join when s1 takes its minimum and maximum values, we
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have:

|R0 1s1
R1| = 0.002× 10× 10 = 0.2

|R0 1s1 R1| = 0.56× 10× 10 = 56

Because less than one tuple is returned when s1 takes its minimum value, this case

will be discarded and a new case will be generated. 3

We generated ten groups of test cases. Each group comprises queries with k

relations, where k varies from 3 to 12. Therefore, a test case from group k has k− 1

predicates joining k relations (to form a connected chain query). We generated 100

different test cases for each group k, to yield 1000 test cases overall.

8.3 Synthetic experimental results

As mentioned earlier we used the same hardware and software environment as the

one we used in conducting the experiments for the selection ordering and TFT

problems. The brute-force algorithm for MRO of the join ordering problem was

implemented in order to evaluate the quality of plans produced by the max-min join

heuristic. Similar to Chapters 5 and 6, the heuristic for the join ordering problem

was compared to the midpoint, pessimistic and optimistic heuristics.

Let us first consider the pessimistic and optimistic heuristics. As in the ex-

periments for selection ordering in Chapter 5, both heuristics perform worse than

the midpoint and max-min heuristics. In term of finding the exact solution, they

perform better than in previous experiments. The pessimistic heuristic found the

optimal solution in 90.7% of the cases, better than the optimistic heuristic which

found 81.5%, as shown in Figure 8.1. However, they performed poorly with respect

to the overall worst regret ratio measure. The overall worst regret ratio for the pes-

simistic heuristic was 6.08 and the value jumped to more than 242 in the case of the

optimistic heuristic, as shown in Figure 8.2. Figure 8.3 shows the overall average

regret ratio for both the pessimistic and optimistic heuristics, with values of 1.07

and 2.37, respectively.

The midpoint heuristic, which considers only scenarios where all predicates are
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Figure 8.1: Overall percentage of exact solutions for the synthetic data set.
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Figure 8.2: Overall worst regret ratio for the synthetic data set.
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Figure 8.3: Overall average regret ratio for the synthetic data set.

assigned their midpoint selectivities, performed better than both the pessimistic

and optimistic heuristics on all criteria. The midpoint heuristic found the optimal

solution in 94.7% of the tested cases, with overall average regret ratio of 1.00046

and worst case regret ratio of 1.2378.

The experimental evaluation demonstrates the superior performance of the max-

min heuristic compared to the other heuristics on all measuring criteria. Figure 8.1

shows that the max-min heuristic finds 98% of optimal solutions. In fact, our heuris-

tic found the optimal minmax regret solution in all test cases using 3 to 6 relations as

well as those with 8 relations (refer to Table D.1 in Appendix D.1). In comparison,

the midpoint found all optimal solutions only for test cases using 3 to 5 relations.

Even though the max-min heuristic performs better than the midpoint heuristic in

terms of the worst regret ratio and average regret ratios as shown in Figures 8.2

and 8.3 respectively, the improvement was not large. The overall worst regret ratio

of the max-min heuristic is 1.23338 (compared to 1.2378), while its average regret

ratio is 1.00023 (compared to 1.00046). Our heuristic did not find the optimal so-

lution in only 20 test cases (out of 1000), and, apart from the single case with the
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R0 R1 R2 R3 R4 R5 R6 R7 R8

s1 s2 s3 s4 s5 s6 s7 s8

Figure 8.4: The graph of the connected chain query Q in Example 8.3.1.

overall worst regret ratio, the regret ratio for each of the remaining 19 cases is less

than 1.0000000000013. More detailed results for the experimental evaluation of our

heuristic and the compared heuristics can be found in Table D.1 in Appendix D.1.

The following example is from our experimental evaluation, showing the regret of

the various heuristics.

Example 8.3.1 Consider the connected chain query Q = (R,P ) whose graph is

shown in Figure 8.4. The cardinalities of the relations in R are as follows: r0 = 106,

r1 = 106, r2 = 10, r3 = 102, r4 = 105, r5 = 103, s6 = 104, r7 = 10 and r8 = 10. The

join predicates in P have the following selectivity intervals:

s1 = [0.06801, 0.72516]

s2 = [0.18788, 0.89047]

s3 = [0.22310, 0.92875]

s4 = [0.09419, 0.78224]

s5 = [0.00797, 0.68855]

s6 = [0.74758, 0.75892]

s7 = [0.41458, 0.73522]

s8 = [0.44373, 0.88772]

The optimal minmax regret solution for this case is R6R7R5R4R3R2R8R1R0. The

following are the plans found by the results of heuristics, with their regret ratios:

• Max-min heuristic: R6R7R5R4R3R2R8R1R0 with regret ratio = 1.

• Midpoint heuristic: R2R3R4R5R6R7R8R1R0 with regret ratio = 1.04316.

• Pessimistic heuristic: R7R8R6R5R4R3R2R1R0 with regret ratio = 1.11189.

• Optimistic heuristic: R2R3R4R5R6R7R8R1R0 with regret ratio = 1.04316.

So in this case our heuristic found the optimal solution, while the midpoint and

optimistic heuristics found the same plan as each other. 3
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8.4 Discussion of experimental results

It is interesting to note that all the heuristics perform better on the join ordering

problem than the selection ordering problem. One possible explanation is that, due

to the setting we considered for the join ordering problem, we were able to determine

the relative order for at least dn/2e relations for any precedence graph (where n is

the number of relations in the query graph). This in turn reduces the number of

possible plans and enhances the quality of the heuristic results.

If we consider the percentage of exact solutions criterion, we notice that all

heuristics had good performance. However, in terms of average regret ratio and

specially worst regret ratio, the pessimistic and optimistic heuristics performed badly

with a worst regret ratio of 6 and 243 respectively. This shows the unreliability of

the pessimistic and optimistic heuristics. Even though they found the exact solution

in a good number of cases, they performed very poorly when they missed the exact

solution. On the other hand, the max-min heuristic found the exact solution in

more cases and even when it missed the exact optimal plan, it provided a solution

very close to the optimal plan (regret ≈ 1). Such cases highlight the importance

of applying MRO in query optimisation, thereby finding a reliable solution that

performs well regardless of the encountered scenario, even a worst-case scenario.

The experimental evaluation showed that both the max-min and midpoint heuris-

tics managed to avoid bad plans well, with worst regret ratio less than 1.24. In fact,

in most cases they found the exact minmax regret optimal solution (Figure 8.1)

and when they missed the optimal solution, on average they found a plan which

is very close to the optimal one (Figure 8.3). In practice, the midpoint heuristic

seems to be sufficient. However, if finding the exact solution is more important

than optimisation time, then the max-min heuristic is recommended. Considering

more settings with different query graphs and join trees may reveal more variation

in the performance between the max-min and midpoint heuristic as well as the other

heuristics.
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8.5 Conclusion

This chapter discussed the experimental evaluation of the max-min join heuristic

that was presented in Section 7.3. Using a synthetic data set, our heuristic was

compared to the midpoint, pessimistic and optimistic heuristics. Our heuristic out-

performed all of them on all measuring criteria used, although in some cases the

differences were small. Testing our heuristic with other data sets would be more

representative and may show a larger discrimination between the performance of

the various heuristics. Also, extending the class of join queries considered beyond

connected chain queries may reveal different results.

The next chapter concludes the thesis by summarising the thesis and its contri-

butions, followed by identifying some limitations of the thesis and a discussion of

future directions.



Chapter 9

Conclusions and Future Work

This chapter concludes the thesis. It first summarises the thesis and its main con-

tributions. Then it identifies some limitations of the thesis. Finally, the chapter

discusses some directions for future work.

9.1 Thesis summary and contributions

This thesis considers the unreliability of statistical information that is used by an

optimiser during the logical query optimisation process. We used minmax regret

optimisation (MRO) as a measure of optimality in this unreliable environment. The

main focus of the thesis was on the selection ordering problem and the join ordering

problem. In this section we summarise the main contributions of the thesis.

In this thesis we defined and studied the problem of ordering selection operators

when the selectivities of the selection predicates are assumed to fall within intervals.

A number of useful properties of the problem were identified (e.g. that only extreme

scenarios need to be considered). We also found some special cases in which the

optimal solution can be found in polynomial time (e.g. dominant sets of operators).

We developed a novel, polynomial-time heuristic for the selection ordering prob-

lem. The heuristic was tested using three different data sets: a synthetic data

set, the Star Schema Benchmark (SSB) and the Enron email data set. It was also

compared with three baseline heuristics, namely the midpoint, pessimistic and op-

timistic heuristics. Our heuristic performed very well and outperformed all the
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baseline heuristics. Considering all the data sets we used, our heuristic overall finds

the optimal solution ranging from 73% of all test cases in the synthetic data set

to 90% of all cases in the SSB data set. More importantly, it avoids bad plans,

producing a worst regret ratio of 1.27 over all data sets. Its average regret ratio

varied between 1.01 on the synthetic data set to 1.001 on the Enron data set.

In addition, we applied the selection ordering heuristic to the TFT job scheduling

problem, where the processing times of jobs are known to fall in intervals. The prob-

lem is NP-hard and a 2-approximation algorithm is already known for the problem in

the literature. This approximation uses the midpoint of the processing time intervals

instead of considering the entire interval. We evaluated our heuristic experimentally

on a synthetic data set and compared it with the 2-approximation algorithm. The

results showed that our heuristic performed better than a 2-approximation algo-

rithm. Our heuristic, for example, found the optimal solution in more than 78% of

the tested cases, compared to just 52% for the 2-approximation algorithm.

Finally, we studied the join operator ordering problem where the selectivities

for join predicates are known to fall in intervals. We investigated the precedence

adjacency property which allowed us to identify the relative order of neighbouring

relations in precedence graphs. We also developed a heuristic for the join ordering

problem, which leveraged the precedence adjacency property to reduce the number

plans considered. The heuristic was tested experimentally on a synthetic data set

and compared with the midpoint, pessimistic and optimistic heuristics. Our heuris-

tic performed well and found the exact optimal plan in 98% of the tested cases. Its

average regret ratio was 1.00023 which shows that the heuristic often finds solutions

very close to the optimal solution.

9.2 Thesis limitations

In this section we discuss some limitations of the thesis.

• In Chapter 3, we studied the selection ordering problem and we assumed that

the selectivities of all selection predicates are independent of each other. How-

ever, in practice there are correlations between the selectivities of some pred-
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icates.

• The join ordering problem is known to be NP-hard problem in general. There-

fore, when we considered interval selectivities for join predicates in Chapter 7,

we restricted our study to connected chain queries (where an optimal join or-

der can be found in polynomial time in the case without intervals). Moreover,

we only considered plans that correspond to left-deep join trees.

• Due to hardware limitations and the complexity of the brute-force approach

for MRO of both the selection and join ordering problems, in our experimental

evaluation we were limited to 11 selection operators for the selection order-

ing heuristic (Chapter 5) and to 12 relations for the join ordering heuristic

(Chapter 8).

• Because of the difficulty of optimisation under imprecise statistical data, this

thesis studied the selection ordering problem (Chapter 3) and join ordering

problem (Chapter 7) independently of each other, and did not consider any

other operators. However, in real life, queries make use of all the relational

algebra operators.

• We assumed that the selectivities of selection and join predicates are known to

fall within intervals while other parameters, such as the costs of operators or

cardinalities of relations, are known precisely. However, statistical information

about these parameters can also be unreliable in real life.

9.3 Directions for future work

In this section we discuss some directions for future work.

• As mentioned in Section 9.2, we assumed that the selectivities of the selec-

tion and join predicates are independent. In the future, we could relax this

assumption and assume that the system stores some joint selectivities. New

heuristics would have to be designed to make use of such information.
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• In Chapter 8, we evaluated our join ordering heuristic using a synthetic data

set. In the near future, we would like to extend our experimental evaluation

to use benchmarks such as TPC-H or the one proposed in [76].

• As mentioned in Section 9.2, we considered the join ordering problem only for

connected chain queries and produced plans corresponding to left-deep join

trees (Chapter 7). As an extension of our work, different join trees, such as

bushy trees, could be considered. Also different settings for the join ordering

problem could be considered as well, such as allowing Cartesian products or

extending the class of join queries.

• Another future direction for our work is to try to find an approximation algo-

rithms with proven bounds for the selection ordering and join ordering prob-

lems. Alternatively, we could try to design a new polynomial-time heuristic

with lower computational complexity and the same quality of results. For ex-

ample, it would be interesting to try to design a new heuristic for the selection

ordering problem with complexity closer to the midpoint heuristic and result

quality as good as, or very close to, our selection ordering heuristic described

in Chapter 4.

• As mentioned in Section 9.2, we assumed in Chapters 3 and 7 that the cost of

performing the select and join operators are known precisely. Future studies

should extend our approach to consider unreliability in the cost estimates

of operators and model the costs as intervals, similar to the selectivities for

both select and join predicates. Moreover, this could be extended to include

unreliability in other parameters such as relation cardinalities.

• In this thesis, we used the minmax regret optimisation approach to measure

the optimality of a plan. This measure uses the absolute regret value. In the

future we could use minmax relative regret. This measure divides the cost of

a plan by the cost of the scenario’s optimal plan.

• This thesis has undertaken initial work towards building a general framework

for query optimisation under imprecise statistics. As mentioned in Section 9.2,
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we considered queries with only selection operators and queries with only join

operators. As a future direction, this work should be extended to include other

operators and queries that involve a mix of operators.



Appendix A

Further Investigation of the

Selection Ordering Problem

This section presents more details on some further investigations of the selection

ordering problem that were briefly discussed in Section 3.6. Some of these investiga-

tions did not lead to a good heuristic for the selection ordering problem. However,

they improved our understanding and helped us in designing our novel heuristic as

presented in Chapter 4.

A.1 Towards an approximation algorithm

Selection operators can have special relationships between them based on their se-

lectivity intervals. Recall from Section 3.1 the definition of dominant operators and

nested operators. Identifying the relationship between selection operators can help

in finding the optimal order for them or at least finding the relative order for some

of the operators in the optimal solution, as discussed in Section 3.6.1. Therefore,

it is important to recognise the relationship between operators in the first place,

before finding an optimal solution. This section introduces a special way of mod-

elling a set of selection operators in order to identify the relationships between the

operators. Finding the relationships between operators is important as discussed

in Section 3.5 and is useful for finding an initial plan for the max-min heuristic, as

shown in Section 4.2.1.
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Definition 3.6.1 states that operators σj and σk are entangled if they have selec-

tivities such that sk ≤ sj and sk ≥ sj. Such selectivities imply that σj and σk are

either nested or equal operators. On the other hand, if σj and σk are not entangled,

then they have a dominant relationship. In the case of equal operators, the entan-

glements can be avoided by making sure that equal operators preserve their relative

order in both lists, L and U (recall the definitions of the lower list L and the upper

list U in Section 3.6.1).

Proposition A.1.1 Let S be a set of selection operators with each operator in

subset S ′ ⊆ S having equal selectivity. There will be no entanglements between any

operators in S ′ if they have the same relative order in both the lower and upper

lists.

By maintaining the order suggested in Proposition A.1.1, we can say that if any

operators σj and σk are entangled, then they are nested operators, otherwise one

dominates the other.

Proposition A.1.2 Let S be a set of selection operators containing operators σj

and σk. The relationship between σj and σk can be identified as follows:

• If σj and σk are entangled, then they have a nested relationship.

• If σj and σk are not entangled, then they have a dominant relationship.

It is interesting to note that, for any set of selection operator S, if L(i) = U(i)

for 1 ≤ i ≤ n, then S is a set of dominant of operators. This modelling approach has

been implemented in our software. Now consider Example A.1.1 which describes

the approach of modelling and detecting relationships between a set of operators

with some concrete values.

Example A.1.1 Let S = {σ1, σ2, σ3, σ4} be a set of selection operators with the

selectivity intervals s1 = [0.14, 0.58], s2 = [0.76, 0.81], s3 = [0.32, 0.90] and s4 =

[0.20, 0.26], as shown in Figure A.1.

To model the operators and recognise their relationships, lists L and U should

be constructed by sorting the operators in non-decreasing order according to their



A.1. Towards an approximation algorithm 192

	
   	
  

	
  

	
   	
  

	
  

	
   	
  

	
  

𝝈𝟑	
  

𝝈𝟒	
  
𝝈𝟏	
  

𝝈𝟐	
  

Figure A.1: Selectivity intervals for selection operators in Example A.1.1.

𝜎!	
  

	
   	
  

4	
  

𝜎!	
  

𝜎!	
  
𝜎!	
  

4	
  

1	
  

2	
  

3	
  
2	
  

1	
  
3	
  

U	
  

L	
  

Figure A.2: Entangled operators in Example A.1.1.
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minimum and maximum selectivity respectively. As a result, L = {s1, s4, s3, s2}

and U = [s4, s1, s2, s3]. Figure A.2 shows L and U as well as how the operators are

related by connecting their positions in L and U . The figure shows that σ1 and σ4

are entangled, which indicates that they have a nested relationship, and similarly σ2

and σ3 have a nested relationship. On the other hand, any two operators which are

not entangled with each other have a dominant relationship. For example, σ1 is not

entangled with σ2 nor with σ3, which means that σ1 has a domination relationship

with both σ2 and σ3. 3

Now let us discuss the disentangling algorithm, which was briefly described in

Section 3.6.1, in more detail. The following lemmas identify some important prop-

erties for the algorithm.

Lemma A.1.1 If entanglement exists, then there is at least one neighbouring pair

involved in the Upper and Lower list.

Proof : Recall from Sections 3.6.1 that the operators in lists L and U are sorted

in non-decreasing order according to their lower and upper selectivities respectively.

An entanglement exists if L(i) 6= U(i), for some 1 ≤ i ≤ n. Let v be the first

index where L(v) 6= U(v) and let L(v) = σj and U(v) = σk (see Figure A.3). Since

L(i) = U(i) for 1 ≤ i < v − 1, then the upper bound of σj and the lower bound

of σk must be at an index greater than v, which means U(w) = σj and L(y) = σk,

where w, y > v. As a result, σj and σk are entangled according to the definition.

Consider the selection operator that is located just before σj in U , and let this

operator be σh such that U(w − 1) = σh. It could be that w − 1 = v; consequently

σh = σk (see Figure A.3). The lower bound of σh must be at index greater than

v in L. This is because each operator having index less than v has the property

of L(i) = U(i), 1 ≤ i < v − 1. Therefore, σh and σj are entangled (due to the

definition) as well as neighbouring in U .

Analogously, consider the selection operator that is located just before σk in L,

and let this operator be σg, such that L(y−1) = σg. It could be that y−1 = v; thus

σg = σj. The upper bound of σg must be at an index greater than v in U . This is

because each operator having an index less than v has the property of L(i) = U(i),
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Figure A.3: Neighbouring entanglement in proof of Lemma A.1.1.

1 ≤ i < v− 1. Consequently, σg and σk are entangled (due to the definition) as well

as neighbouring in L.

The above shows that if there is an entanglement, then there is at least one

neighbouring pair involved in both the Upper and Lower list. 2

As mentioned earlier, entanglement represents a nested relationship between two

operators. The main idea in this approach is to modify the minimum or maximum

selectivities of the nested operators in order to make them dominant. Once they

are dominant, we know their relative order in an optimal solution. This change

in the selectivities is represented by swapping the position of operators in either

L or U , which is called disentangling (recall Definition 3.6.2). The aim is that

any disentanglement does not create a new entanglement. It is true that, after

swapping the position of any two entangled operators, lists L and U may not be

sorted any more. However, this does not create a problem because we will ensure

that any disentanglement does not introduce a new entanglement. The following

lemma takes care of that.

Lemma A.1.2 Disentangling a neighbouring pair only removes the entanglement

between this neighbouring pair and does not create any new entanglement.

Proof : Let σj and σk be two operators which are entangled and neighbours with

respect to their upper bounds which means that they have consecutive indexes in
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list U . Assume U(w) = σj, L(x) = σj and U(w+1) = σk, L(y) = σk, y < x as shown

in Figure A.4.

U 

L 

U2 range 

U1 range 

L1 range 

L2 range 

  

x 

�� 
�� 

w+1 w 

y 

Figure A.4: Entangling range for operator σj in the proof of Lemma A.1.2.

First let us consider the effect of the disentanglement on operator σj. The change

in the index ranges of the possible entangled operators with σj other than σk should

be tested. If the ranges after disentanglement do not increase, then such a disentan-

glement does not create any new entanglement. However, if index ranges increase

then this means that the disentanglement causes new entanglement. Let us consider

four ranges as shown in Figure A.4 and described as follows:

• Range U1 ⊂ U such that U1(m), w + 1 < m ≤ n.

• Range U2 ⊂ U such that U2(m), 1 ≤ m < w.

• Range L1 ⊂ L such that L1(o), 1 ≤ o < x.

• Range L2 ⊂ L such that L2(o), x < o ≤ n.

Operators σl and σj are entangled if σl is any operator which has an upper index in

U1 and a lower index in L1 or has its upper index in U2 and its lower index in L2

(see Figure A.4). After disentangling σj and σk by switching their indices in list U ,

ranges U1, U2, L1 and L2 do not change. As a result, disentangling σj and σk does

not create any new entanglement with operator σj.
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Analogously, consider the effect of the disentanglement on operator σk. Now, let

us define the following new ranges as follows:

• Range U1 ⊂ U such that U1(m), w + 1 < m ≤ n.

• Range U2 ⊂ U such that U2(m), 1 ≤ m < w.

• Range L1 ⊂ L such that L1(o), 1 ≤ o < y.

• Range L2 ⊂ L such that L2(o), y < o ≤ n.

Operators σk and σf are entangled if σf is any operator which has an upper index

in U1 and a lower index in L1 or it has its upper index in U2 and its lower index in

L2. After disentangling σj and σk by switching their indices in U , ranges U1, U2,

L1 and L2 have not changed. This means that disentangling σj and σk does not

create any new entanglement with σk.

Analogously, the same procedure can be applied for any two operators which are

entangled and neighbours in L. As a result, disentangling a neighbouring pair only

removes the entanglement between these neighbours and does not cause any new

entanglement. 2

A.2 More details on average midpoint heuristic

This section provides more details on the average midpoint heuristic which was

discussed in Section 3.6.2. The formal algorithm of the heuristic as well as it exper-

imental evaluation are provided in this section.

During our study of the selection ordering problem we noticed that misplacing

the operator with the widest selectivity interval has a large negative effect on the

solution compared to misplacing operators with smaller interval. Therefore, if a

heuristic can find the correct position of this operator or close to the correct position

in the minmax regret solution, then this will improve the quality of its solutions.

This strategy has been used in the average midpoint heuristic. From our study

of cases with multiple nested operators and based on experiments done using our

software, we have found that:
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# of operators
midpoint average midpoint

% exact Worst Average % exact Worst Average

2 100.00% 1 1 1 1 1

3 56% 1.70071 1.09758 63% 1.43579 1.03889

4 24% 1.71191 1.13823 44% 1.54615 1.06474

5 6% 1.70666 1.21026 31% 1.43163 1.08642

6 3% 1.82569 1.28381 18% 1.40406 1.10005

7 0% 2.05576 1.35777 13% 1.92507 1.19155

8 0% 2.21590 1.41479 6% 2.04063 1.19945

9 0% 2.40672 1.4420 10% 2.10694 1.21256

10 0% 2.26314 1.53108 6% 2.12993 1.26580

overall mean max mean mean max mean

summary 21% 2.40672 1.27506 35.63% 2.12993 1.11171

Table A.1: Experimental results for the average midpoint heuristic using a synthetic

data set of nested operators.

• if the average midpoint selectivity of all operators is equal to or smaller than

the midpoint selectivity of the widest interval, then the operator with the

widest selectivity interval will be at the middle or further towards the end of

the minmax regret solution.

• if the average midpoint selectivity of all operators is greater than the midpoint

selectivity of the widest interval, then the operator with the widest selectivity

interval will move away from the middle and towards the beginning of the

minmax regret solution.

Therefore, the operators with the largest selectivity intervals tend to be somewhat

towards the middle of the minmax regret solution for nested operators. This is

somehow similar to the class of uniform orders for the job scheduling problem, as

discussed in Section 2.9.

Table A.1 shows the result of an experimental evaluation of the average midpoint

heuristic when compared to the midpoint heuristic using a synthetic data set of
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nested operators. We tested the heuristic with k operators, k ∈ [2, 10], and for each

k we generated 100 different cases. We used three measuring criteria, namely the

percentage of cases where the heuristic generates a plan equivalent to the optimal

minmax regret solution, the worst regret ratio and the average regret ratio (more

details on these measures can be found in Section 5.1). Overall, the average midpoint

heuristic performs better than the midpoint heuristic on all measuring criteria when

handling a set of nested operators.
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Algorithm 8: Average midpoint heuristic

1 averageMidpoint(W)

Input: A list W of n operators sorted in non-increasing order according to their

selectivity interval widths.

Output: A solution order sol for the average midpoint heuristic.

// Assume that the index of all lists starts at 1.

2 Let averageMidpoint be the average midpoint for the selectivities of all n operators;

3 Let lists L and R be the lists holding the sorted plans to the left and the right of the

operator with the widest selectivity interval respectively;

4 for 2 ≤ i ≤W.length() do

5 if midpoint(W [i]) < averageMidpoint then

6 addToLeftList(W [i], L);

7 else

8 addToRightList(W [i], R);

9 return sol = L+W [1] +R;

1 addToLeftList(o, L)

Input: The operator o and the list L into which o should be placed.

Output: The list L with o placed in the correct position.

// Assume that the index of all lists starts at 1.

2 boolean isP laced = false;

3 int i = L.length();

4 while (i > 0 and !isP laced) do

5 if (!nested(o, L[i])) then

// i.e. not nested.

6 if L[i]dominates(o) then

7 shiftRight(L, i+ 1, L.length()); // This function takes a sublist

of list L from index i+ 1 to index L.length() and shifts

each operator one position to the right.

8 L[i+ 1] = o;

9 isP laced = true;

// else i.e. nested, so check o with next operator in L.

10 i = i− 1;

11 if (!isP laced) then

// i.e. o is nested with operator L[1] or L[1] dominates o, so o

should be at the beginning of L.

12 L[1] = o;
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1 addToRightList(o,R)

Input: The operator o and the list R into which o should be placed.

Output: The list R with o placed in the correct position.

// Assume that the index of all lists starts at 1.

2 boolean isP laced = false;

3 int i = 1, listLength = R.length();

4 while (i ≤ listLength And !isP laced) do

5 if (!nested(o,R[i])) then

// i.e. not nested.

6 if o.dominates(R[i]) then

7 shiftRight(R, i,R.length()); // This function takes a sublist of

list R from index i to index R.length() and shifts each

operator one position to the right.

8 R[i] = o;

9 isP laced = true;

// else i.e. nested, so check o with next operator in R.

10 i = i+ 1;

11 if (!isP laced) then

// i.e. o is nested with operator R[R.length()] or R[R.length()]

dominates o, so o should be at the end of R.

12 R[R.length()+1] = o;



Appendix B

Experimental Results for the

Selection Ordering Heuristic

B.1 Results for the synthetic data set

B.1.1 Run Time

Figure B.1 shows the run time of the W+ ordering variant (single and multiple

phases) together with the baseline algorithm (∅,U) when generating plans for up to

200 operators. The run times are for the basic algorithm described in Section 4.1.

Unsurprisingly, the variants (∅,U) and (D:CW,W+) have the fastest run times, as

they only execute a single operator insertion phase. Furthermore, it can be clearly

seen that the additional run time of (((D : CW,W+),W+),W+) does not pay

off, since it produces plans that are only marginally better than those of ((D :

CW,W+),W+).

B.1.2 Max-min heuristic results (synthetic data)

Table B.1 presents the full results of evaluating the max-min heuristic with various

parameters using the synthetic data set as discussed in Section 5.2. The table shows

the result of each version of the max-min heuristic for each group k of selection

operators, with k ranging from 2 to 10. The last column of the table shows the

overall result for the three measuring criteria.

201
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Figure B.1: Run time of the max-min heuristic for selection ordering.
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B.1.3 Results for other heuristics (synthetic data)

As discussed in Section 5.2, the synthetic data set was also used to test the midpoint,

pessimistic and optimistic heuristics. The max-min heuristic was used to improve

the results of these heuristics when their results are passed to the max-min heuristic

as initial plans. Similar to Table B.1, Table B.2 shows the full results of each group

k ∈ [2, 10] of selection operators using each of the three measuring criteria, namely

the percentage of exact solutions found, the average regret ratio and the worst regret

ratio.
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B.2 Results for the Star Schema Benchmark data

set

B.2.1 Max-min heuristic results (SSB)

As discussed in Section 5.3.2, various versions of the max-min heuristic were eval-

uated experimentally using the SSB data set. Table B.3 presents the full experi-

mental results for the baseline version (φ, U), as well as the (φ,W+), (D:CW,W+),

(((D:CW,W+),W+) and (((D:CW,W+),W+),W+) versions. The table shows

the results for k selection operators, where k ∈ [2, 11]. The measuring criteria

are the percentage of exact solutions, the worst regret ratio and the average re-

gret ratio criteria. In this data set, the third iteration shows no improvement at all;

both (((D:CW,W+),W+) and (((D:CW,W+),W+),W+) versions of the max-min

heuristic have the same results for each criterion.
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B.2.2 Results for other heuristics (SSB)

The SSB data set was also used to test the performance of the midpoint, pessimistic

and optimistic approaches. Table B.4 shows the full experimental evaluation for

these approaches. The max-min heuristic was fed with the results of these ap-

proaches as initial plans to measure the effectiveness of the max-min heuristic in

improving existing results. The results in Table B.4 show how max-min heuristic

improved the results of the midpoint, pessimistic and optimistic approaches. For

example, the max-min heuristic improved the overall worst regret ratio from 1.69 to

1.27 for the midpoint heuristic, from 3205 to 1.42 for the pessimistic heuristic, and

from 89183 to 1.37 for the optimistic heuristic.
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B.3 Enron sample data and experimental results

B.3.1 Keyword selectivity ranges

Table B.5 lists the keywords that were chosen from the subject attribute. The

minimum and maximum selectivities for these keywords in this table were calculated

as discussed in Section 5.4.

# Keyword Selectivity(min) Selectivity(max)

1 word 7.94E-04 0.019868405

2 work 0.002061557 0.019868405

3 progress 4.42E-04 0.014376134

4 price 0.005194968 0.10603915

5 schedule 0.00937676 0.039509921

6 request 0.01401233 0.023213056

7 action 0.002613131 0.085145835

8 staff 0.00309038 0.019234681

9 meeting 0.029065219 0.126588221

10 enron 0.031995212 0.049739469

11 reminder 0.00265225 0.060145052

12 interview 0.002124147 0.025442824

13 day 0.004619922 0.066795237

14 notification 0.002190649 0.029421199

15 notice 0.004052701 0.046300933

16 not 0.002597484 0.046300933

17 for 0.080122989 0.129185704

18 start 0.01451305 0.099533705

19 email 0.002765694 0.055290417

20 market 0.007319115 0.031154159

21 update 0.016140389 0.024163641

22 interest 8.10E-04 0.18942073

23 view 6.88E-04 0.043930337
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# Keyword Selectivity(min) Selectivity(max)

24 data 0.005777837 0.114770451

25 use 7.94E-04 0.05872113

26 you 0.011203605 0.034999531

27 best 0.001040558 0.049598642

28 all 0.002386243 0.076793985

29 some 7.71E-04 0.044622739

30 are 0.003919697 0.160015178

31 new 0.021922138 0.055192621

32 the 0.036583839 0.110733398

33 real 0.002010703 0.110741222

34 time 0.004295237 0.033677317

35 date 0.001596044 0.130222351

36 week 0.00413485 0.018006353

37 hour 0.001283094 0.06824263

38 out 0.00561745 0.049672967

39 market 0.007319115 0.031154159

40 but 5.40E-04 0.020009232

Table B.5: Keyword list for the subject attribute (Enron).

The keywords chosen for the body attribute, along with their minimum and

maximum selectivities, are presented in Table B.6.

# Keyword Selectivity(min) Selectivity(max)

1 progress 0.010405583 2.42E-01

2 price 0.065907242 6.28E-01

3 schedule 0.045479439 0.393937379

4 request 0.047959567 0.216166208

5 action 0.025783157 0.68534847

6 staff 0.024507886 0.288281592

7 meet 0.045854979 0.723821744
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# Keyword Selectivity(min) Selectivity(max)

8 remind 0.003798429 0.589507573

9 interview 0.009173343 0.251846404

10 day 0.077001314 0.676421575

11 notification 0.005789573 0.582012424

12 notice 0.025888778 6.19E-01

13 regard 0.007197847 4.24E-01

14 attache 6.26E-05 0.610713839

15 from 0.351348814 6.14E-01

16 sent 0.079598798 0.820425455

17 subject 0.043930337 0.478735057

18 thank 0.051844057 0.56120517

19 group 0.069005445 0.438978688

20 please 0.350953715 0.655309194

21 there 0.156118952 0.892364806

22 the 0.78957251 0.902653032

23 not 0.341264005 0.618799681

24 for 0.624413219 0.778736621

25 start 0.046711679 0.620278369

26 email 0.101790856 0.614860424

27 market 0.073938318 0.42336249

28 update 0.033336984 0.13001111

29 interest 3.61E-02 0.820425455

30 view 0.031987388 0.422310196

31 data 0.043034518 0.722550385

32 use 0.111574451 0.659835232

33 you 0.616006603 0.724302904

34 like 0.169286318 0.272059054

35 best 0.056651749 0.738354353

36 all 0.250410747 0.796965951
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# Keyword Selectivity(min) Selectivity(max)

37 some 0.150133786 0.651639857

38 are 0.43255148 0.84691275

39 real 0.030555642 0.788222914

40 time 0.148729424 0.524629154

41 date 0.047826563 0.722550385

42 hour 0.017075327 0.713384866

43 out 0.180971083 0.605632315

44 market 0.073938318 0.42336249

45 but 0.211882706 0.427759435

Table B.6: Keyword list for the body attribute (Enron).

B.3.2 Max-min heuristic results (Enron)

Section 5.4.2 discussed the experimental evaluation of the max-min heuristic using

the Enron data set. Various versions of the max-min heuristic were tested to show

the effectiveness of ordering, starting with initial plans and having multiple itera-

tions. Table B.7 shows the full results of our experiments using k selection operators,

where k ranges from 2 to 11.
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B.3.3 Results for other heuristics (Enron)

The performance of the midpoint, pessimistic and optimistic heuristics were tested

using the Enron data set as discussed in Section 5.4.2. The outputs of these heuristics

were used as initial plans for the max-min heuristic. This was done to study the

effectiveness of the max-min heuristic in improving the quality of bad results. The

experiments show the power of the max-min heuristic, as presented in Table B.8. For

example, the max-min heuristic improved the overall percentage of optimal plans

found from 40.5% to 77.5% for the midpoint heuristic, from 31.5% to 79.5% for the

pessimistic heuristic, and from 31.5% to 77.5% for the optimistic heuristic.
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B.4 Statistical measures

Two different measures were used to study the stability of our experimental eval-

uations. We used the variance to measure the stability of the overall percentage

of exact solutions found by the heuristics and the overall average regret ratio. The

smaller the value of the variance is the better, since this indicates that the results are

condensed around the values of the two evaluation measures (i.e. the percentage of

exact solutions and the average regret ratio). Moreover, we wanted to evaluate the

margin of error in the two evaluation measures, so we used the confidence interval

measure with 95% confidence level. If the margin of error is small then the result is

highly stable.

Heuristic Measure
Synthetic SSB Enron

variance marg. err. variance marg. err. variance marg. err.

(φ,U)
% exact 0.077 68 ± 1.82% 0.013 79 ± 0.73% 0.080 69 ± 1.76%

Average 0.000 52 ± 0.001 49 4.16×10−5 ± 0.000 40 0.000 22 ± 0.000 91

(φ,W+)
% exact 0.082 20 ± 1.88% 0.010 74 ± 0.64% 0.076 23% ± 1.71%

Average 0.000 95 ± 0.002 01 7.62×10−5 ± 0.000 54 0.000 38 ± 0.001 21

(D:CW,W+)
% exact 0.077 60 ± 1.82% 0.012 44 0.69% 0.071 10 ± 1.65%

Average 0.000 50 ± 0.001 47 2.41×10−5 ± 0.000 30 0.000 35 ± 0.001 16

((D:CW,W+),

W+)

% exact 0.051 04 ± 1.48% 0.010 92 ± 0.65% 0.054 10 ± 1.44%

Average 1.67×10−5 ± 0.000 27 2.16×10−5 ± 0.000 29 3.01×10−6 ± 0.000 11

(((D:CW,W+),

W+),W+)

% exact 0.045 24 ± 1.39% 0.010 92 ± 0.65% 0.052 53 ± 1.42%

Average 1.44×10−5 ± 0.000 25 2.16×10−5 ± 0.000 29 2.99×10−6 ± 0.000 11

Table B.9: Variance and margin of error for % of exact solutions and average regret

ratio of the max-min heuristic experiments.

Table B.9 presents the variance and margin of error for the percentage of exact

solutions and the average regret ratio evaluation measures when testing various

versions of the max-min heuristics. All the variances were less than 0.1. The margin

of error was less than ±2% and ±0.01 for the percentage of exact solutions and the

average regret ratio respectively. Therefore, we have high stability results
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Heuristic Measure
Synthetic SSB Enron

variance marg. err. variance marg. err. variance marg. err.

Midpoint

heuristic

% exact 0.118 48 ± 2.25% 0.021 04 ± 0.90% 0.122 53 ± 2.17%

Average 0.002 40 ± 0.003 21 0.000 16 ± 0.000 78 0.000 82 ± 0.001 78

((Mid. W+),

W+)

% exact 0.058 62 ± 1.58% 0.011 57 ± 0.68% 0.059 53 ± 1.51%

Average 3.08×10−5 ± 0.000 36 2.03×10−5 ± 0.000 28 2.45×10−5 ± 0.000 31

(((Mid. W+),

W+),W+)

% exact 0.048 46 ± 1.44% 0.011 20 ± 0.66% 0.055 13 ± 1.46%

Average 1.76×10−5 ± 0.000 27 2.18×10−5 ± 0.000 29 4.41×10−6 ± 0.000 13

Pessimistic

heuristic

% exact 0.084 71 ± 1.90% 0.056 00 ± 1.47% 0.138 03 ± 2.31%

Average 0.010 56 ± 0.006 72 320.1 ± 1.110 23 0.003 20 ± 0.003 51

((Pessim. W+),

W+)

% exact 0.070 61 ± 1.74% 0.011 64 ± 0.67% 0.070 90 ± 1.65%

Average 0.000 12 ± 0.000 71 3.07×10−5 ± 0.000 34 5.91×10−5 ±0.000 48

(((Pessim. W+)

,W+),W+)

% exact 0.043 45 ± 0.14% 0.010 58 ± 0.64% 0.050 73 ± 1.40%

Average 2.37×10−5 ± 0.000 32 2.60×10−5 ± 0.000 32 1.47×10−6 ± 7.54×10−5

Optimistic

heuristic

% exact 0.073 02 ± 1.78% 0.065 53 ± 1.59% 0.087 53 ± 1.84%

Average 0.780 79 ± 0.057 81 209997.7 ± 28.4369 5.044 65 ± 0.139 38

((Optim. W+),

W+)

% exact 0.068 00 ± 1.71% 0.011 36 ± 0.66% 0.056 03 ± 1.47%

Average 7.22×10−5 ± 0.000 56 2.01×10−5 ± 0.000 28 4.35×10−6 ± 0.000 13

(((Optim. W+)

,W+),W+)

% exact 0.049 82 ± 1.46% 0.011 03 ± 0.65% 0.052 63 ± 1.42%

Average 3.68×10−5 ± 0.000 40 2.01×10−5 ± 0.000 28 2.5×10−6 ± 9.90×10−5

Table B.10: Variance and margin of error for % of exact solutions and average regret

ratio for the midpoint, pessimistic and optimistic heuristics experiments with their

refinements using the max-min heuristic.

The statistical measures also show stability in the experimental evaluation of

the midpoint heuristic and its refinements using the max-min heuristic. Table B.10

shows the variance and margin of error for the percentage of exact solutions and the

average regret ratio in these experiments. The pessimistic and optimistic heuristics

had a large variant in the SSB data set. This is because they performed extremely

bad and their average regret ratio was fluctuating while the variance is sensitive

for outliers. The margin of error in this case for the optimistic heuristic is large

as well since it is the worst heuristic in our experiments but the margin of error

for the pessimistic heuristic is small with a value ∓1.11. Refining the results of
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pessimistic and optimistic heuristics using the max-min heuristic improved the result

significantly. From Table B.10 we can see that in these experiments the margin of

error is less than ±2% and ±0.001 for both the percentage of exact solutions and

the average regret ratio measures respectively while the variance for both of them

is less than 0.1.



Appendix C

Experimental Results for Total

Flow Time

C.1 Max-min heuristic additional results (TFT)

As discussed in Section 6.2, different variations of the max-min heuristic for the total

flow time (TFT) problem were evaluated experimentally using a synthetic data set.

Table C.1 presents the full experimental results for the versions (φ, U), (φ,W+),

(D:CW,W+), (((D:CW,W+),W+) and (((D:CW,W+),W+),W+). The table

shows the result under each group k of jobs, where k ∈ [2, 10]. It also shows the

overall results using the percentage of exact solutions, worst regret ratio and average

regret ratio criteria. Table C.2 on the other hand, shows the full result for the

other heuristics, namely the 2-approximation (midpoint), pessimistic and optimistic

heuristics, using the same data set.

223
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C.2 Statistical measures

Heuristic Measure Variance Margin of error

(φ, U)
% exact 0.055 57 ± 1.54%

Average 0.000 30 ± 0.001 12

(φ,W+)
% exact 0.056 43 ± 1.55%

Average 9.50×10−5 ± 0.000 64

(D:CW,W+)
% exact 0.044 57 ± 1.38%

Average 0.000 11 ± 0.000 69

((D:CW,W+), W+)
% exact 0.031 11 ± 1.15%

Average 0.000 14 ± 0.000 76

(((D:CW,W+),W+),W+)
% exact 0.031 80 ± 1.17%

Average 0.000 14 ± 0.000 78

Table C.3: Variance and margin of error for % of exact solutions and average regret

ratio of the max-min heuristic experiments (TFT).

For the results in Tables C.1 and C.2 we calculated the variance and the con-

fidence intervals with 95% confident level to measure the margin of error and the

stability of the result. This statistical study were performed on the percentage of

exact solution and the average regret ratio measuring criteria. Table C.3 presents

the statistics for the max-min heuristic with different variations. The margin of

error for the percentage of exact solutions and the average regret ratio measures

was less than ±2% and ±0.01 respectively while their variance was less than 0.02.

This indicates a high stability in the experimental results of the max-min heuristic.

A similar stability for the experiments of the midpoint, pessimistic and optimistic

heuristics is shown in Table C.4.
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Heuristic Measure Variance Margin of error

Midpoint heuristic
% exact 0.094 47 ± 2.01%

Average 0.000 49 ± 0.001 45

Pessimistic heuristic
% exact 0.081 18 ± 1.86%

Average 0.011 62 ± 0.007 05

Optimistic heuristic
% exact 0.083 54 ± 1.89%

Average 0.022 38 ± 0.009 79

Table C.4: Variance and margin of error for % of exact solutions and average regret

ratio of the midpoint, pessimistic and optimistic heuristics experiments (TFT).



Appendix D

Experimental Results for the Join

Ordering Heuristic

D.1 Max-min heuristic additional results

This section presents the full results of evaluating the max-min heuristic using the

synthetic data set as discussed in Section 8.3. The heuristic is also compared with

the midpoint, pessimistic and optimistic heuristics.

Our heuristic performed well on this synthetic data set. It outperforms the mid-

point, pessimistic and optimistic heuristics on all measuring criteria. Our heuris-

tic found the optimal solution in 98% of the tested cases. The regret ratio for

each of the cases where our heuristic did not find the optimal solution is less than

1.0000000000013, apart form the single case of the overall worst regret ratio of 1.23.

This value of the overall worst regret ratio shows how well our heuristic does in

terms of avoiding bad plans. On this criterion, the midpoint heuristic is marginally

worse than our heuristic with a ratio of 1.24, and both were far better than the

pessimistic and optimistic heuristics with values of 6 and 243, respectively.
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D.2 Statistical measures

Heuristic Measure Variance Margin of error

Max-min heuristic
% exact 0.001 06 ± 0.20%

Average 4.90 ×10−7 ± 4.34 ×10−5

Midpoint heuristic
% exact 0.004 04 ± 0.39%

Average 5.34 ×10−7 ± 4.53 ×10−5

Pessimistic heuristic
% exact 0.003 52 ± 0.37%

Average 0.002 37 ± 0.003 02

Optimistic heuristic
% exact 0.009 37 ± 0.60%

Average 2.667 65 ± 0.101 35

Table D.2: Variance and margin of error for % of exact solutions and average regret

ratio for experiments of the max-min midpoint, pessimistic and optimistic heuristics.

To measure the stability of the experimental evaluations, we used the variance

and the confidence interval based on 95% confidence level. Table D.2 shows the

stability of the percentage of the exact solution and the overall average regret ratio

measuring criteria for the max-min, midpoint, pessimistic and optimistic heuristics.

The small variance indicates that the results are condensed around the values of the

percentage of the exact solution and the overall average regret ratio and hence a

higher stability. The margin of error for the percentage of the exact solution is less

than 1% on all heuristics. Generally, the margin of error for the average regret ratio

is very small on all heuristics however it is slightly larger for the optimistic heuristic

with value less than 0.11.



Appendix E

Developed Software

In order to study the selection ordering and join ordering problems, we developed

various pieces of software. The software also helped us to understand various prob-

lems as well as to verify and test different properties and heuristics.

Recall from Section 5.2.1 that the software was implemented in Java. The Eclipse

IDE (Juno release), which is JDK compliant and uses the JavaSE-1.7 execution en-

vironment, was used to compile the Java code. Section E.1 discusses the main

functionalities implemented, while Section E.2 presents how we detected a subset

of dominant operators for a given set of selection operators, which was used to

find initial plans for the selection operator heuristic, as discussed in Section 4.2.1.

Section E.3 discusses how we dealt with precision problems in Java when we imple-

mented and tested our join ordering heuristic presented in Section 7.3.

E.1 General functionality

In this section, we briefly mention the main information provided by, and functions

implemented by, our software.

• We developed a program to draw the selectivity intervals of selection opera-

tors for any plan in order to visualise relationships between operators. Fig-

ure E.1(a) shows operator intervals using their actual values for the y-axis,

while Figure E.1(b) draws the operators according to the width of their selec-

tivities with their midpoint aligned.
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(a)	 (b)	

Figure E.1: Two ways in which to visualise three selection operators.

• We implemented the brute-force algorithms for MRO of the selection ordering,

join ordering and TFT problems. Figure E.2 shows a full report after running

the brute-force algorithm for MRO of a set of three selection operators. The

report includes the cost and regret tables for each plan under each extreme

scenario. In addition, the maximum regret of each plan is identified and the

details of the optimal solution is reported.

• We developed programs to generate synthetic data sets for the selection or-

dering problem, TFT problem and join ordering problem as described in Sec-

tions 5.2.1, 6.2.2 and 8.2, respectively. Figure E.3 shows how properties can

be specified before generating a random set of selection operators.

• We also implemented and tested some relevant algorithms during our study,

such as the disentangling algorithm and average midpoint heuristic that we

discussed in Sections 3.6.1 and 3.6.2 respectivelyy.

• Experimental evaluations discussed in Chapters 5, 6 and 8 were conducted us-

ing the software we implemented. Figure E.4 shows a sample report generated

after testing our selection ordering heuristic (((optimistic,W+),W+),W+)

with 100 different test cases. In this experiment, our heuristic starts with the

result of the optimistic heuristic as an initial plan and then performs three

iterations.
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Figure E.2: MRO brute force approach calculation.



E.2. Detecting domination in selection operators 234

Figure E.3: Random selection operator generator.

• We implemented software to process and prepare the SSB and Enron data

sets. For example, the implemented software created the histograms for the

SSB data set. For the Enron data set, our software was used to compute the

minimum and maximum selectivity intervals for the chosen keywords.

E.2 Detecting domination in selection operators

In Section 4.2.1 we mentioned that we could use the approach in Section 3.6.1 to find

the subsets of dominant operators for a given set of selection operators, but instead

we used the Bellman-Ford algorithm. The Bellman-Ford algorithm is implemented

in a free Java library called JGraphT [90]. This Java library specialises in graph

theory and its algorithms. To find a subset of dominant operators, we create a graph

to represent domination between operators.

In order to find the subset with the maximum cardinality (D:C), we create a

graph where vertices represent selection operators and edges represent domination

relationships between operators. The longest path in the graph yields the subset

with the maximum cardinality (D:C).

The Bellman-Ford algorithm is a well-known algorithm for finding the shortest

path in a weighted graph [56]. However, we want to find the longest path. Therefore,

we set the weight of all edges representing a domination to −1. Then we use the

Bellman-Ford algorithm to find the shortest path with negative weights, which in

turn returns the subset of vertices connected by the longest path (i.e. the subset
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Figure E.4: Max-min heuristic report for version (((optimistic,W+),W+),W+)

after testing 100 cases with 4 operators.
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with the maximum cardinality).

If we are looking for the subset with the maximum cardinality and largest total

width (D:CW ), we first find the subset with the maximum cardinality. If there is

only one subset with maximum cardinality, then it is the one that satisfies (D:CW ).

Otherwise, we find the total width of the selectivity intervals in each subset and

return the one with the largest total width.

On the other hand, if we want to find the subset with the largest total width

(D:W ), we create a different graph. In this graph, we create two vertices for each

selection operator, namely si and si, representing the minimum and maximum se-

lectivities of operator σi, where 1 ≤ i ≤ n and n is the total number of operators

in the given set. For each pair of vertices si and si, there is an edge with weight

equal to −(si − si), which represents the negative width of the selectivity interval

for σi. If σi dominates σj, then we create an edge with zero weight between si and

sj to represent the domination. Then we use the Bellman-Ford algorithm to find

the subset with the largest total width.

E.3 Dealing with precision in Java

The largest primitive decimal data type in Java is double, with a precision of 64-bits

as specified in the IEEE Standard for Binary Floating-Point Arithmetic 754 [1].

The double type can handle large numbers (in scientific representation only, e.g.

2.35 E15) but with a lack of precision and rounding control for the decimal part

of numbers. This caused problems for us when we compared the cost of plans in

the join ordering problem since we deal with large numbers (e.g. joining up to 12

relations with cardinality up to 107), as illustrated in the following example.

Example E.3.1 Consider plan ρ and scenario x, and assume that we want to calcu-

late the regret of plan ρ under scenario x. Assume the following values for Cost(ρ, x)

and Cost(ρopt(x), x), which is the cost of the optimal plan for x.

Cost(ρ, x) = 16156242466598015095976322649.79014

Cost(ρopt(x), x) = 16156242466598015095539720420.91022
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The regret for plan ρ under scenario x is:

γ(ρ, x) = 436602228.879928587

However, the double data type in Java represents both of the values of Cost(ρ, x)

and Cost(ρopt(x), x) as follows:

Cost(ρ, x) = Cost(ρopt(x), x) = 1.6156242466598015 E28

Therefore, the regret γ(ρ, x) is zero when the double data type is used in Java.

Obviously, this is not correct. 3

To overcome this problem, we used the BigDecimal class from the java.math

library. This class allows the programmer to specify the scale in terms of decimal

places (i.e. the number of digits after the decimal point) and the rounding method.

Basic arithmetic in this class can be performed via specific methods. We used the

BigDecimal class for the calculations used in the join ordering heuristic.
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