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Abstract

This thesis develops and explores a technique called Protocol Modelling, a mathe-

matics for the description of orderings. Protocol Modelling can be viewed as a hybrid

of object orientation, as it supports ideas of data encapsulation and object instantiation;

and process algebra, as it supports a formally defined idea of process and process com-

position.

The first half of the thesis focuses on describing and defining the Protocol Modelling

technique. A formal denotational semantics for protocol machines is developed and

used to establish various properties; in particular that composition is closed and pre-

serves type safety. The formal semantics is extended to cover instantiation of objects.

Comparison is made with other process algebras and an approach to unification of

different formulations of the semantics of process composition is proposed.

The second half of the thesis explores three applications of Protocol Modelling:

Object Modelling. This explores the use of Protocol Modelling as a medium for ob-

ject modelling, and the facility to execute protocol models is described. Protocol Mod-

elling is compared with other object modelling techniques; in particular by contrasting

its compositional style with traditional hierarchical inheritance.

Protocol Contracts. This proposes the use of protocol models as a medium for ex-

pressing formal behavioural contracts. This is compared with more traditional forms

of software contract in the generalization of the notion of contractual obligation as a

mechanism for software specification.

Choreographed Collaborations. In this application Protocol Modelling is used as a

medium to describe choreographies for asynchronous multiparty collaborations. A



compositional approach to choreography engineering, enabled by the synchronous

semantics of Protocol Modelling, is explored and results established concerning suf-

ficient conditions for choreography realizability. The results are extended to address

choreographies that employ behavioural rules based on data.
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Chapter 1

Introduction

This chapter introduces Protocol Modelling, hereafter abbreviated as PM, exploring its

origins and positioning it with respect to prevalent paradigms of software modelling

and description. The notations of PM are explained using a small example as illustra-

tion.

1.1 Origins

PM can be viewed as a merger of two pre-existing fields of work in software mod-

elling: object life-cycle modelling and process algebra. PM borrows from process algebra

in establishing a formal relationship between the states of a process and the events it

can handle, and in supporting process composition. It departs from traditional process

algebra in allowing processes to maintain data, allowing states to be computed from

stored data, and supporting ideas of identity (objects) and instantiation.

1.1.1 Object Life-cycle Modelling

The 1970s and 1980s saw a revolution in ideas about software modelling and structure,

as the procedural view of computing gave way to object orientation: the idea that soft-

ware can be thought of as consisting of objects that own both data and behaviour. The

lasting legacy of this revolution has been OO programming languages which now domi-

nate the IT industry. But some of the early work on object orientation, with origins pre-

dating the OO programming revolution, focused on building behaviourally expressive

16
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S. Shlaer and S. Mellor
Object Life Cycles - Modeling the World in States

Yourdon Press/Prentice Hall, 1992.
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M.A. Jackson 
System Development 

Prentice Hall, 1983.
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6

TWO EXAMPLES OF LIFECYCLE MODELS

Figure 1.1: Two Examples of Object Life-Cycle Modelling

object based domain models, part of which involved pioneering modelling techniques

for describing object lifecycles. Two such techniques, both of which emerged in the

1970s, were Jackson System Development (JSD) developed by Jackson and Cameron

[41], and Recursive Design [74] developed by Shlaer and Mellor. Both espoused the
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idea that software should be structured as objects that mirror objects of the domain

and both, independently, developed and championed the idea of modelling object life-

cycles. Life-cycles were defined in terms of the states that an object can adopt and

how events in the system cause objects to progress through these states. In support of

this, both techniques had graphical techniques for modelling event-based behaviour,

as shown in Figure 1.1.

In 1983, also Jackson presented a new method, called Jackson System Development

(JSD), which can be seen as the generalization of JSP (Jackson Structured Program-

ming). One could rightfully say that JSD already contains important elements of object-

oriented design, and therefore that it is a precursor of object-oriented design.

– Maurice Verhelst [78]

Both JSD and Recursive Design can be seen as foreshadowing object orientation,

as recognized for instance in the quote above, and both won adopters and recog-

nition completely independently of the appearance of OO programming. However,

both were largely eclipsed when the OO programming revolution, beginning with

Smalltalk, took off in the late 1980s. As OO programming ideas started to dominate

thinking about software development, modelling paradigms quickly fell in behind,

aligning themselves closely to the capabilities and features of the new OO program-

ming languages: classes, inheritance, relationships, attributes and methods. Driven

by the success of OO programming a raft of OO modelling techniques appeared dur-

ing the 1980s and 1990s, to be cemented by the synthesis of Unified Modeling Language

(UML) in the early 1990s. As none of the mainstream OO languages provided any

direct support for implementing object life-cycles, object life-cycle modelling largely

vanished from the mainstream.

The resultant orthodoxy that was established in UML, and which has persisted since,

divides modelling into two domains that, to a large extent, are presented and treated

as independent without significant crossover:

• Object modelling, as embodied in UML Class Diagrams and Interaction Diagrams.

These models address object based software. Class Diagrams show classes, at-

tributes, methods, relationships and inheritance. Interaction Diagrams (Sequence

and Collaboration Diagrams) show how objects work together by message pass-

ing to implement functional behaviour.
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• Process modelling, as embodied in UML Activity Diagrams. These models deal

with process flows and embody an idea of event based movement through states.

But the process flows of Activity Diagrams have no formal relationship to the ob-

jects of Class Diagrams, and do not support any significant object-based richness

of structure such as relationships or inheritance.

The implementation realm mirrored this split, so that we have programming lan-

guages that support objects (C++, Java, C7, etc.) and others that support process (BPEL

and its derivatives).

However, this separation of modelling into two domains is an accident of history. It

does not appear to be essential, as in PM it does not exist. And it is arguably damag-

ing, as it creates barriers in the way we think about software engineering. The work

described in this thesis shows that, if these barriers are removed, new ways of combin-

ing concepts are enabled leading to new ways of solving problems. However, this is

only achieved by adopting notions that are rather different from those in UML.

1.1.2 Process Algebra

The second ingredient in the formation of PM is process algebra. Process algebras at-

tempt to capture process behaviour in algebraic form, and provide formal semantics

for these algebras to enable reasoning. Process algebra has its origins in the 1970s

with early work on the denotational semantics of programming languages such as

ALGOL and PL/I, in the context of giving a formal treatment of parallel composition

constructs. The body of theory that has grown from this has proved to be a valuable

tool for reasoning about concurrent behaviour, and has formed the basis for various

model checking [20] techniques used to verify the correctness of concurrent software.

Most of the theoretical work on process algebra has been done in academia, through

the work of Hoare [38], Milner [58], Baeten et al [4] and a number of others. PM draws

directly on this work, but departs from the main traditions of the field in two signif-

icant ways. The first departure relates to the treatment of data and the second to the

positioning and use of parallel composition. These differences are explored through the

rest of the thesis. Before doing that, we introduce the basics of PM using a small illus-

tration to explain, informally, the key ideas.
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1.2 Illustration of a Protocol Model
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if (Account1.balance ≥ - 50) return “in limit”;
else return “over limit”;
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else return “overdrawn”;
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Figure 1.2: Protocol Model of a Bank Account

Figure 1.2 shows a protocol model of a simple bank account. The account is spec-

ified using three protocol machines: Account1, Account2 and Account3. These three

machines are in parallel composition using a generalized form of the parallel operator

∥ of Hoare’s CSP, so the full behaviour of the account is given by:

Account1 ∥ Account2 ∥ Account3

Throughout this thesis we use the graphical convention that cartouches with dotted

outlines, such as those in Figure 1.2, work together to define the behaviour of a single

object.

Informally, the semantics of the composition is that an action1 is allowed by the

model as a whole if and only if it is allowed in each machine where it appears. For

instance:

• Close can only take place if Account1 is in state active and Account2 is in state in

credit.
1There is a question about whether to use event or action to denote an atomic element of behaviour. We

have chosen action.
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• Withdraw can only take place if Account1 is in state active and Account3 ends up

(after the withdrawal) in the state in limit.

For a Deposit to be allowed, however, only requires that Account1 is in state active, as

Deposit does not appear as an action on any transition in the other machines.

The upper machine, Account1, conforms to the familiar form of a conventional state

transition diagram. Account2 and Account3, however, depart from conventional state

transition notation as their states are calculated by a function (the State Function shown

in each of the two machines) rather than being driven by the transitions. The state

icons of derived-state machines are shown with a double outline as a graphical signal

of the fact that they are calculated. UML has a concept of Derived Element, see [64], but

PM has extended this concept so that states of a state machine can also be derived.

The example shows the influence of object orientation, in that Account1 encapsulates

the balance of the account; and of process algebra, in the use of parallel composition of

the three machines to yield the full behaviour of the account. This example also shows

how protocols, the rules governing the allowed sequencing of actions in a model, are

explicit in a PM model. In a conventional software development process, the proto-

cols of a system are not normally explicitly modelled at all. This may be because the

modelling formalisms that target this need, for instance the StateChart in UML, do not

readily express the interaction between data and behaviour. Consequently protocol

rules are often unspecified or poorly specified and appear as emergent properties of

the code. If the protocols are not properly explicit in models or specifications, different

programmers working on different parts of the system may make different assump-

tions about what is possible and thus create incoherent behaviour.

1.3 Introduction to the Basic Concepts

The basic structural elements of a Protocol Model are actions, which model atomic oc-

currences; and protocol machines, which are the basic unit of behavioural definition.

This section describes these basic concepts. The discussion is informal, and is intended

to provide an intuition of how PM models are defined and how they behave. Part II of

this thesis will provide a formal treatment of the semantics.
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1.3.1 Action

PM is used to model possible sequences of occurrences of some kind. There is no

particular restriction on what can constitute an occurrence in the modelled domain;

however for the purposes of modelling an occurrence must be:

• Treated as atomic (not sub-divisible) and instantaneous

• Finitely describable as data.

Any set of occurrences that conform to these can be chosen to constitute the set of

actions of a model. For the purposes of this introduction, actions can be thought of as

messages originating outside the protocol model and presented as input messages to

it. This is actually a restrictive assumption that will be relaxed in Section 4.2.3, where

the concept of action will be broadened to include outputs as well as inputs.

Each action presented to the model carries a set of data items called fields. For in-

stance the Deposit and Withdraw actions in Figure 1.2 on page 20 would each carry

three fields:

• The type of the action, either Deposit or Withdraw

• The identifier of the account to which the action applies (assuming the bank has

more than one account)

• An amount by which the balance of the account is to be increased or reduced.

The reaction of a protocol model to an action is instantaneous. Taking actions to be

instantaneous is not a restrictive assumption: if we want to model something that we

do not regard as instantaneous but persistent over some period of time, we model it as

having separate start and end actions.

1.3.2 Alphabet

The set of different types of action that a machine understands is called its alphabet.

For this discussion we shall take the alphabet of a machine to be a set of action types

that appear on any transition in the graphical depiction of the machine. Thus in Fig-

ure 1.2 the alphabet of Account1 is tOpen, Deposit, Withdraw, Closeu; and the alphabet of

Account2 is tCloseu.
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As we shall see in Part II the concept of alphabet is important in developing a theory

of how PM applies to object modelling.

1.3.3 Protocol Machine

A protocol machine is a machine whose behaviour is defined in terms of its ability to

allow or refuse actions presented to it. If a machine allows an action A it will, in general,

adopt a new state reflecting the occurrence of A. The words “in general” indicate that

a change of state is not mandatory, and may only be reflected in the machine as a

change of some data attribute (like balance in Account1 in Figure 1.2). If it refuses A,

the machine is unable to advance to a new state, as no possible such advance is defined

for it, and so it must remain in the same state.

States. Every protocol machine owns a set of states that are used in the determination

of its behaviour (whether it allows or refuses an action). A machine’s state may be

stored, as is the case with Account1 in Figure 1.2; or it may be derived, as is the case

with Account2 and Account3. Stored-state machines have the familiar form of a state

transition diagram, where the next state of the machine is driven by the topology of the

machine. Derived-state machines employ a function (the state function) to calculate the

state when needed, this function being part of the definition of the machine. Derived-

state machines do not need to be topologically connected, as the transitions do not

drive state. Thus the transitions in Account2 end “in mid-air”, and the transition in

Account3 begins “in mid-air”.

Constraints. Whether a machine in a given state allows or refuses an action A is

determined autonomously by the machine. To make its decision, the machine may use

the state before the action (a rule specified this way is called a pre-state constraint) and

the state that the machine would reach if it were to allow the action (a rule specified

this way is called a post-state constraint). Examples of pre-state constraints in Figure 1.2

are given by the rule in Account1 that Deposit, Withdraw and Close are only possible in

the state active; and the rule in Account2 that Close is only possible in the state in credit.

The rule in Account3 that Withdraw is only possible if it results in the state in limit is an

example of a post-state constraint. Notice that a post-state constraint requires that the

post-state is derived.
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Quiescence. Between actions a machine always reaches a quiescent state, wherein it

cannot undergo any further change of state unless and until presented with another

action. This is axiomatic: a machine that does not reach quiescence is not a protocol

machine. When a machine is quiescent, its state and data have well-defined values

that are accessible to other, composed, machines. Access to a machine’s state or data

when it is not quiescent is meaningless.

Attributes. A protocol machine owns a set of stored attributes, which only it can alter

and only when moving to a new state in response to an action. An example of a stored

attribute is the balance maintained by Account1 in Figure 1.2. This attribute is initial-

ized to zero by the Open and incremented/decremented by Deposit and Withdraw. PM

has the notion of data encapsulation familiar in object orientation, whereby the stored

attributes owned by a protocol machine can only be altered by that machine, although

it can be accessed by other, composed, machines. Note that a stored state, as exempli-

fied by the state of Account1, is a stored attribute that has protocol significance because

it determines protocol constraints.

In addition to its stored attributes, a protocol machine may own a set of derived at-

tributes. The value of a derived attribute is defined by a derivation function which can

be viewed as a property of the attribute. Derived attributes are determined by their

derivation function and assumed to be computed instantaneously on demand. They

only have defined values at quiescence. For instance, suppose that machine Account1

has an attribute that expresses the balance in another currency, say USD($) instead of

GBP(£). The value of this attribute would be derived rather than stored: Account1

would obtain the $/£ exchange rate and use this along with the stored GBP balance to

calculate the USD balance whenever it is required. Note that a derived state, as exem-

plified by the states of Account2 and Account3, is a derived attribute that has protocol

significance because it is used to determine protocol constraints.

When it consumes an action a protocol machine can alter the values of its stored

attributes. In the graphical syntax, these updates are shown in bubbles attached to the

transitions, as Account1 has updates for balance on Open, Deposit and Withdraw. The

update calculation may make use of attributes of the action being consumed and the

values of attributes (stored and derived) of the machine itself and other machines with
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which it is composed. As the values of machine attributes are only well-defined at

quiescence, the values used in the context of an update are those that pertained at the

last quiescent state of the model.

1.3.4 Observation Universe

We use the term observation2 to define the observed association of a value to a symbolic

name during execution of a machine. An example of an observation is (x = 3) where

the symbolic name x is observed to have the value 3.

Given a domain or area of interest that is to be modelled, an observation universe

defines a universe of possible observations by giving an exhaustive list of:

• the symbolic names (data variable names) that can be used in action fields and

stored attributes; and

• the complete set of values that each symbolic name can take.

Any machine used to model this domain will use some subset of the symbolic names

of the universe to define its alphabet and attributes.

1.3.5 Protocol Model

A protocol model is a set of composed protocol machines that provides a complete defini-

tion of some domain or area of interest. A protocol model must give complete coverage

of the data universe, so it defines behaviour for all possible actions (all combinations of

values of the action fields defined in the universe) and gives a value to all the machine

attributes defined in the universe under all behaviour scenarios.

A protocol model is also a protocol machine, so also reaches quiescence between

successive actions. A model is quiescent when all of its component machines are simul-

taneously quiescent. When the model is quiescent, the global state and data of the model

is well-defined. A consequence of this is that the presentation of actions to a model

always has a well-defined ordering over time, and between any successive pair the

model has well-defined global data.

2This terminology is borrowed from Hoare and He, [35].



Chapter 2

Behaviour Modelling Concepts

This chapter provides an informal introduction to some of the key concepts and termi-

nology used in PM to model behaviour, and prepares for the denotational semantics in

Part II.

2.1 Synchronous and Asynchronous Composition

Composition is central to PM, as it is the means by which models are built from con-

stituent building blocks. It is also central to PM that inter-machine data access is pos-

sible between composed machines. However, in the presence of inter-machine data

access, the behaviour of a composition is dependent on whether the composition has

synchronous semantics or asynchronous semantics. In this section we illustrate this and

motivate the choice of synchronous semantics in PM.

The distinction between synchronous and asynchronous composition is apparent in

the example shown in Figure 2.1. This figure shows a model with a machine:

S = P ∥ Q ∥ R

specified as three composed machines. We suppose that P and Q start at their respec-

tive ‚ (initial) states and therefore R starts in the state not A and not B. This means

that P allows x, Q allows y, and R allows both x and y. Under the rules of ∥ com-

position, S therefore allows x and y. Now consider how the execution of S advances

26
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if (state of P == A) A := true;
if (state of Q == B) B := true;
if (not A && not B) return “not A and not B”;
else if (A && B) return “A and B”;
else return “else”;
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Figure 2.1: Synchronous and Asynchronous Composition

under two different assumptions about the behavioural semantics, synchronous and

asynchronous, of the composition:

Synchronous Composition. In the synchronous case, S advances strictly one action

at a time. Suppose x happens. P is then in state A, Q is still at its ‚ state. R evaluates

its state to else (as it is in neither of its other two states). As R refuses all actions of its

alphabet {x,y,z} when in state else, under the rules of ∥ nothing further can happen

in S. A similar argument applies if y happens first. These are the only two possibilities,

and in neither is z possible in S.

Asynchronous Composition. In the asynchronous case, there is no discipline of ad-

vancing one action at a time. So x and y could take place simultaneously and the first

coherent state that R obtains could be A and B.1 R is now in a state where z is possible;

and as z is not in the alphabets of P and Q, z is then possible in S. (Equally, though, x

and y might not take place simultaneously and the system might not allow z.)

Consider the example in Figure 1.2 on page 20 and suppose that a Withdraw and a

Close are presented together. With asynchronous semantics it would be possible for

1It could, perhaps, be argued that the presence of both x and y in R means that they cannot happen

simultaneously. Suppose, though, that R is replaced by two machines, each essentially a clone of R with

the same state function, where x has been removed from one and y from the other.
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Account2 to determine that the balance is not overdrawn so that account closure is al-

lowed at the same time that Account1 allows the withdrawal, taking the account over-

drawn, before closing the account. The failure to ensure that the account cannot end

up closed and overdrawn mirrors the failure to prevent z from happening in S; and is

generally known as a race condition. PM seeks to create models whose behaviour is not

at the mercy of race conditions and so the asynchronous composition paradigm is not

suitable.

As a note of caution, it is important to understand that the term synchronous can be

used in two contexts:

• The semantics of composition, where it refers to whether or not composed pro-

cesses can advance independently and concurrently.

• The semantics of inter-process message passing, where it refers to whether or not

the send and receive events for a message sent from one process to another are

simultaneous (or, equivalently, whether the sender is blocked until the receiver

has received and processed the message).

This distinction is explored by Bergstra et al. [11] who use the terms synchronous/

asynchronous co-operation for the former and synchronous/asynchronous communica-

tion for the latter; and classify well known process algebras and related formalisms

along both dimensions.2

• synchronous co-operation + synchronous communication: SCCS, MEIJE,

ASP, ASCCS.

• synchronous co-operation + asynchronous communication: No example

known to us.

• asynchronous co-operation + synchronous communication: CCS, CSP,

ACP, Ada, Petri Nets, uniform processes of de Bakker and Zucker.

• asynchronous co-operation + asynchronous communication: CHILL, data

flow networks, restoring circuit logic.

– Jan Bergstra, Jan Klopp and John Tucker [11]

2This paper was published in 1985 and some of the examples, such as CHILL, show its age. But the

framework remains valid and useful.
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Our use of the term synchronous in the context of Figure 2.1 corresponds to syn-

chronous co-operation. As we shall see in Chapter 4, PM also uses synchronous com-

munication, and so belongs to the first category in the taxonomy of Bergstra et al. cited

above.

2.2 Independence and Dependence

We distinguish two types of machine:

• A dependent machine is one that accesses the values of attributes that it does not

own (i.e., that belong to other machines composed with it). Both Account2 and

Account3 in Figure 1.2 on page 20, considered as “stand-alone” machines, are

dependent as they use balance, which they do not own, to compute their state.

• An independent machine is one that makes no such access. Account1 is inde-

pendent; as is the protocol machine formed as the composition (Account1 ∥
Account2) as the reference to the balance attribute used by Account2 to determine

its state is resolved by Account1, which is within the composition.

While derived state calculations are the source of dependency in the machines Ac-

count2 and Account3, the definition extends to any inter-machine reference whereby

one machine uses the attribute of another in a computation that it undertakes. Note

that two machines having elements of their alphabets in common is not a source of de-

pendency between them. Thus Account1 is deemed independent even though actions

in its alphabet are also in the alphabets of Account2 and Account3.

A protocol model, a composition of machines that gives a complete definition for some

domain, must be independent. This means that the behaviour of a protocol model is

completely driven by actions and it makes no access to any data that it does not itself

own.

A formal definition of independence is given in Section 4.2.8.
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2.3 Determinism

Protocol machines are deterministic, in the sense of supporting repeatability of be-

haviour. Informally, this means that if you execute a protocol machine twice, giving

an identical data environment and presenting an identical sequence of actions in both

cases, then its behaviour in terms of what actions it allows and refuses at each step will

be identical.

Because of the interaction between data and behaviour, the concept of determinism

has to be defined with care, and we give a formal definition in Section 4.2.2. Determin-

ism is a somewhat slippery notion and there is a fuller discussion of it in Section 5.1.5.

2.4 Post State Constraints and Guards

A machine with a derived state can specify post-state constraints, as in Account3. Post-

state constraints are unconventional, as violation of such a constraint is only apparent

once consumption of the violating action has been attempted and the machine has

thereby ended up in the “wrong” state.

Traditional state transition modelling would not use a separate machine for the con-

straint in Account3, but instead use a guard on the transition for Withdraw in Account1.

A guard is a boolean condition attached to a transition which must evaluate to true if

the action that fires the transition is to be allowed. In this case the guard would be:

(balance´ Withdraw.amount ě ´50)

There is no difference of expressive power between guards and constraints expressed

using derived states, and in theory PM could have been formulated using either. How-

ever the use of guards was not favoured for the following reasons:

• Formalization of PM without guards is simpler, as the semantic domain of “com-

pletions” described in Chapter 4 delivers a semantics for post-state constraints

“for free”. If guards were used, extra formal machinery would be needed to de-

fine their semantics.

• PM supports topology based reasoning techniques on derived-state machines,

such as are used to specify post-state constraints and so allows topological rea-

soning to address the interaction between data and behaviour. The reasoning
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techniques are described in Chapter 6 and is the basis for formal the analysis of

collaborations using data-based rules to constrain behaviour discussed in Chap-

ter 9.

• In the context of object modelling, using derived-state machines allows re-use

in a way that guards do not. The discussion of object modelling and mixins in

Chapter 7 describes this kind of re-use.



Chapter 3

Thesis Structure and Contribution

3.1 Structure

The remainder of this thesis is structured into two parts as follows.

Part II. The first chapter of this part of the thesis develops a denotational semantics

for PM. The semantics is built up over four sections addressing:

Data. Defines a notation for describing data in PM and introduces the concept of an

observation universe, being a structure that captures all possible associations of

values to symbols that may be observed and specifies which are valid and which

are not.

Machines. Defines the semantics of a single protocol machine using the notion of com-

pletions, which are similar to traces but include the evolution of data by giving the

value to symbol observations that pertain at reach step in the trace.

Composition. Defines the semantics of machine composition in two forms: homoge-

neous, where the composed machines use the same observation universe; and

heterogeneous, where the composed machines use different observation universes.

Models. Defines what is meant by a model in PM and the conditions under which a

model is well-behaved, in the sense that it preserves data integrity rules under all

execution scenarios.

This formal basis is used to describe and discuss:

32
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• The definition of a machine’s alphabet, being the set of actions that the machine

understands.

• How PM can be used to model objects and object instantiation.

The second chapter of this part positions PM and its formal semantics against other

related approaches to behaviour modelling, and discusses some of the questions it

raises about the nature of such notions as determinism and concurrency.

The final chapter of this part gives a catalogue of transformations and reasoning

techniques that can be used to work with protocol machines and models expressed as

labelled transition systems. These techniques are used in the last part of the thesis, in

particular in the application of PM to choreography and multiparty collaborations.

Part III. Three applications of PM are described:

Object Modelling. Expands on the ideas in Part II on the use of PM to represent

objects and object models. The compositional style of PM, which lends itself

to mixin based modeling of behavioural variation, is contrasted with the more

mainstream inheritance based approach of mainstream OO languages.

Protocol Contracts. Proposes a general framework for thinking about contractual soft-

ware specifications (specifications that have a formal notion of compliance), and

shows how PM provides a suitable medium for a particular kind of contractual

specification, concerned with its protocol for interaction.

Choreography. Addresses the application of PM to the design of stateful multiparty

collaborations whose participants interact using asynchronous message exchange.

This includes a definition of choreography realizability, and gives sufficient con-

ditions for a choreography expressed in PM to be realizable.

3.2 Contribution

The mission behind the construction of this thesis was to formulate a better way of

describing, in a formal way, the interaction of data and behaviour in software. This

vision was fuelled by the author’s conviction that:
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• The current modelling mainstream, for reasons outlined in the opening chapters

of this thesis, has become overly skewed to the concepts and conventions of ob-

ject oriented programming. In particular, the split that has opened up between

object and process modelling is an product of this skew and is artificial.

• State and data should be treated as dual, so that data can be refactored as state

and vice-versa, with data providing a means of abstracting over state spaces. The

machinery that traditional process algebras employ to model the behavioural

effect of inter-process data access, such as guards or constraints, do not allow

data and state to be viewed as interchangeable and have no direct way of seeing

data as abstracting state spaces.

At a high level, the main contributions of the work in this thesis are:

• The creation of a formal synchronous compositional algebra for interactive com-

putation that provides a theoretical treatment of data integrity under composi-

tion.

• Some new insights into the semantics of process algebraic composition, particu-

larly with respect to the duality of data and state and the representation of inputs

and outputs.

• Formal demonstration that, with the synchronous composition of Protocol Mod-

elling, composition preserves choreography realizability. So if a choreography is de-

fined as a composition and it is known that the components are individually

realizable, then the whole choreography is realizable. This has the potential to

make choreography engineering more scalable to complex problems.

• A formalism for choreography description with generally greater expressive power

than those given in the literature, particularly in the context of:

– choreographies that cannot be described as a single finite state machine;

– choreographies involving race conditions, where the order of receipt of mes-

sages is not pre-defined; and/or use “fork and join” flow topologies;

– choreographies defined using rules based on data in addition to flow topol-

ogy.
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3.3 Reading Guidance

This thesis contains a large number of definitions, some of which are crucial to un-

derstanding PM and the main results that derive from it. In order to help the reader

focus on those definitions that are crucial, and to skip lightly over those that are not,

the following colour coding has been used:

A definition that is central to PM. (3.1)

A definition that, although not central to PM, is used extensively

through the thesis.
(3.2)

The thesis contains many formal definitions. The notations and standard functions

used in the these definitions are catalogued in Appendix . Each formal definition in

the main body of the text is followed by a natural language rendition.
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Chapter 4

Denotational Semantics

This part of the thesis develops a denotational semantics for PM. The aim is to provide

a medium in which it is possible to conduct formal reasoning about protocol models

and their behaviour. We start with describing the semantic domain. A semantic func-

tion that maps an executable implementation of PM to the domain described in this

chapter is given in Appendix C.

There is a race between the increasing complexity of the systems we build and our ability

to develop intellectual tools for understanding that complexity. If the race is won by our

tools, then systems will eventually become easier to use and more reliable. If not, they

will continue to become harder to use and less reliable for all but a relatively small set

of common tasks. Given how hard thinking is, if those intellectual tools are to succeed,

they will have to substitute calculation for thought.

– Leslie Lamport [62]

4.1 Data

The basic notion we use for formalizing data is that of an observation. An observation

associates a value with a symbol and will be written (symbol=value), for example

(s1=6) and (s2="frog") and the intuition is that this an observation made at a point

in time that sees a particular value assigned to a symbol.

37
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If w is an observation wsymb gives the symbol part and wval gives the value part. So if

w is the observation (s1=6) then wsymb = s1 and wval = 6. The domains of symbols (for

the left hand side of observations) and values (for the left hand side of observations)

are disjoint and this means that a value cannot reference a symbol or vice versa. So

(s1=s2) is not legal. Two observations are equal iff1 both the symbol and value parts

of the two are equal.

We will be using sets of observations to model the fields owned by an action and the

attributes owned by a machine. In both cases they are used to capture both stored and

derived values.

4.1.1 Finiteness

The following are assumed to be finite:

• The set of symbols available for use in observations,

• The set of values that any symbol may take.

This means that the number of possible sets of observations is also finite. We denote:

• The set of all possible symbols by Y .

• The set of all possible values by V .

• The set of all possible observations by E .

Note that E represents every expressible observation, so E = Y ˆ V , whether it has

defined meaning or interpretation or not.

The reasons for this assumption of finiteness is that:

• We are only concerned with modelling systems that use finite storage.

• Parts of the semantics defined in this thesis would be very much harder (perhaps

impossible) to formulate if the possibility of infinite sets of symbols or values is

allowed. This applies particularly to the definition of behavioral equivalence set

out shortly in Section 4.2.6 and the semantic function developed in Appendix C.

1iff = if and only if.
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Although we assume it to be finite, we take the number of symbols and the number of

values to be very large, so large that there is no use or application of the theory that

can come anywhere near exhausting the supply.

4.1.2 Consistency

A set of observations is consistent if it contains at most one entry for a given symbol.

Thus the set {(s1=5),(s2=3),(s1=4)} is not consistent because it contains two obser-

vations for the symbol s1.

Fn: con. We use the function con with signature:

con :: power(E)Ñ boolean

to indicate that a set W of observations is consistent, as follows:

con(W) ô

@ w1, w2 P W : w1symb = w2symb ñ w1 = w2
(4.1)

which requires that a consistent set of observations ascribes at most value to a given

symbol.

4.1.3 Actions and Action Fields

An action is specified as a set of observations, where the symbols represent the fields of

the action. So a deposit action for a bank account might be specified as:

{(actionType="Deposit"), (acct-id=012345), (amount=£100)}

The set of observations specifying an action must be consistent, so for any action A we

have con(A).

Note that an action is immutable, once formed it is fixed and cannot be changed.

As described later in Section 4.2.3, actions can be input or output from a machine, or a

combination of the two.
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4.1.4 Machine Attributes

As outlined earlier, a protocol machine owns a state and a set of attributes, and both

the state and the attributes may be either stored or derived. The attributes and values

they take at a given time are represented as a set of observations. It is only necessary

to represent the data that the machine makes public to other machines with which it is

composed, and not what is private and not visible to other machines.

The set of observations specifying the state and attributes of a machine must be

consistent at quiescence. Between a machine’s quiescent states this set is undefined.

Unlike action fields, the values of the expressions defining a machine’s state and

attributes are not immutable and evolve from one quiescent state to the next as the

result of the model’s response to actions. Thus a given symbol can, in general, receive

a new value in each new quiescent state of the machine.

4.1.5 Observation Universe

An observation universe, hereafter simply called a universe, is used to define a structure

on symbols and values over which machines are constructed and captures:

• All possible observations that may be made, and

• The subset of observations that are considered “valid”.

The objective of science is not to construct a list of actual observations of a particular

system, but rather to describe all possible observations of all possible systems of a certain

class.

. . .

In applying this insight to computer programming, we shall confine attention to pro-

grams in a high level language, which operate on a fixed collection of distinct global

variables.

– C.A.R. Hoare [35]

An observation universe, U , is defined as a tuple:

U = xU , A, D, V, fixesy (4.2)

where:
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• U Ď Y is a set of symbols used in the universe.

• A Ď U is the subset of the symbols of the universe that are used to define actions.

The motivation for distinguishing a reserved set of symbols for defining actions

is to retain separation between the definition of actions, which correspond to the

labels on the transitions of a labelled state transition system, and the definition

of machine storage, which correspond to state in a labelled state transition system.

• D Ď U is the subset of the symbols of the universe that are derived. The idea here

is that some symbols, by virtue of their semantics, have values that are derived

from others. For instance a boolean-valued symbol that specifies whether or not

the current year is a leap-year can be derived from a symbol that specifies the

current year.

• V P power(power(restr(E ,U ))) is a set of sets of observations. The elements of

V are sets of observations that are restricted to the symbols in U and which are

regarded as valid, particularly in the sense that derived values are correctly cal-

culated.2 A set of observations W is valid according to V iff there is an element

V P V such that W Ď V and we denote this by W Ť V.

• fixes is a mapping that defines the sets of observations that fix, or determine, the

value of a derived symbol in D. The fixes function has signature:

fixes :: restr(E ,D)Ñ power(power(restr(E ,UzD)))

which defines the fixes for a derived observation (one that uses a symbol in D) to

be a set of sets of non-derived observations (that use symbols in U but not in D).

An analogy for fixes is a spreadsheet, where some cells contain formulas and some

contain values. The former are the derived cells. Consider a particular derived cell

A1 with the formula A1 = B1 ˚ C1, where B1 and C1 are termed basis symbols for A1.3

Now consider a particular value for the derived cell A1, say 0. A1 will have this value

if either B1 = 0 or C1 = 0, and we can therefore say that these are both “fixes” for the

observation (A1 = 0). We express these fixes as a set of sets of observations:

fixes((A1 = 0)) = tt(B1 = 0)u, t(C1 = 0)uu

2Formal definition of functions such as restr() can be found in Appendix A.
3This uses Excel style notation whereby A1 is the cell in column A and row 1. A1 can be viewed as its

symbol.
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Assuming that B1 and C1 must be positive integers, the set of fixes for the observation

(A1 = 1) has just a single member:

fixes((A1 = 1)) = tt(B1 = 1), (C1 = 1)uu

The full set of fixes for all possible observations of A1 captures the formula A1 =

B1 ˚ C1 by enumerating the results for all possible values of B1 and C1.

Having derived symbols in a universe means that we can define a notion of compu-

tational closure. A set of observations W is computationally closed, denoted closed (W),

as follows:

closed(W) ô @ v P restr(W,D) : D V P fixes(v) with V Ă W (4.3a)

which requires that where W contains a derived value, it also contains a fix for that

value. For convenience we also define closed on a set of sets of observations:

closed(W) ô @W P W : closed(W) (4.3b)

4.1.6 Universe Normal Form

The way fixes are expressed is not unique. For instance suppose that (gender="male")

and (gender="female") are the only possibilities for gender present in the universe.

Then the two sets of observations:

• {(breed="dingo"),(gender="male")}

• {(breed="dingo"),(gender="female")}

represent the same set of possibilities as just:

• {(breed="dingo")}

Suppose that a derived observation {(dog="true")} pertains iff {(breed="dingo")};

and suppose that we have two representations of the fixes for {(dog="true")} one

including the gender and using two entries, and the other omitting the gender and

using a single entry. Clearly these representations are semantically equivalent. To

eliminate such differences in expression we will use a normal form for expressing fixes,

as follows.
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Consider an element V P fixes(v) where v P restr(E ,D). Given any symbol y R

symb(V) we can replace the subset tVu of fixes(v) by the expanded set:

tV ∪ twu | w P restr(E , tyu)u (4.4)

using the function restr to select from E all the observations possible for symbol y.

This replacement does not change the meaning of fixes(v), as all possible values of y

are covered giving the same fix for v. This replacement is termed fix expansion. The

opposite procedure to fix expansion is termed fix reduction. This entails, in the example

above, replacing the expanded set defined by (4.4) with the original set tVu.

We say that a fix fixes(v) where v P restr(E ,D) is in normal form iff:

No reduction is possible in fixes(v) (4.5)

and normal form is unique by Theorem B.1.

The notation fixes(v)norm is used to signify conformance to normal form; so if fixes(v) =

fixes(v)norm then (4.5) is true in fixes(v). Normal form always exists, as if a fix is repre-

sented using the full set of symbols in U it is either in normal form or can be reduced;

and if it can be reduced, the same argument applies to the result.

If all fixes in a universe are in normal form then the universe said to be in normal

form. From now on, unless explicitly stated, we will assume that this is the case.

4.1.7 Definition of Total Universe

We can also construct the total universe, U, for the set of symbols U as:

U = tW |W P power(E) ^ symb(W) = U ^ con(W)u (4.6)

so that U contains every possible set of observations that gives a unique value to every

symbol in U .

The valid universe V and the total universe U may be contrasted as follows:

• Given a symbol in U , U must represent every value that the symbol can take in E .

There is no requirement that V does so. Thus E and U may allow both positive
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and negative values of balance of a bank account, but it is possible that V only

represents non-negative values. More generally, if all symbols in U have a type

(such as boolean, integer, string, etc.), then in V all observations conform to type.

• The values of derived symbols in V must obey well-formedness conditions de-

scribed in the next section, which is not required in U. In particular, in U there

is not discipline that derived values are determined by their fixes as is required

in V by (4.7d).

In Section 4.4, with the concept of well-behaved machines, we will see how a protocol

model acts as the guarantor of the validity, as represented by V, for the data that the

model owns.

4.1.8 Universe Well-Formedness

An observation universe U = xU , A, D, V, fixesy must obey certain well-formedness

conditions that are set out below.

1. The valid universe is contained by the total universe.

V Ď U (4.7a)

This means that the every element of V gives a unique value to every symbol in U .

2. Fixes are exhaustive.

@ U P U and d P D :

D v P restr(E , tdu) and V P fixes(v) with V Ď U
(4.7b)

For a given derived symbol, every element of the total universe fixes a value for that

symbol. The fix does not necessarily give the value that is present, so it could be that

v R U.

3. Fixes are Unique.

@ v1, v2 P restr(E , tdu) and V1, V2 P power(E) with

d P D and V1 P fixes(v1) and V2 P fixes(v2) : con(V1 ∪ V2)ñ v1 = v2
(4.7c)

This says that no U P U contains conflicting fixes, being two fixes that give different

values to the same derived symbol.
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4. The valid universe derives correctly.

closed(V) (4.7d)

Every element of the valid universe correctly calculates (contains a fix for) every de-

rived symbol.

5. Derivation is based on persistent stored data.

@ v P restr(E ,D) : symb(fixes(v)) ∩ (A∪D) = ∅ (4.7e)

This requires that:

• Action symbols A are not used as basis symbols for derivation. This is because it

is assumed that actions are “ephemeral” and so not available for the computation

of persistent attributes.

• Derived symbols D are not used as basis symbols for derivation, as fixes are

expressed in terms of the recursive closure of the basis symbol relationship.4

6. The valid universe is complete.

@W1, W2 Ť V with closed (W1) and closed (W2) and con(W1 ∪ W2) :

(W1 ∪ W2) Ť V
(4.7f)

Says that the universe is complete, in the sense that if two valid and closed sets of ob-

servations are consistent, then their union is also valid.

4.2 Protocol Machines

This chapter provides a formal denotational semantics for the behaviour of a protocol

machine, and defines behavioural equivalence.

4In the same way as it is possible to trace from a derived cell in a spreadsheet via the derived cells

among its basis cells, recursively, to reach a set of value cells that ultimately determine the derivation.
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4.2.1 Formalization of Behaviour

The formalization of behaviour uses a concept of completions. A completion is similar

to a trace: a sequence of actions corresponding to a possible execution instance of a

machine. But, unlike a trace, a completion describes an instance of the execution of

a machine coupled with the evolution of its environment. The need to consider the

evolution of the machine’s environment as well as the machine itself is a consequence

of the fact that, in general, a protocol machine is not “closed”. A machine can access

the data of other, composed machines, and use the data so accessed to decide how to

behave. Only by describing the evolution of the machine and its environment together

can behaviour be fully captured.

4.2.1.1 Steps

A completion is described as a sequence of steps. A step describes the reaction of a

machine to a single action presented to it. A step for a machine P is specified in terms

of four parts:

• A set of observations that is the action presented to P in the step.

• A set of observations called perceives, which gives the values of the publicly avail-

able attributes of all the machines composed with P and used by P to determine

its behaviour. The values in the perceives set of a step are as perceived by P in the

quiescent state of the model at the end of the step. This set only includes obser-

vations that P needs in order to determine and define its state and behaviour.

• The decision that P takes on whether to allow or refuse the action of the step. The

decision of a step can also be crash indicating that the machine has undergone an

irrecoverable failure.

• A set of observations called offers giving the values of the public attributes of P

in the quiescent state of the machine at the end of the step. These are values that

other machines, composed with P, may access and use to determine their own

behaviour.

As mentioned above, a completion describes not just the evolution of a machine, but

the evolution of the machine’s environment. This is the role of the perceives part of

the step, as this describes the data that the machine sees in its data environment. The
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evolution of this data is conceptually independent of the evolution of the machine

itself.

In the formalization we need to be able to address the parts of a step, and we do this

as follows. Suppose that s is a step, then we define:

sα, a set observations defining the action of s. (4.8a)

sπ, a set of observations defining the perceives of s, being values

perceived by P in its environment at the end of s.
(4.8b)

sδ, one of allow, refuse or crash, being the decision of s. (4.8c)

sω, a set of observations defining the offers of s, being values of

public attributes of P made available to other machines.
(4.8d)

As a mnemonic, the Greek letter used for each part of a step corresponds to its English

name: α for action and so on.

Two steps, s1 and s2, are considered equal iff all their parts are equal: s1α = s2α and

s1π = s2π and s1δ = s2δ and s1ω = s2ω.

We also define the function step that constructs a step from parts:

s = step(sα, sπ, sδ, sω)

As notational conveniences, we also use:

• sτ to denote sα ∪ sπ ∪ sω, this being the total data image of a step.

• sε to denote sα ∪ sπ, this being the external data image of the step, that part of the

data image that is external to (not owned by) the machine.

In addition, we use the step part addressing mechanism to extract the parts from the

last step of a sequence. Thus, if t is a finite sequence of one or more steps, t7 denotes

last(t)7 where 7 P tα, π, δ, ω, τ, εu.

Because the set of all possible observations is finite, so is the set of all possible steps.

This set is denoted by S .
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4.2.1.2 Completions, Prefixes and Traces

A completion of P is a sequence of steps that provides a partial description of P’s be-

haviour by describing a possible execution scenario. A completion has either:

• An infinite number of steps, all with a decision of allow; or

• A finite number, one or more, of steps each with a decision of allow followed by

a single step with a decision of refuse or crash.

Note that a stem of a completion will never contain a refusal or crash step, as refusal

and crash can only occur as the last step of a completion.

There is an important conceptual distinction between refuse and crash:

• Reaching a refuse does not mean that execution of a machine is finished.5 If a

machine refuses an action A it remains in the state that pertained prior to pre-

sentation of A and is free to receive any action, reacting exactly as though the A

had never happened. Thus, after the bank account in Figure 1.2 on page 20 has

refused a Close because the account is overdrawn (and so Account2 refuses the

action) it would be possible to make a Deposit to restore the balance to a credit

value and then try the Close again, this time successfully.

• Reaching a crash marks the end of execution of the machine. Trying again after a

crash is meaningless as the machine is in an incoherent state and has no specified

behaviour.

As we shall see shortly, the behaviour of a protocol machine is defined as a set of com-

pletions. If B Ď S8 is a set of completions then we will use the following terminology:

• prefix for an element of prefixes(B) (the prefixes of completions in B).

• stem for an element of stems(B) (the proper prefixes of completions in B).

• trace for an element of actions(stems(B)) (the set of sequences formed from the

action parts of proper prefixes of the completions in B).

• traces(B) as a synonym for actions(stems(B)).

The reason for defining a trace in terms of stems is so that a trace is a sequence of

allowed actions, giving correspondence to the traditional definition of this term.
5In this respect, the term “completion” is perhaps misleading.
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4.2.2 Formalization of Protocol Machine

This section formalizes the definition of a protocol machine. This is done by construct-

ing a formal definition of protocol machine behaviour in terms of its completions.

4.2.2.1 Definition of Protocol Machine

A machine P is defined as a tuple:

P = xU , ΩP,BP y (4.9)

where:

• U is a universe, as defined in Section 4.1.5.

• ΩP Ď UzA is a set of symbols used to represent the data offered by P.

• BP Ď S8 is a set of completions that defines the behaviour of P.

We need to include a universe U in the definition because P can access (read) the

local storage of other composed machines, as modelled by the perceives part of each

step in a completion. To create a complete definition of machine behaviour we have

to ensure that we cover all possible sets of values that the machine might perceive and

use the universe to do this.

We allow completions in BP to be potentially infinite. This is to allow PM to model

machines with “loops” giving no inherent limit to the length of their traces. This is

true, for instance, of the machine Account1 in Figure 1.2 on page 20 as there is no finite

limit to the number of deposits and withdraws that could happen.

4.2.2.2 Protocol Machine Well-Formedness

For P = xU , ΩP,BP y where U = xU , A, D, V, fixes y to qualify as a protocol machine

the following five properties must hold.

1. Steps are consistent with the universe.

@ s P asSet(BP) :

sτ Ť U
(4.10a)
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The data image of every step must be consistent with the total universe U, as defined

by (4.6). This means that con(sτ), so the step gives at most one value to a given symbol.

2. Steps use symbol sets correctly.

@ s P asSet(BP) :

symb(sα) Ď A ^ symb(sω) = ΩP ^ symb(sπ) Ď U z(A∪ ΩP)
(4.10b)

This requires that the action, perceive and offers parts each use the appropriate set of

symbols; and that the offered symbol set ΩP is completely populated by sω. The action

part is disjoint from the offers and perceives parts as it uses action symbols, A. The offers

and perceives parts are required to be disjoint because if a machine offers a value for a

particular symbol, it already “knows” the value and does not need to perceive it from

its environment.

3. Steps are exhaustive.

@ U P U and t P stems(BP) :

D s P nextP(t) with sτ Ď U
(4.10c)

where the nextP() function gives the set of steps in P that can follow a given prefix.

Because P has, in general, no control over the data environment in which it exists,

allowance must be made for every possibility. Informally (4.10c) says that for every

stem t it contains, BP contains sequences that define a next step for P under all possible

circumstances, where “all possible circumstances” is represented by the elements of the

total universe, U. This definition is made in terms of the total universe U (rather than

the valid universe V) to ensure that the machine has defined behaviour even in the

presence of invalid data. Note that requiring that the steps of a machine be exhaustive

does not require that any action is allowed in any state of a model, as the decision part

of a step can be refuse or crash. Rather, it requires that the reaction of a machine to any

combination of action and perceived data is always defined.

4. Steps are unique.

@ t P stems(BP) and s1, s2 P nextP(t) :

con(s1τ ∪ s2τ) ñ s1 = s2
(4.10d)
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Informally (4.10d) says that if the machine has reached a particular point represented

by the stem t and takes a further step s, then for a given element of the universe U there

is only one possible next step. Furthermore, to generate distinct steps the data images

of two steps must be inconsistent. This means that a machine cannot select different

behaviour for a given element of the universe, depending on how much data it cares

to take into account.

5. Machines are deterministic.

@ t P stems(BP) and s1, s2 P nextP(t) :

con(s1ε ∪ s2ε) ^ s1δ = s2δ = allow ñ s1 = s2
(4.10e)

Informally (4.10e) says that if a machine has reached a particular point represented by

the stem t and takes a further allowed step, then the step is uniquely determined by its

external data image, comprising the action and perceives. In other words the machine

cannot autonomously choose different updates to its offered data, which represents its

state, when presented with given external data. In traditional state machine terms this

corresponds to requiring at most a single outgoing transition from a given state with

a given label, as two transitions with the same label would represent an autonomous

choice of next state. Note that there may be multiple crash steps for a given external

image so the result of a crash, in terms of update to offered data, is in general non-

deterministic. 6

4.2.3 Input and Output

The introduction to the concept of action in Protocol Modelling (Section 1.3.1) states:

For the purposes of this introduction, actions can be thought of as messages originating outside

the protocol model (from the domain) and presented to the model.

This was a simplification as we allow actions, in general, to model both input and

6PM semantics gives possibilities, but does not, in general, define how an execution choice is made

between possibilities. Under normal circumstances a machine will only crash if no allow step is available

to it, however it is possible to imagine a scenario where this is not the case.
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output. Given a step s in a machine, the action part sα can be divided into:

Input: restr(sα,AzD)

Output: restr(sα,D)
(4.11)

where D is the set of derived symbols in the universe, as defined in Section 4.1.5. In

other words, the derived fields of an action are output and the non-derived fields are input.

A consequence of this definition is that the distinction between input and output

is made by reference to the universe, as this defines which symbols are derived and

which are not, so the Ω and B parts of a machine definition do not distinguish input

and output. This property is exploited in the application of PM to choreography in

Chapter 9 where a choreography is projected to different universes, whereby a given

action is sending (output) a particular message in one universe and receiving (input)

the message in another.

4.2.4 Initiation

The life of a machine starts with an initiation step. In addition to the rules defined in

(4.10), the set of initiation steps nextP(ăą) for a machine P must obey:

@ si P nextP(ăą) : siα = ∅ (4.12)

which requires that initiation can be use any action.

In a graphical representation such as Account1 in Figure 1.2 on page 20 the initiation

step takes a machine to its start state, shown as a solid black •. If a machine has a de-

rived state, such as Account2 or Account3 in Figure 1.2, then after initiation the machine

is in the state returned by the state derivation function.

Unless otherwise stated we shall use the term step in a generic way, not distinguish-

ing between initiation steps and non-initiation steps.

4.2.5 Discussion of Completions

This section provides some informal illustrations of how completions are used to rep-

resent behaviour.
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4.2.5.1 Interpretation of Perceives and Offers

Consider the example protocol model shown in Figure 1.2 on page 20. Account1 makes

the value of balance available to other composed machines, so balance is a symbol of

a observation in the offers set of every step Account1 makes. Account1 is independent,

in the sense defined in Section 4.2.8, because it does not need to use the attributes

of any other machine, so its perceives set is always empty. By contrast, Account2 and

Account3 have empty offers sets and need balance from Account1 so always have balance

as a symbol of a observation in their perceives set.

The definition of the perceives part of a step is made in terms of the values perceived

at the end of the step, as opposed to the start of the step as perhaps might be expected.

The motivation for this can be seen by considering the machine Account3 in Figure 1.2

on page 20. This machine uses a post-state constraint whereby the decision made on an

action is based on the value of balance perceived as a result of the action: in particular

whether the balance is within the allowed limits or not. The implication of supporting

post-state constraints is that the decision of a step can only be determined with reference

to perceived values at the end of the step.

There is an obvious symmetry between the perceives and offers, whereby the offers of

one machine provides values for the perceives of another, composed, machine. This will

be exploited in the formalization of composition, in Section 4.3.1.

4.2.5.2 Illustration of Completions

Figure 4.1 shows two derived-state machines P and Q whose state is based on the value

of an attribute x that belongs to another, composed, machine not shown in the figure.

P allows the action a provided that x is true using a pre-constraint whereas Q allows

the action a provided that x is true using a post-constraint. The lower part of the figure

depicts scenarios for P and Q, with each line in each box representing a single step.

All the scenarios shown in Figure 4.1 are completions, starting with an initiation and

having a sequence of allow steps with a final refuse. The scenarios 1 to 3 on the left are

for P and 4 to 6 on the right are for Q. In each scenario, the reason for the final refusal

is circled in red. The following points provide commentary on the six scenarios:
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2  (act=a) (x=false) Allow    (y=1)
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����	����� ����	�����

�

����

����

����

	
���

���������	�
���

if (x) return “x is true”;
else return “x is false”;

y := y + 1;�

���������	
���
�� ���
����� ��
����
����������
1 φ (x=true)  Allow    (y=0)
2  (act=a) (x=false) Refuse   (y=1)

���������	
���
�� ���
����� ��
����
����������
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1 φ (x=true)  Allow    (y=0)
2  (act=a) (x=true)  Allow    (y=1)
3  (act=a) (x=false) Refuse   (y=2)

Figure 4.1: Illustration of Completions

• In all six scenarios, the model is initiated with x = true and y = 0. The initiation

is modelled as Step 1.

• In Scenario 1, after the first a has been allowed (at Step 2) the value of x is false.

We do not know why this happens, as x is not owned by P. This means that the

second a (at Step 3) is refused.

• In Scenario 2, Step 2 represents the wrong value of y, which should be 1 if the a

were accepted. Therefore this step is refused. This illustrates the Exhaustiveness

Rule (4.10c) as this rule requires that all possible values of the universe, includ-
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ing ones that represent incorrect updates of the machine’s own attributes, are

considered.

• Scenario 3 is the same as Scenario 1 except that the final value of x is true rather

than false. This makes no difference to the fact that a is refused in Step 3, as P uses

a pre-constraint so its decision is based on the value of x before presentation of

the action.

• In Scenario 4, the value of x is false after the first a (at Step 2) and because Q uses

a post-constraint this means that the first a is refused.

• In Scenario 5, as in Scenario 2, the value of y in Step 2 is wrong so the step is

refused.

• Scenario 6 is the similar Scenario 4 but x does not become false until after Step 3,

so Step 2 is allowed.

4.2.6 Equality

Clearly if P and Q are defined over the same universe then BP = BQ and ΩP = ΩQ

are sufficient conditions for two protocol machines to be equal. However it is not a

necessary condition as P and Q, although equivalent, may be represented differently.

Using the example from Section 4.1.6, if P has two steps whose actions are specified

giving both possible values of gender but are otherwise identical; and Q had a corre-

sponding single step that omits gender, the behaviour of P and Q would be the same.

To eliminate such differences in expression we will use a normal form for expressing

behaviour. Using a similar approach to that used for fixes in Section 4.1.6, we first de-

fine a procedure called step expansion that changes the way a machine is represented

without changing its behaviour.

4.2.6.1 Step Expansion and Step Reduction

Consider a step s of a machine P. The implication of the uniqueness rule (4.10d) is

that, for given values of all the symbols used in s, the behaviour of P does not depend

on any symbol not in symb(s). More formally, suppose that t P prefixes(BP) and that

y P Uzsymb(s) where s = last(t). We can replace the set completionsP(t) in BP by the



4.2 Protocol Machines 56

expanded set:

ttrunc(t)"s1"t2 | tvu P restr(U, tyu) ^ t"t2 P BPu (4.13)

where:

s1 = step(sα ∪ v, sπ, sδ, sω)

s1 = step(sα, sπ ∪ v, sδ, sω)

if (y P A)

if (y P UzA)

without changing the behaviour of P. This is because all the steps that replace s are

identical to s except for the addition of the new symbol, and all possible values of the

symbol in U are covered. This replacement procedure is termed step expansion.

Using repeated application of step expansion it would be possible to render a ma-

chine in a format where every step is defined in terms of the full symbol set of universe,

so that @s P asSet(BP) : symb(s) = U . If we required that a machine were always ex-

pressed in this way then we could use BP = BQ and ΩP = ΩQ as the test that P = Q.

However there are occasions on which we will want to be able to extend the universe

in which a protocol machine is defined, by adding symbols to it, without requiring

that the machine be redefined. This happens when we compose two machines that are

defined using different universes, as described in Section 4.3, and each machine now

exists in a larger universe than that in which it was originally defined. For this reason

we define a behavioural equivalence that does not rely on using every symbol of U for

every step.

The opposite procedure to step expansion is termed step reduction. This entails, in

the example above, replacing the expanded set defined by (4.13) with the original set

completionsP(t).

4.2.6.2 Behavioural Equivalence

Given two machines P and Q defined over the same universe U we define an equiva-

lence – as follows:

P – Q ô

ΩP = ΩQ ^

@ U˚ P U˚ : decisions(matchesP(U˚)) = decisions(matchesQ(U˚))

(4.14)
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The definition (4.14) says that two machines are equivalent if they offer the same set

of symbols and, for a given sequence U˚ of universe elements, the sequence of steps

in each machine that matches U˚ agree on the decision at each step. Note that – is

an equivalence relation. The equivalence classes of this relation are the behaviourally

distinct machines in U.

4.2.6.3 Behaviour Normal Form

In order to be able to test equivalence of behaviour by equality of representation, we

define a standard representation for a machine called normal form . This is defined as:

A representation of P in which no step reduction is possible (4.15)

The notation BP
norm is used to signify conformance to normal form; so if BP

norm = BP

then (4.15) is true in BP. Normal form always exists, as if a machine is represented

using the full universe it is either in normal form or can be reduced; and if it can be

reduced, the same argument applies to the result.

Normal form is unique by Theorem B.2 and we may therefore use this syntactic form

to define semantic (behavioural) properties.

4.2.7 State

It will be useful to have a notion of the state of a protocol machine. In some ways this

is problematical, as the behaviour of a dependent machine in reaction to an action can

be determined by data that it does not own. Should this data be regarded as part of its

“state” or not? It is easiest to do so, defining state as follows.

4.2.7.1 Definition of State

Given a machine P we define a relation ΣP on the prefixes of P as follows:

t1,t2 P prefixes(BP) then t1 ΣP t2 ô

for any sequence of steps t : t1"t P prefixes(BP)ô t2"t P prefixes(BP)
(4.16)

which defines two prefixes as related if a continuation of one is also a continuation of

the other. It is clear that ΣP is an equivalence relation on prefixes(BP). The states of P

are the equivalence classes of ΣP.
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Fn: stateP. We use this to define the function stateP :: prefixes(BP) Ñ ΣP where the

right hand side denotes the set of equivalence classes (the quotient set) of equivalence

relation ΣP over the set prefixes(BP).7

4.2.7.2 Finite-State Protocol Machines

If the set ΣP is finite then P is a finite-state protocol machine. In this case we can assume

without loss of generality that there is a symbol stateP P ΩP called the state attribute

with the property that:

@ t1, t2 P pre f ixes(BP) :

restr(t1ω, tstatePu) = restr(t2ω, tstatePu) ô stateP(t1) = stateP(t2)
(4.17)

so that the value of stateP in a step uniquely determines the state of P. As the number

of states is assumes finite, the values of stateP could be constructed, for instance, by

numbering the elements of ΣP.

The state attribute of P can be seen as an enumerated attribute with values corre-

sponding to the state icons of a graphical representation of the machine. Note that

the a state attribute can be either stored or derived, being classed as derived iff it is

possible to construct fixes for all values of stateP that conform to (4.7).

4.2.8 Independence and Autonomy

Using normal form we can formalize the semantic concepts of independence (intro-

duced in Section 2.2) and autonomy. A machine P is independent iff:

perceives(asSet(BP
norm)) = t∅u (4.18)

which means that it is not reliant on any other machine to supply the values of per-

ceived data. A machine that is not independent is dependent.

A machine P is autonomous iff:

actions(asSet(BP
norm)) = t∅u (4.19)

An autonomous machine executes steps, without regard to the actions in the universe,

until it gets to a refusal or a crash, after which it cannot proceed further.
7We have overloaded ΣP to mean both the equivalence relation and its quotient set. From here on it

refers to the latter.
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Suppose that a protocol machine P is both independent and autonomous and, more-

over, that there is a function asmP:

asmP :: restr(U, ΩP)Ñ restr(U, ΩP)

whereby the offers in step n is computed from the offers in step n´ 1, thus:

@ t P prefixes(BP) with t ‰ ăą : tω = asmP(trunc(t)ω)

then P is an Abstract State Machine. This follows directly from the definition of Abstract

State Machine given by Gurevich [32].

4.3 Composition

This section provides a formalization of machine composition. PM has two forms of

composition:

• Homogeneous composition, where the machines being composed are defined over

the same universe.

• Heterogeneous composition, where the machines being composed are defined over

different universes.

We use the notation ∥, borrowed from Hoare’s CSP, for both homogeneous and het-

erogeneous composition and justify this use in the final section of this chapter by show-

ing that the PM forms of composition have essentially similar semantics.

4.3.1 Formalization of Homogeneous Composition

We suppose that we have two machines, P = xU , ΩP,BPy and Q = xU , ΩQ,BQy de-

fined over the same universe U . We construct the homogeneous composition:

P ∥ Q = xU , ΩP ∪ ΩQ,BP∥Qy (4.20)

where BP∥Q is constructed as described in following sections.
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4.3.1.1 Step and Completion Compatibility

Suppose that sp and sq are steps from completions in BP and BQ respectively. These

two steps are deemed compatible, written sp „ sq iff the data images of the two steps

are consistent:

sp „ sq ô con(spτ ∪ sqτ) (4.21)

Compatibility of steps requires that, where the same symbol appears in the data image

of both steps, both steps give it the same value. In particular, if one machine offers a

value for a symbol and the other machine perceives a value for the same symbol, these

values are the same.

Based on this we now define compatibility of completions. Suppose that cp P BP and

cq P BQ then cp and cq are deemed compatible, written cp „ cq, iff:

@ tp P prefixes(cp), tq P prefixes(cq) and i with

1 ď i ď min(length(tp), length(tq)) : tpi „ tqi

(4.22)

Informally, cp and cq being compatible means that they can co-exist as evolutions of

the two machines without causing data inconsistency.

4.3.1.2 Step Composition

We define a step composition operator, s1 ∥ s2, on two steps s1 and s2 with s1 „ s2 as

follows:

(s1 ∥ s2)α = s1α ∪ s2α (4.23a)

(s1 ∥ s2)π = (s1π ∪ s2π)z(s1ω ∪ s2ω) (4.23b)

(s1 ∥ s2)δ = allow

crash

refuse

if (s1δ = allow ^ s2δ = allow)

if (s1δ = crash _ s2δ = crash)

otherwise

(4.23c)

(s1 ∥ s2)ω = s1ω ∪ s2ω (4.23d)
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This combines two steps to produce a “composite step”:

s1 ∥ s2 = step ((s1 ∥ s2)α, (s1 ∥ s2)π, (s1 ∥ s2)δ, (s1 ∥ s2)ω)

Note the following:

• (4.23b) removes (by set subtraction) the combined offers of the two composed

steps. This models the fact that the values offered by one machine may resolve

the values needed (perceived) by the other machine. As s1 „ s2 (4.21) requires

that it is not possible for one machine to perceive a different value for a given

symbol from that offered by the other.

• In the absence of a crash, (4.23c) follows the CSP ∥ rule, namely that if either step

refuses the composite refuses.

It is clear from these definitions that (s1 ∥ s2) = (s2 ∥ s1).

4.3.1.3 Machine Composition

Based on step composition we define composition of completions. Suppose that cp P BP

and cq P BQ with cp „ cq.

cp ∥ cq = the sequence c such that

ti = cpi ∥ cqi

ti is undefined.

@ t P prefixes(c) :

if (cpi, cqi both defined)

otherwise

(4.24)

We need to restrict the range of i to values for which cpi and cqi are defined as either

or both of cp and cq may be finite and so they may be of different lengths. The result

of this construction will meet the definitions given in Section 4.2.1.2 by yielding either

an infinite sequence of steps all with a decision of allow, or a finite sequence of allows

followed by a final refuse or crash.

Finally we define the composition construction on behaviours:

BP∥Q = t cp ∥ cq | cp P BP ^ cq P BQ ^ cp „ cq u (4.25)

which says that the behaviour of P ∥ Q is the set of composed completions for each

compatible pair cq, cp. Each completion is constructed per (4.24).
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Note that composition is defined even between machines that make incompatible

updates to shared attributes. Suppose, for instance, that P is the machine Account1

in Figure 1.2 on page 20 and that Q is a similar machine except that its update for a

Deposit is:

balance := balance + Deposit.amount + 1;

In P ∥ Q a Deposit that would be allowed in P would be refused in Q and vice-versa,

so all deposits will be refused in P ∥ Q.

4.3.2 Machine Dependency

Reasoning about machine composition will be concerned with the nature of the depen-

dencies between machines, as introduced in Section 2.2. This section gives a formal

definition of dependency and explores the treatment of dependency in composition.

A machine Q depends on another machine P, written P Ñ Q, iff:

D sp ∥ sq P asSet(BP∥Q) with sqπ ∩ spω ‰ ∅ (4.26)

If P Ñ Q then determination of at least one step of Q in P ∥ Q cannot be made in-

dependently of the determination of the corresponding step in P, as it needs to use

the offered data of P to determine how to behave. Note that if Q were an independent

machine, per (4.18), then sqπ = ∅ in all steps so dependency is impossible.

The result of drawing all dependencies between the machines in a set is a directed

graph with zero, one or two directed edges between each pair of nodes, the direction

indicating the dependency. This is called the dependency graph of the set. It is possible

for the dependencies to form a cycle. Suppose we have a set of machines defined over

a universe U. The set has circular dependencies if the dependency graph is cyclic. In

general, such a closed path represents a situation where composition does not yield

a deterministic machine (one that obeys (4.10e)) as illustrated by the following case.

Each of protocol machines P and Q has two different steps defined for an action "go"

with mutual dependency between P and Q:

Steps for P:

step({(action="go")},{(Qstate="foo")},allow,{(Pstate="foo")})

step({(action="go")},{(Qstate="bar")},allow,{(Pstate="bar")})
(4.27a)
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Steps for Q:

step({(action="go")},{(Pstate="foo")},allow,{(Qstate="foo")})

step({(action="go")},{(Pstate="bar")},allow,{(Qstate="bar")})
(4.27b)

Steps for P ∥ Q (composition of (4.27a) and (4.27b)):

step({(action="go")}, ∅, allow, {(Pstate="foo"),(Qstate="foo")})

step({(action="go")}, ∅, allow, {(Pstate="bar"),(Qstate="bar")})
(4.27c)

Here the composition (4.27c) gives two different possible allowed steps for the combi-

nation of action "go" and perceives ∅, in violation of (4.10e). So P ∥ Q is not a protocol

machine.

Now consider a set of machines whose dependencies are acyclic, so permitting rep-

resentation as an acyclic graph. If two machines in the set are composed, the cor-

responding nodes are combined. As proved in Theorem B.3 it is always possible to

choose a composition that preserves acyclicity, so that the graph after composition is

also acyclic. An example is shown in Figure 4.2. This strategy can be repeated so

that the whole set is reduced to a single machine and it is never necessary to compose

machines with mutual dependency.
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Figure 4.2: Acyclic Dependency Graph

We therefore require that:

A set of machines in composition has an acyclic dependency graph. (4.28)

Requiring that the ordering of composition ensures the preservation of acyclicity is not

a restriction because, as we set out below, composition is commutative and associative

and so the end result of composition is independent of the (pair-wise) order in which

is carried out.
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4.3.3 Properties of Homogeneous Composition

Homogeneous composition has the following properties:

Commutativity and Associativity. Theorem B.5 demonstrates that (4.25) is both com-

mutative and associative. This means that the result of composing all members of a

given set of machines is independent of the order used to do pairwise composition.

Closure of Composition. When two protocol machines are composed the result is

also protocol machine, obeying the well-formedness conditions (4.10). This is proved

as Theorem B.6. In particular, composition preserves deterministic behaviour, as it

does in classical CSP.

Finally, the concurrent operator does not introduce non-determinism.

– C.A.R. Hoare [39]

Idempotence. From the definitions of step composition (4.23) it is clear that compo-

sition is idempotent, so if P is a protocol machine then P ∥ P = P.

Decomposition Uniqueness. Decomposition is unique, meaning that given a step in

a composition of two machines P ∥ Q there are unique steps of BP and BQ from which

it is formed. In other words:

t P stems(BP∥Q) ^ s1, s2 P nextP∥Q(t) ^

(s1 = s2)^ (s1 = sp1 ∥ sq1)^ (s2 = sp2 ∥ sq2) ñ

(sp1 = sp2)^ (sq1 = sq2)

and this is established in Theorem B.7.

Uniqueness of decomposition means that given t P BP∥Q the components tp P BP

and tq P BQ such that t = tp ∥ tq are uniquely defined by t, so we can use the following

notation:

tæP= tp

BP∥QæP= ttæP | t P BP∥Qu

From this it follows that:

prefixes(BP∥QæP) Ď prefixes(BP) (4.29)
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Normal Form in Composition. Composition does not, in general, preserve normal

form (as defined in Section 4.2.6.3) as can be seen from the following example. Suppose

that P and Q are independent machines (in the sense defined in Section 4.2.8) defined

over the same universe and with ΩP = ΩQ = ∅. Suppose that A = ta, b, cu and that

these symbols are booleans. If:

• P allows any step with (a^ b)_ (␣ a^ c) and refuses otherwise

• Q allows any step with (a^ c)_ (␣ a^ b) and refuses otherwise

then P ∥ Q will allow iff (b^ c), and the value of a is immaterial. Clearly a could be

removed by step reduction in P ∥ Q to recover normal form.

4.3.4 Formalization of Heterogeneous Composition

A consequence of the definition of input/output in Section 4.2.3 is that output action

data produced by one machine cannot be consumed as input by another machine with

which it is in homogeneous composition, as which symbols are input and which are

output is fixed by the universe. This means that there is no analogue in homogeneous

composition of the kind of composition seen in CSP and CCS using “reactions” on

input/output, using notations like P?a (to read from process P into variable a), and

Q!a (to send a to process Q). For this we need to consider composition across universes,

called heterogeneous composition.

Suppose that we have two universes:

• U = xU , A, D, V, fixesy

• U1 = xU 1, A1, D1, V1, fixes1y

with compatibility conditions:

(A∩ U 1)zA1 = (A1 ∩ U )zA = ∅ (4.30a)

D ∩D1 = ∅ (4.30b)

restr(]V,U 1) = restr(]V1,U ) (4.30c)

where:
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• Condition (4.30a) requires that the two universes have the same separation of

fields (used in actions) from attributes (used for machine storage);

• Condition (4.30b) requires that a shared symbol cannot be derived (potentially in

different ways) in both universes.

• Condition (4.30c) requires that where a symbol is shared between two universes

the two universes give the symbol the same type, so that a value valid in one

universe will also be valid in the other.

We define the combined universe U2 = U ‘ U1 as follows:

U ‘ U1 = x U ∪ U 1, A∪A1, D ∪D1, V2, fixes2 y (4.31a)

The last two components of the tuple, V2 and fixes2, are defined as follows.

V2 = t V | V P U2 ^ restr(V,U ) P V ^ restr(V,U 1) P V1 u (4.31b)

For fixes2 we use the function fixes˝ where:

if W P power(power(E)) then:

fixes˝(W) =

∅ if (W = ∅)
ď

W PW

fixes˝(W) otherwise

or if W P power(E) then:

fixes˝(W) =

tWu if (symb(W) ∩D2 = ∅)

fixes˝
(!

w =
ď

v PW

ξ(v)
ˇ

ˇ

ˇ
ξ(v) P fixes˝(v)^ con(w)

))
otherwise

or if v P E then:

fixes˝(v) =

fixes(v) if (vsymb P D)

fixes1(v) if (vsymb P D1)
␣

tvu
(

otherwise



4.3 Composition 67

in:

fixes2(v) = (fixes˝(tvu))norm (4.31c)

where we require in (4.31c) that fixes2(v) is defined for all v with vsymb P D ∪D1.

This definition equates to the following algorithm:

a. Given a derived observation, create a “proto-fix” by replacing it with the set of

fixes given by the universe in which it derived (condition (4.30b) requires that it

is not derived in both universes).

b. in each member of the proto-fix, replace each derived observation by its fixes,

given in the universe in which it derived, limiting to those that are consistent

with the receiving member of the proto-fix. Where an observation has multiple

fixes, the receiving proto-fix element is cloned to receive each one.

c. Repeat this recursively, until all derived observations have been eliminated.

Theorem B.8 shows that, provided there are no cycles in the symbol dependencies

induced by derivation, then the combined universe U2 formed according to (4.31) ob-

serves the well-formedness conditions (4.7) if both U and U1 do so. Note the following:

• Normalisation of the raw result from fixes˝ is necessary, as can be seen by con-

sidering the example of x = a _ b in U and b = a ^ c in U1 where x, a, b, c are

booleans.

• It is possible that not all values allowed in the source universes are allowed in

the combined universe, as can be seen by considering the example8 of x = a Y b

in U and a = b in U1 where x, a, b are booleans. However, at least one value will

always remain, so the symbol is not removed from the universe. This is because

(4.7f), which requires that every derived symbol has at least one fix consistent

with every member of the valid universe, is true in the combined universe.

Now suppose we have machines P and Q defined over U and U1 respectively. The

heterogeneous composition of P and Q is then defined, as in (4.20), as:

P ∥ Q = xU ‘ U1, ΩP ∪ ΩQ,BP∥Qy (4.32)

8Using Y for exclusive or.
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The formation BP∥Q in (4.32) requires that the steps of P and Q are defined for all

elements of the combined universe. However this is always the case as follows. Con-

sider an element U2 P U2. As restr(U2,U ) P U, U2 selects a single step in P. Similarly,

as restr(U2,U 1) P U1, U2 also selects a single step in Q.

In a heterogeneous composition a symbol d P D of an action of compatible steps of

P and Q that both use d is “sent” by P and “received” by Q; and similarly a symbol

d1 P D1 is “sent” by Q and “received” by P. Note that, in the terminology discussed in

Section 2.1, this is synchronous communication. This form of model is appropriate to

represent the way software components interact using method calls or procedure in-

vocation. Later, in Chapter 9, we discuss asynchronous communication in the context

of choreographed collaborations between independent participants. In common with

(most) other process algebras, protocol modelling does not class asynchronous collab-

oration as composition; and different forms of argument are used to reason about it.

4.3.5 Properties of Heterogeneous Composition

We do not provide a detailed analysis but some points to note are:

• The results concerning associativity, commutativity, closure of composition and

uniqueness of composition construction given in Section 4.3.3 for homogeneous

composition are unchanged for heterogeneous composition.

• Heterogeneous composition is not idempotent, as the machines involved are de-

fined using different universes.

4.4 Protocol Models

This section uses the composition mechanism to formalize the idea of a protocol model,

as introduced in Section 1.3.5, and discusses the idea of well-behaved machines and

models. A well-behaved machine is one that can ensure that its data image remains

within the valid universe V and so preserves data integrity.

4.4.1 Formalization of Model

Suppose that we have a set of protocol machines defined over the universe U and that

the parallel composition of all the machines is a protocol machine M. The machine M
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is a protocol model of U iff:

ΩM = UzA (4.33)

In other words the offers of M gives a value to every non-action symbol in the universe.

This means that M is independent, per (4.18), as there are no symbols left in U that can

be used to define the perceives of M.

The building blocks of a model are machines defined without composition, and these

are referred to as the atomic machines of the model.

4.4.2 Well-Behaved Machines

The formal definitions of a protocol machine in Section 4.2.2 are made in terms of the

total universe, U. There is no guarantee that a machine will preserve data integrity by

ensuring that the data image remains in the valid universe, V. So, for instance, there

is no guarantee that a step in a machine might not give a value to a derived symbol

that conflicts with values pertaining in the basis symbols. In building protocol models

we will want to ensure that the models we create guarantee data integrity, and to this

end introduce the notion of a well-behaved machine.

4.4.2.1 Definition of Well-Behaved Machine

A machine P is said to be well-behaved iff it can be expressed using steps that obey:

@ s P asSet(BP) : sδ = allow ñ closed(sτ) ^ sτ Ť V (4.34)

This is understood as follows. If a well-behaved machine allows a step, (4.34) re-

quires that the new total data image of the machine will conform to V. This means,

in particular, that when the machine advances to a new state, all attributes in the ma-

chine’s data image will conform to their type and, because (4.34) requires that steps

are closed, all derived machine attributes and derived (output) action fields in the ma-

chine’s data image will be correctly computed from their base attributes.

A well-behaved model of a bank account would guarantee for example, that non-

numeric amounts in a deposit or withdraw action would not be allowed, and that

the derived state in credit or overdrawn is correctly derived from the balance at all
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times. A language that preserves abstractions, as in credit and overdrawn are abstrac-

tions of balance, is known as a safe language [69]. The main task of this chapter is to

consider whether safety is preserved under composition, so that a model built from

well-behaved machines is itself well-behaved.

4.4.2.2 Abstractness of Well-Behaved Property

Because the definition given above deems a machine well-behaved if any represen-

tation obeys (4.34), the definition is abstract, in the sense that it is true of a machine

independent of whether a particular representation obeys (4.34).

If a machine is well-behaved then, as shown in Theorem B.9, the normal form repre-

sentation will obey (4.34). As we assume that machines are expressed in normal form

we can use (4.34) to discriminate between those machines that possess the property of

being well-behaved and those that do not.

4.4.2.3 Homogeneous Composition of Well-Behaved Machines

We now show that a model constructed by homogeneous composition of well-behaved

machines is itself well-behaved. We suppose that P and Q are both well-behaved and

take steps sp and sq respectively giving a composed step sp ∥ sq. We show that sp ∥ sq

obeys (4.34). We assume that:

(sp ∥ sq)δ = allow (4.35)

As by (4.35) and (4.23c) we must have spδ = sqδ = allow, and as P and Q are well-

behaved we have:

closed(spτ)^ closed(sqτ) (4.36)

which gives closed((sp ∥ sq)τ).

In addition:

spτ Ť V ^ sqτ Ť V (4.37)

As closed(spτ) and closed(sqτ), (4.7f) requires that (sp ∥ sq)τ Ť V. This establishes (4.34)

for P ∥ Q.
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4.4.2.4 Heterogeneous Composition of Well-Behaved Machines

The argument given above does not work for heterogeneous composition. The fun-

damental reason for this is that, while P and Q may be well-behaved in their own

universes, this does not mean that they are well-behaved in each other’s. We now

show sufficient conditions to guarantee that a machine created by heterogeneous com-

position of two machines well-behaved in their own universes is well-behaved in the

combined universe. Suppose that P and Q are defined over universes U and U1 respec-

tively. The conditions are:

DzA Ď ΩP ^ D1zA1 Ď ΩQ (4.38a)

(sp ∥ sq)δ = allow ñ

symb(spα) ∩D1 Ď symb(sqα) ∩D1 ^

symb(sqα) ∩D Ď symb(spα) ∩D

(4.38b)

The proof theat these conditions are sufficient to ensure that the compoistion is well-

behaved is given as Theorem B.10. These conditions are interpreted as follows:

• The first condition (4.38a) requires that, if a machine P used as a component of M

is defined over a universe U, then the offers of P must include all the non-action

derived symbols DzA of U. This implies that the model M is computationally

complete in the sense that every non-action derived symbol is given a value in

every step.

• In the second condition (4.38b), symb(sqα)∩D1 represents the fields output (sent)

by Q to P and symb(spα) ∩ D1 represents the fields received by P from Q. This

condition requires that messaging is coherent in the sense that the behaviour of the

receiver cannot be based on more fields than the sender has actually sent.

4.4.2.5 Well-behaved Models

A well-behaved model is one built by composition from atomic machines that are well-

behaved and expressed with steps that obey (4.34), and in which all heterogeneous

compositions obey the conditions (4.38). As a consequence of the above results, all

machines in the model, from the atomic machines up to the model itself, will obey

(4.34).
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4.4.3 Robust Machines

The semantics of steps in a PM machine (4.8) include the possibility that a step may

crash. This happens when computations entailed in determining the new state of the

machine fail a pre-condition (see Appendix C where the description of the Semantic

Function includes discussion of the treatment of pre-condition failure). However it is

possible that a machine is built so that it “checks its own pre-conditions” and, in the

event that it determines that pre-conditions fail, forces refusal of the step. In effect,

the function that determines the new state then has no pre-conditions, but instead

sometimes returns a result that coerces refusal of the current step, leaving the state of

the model unchanged.

We define a robust machine to be one in which a crash is impossible:

P is robust ô crash R decisions(asSet(BP)) (4.39)

At least at the level of semantics it is easy to render any machine robust. Given any

non-robust P, we define another machine robust(P) in which any step s with sδ = crash

is replaced by s1 = step (sα, sπ, refuse, sω). This converts P into a robust machine. Note

the following:

• If robust(P) = P then P is already robust.

• If P and Q are robust then so is P ∥ Q. This is because by (4.23c) composition

cannot introduce a crash where it doesn’t exist in the component machines.

Unless otherwise stated, the default assumption is that a protocol machine or model is

not robust unless specifically rendered so as above.

Being robust and being well-behaved are independent properties, in that possession

of one does not imply possession of the other. Being robust is a weaker property than

being well-behaved as it confers no guarantees of data integrity, in particular that a

derived symbol in an allowed step has a value correctly computed from its basis sym-

bols.
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4.4.4 Stored-State and Derived-State Machines

Using the notion of state defined in Section 4.2.7 it is then possible to distinguish two

types of well-behaved finite-state protocol machine: stored-state and derived-state. A

well-behaved finite-state machine P is stored-state if its state in ΣP is independent of

P’s data environment, which is the case iff:

@ s P asSet(BP) with sδ = allow : closed(restr(sω, (UzD) ∪ tstatePu)) (4.40)

which requires that, if the stare attribute is derived, it is fixed completely by the offered

attributes of the machine. This definition requires that the machine is well behaved,

so that if stateP is derived the well-formedness condition (4.7c) guarantees that it has a

single value.

The significance of a stored-state machine is that its behaviour can be depicted as

a conventional labelled transition system, without the need to assign a state to every

element of the machine’s universe. This can be done for a stored-state machine P as

follows:

• Draw a set of nodes N of the state transition system corresponding to the distinct

values of restr(V, ΩPzD). By (4.40) and (4.7c), each node in N maps to a single

state in ΣP.

• By the definition (4.16), a state in ΣP defines the set of continuation traces and

therefore the set of next steps. For each node in N , draw an outgoing transition

for every allowed step possible from the corresponding state in ΣP. The label for

the transition for a step s is sα and the destination node is the node corresponding

to restr(sω, ΩPzD).

The nodes are an abstraction of the offered data, ΩP, of the machine. Because this

abstraction contains no derived attributes it is independent of the data environment

(the perceived data) of each step which does not therefore need to be reflected in the

set of nodes used to depict the behaviour of the machine.

A finite-state machine that is not stored-state is termed derived-state. A derived-state

machine is dependent on data it perceives in its environment to determine how to

behave, so its behaviour cannot be depicted as a conventional state transition diagram

and instead requires a state function to determine the state.
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Note that a finite-state machine that is independent is also stored-state, but not nec-

essarily the other way round. This is because steps with different perceived data in sπ

may give rise to different values of derived attributes in ΩP even if they do not give

rise to a different states in ΣP.

4.4.5 Modes of Use

There are two modes of use of composition in modelling which are found to be partic-

ularly useful in practice and merit special mention. These modes of use are termed

constructive and regulatory.

Constructive. The constructive mode of use is characterized by a set of machines

where the dependency graph of the set is acyclic and the machines’ owned data are

disjoint sets, so for any P and Q with P ‰ Q we have ΩP ∩ ΩQ = ∅. This pattern

realizes the notion that a protocol machine owns a set of stored attributes, which only it can

alter, introduced in Section 1.3.3. The discipline of requiring that composed machines

use disjoint sets of symbols echoes the idea of encapsulation of data (instance variables)

in object orientation. Application of this mode of use is explored in Part III, Chapter 7,

discussing protocol machines as a medium for object modelling.

This mode uses heterogeneous composition, so that each machine has its own uni-

verse. Thus if P is a derived state machine and is dependent on a symbol y in its per-

ceived data environment, but doesn’t care how y is computed, then in P’s universe y

will not be derived. However, some other machine Q with y P ΩQ may be responsible

for derivation of y from other data, so y will be a derived attribute in Q’s universe.

Regulatory. The regulatory mode of use is characterized by the pattern P ∥ Q = P

where P and Q are both protocol machines. In this pattern P and Q share owned

data, as we must have ΩQ Ď ΩP. This mode is concerned to specify behavioural

conformance between machines, where Q can be thought of as specifying a behavioural

contract that P obeys. This mode is used in Chapter 9, in the context of defining the

behaviour required from participants in a multiparty collaboration.

This mode uses homogeneous composition, as it requires that the offered data of

the composed machines overlap, and that idempotence is supported. In particular, a
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symbol y derived in P’s universe will also be derived in Q’s, so that Q can specify how

P should perform the derivation.

4.5 Alphabet

The definition of behaviour of a machine is based on the set of actions in the universe

over which the machine is defined. The property (4.10c) demands that behaviour of

a machine is exhaustive, so is defined in terms of all possible actions in the total uni-

verse, including those that have no effect on the machine’s state. Making the definition of

behaviour exhaustive in this way greatly simplifies the formalization of behaviour and

composition, but for the purposes of making descriptions of machines, such as that in

Figure 1.2 on page 20, we want to distil from the full universe of actions those that

actually affect the state of the machine from those that do not. An action that has no

effect on the state of a machine in any context is one which we say the machine ignores.

In this chapter we show how to recognize such actions. This then allows us to recog-

nize the set of actions that a machine does not ignore and thereby give meaning to the

concept of a machine’s alphabet.

4.5.1 Definition of Ignore

In a simpler algebra, where we are not concerned with data and machines can be de-

scribed simply in terms of traces of actions represented as single symbols, the idea

of a machine ignoring an action might be captured by saying that P ignores an action

symbol a iff:

t P tracesP ñ t"a P tracesP ^ stateP(t"a) = stateP(t) (4.41)

where stateP(t) is defined on traces as described in Section 4.2.7.1. This definition

means that the action a is always allowed and never alters the state of the machine.

We now make an equivalent definition for PM. Suppose P is a finite-state protocol

machine defined over a universe U and ΩP contains a state attribute stateP as described

in Section 4.2.7.2. For a set of observations A P restr(U,A) we say that P ignores A iff:

@ t P stems(BP) and s P nextP(t) with con(A ∪ sα) :

sτ Ť V ^ restr(sω, ΩPzD) = restr(tω, ΩPzD) ñ sδ = allow
(4.42)
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This definition requires that P has a state attribute stateP to ensure that the offered data

ΩP encodes the machine’s behavioural state. If this were not the case, the preservation

of value of stored attributes required by the definition would not achieve a preserva-

tion of behaviour.

According to (4.42), given a valid external data image there is always an allowed

step for the action A that preserves the values of the non-derived offered symbols of

the machine. Moreover because of the deterministic behaviour condition (4.10e), this

is the only step that is allowed for this external data image. This is analogous to (4.41).

If the external data image is not valid, the decision of the machine for a given action is

immaterial to the determination of whether the action is ignored or not.

4.5.2 Closure of Ignore

If if P and Q both meet conditions (4.42) for an action A then so does P ∥ Q. The proof

of this is given as Theorem B.12.

4.5.3 Definition of Alphabet

In Section 1.3.3, we argued to develop a theory of behaviour without the concept of

an alphabet: simply distinguishing allow and refuse/crash but without differentiating

between allowed actions that cause a change in state and those that do not. We ex-

ploit this in the formalization of behaviour, which requires that all the machines being

composed within a model have behaviour defined in terms of the full set of actions

available to the model, restr(U,A). Having proceeded on this basis for the formaliza-

tion of behaviour (Section 4.2.2) and composition (Section 4.3.1), the theory described

in this section gives a formal meaning to the alphabet of a machine: being the set of

actions that the machine does not ignore.

We define:

ignoresP = t A | A P restr(U,A) ^ (4.42) holds for A in P u (4.43)

and:

alphabetP = t A | A P restr(U,A) ^ A R ignoresP u (4.44)
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It is arguable that the term alphabet is not very apposite, as the elements are sets of

observations, rather than single symbols. However it is established by usage and we

stick with it.

IGNORES IN COMPOSITION

P
State Function:
return “true”;

a
true

b
false

As P always refuses b, P Q always allows a and so ignores it.||

P always allows a so ignores it. Q does not always allow a so does not ignore it. 

Q a

b b done

State Function:
if (b_done) return “b done”;
else return “b not done”;

b_done := true;

b not

done

Figure 4.3: Ignores in Composition

The relationship between the alphabets of a composition and that of the components

is as follows.

Homogeneous composition. In homogeneous composition:

alphabetP∥Q Ď alphabetP ∪ alphabetQ (4.45)

The equivalent law in classical CSP9 is different: alphabetP∥Q = alphabetP ∪ alphabetQ.

This is because alphabet in classical CSP is not determined formally on behaviour. By

this rule, the action a in Figure 4.3 would be deemed to be in the alphabet of the com-

posite P ∥ Q simply by virtue of being in the alphabets of P and Q, irrespective of how

it figures in the behaviour of the composite.

Heterogenous composition. For heterogeneous composition, the equivalent relation-

ship is:

alphabetP∥Q Ď t A ∪ A1 | A P alphabetP _ A1 P alphabetQ u (4.46)

reflecting the fact that the actions of the combined universe are defined in terms the

combined action symbol set A∪A1.
9By “classical CSP” we mean as described by Hoare in [38], as opposed to the “alphabetized version

of CSP” described by Roscoe in [70].
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4.5.4 Graphical Alphabet

Some care needs to be taken relating the formalisation of alphabet given above with the

alphabet as shown in the graphical syntax of PM as used, for instance, in Figure 1.2 on

page 20. In the context of the graphical syntax we will normally represent the alphabet

of a machine as a set of action types, such as tOpen, Deposit, Withdraw, Close u. If the

graphical representation of a machine P has an action type x listed as a member of its

alphabet, then this relates to the formal definition of alphabet (4.44) as follows:

A P restr(U,A)^ (action type = x) P A ñ A P alphabetP

However, an action type field is not required by the formal semantics of PM and the

definition of a protocol model does not necessarily require its use. This gives the ability

to define action abstractions used, for example, in the bank account mixins shown in

Figure 7.5 in Chapter 7. Here the machines Suspension, Balance and Limit Control use

abstractions Funds In and Funds Out to model money movement in to or out of the

account independently of whether enacted by action type Deposit, Withdraw or Transfer.

4.6 Objects

In the introduction to this thesis it was claimed that PM can be used to create object

models: models that comprise a population into which new individuals can be intro-

duced, or instantiated. This section examines how PM supports object models.

The ideas in this chapter are realized in the modelling tool, ModelScope, described

in Chapter 7.

4.6.1 Object Identity

In order to support a concept of objects, we assume that every protocol machine is

endowed with a set of object identities. A machine is given this set of identities in its

initiation step, and thereafter it is immutable so cannot be changed by any subsequent

action.

Given a machine P the function ι(P) returns the set of object identities in P. The

object identities in a machine are public, and are encoded in the offers part of each
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step. The function ι must obey the rule that if two machines, P and Q, are composed

then:

ι(P ∥ Q) = ι(P) ∪ ι(Q) (4.47)

This mirrors the composition rule (4.23d).

4.6.2 Object Machines and Object Models

We use the term object machine for a machine that has a single object identity, so P is an

object machine iff |ι(P)| = 1. For object modelling we work with a protocol model that

is a composition of object machines. We will denote an object machine by giving it a

superscript of o, thus: Po.

Two or more object machines in a model may have the same object identity. An object

is the composition of machines that share the same object identity. An object model is

a model that is a composition of object machines. Suppose M is an object model that

comprises the set S of object machines, so that:

M =
ź

PoPS

Po (4.48)

where Π is used to denote ∥ composition over a population of processes. Allowing that

the composition in (4.48) may be heterogeneous, we use UM to denote the combined

universe of all the components of M.

The object P in M with identity O is:

P =
ź

PoPS ^ ι(Po)=tOu

Po (4.49)

We also assume that every action is endowed with a set of object identities, encoded

in the fields of the action, which may be viewed as specifying the objects in the model

to which the action is addressed. Note that, in general, a given action may be addressed

to many objects. If A is an action then ι(A) returns the set of object identities in A.
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Based on this, we define the following well-formedness conditions on a model, M:

ď

A P restr(U,A)

ι(A) Ď ι(M) (4.50)

which says that the objects addressed by A must be present in the model; and

ι(A) ∩ ι(P) = ∅ ô A P ignoresP (4.51)

which says that an object ignores an action that is not addressed to it.

4.6.3 Instantiation

Instantiation in PM is a matter of “waking up” rather than “bringing into existence”.

The intuition is that all objects are present in a model from its initiation, but an object is

silent and invisible until in receipt of an action that it does not ignore. The prime moti-

vation and advantage of this unusual way of constructing the notion of instantiation is

that it allows lines of formal reasoning developed in the context of a fixed model (one

that has a fixed population of machines) to be carried over to models with a dynamic

population, as there is no difference between the two kinds of model.

Suppose we have two machines P and Q with P ‰ Q in a finite-state well-behaved

model, and moreover suppose that ΩP ∩ ΩQ = ∅. We say that Q is oblivious of P iff:

t P prefixes(BQ) ^ (restr(actions(asSet(t)),UP) Ť ignoresP)

ñ t P prefixes(restr(BP∥Q , UQzΩP))
(4.52)

where UP is the universe symbol set of P and UQ that of Q. This states that, in any

behaviour of P ∥ Q involving only actions ignored by P:

• Q does not require knowledge of any of the attributes offered by P, and

• the behaviour (offered attributes and decisions) of Q is as it would have been had

P not been present.

In other words, the presence of P is undetectable in Q; so the only way that Q can

be influenced by, and therefore aware of, the existence of P is because an action is

presented that is not ignored by P. It might be thought that this is true of any P and

Q; however, imagine that ΩQ contains a derived attribute that counts the number of

object identifiers in composition with it. Assuming that |ι(P)| ą 0 this count would be

higher in P ∥ Q than in Q alone, enabling the presence of P to be detected.
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Now we define machines P and Q to be mutually oblivious, written P ’ Q, iff:

P is oblivious of Q and Q is oblivious of P (4.53)

If two machines are mutually oblivious then the presence of either can only be de-

tected on first presentation of an action that is not ignored by both. This concept can

be used to define an object model, a model of a population of instantiable objects, as a

model in which objects are mutually oblivious. M is an object model iff for any two

machines P and Q in M:

ι(P) ∩ ι(Q) = ∅ ñ P ’ Q (4.54)

An object model is endowed with its full population of instances at initiation, but the

presence of any given instance in such a model can only be detected when the object

is presented with an action that it does not ignore. Up to that point it is “invisible”.

The first action that an object does not ignore, and thereby reveals its existence, can be

thought of as the creation action of the object.

This approach to handling objects and their instantiation allows an object model to

be treated as a fixed model, with a fixed population of machines. This means that any

result that is true for any fixed model is also true for an object model. We will use this in

Chapter 9 to establish results concerning the realizability of choreographies expressed

as object models.



Chapter 5

Discussion

This chapter concludes the formal development of PM by locating it within the body

of work on compositional modelling of processes, particularly where such modelling

addresses the possibility of sharing data between composed components.

5.1 Positioning

We attempt to position PM with respect to other software description and modelling

techniques. In particular we explore the way commonly used concepts and terms in

software engineering relate to PM.

5.1.1 Style of Semantics

The denotational semantics of completions bears a close resemblance to the Stable Fail-

ures denotational model used in CSP, as described by Roscoe et al. [70]. A failure is a

trace (of allowed actions) followed by a set that contains all the actions that could then

be refused.1 This enables distinction to be made between cases where, because of non-

determinism, a simple traces model does not suffice. The classic example is shown

in Figure 5.1, where two processes have the same traces but different behaviour. The

failures model is shown in the middle, and of the completions model (using steps with

just action and decision) to the right. Unlike traces, both of these distinguish the two

processes.
1The issues of stability and divergence, which have to form part the CSP model, are not relevant in PM

as there is no concept of a silent (internal) action.

82
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TRACES, FAILURES AND  COMPLETIONS

< > { b, c }

a { a }

a, b { a, b, c }

a, c { a, b, c }

a

b

c

b
a

a

c

< > { b, c }

a { a, b }

a { a, c }

a, b { a, b, c }

a, c { a, b, c }

< >

a

a, b

a, c

< >

a

a, b

a, c

Traces          Failures                Completions

( a, allow ), ( a, refuse )

( a, allow ), ( b, allow ), ( a, refuse )

( a, allow ), ( b, allow ), ( b, refuse )

( a, allow ), ( b, allow ), ( c, refuse )

( a, allow ), ( c, allow ), ( a, refuse )

( a, allow ), ( c, allow ), ( b, refuse )

( a, allow ), ( c, allow ), ( c, refuse )

( b, refuse )

( c, refuse )

( a, allow ), ( a, refuse )

( a, allow ), ( b, allow ), ( a, refuse )

( a, allow ), ( b, allow ), ( b, refuse )

( a, allow ), ( b, allow ), ( c, refuse )

( a, allow ), ( b, refuse )

( a, allow ), ( c, allow ), ( a, refuse )

( a, allow ), ( c, allow ), ( b, refuse )

( a, allow ), ( c, allow ), ( c, refuse )

( a, allow ), ( c, refuse )

( b, refuse )

( c, refuse )

Figure 5.1: Traces, Failures and Completions

The reason that failures and completions succeed where simple traces do not is dis-

cussed by Nain and Vardi who articulate a Principle of Comprehensive Modelling [63],

whereby behaviour is explicitly modelled for all relevant scenarios and not left to in-

ference.

From this point of view, certain process-algebraic formalisms are underspecified, since

they leave important behavioral aspects unspecified. For example, if the distinction

between normal termination and deadlocked termination is relevant to the application,

then this distinction ought to be modeled explicitly.

– Sumit Nain and Moshe Vardi [63]

Their claim is that adopting this principle allows trace semantics to be fully ab-

stract.

This principle has been adopted in PM in two respects:

• The requirement (4.7b) that fixes are defined exhaustively for all elements the

universe.

• The requirement (4.10c) that behaviour is defined exhaustively for all elements

the universe.
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5.1.2 Conditions and Constraints

We think it is important to differentiate between the concepts of a condition and a con-

straint. Here we are thinking of conditions as used in Hoare Logic [37] and incorpo-

rated into the Design by Contract method of software development by Meyer [56]; and

constraints as used in PM for the rules that a protocol machine uses to decide whether

to allow or refuse an action.

Conditions. Conditions, specifically pre- and post-conditions, are used to define a form

of contract to specify the behaviour of a function. If the pre-condition of a function is

true before invocation, then the function must ensure that the post-condition is true

after invocation. If, on the other hand, the pre-condition is not true, the result of invo-

cation is unspecified. Contracts are a mechanism for formal specification of a function,

by placing conditions on what the function returns without constraining the choice of

algorithm.

Constraints. Constraints, specifically pre- and post-constraints, are used to define pro-

tocols that specify the behaviour of processes that interact with each other. If software

that exhibits a protocol is presented with an action, then it will refuse to engage (i.e.,

will not undergo any permanent change of state) if either a pre-constraint is false be-

fore the action and/or a post-constraint is false after the action. Protocols are a mecha-

nism for specifying the behaviour of interactive software by defining the relationships

between the states of the software and its ability to accept actions.

There is a clear semantic distinction between these, in particular:

• Violation of a pre-condition results in unspecified behaviour, which could in-

clude ungraceful failure (crash). By contrast violation of a constraint, causing an

action to be refused, is an essential part of the specified behaviour of a protocol

and there is no implication that it entails any kind of failure. Indeed, if violation

of a constraint were to cause failure the software would be useless.

• Conditions are constructs used (as Hoare describes) to prove software correct-

ness or (as Meyer advocates) to help ensure correctness in software development.

Thus assertion checking (checking that conditions are observed) as supported for

instance in the Eiffel programming, has use during development and testing but
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once correctness has been established it serves no purpose and can be switched

off. By contrast the logic that implements a protocol, by checking whether con-

straints are obeyed, is essential to the correct behaviour of the software and can-

not be switched off.

This distinction is not generally well made. Consider the specification of the semantics

of the UML concept of a Protocol State Machine, as described in the UML Superstructure

Specification [64]. Given its name and the illustrations of its use in the UML documen-

tation, you would expect it to have semantics similar to that of protocol machines.

However the UML specification states:

A protocol transition (transition as specialized in the ProtocolStateMachines package)

specifies a legal transition for an operation. Transitions of protocol state machines have

the following information: a pre-condition (guard), on trigger, and a post-condition.

Every protocol transition is associated to zero or one operation (referred BehavioralFea-

ture) that belongs to the context classifier of the protocol state machine.

. . .

The interpretation of the reception of an event in an unexpected situation (current state,

state invariant, and pre-condition) is a semantic variation point: the event can be ig-

nored, rejected, or deferred; an exception can be raised; or the application can stop on an

error. It corresponds semantically to a pre-condition violation, for which no predefined

behaviour is defined in UML

– OMG: UML Superstructure [64] pages 546, 547

This uses the language of contracts (pre- and post-conditions) and seems to equate

a pre-condition with a guard, which is surely wrong2. It then states that the seman-

tics of violation are a “semantic variation point” (in other words, undefined in UML),

which consequently means that the semantics of a UML Protocol State Machine are un-

defined. The underlying problem here is the incorrect choice of contracts (as opposed

to constraints) as the basis for the semantics.

Later, in Chapter 8, we explore the concepts of contracts in software and propose a

generalization of the concept that allows protocols to be used to specify contracts while

maintaining the proper distinction between constraints and conditions.

2The proper distinction between pre-conditions and guards is made, for instance, by Miarka et al. [57]
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5.1.3 Parallelism and Concurrency

Terms such as parallelism and concurrency are slippery, with various definitions. Pey-

ton Jones [68] (talking in the context of functional programming, but in general terms)

captures generally accepted definitions:

I make a sharp distinction between parallelism and concurrency:

• A parallel functional program uses multiple processors to gain performance. For

example, it may be faster to evaluate e1 + e2 by evaluating e1 and e2 in parallel,

and then add the results. Parallelism has no semantic impact at all: the mean-

ing of a program is unchanged whether it is executed sequentially or in parallel.

Furthermore, the results are deterministic; there is no possibility that a parallel

program will give one result in one run and a different result in a different run.

• In contrast, a concurrent program has concurrency as part of its specification.

The program must run concurrent threads, each of which can independently per-

form input/output. The program may be run on many processors, or on one —

that is an implementation choice. The behaviour of the program is, necessarily

and by design, non-deterministic. Hence, unlike parallelism, concurrency has a

substantial semantic impact.

– Simon Peyton Jones [68]

In this, Peyton Jones positions parallelism and concurrency as being concerned

with performance and distribution (to concurrent threads) respectively. Both of these

are manifested in the way the software is implemented, as both require that compu-

tational activity happens on different threads; in the first case to evaluate e1 and e2

in parallel for performance reasons and in the second to allow concurrent parts of the

program to perform input/output independently.

Process algebra is a widely accepted and much used technique in the specification and

verification of parallel and distributed software systems.

– Jos Baeten, Twan Basten, Michel Reniers [4]

The above quote echoes the common positioning of parallel composition operators

in process algebras as a formal way of investigating concurrency and parallelism in

software systems. The fact that PM uses a composition operator which has superficial
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similarity to the classical CSP ∥ composition, albeit in a synchronous form, could lead a

reader to assume that PM also uses composition to model concurrency and parallelism.

However this would be wrong. In PM composition is purely about description and,

in particular, the description of ordering. There is absolutely no implication in PM

modelling that any kind of concurrent computing or parallel programming is involved.

Instead, the compositional structure of a PM model aims to achieve:

• Quality of Abstraction.

• Support for Verification.

and for both of these it is important that the model author is free to determine and

refine the choice and form of the machines used to express a model independently of

issues of performance and distribution.

Quality of Abstraction. In the construction of a protocol model we aim, as in any

modelling endeavour, to achieve qualities of simplicity and economy of expression. In

Chapter 7 we will discuss how PM supports pursuit of these qualities in behavioural

modelling. It is an occupational hazard of modelling that any modelling artefact that

expresses complex ideas in a formal language suffers degradation in these qualities as

it is built, because decisions on form and structure made early in the process are taken

without a full appreciation of all aspects of the problem. The quality of the final result

is dependent on work to recover simplicity and economy of expression by revisiting

early decisions and refactoring the emerging solution.

Support for Verification. We will see in Chapter 9 how PM can be used in the con-

text of formal verification of the designs of distributed multi-party collaborations. The

verification relies on the ability to express a design as a composition, each component

of which conforms to certain structural rules. When designing a choreography, in par-

ticular, it is crucial to be able to engineer the machines used in the composition so

that each, separately, follows the rules that guarantee formal correctness; reorganizing

(refactoring) the model where necessary to achieve this. An analogy is the formal defi-

nition of an even number as one that can be expressed as a product of 2 factors, one of which

is 2. The description of 12 as 3*4 would need to be refactored as 2*6 to allow formal

verification that it is even.
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In both these cases, achieving the required result requires that the author of a model

is free to select and evolve (refactor) the number and design of machines in a model

according to the dictates of the problem. However, if the number and design of the

machines were constrained by the need to represent parallelism (for performance) or

concurrency (for distribution) in the senses of the Peyton Jones quote above, this would

not be possible. Indeed, it would be incorrect to think that the motivation for express-

ing the bank account as three parallel machines in Figure 1.2 has anything to do with

the performance or distribution of processing. This is a different focus from that nor-

mally cited as motivating composition in process algebras, at least as expressed by

Baeten et al. at the start of this section.

5.1.4 Data and Topology
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of 
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State Function:
if (A1.balance ≥ -2 && 

A1.balance ≤ 2) return “in range”;
else return “out of range”;

PURE TOPOLOGY                              TOPOLOGY AND DATA

These two models have 

the same behaviour.

Figure 5.2: Two Models of a Bank Account

Another respect in which PM departs from some traditional thinking in process

algebras is its treatment of data. In PM, data and topology are considered as dual:
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two ways of expressing the same thing. Consider the two models of a very simple bank

account shown in Figure 5.2. This account only supports an integer balance in the

range -2 to +2, and only allows one or two units to be deposited, using D1 or D2, or

withdrawn, using W1 or W2, at a time. The model on the left shows the account as a

single machine; the model on the right shows the same bank account rendered as three

composed machines. Note that:

• The account may only be closed when in credit. On the left this is modelled by

the fact that Close starts from the states tB0, B1, B2u. The model on the right uses

the machine A2 to enforce this.

• The model on the right uses post-state constraints in the machine A3 to enforce

the range (-2 to +2) on the balance.

These two models are both valid PM specifications and, if the states of the model on

the left are endowed with attributes to match those in the model on the right, equal

in the sense described in Section 4.2.6.2. So one can be regarded as a refactoring of

the other. The difference between them is that the machine on the left represents the

balance topologically, whereas the one on the right handles the balance as data. It is

always possible to refactor a PM model expressed as a composition of machines that

use data and derived states as a single purely topological model, by:

• Defining a state for every distinct element of restr(U,UzA); and

• Defining an action (transition label) for every distinct element of restr(U,A)

but in general, the resultant topological model will be huge. The topological model

in Figure 5.2 has only been kept small by limiting the possible values of the balance.

The price that is paid for this duality is the need for models to reach a stable and well-

defined state after an action, otherwise there is no basis for determination of the fate of

the next action, and this requires that the semantics of composition is synchronous.

Other process algebras have recognized that a treatment of data is needed in order

to be able to make tractably small models of complex problems. However, data has

generally been added as a separate semantic layer (as discussed in Chapter 5.2) and

there is no idea of the kind of duality suggested here, or it is certainly not emphasized.
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5.1.5 Determinism and Repeatability

The definition of insanity is doing the same thing over and over again and expecting a

different result.

– Albert Einstein (attributed)

The focus of this thesis is on protocol machines that are deterministic, as specified by

the condition (4.10e). Determinism is a complex notion and this section provides a

short survey of this concept and its different definitions, to try and isolate our usage

here more clearly.

5.1.5.1 Automata Theory and Concurrency

Perhaps the first point to make is that we do not use non-determinism as it is used in

automata theory. Lamport makes the following distinction in [47]:

This use of non-determinism to model concurrency has caused some confusion, since

the type of non-determinism involved is conceptually quite different from the non-

determinism studied in automata theory and in the theory of non-deterministic algo-

rithms.

In automata theory, a non-deterministic machine is thought of as one that simultane-

ously pursues all possibilities. The machine is considered to complete its computation

successfully if one of these possibilities succeeds. This has led to the study of non-

deterministic algorithms, implemented by concurrently executing all possibilities and

stopping the entire computation if one succeeds. The theory of branching time is appro-

priate for reasoning about this type of non-determinacy.

[. . . ]

Our view of concurrent programs is that the non-determinism represents different

possibilities, only one which actually occurs. This suggests that the linear time temporal

logic should be more appropriate for reasoning about concurrent programs. Although

“appropriateness” is not a provable property, we will give what we feel to be strong ar-

guments that this is indeed the case.

– Leslie Lamport [47]
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In thinking about the evolution of protocol machines we are likewise concerned

with different possibilities, and a classification of types of non-determinism needs to

consider where the decision about what happens next is located.

5.1.5.2 Types of Non-determinism

Figure 5.3 shows the range of different possibilities, expressed in PM notation. In all

the cases shown we imagine that the machine responds to action a, after which one of

b or c is offered. Considering each case shown:

Case 1. Q determines which of b and c can be accepted based on whether i is odd or

even. This makes the behaviour of the machine completely determined. If i is even but

c is presented rather than b, the machine will not advance. This example is completely

compatible with (i.e., describable by) PM.

Case 2. In this case the machine is free to accept either b and c and so will advance to

states B or C depending on which is presented. This is sometimes called external non-

determinism, although arguably it is not really non-determinism unless the ordering of

b and c is not determined in the environment.3 Again, this is completely compatible

with (describable by) PM.

Case 3. Here we imagine that the machine makes a random choice that determines

whether it can receive b or c. As in Case 1, if the machine chooses b but c is presented

it will not advance. This is sometimes called internal non-determinism, and is true non-

determinism in that it is inherent and cannot be removed by refinement. The depiction

on the right hand side in Figure 5.3 can be used to understand what happens if this

process is rendered in PM. Because there are two transitions for a starting at ‚ leading

to different states A1 and A2, there would need to be steps s1 and s2 following initia-

tion, with s1α = s2α = a and both allowed, but with s1ω ‰ s2ω in violation of (4.10e).

The fact that Case 3 cannot be modelled stems from the feature of completions in PM,

that they are exhaustive in their description including the description of internal state.

3Roscoe [70] suggests that external non-determinism should be called environmental choice so as “not to

confuse it with a form of non-determinism”. This seems a sensible suggestion.
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Figure 5.3: Types of Non-determinism

Case 4. Here we suppose that we have a model that is incomplete, in that we expect

the behaviour to be refined by the specification of another machine, Q. PM is generally

concerned with making partial (incompletely specified) descriptions of behaviour, so

there is no incompatibility here.
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So the assertion that PM models are deterministic relates specifically to Case 3. This

can be demonstrated formally as it is not possible to model the machine Q in Case 3 as

completions:

• Assuming that P ∥ Q is independent, then the perceives of Q is just the value of

i.

• The completions of Q must provide a single step for each combination of a value

of i and action in tb, cu giving whether the action is allowed or refused.

It is clearly not possible to construct completions for Q that accommodate a non-

repeatable random response from the state function. There is no difficulty of this kind

in the other cases.

5.1.5.3 Determinization
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Figure 5.4: Determinization

There are well known transformations that converts a non-deterministic finite au-

tomaton into a deterministic one, by using a state space in the determinized version

that is (some subset of) the powerset of the state space of the original. A small example

is shown in Figure 5.4, where the state 1, 2 in P1 represents the possibility that after a

either state 1 or state 2 could pertain in P. Given this possibility, it is tempting to ask

whether the stipulation that a protocol machine be deterministic per (4.10e) has mean-

ing, as a machine that does not meet it can be transformed mechanically into one that

does. This question relates to the definition of state, as follows.

Suppose that the machine P on the left in Figure 5.4 were represented as comple-

tions. The states marked 1 and 2 would be represented in ΩP using observations, say:

(state=1) and (state=2). The attribute state will have some range of valid values
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defined in the universe V over which P is defined, and in general we would not expect

that (state=1,2) (as used in the determinized version, P1) is in this universe; any more

than we would expect the state (active, closed) (meaning either possibly pertains) to be

a valid state in the universe over which the behaviour of a bank account is defined.

As V can be viewed as the typing model used by P, this is equivalent to saying that

determinization is prevented by the typing model over which a model is defined.

5.1.5.4 Interaction Non-determinism
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Figure 5.5: Input/Output in Composition

Heterogeneous composition, where one machine can send data that is received by

another, leads to consideration of non-determinism resulting from a choice of different

possible reactions. Specifically, consider a composition between the machines P and Q

shown on the left hand side of Figure 5.5. Starting at ‚ in both P and Q, a send/receive

reaction could take place either between !a and ?a leading to state (A, A1) or between

!b and ?b leading to state (B, B1). The question here is, does this mean that the compo-

sition of P and Q must be viewed as an inherently non-deterministic machine, similar

to that in Case 3 in Figure 5.3? The answer to this question is no, and this is understood

in terms of the distinction between two semantic variants, as explored by Fidge [23] in

his comparative analysis of process algebras:

CCS-like. Interaction is concealed and bi-party, as is the case in CCS and its derivatives

such as pi-calculus.

CSP-like. Interaction is visible and multi-party, as is the case in CSP and LOTOS.
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With CCS-like interaction, if two machines interact by sharing actions this shared

action can never be seen by any other machine, and to the environment the transition

is a spontaneous internal move from one state to another. With CSP-like interaction,

each interaction is visible to the environment and can contribute in a wider multi-

process composition. The distinction can be seen clearly by considering the behaviour

that would result from composing R, shown on the right hand side of Figure 5.5, with

P and Q:

• In the case of CCS-like composition, adding R introduces the further possibility of

a reaction between !a in P and ?a in R as the first step of the system. This means

that the state of the composition of P, Q and R after the first step could be any of

xA, A1, ‚y, xB, B1, ‚y or xA, ‚, A2y. The choice is undetermined and the system will

select the new state “at random”.

• In the case of CSP-like composition, adding R means that ?b is not possible as a

first step for Q as R refuses ?b. So the new state of the system after the first step

is fully determined to be xA, A1, A2y.

As this example illustrates, once non-determinism is created using CCS-like compo-

sition it is committed and cannot be eliminated by further composition. In fact, fur-

ther composition may introduce further non-deterministic possibilities as R does here.

This gives rise to true non-determinism of the kind illustrated in Case 3 in Figure 5.3.

By contrast, composition using CSP-like semantics yields a description of possible or-

derings that is subject to further refinement, by the environment or other composed

machines. Such refinement may, as is the case with the addition of R, eliminate the

non-determinism completely.

One way of distinguishing the two kinds of composition is by considering whether

composition is idempotent. Suppose that we have two processes, P and Q, which

both engage in a single action !a. By any measure P = Q. CSP-like composition of P

and Q yields another process that engages just in !a. In other words, the composition

is idempotent. CCS-like composition yields a process that engages in two !a actions

in parallel and could therefore react with two other processes that both engage in ?a.

CCS-like composition is therefore not idempotent. It is almost as if, in the CCS-like

case, processes “strongly own” their actions so that if a process is removed its actions

go too; whereas, in the CSP-like situation, the actions contributed by each process add
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to a shared pool and all processes co-operate in defining the ordering constraints on

the actions in the pool.

5.1.5.5 A Possible Unification

As we described in Section 4.3.4, composition of machines where the output of one

forms input to the other (heterogeneous composition) requires that we define a com-

bined universe (4.31). Suppose that machines P and Q are defined over universes U

and U1 respectively; and that A = D = A1 = tyu, so that P has y as output and Q

has y as input. Suppose also that y allows only the values "foo" and "bar"; and that

in some state P ∥ Q allows steps for both these values. Even though the output of y

by P is bound by the input of y by Q, y is still an action symbol of the combined uni-

verse U ‘ U1, and so P ∥ Q still has separate steps for (y = "foo") and (y = "bar").

Only if these steps are identical apart from the value of y, so that this symbol can

be removed under the rules of normal form, does the machine becomes autonomous

(in the sense of definition (4.19)). This is quite different from the classical CCS com-

position, where a possible reaction on complementary names causes the reaction to

become silent (a “τ-transition”), with the possible introduction of non-determinism as

illustrated in Figure 5.5.

Suppose that we stipulate the following further well-formedness rule on a combined

universe U ‘ U1:

U ∩ U 1 Ď D ∪D1

which requires that all shared symbols of the combined universe are output (derived)

in one universe or the other. In this case, CSP-like composition is composition within a

universe and CCS-like composition is composition across universes. By recognizing the

need to base machine definitions over a data universe the two styles could be accom-

modated within a single semantic framework.

5.1.6 Relationship to UML

The Universal Modelling Language (UML) is viewed as the de-facto standard for soft-

ware modelling and, as such, it is appropriate that we make a comparison between it

and PM. Perhaps the starting point is the observation made in Section 1.1.1 that there

are significant differences between UML and PM:
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• The declared and normal usage of UML is to support the design of software that

is to be built using mainstream OO programming languages (C++, Java, etc.).

PM does not have this aim and because it is based on a form composition that

is not supported in current programming languages, it is arguably not adaptable

to this purpose.

• The generalisation/specialisation paradigm of UML, based on refinement or sub-

classing, is quite different from that of PM, which is compositional as described

later in Section 7.3.

• PM has a formal semantics which UML does not (at least as part of the published

standard).

Of the UML notations, state machines come the closest to PM; and it is worth not-

ing that the UML state machine notation, which are based on Harel’s statechart nota-

tion [34], offers a construct called orthogonal regions that allows a single state machine

to own conceptually independent regions which operate in parallel, each hosting its

own population of states and transitions. By providing a mechanism for representing

parallel activity within a single machine, orthogonal regions achieve a similar effect

to composition. However other differences mean that the similarities are outweighed

and probably amount to an irreconcilable difference of semantics between the two:

• Orthogonal regions do not have any concept of CSP style synchronisation on

shared events and so inter-region message passing is used to achieve synchroni-

sation.

• Conditions rather than constraints (see Section 5.1.2) are used for the interpretation

of unavailable transitions in statecharts.

• There is no concept of derived states in statecharts and guards are used to control

the firing of available transitions.

5.2 Related Work

This chapter surveys other work that gives a formal treatment of the interaction be-

tween behaviour and data, and makes comparisons with the analogous features of

PM’s.
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5.2.1 Shared Data in Process Algebra

This section explores how the mainstream process algebras (CSP, CCS and variants,

LOTOS, and ACP) address the interaction of data and behaviour. These algebras as-

sume asynchronous co-operation and, as this survey shows, the degree to which it is

possible to achieve coherent data-based behavioural rules is limited unless extra ma-

chinery is introduced.

CSP and CCS were designed to model asynchronous processes, running at indetermi-

nate relative speed; the form of parallel composition typical of CCS and CSP allows

independent progress to be made by individual processes.

– Stephen Brookes [17]

All of these algebras, in their seminal form, aimed to enable reasoning about sys-

tems of interacting processes running in parallel. Processes were conceived as abstract

constructs that advance by engaging in actions, possibly shared between two or more

processes, represented as symbols. In all of them the emphasis was on representing

behaviour, so the representation of data was minimal or absent. However all them have

spawned variants with means of representing data, to extend their application to mod-

elling computation that relies on the interaction between data and behaviour. We ex-

amine below some of the main examples of this below, and consider their respective

abilities to replicate the system described in Figure 2.1 on page 27 and ensuring that z

cannot occur. Of course, preventing z is trivially achieved by refactoring the processes,

in particular by combining P and Q into a single process that offers a choice between

x or y, so we stipulate in this challenge that P and Q remain nominally independent of

each other.

5.2.1.1 CSP Conditional Operators.

CSP [38] includes a mechanism to assign values to variables and a conditional operator

whereby the assigned values of variables can influence behaviour.

(P ć cond č Q) (5.1)

This means: P is chosen if cond is true, otherwise Q chosen. cond is called a conditional

variable.
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Hoare says of condition variables, such as cond:

To deal effectively with assignment in concurrent processes, it is necessary to impose

a restriction that no variable assigned in one concurrent process can ever be used in

another.

– C.A.R. Hoare [38]

This is because there is no guarantee that a shared data variable inspected by one

process is not being simultaneously updated by another, yielding an undefined result.

In particular it would not be possible to represent the example described in Figure 2.1,

because R cannot use a conditional variable that gives the state of P (or Q) to determine

its behaviour, as it would have to be assigned in P (or Q).

5.2.1.2 The pi-calculus with data.

The pi-calculus, a direct descendent of CCS, has provided fertile ground for the culti-

vation of various specialised process calculi with the expressive power to model data,

including The polyadic pi-calculus [60] (an extension that allows tuples of names to be ex-

changed), The spi-calculus [1] (an extension designed for the description and analysis of

cryptographic protocols), The pi-F calculus [80] (a calculus that supports fusions, being

explicit identification of names), and CC-Pi [18] (an extension supporting concurrent

constraints). In their work [9], Bengtson et al. describe the psi-calculus, an extension

of the pi-calculus with nominal data types for data structures and for logical asser-

tions representing facts about data that is capable of encoding various data-enriched

variants of the pi-calculus including those listed above, and we focus on this for com-

parison with PM.

To look to how pi-calculus might handle the constraints the example in Figure 2.1

we would need to use a constraint calculus, for instance with the following constraints

corresponding to R for the “asynchronous” behaviour variant:

a. Either z has not happened or both x and y have happened (added at initiation of

the system)

b. x and y have both happened (added when x and y happen together)

c. x has happened but y has not happened (added when x happens by itself)
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d. y has happened but x has not happened (added when y happens by itself)

e. z has happened (added when z happens)

where constraint (b) allows x and y to be simultaneous. For “synchronous” behaviour

variant, the following constraint set could be used:

a. Either z has not happened or both x and y have happened (added at initiation of

the system)

b. x and y have not both happened (added at initiation of the system)

c. x has happened (added when x happens)

d. y has happened (added when y happens)

e. z has happened (added when z happens)

where constraint (b) prevents x and y being simultaneous. It is immediately obvious

from constraints (a) and (b) that z cannot occur in the synchronous variant.

Most prominently, in the semantics of CC-Pi the fusions resulting from communication

are required to be consistent with the store (as defined by the constraint system). In

contrast our [psi-calculus] semantics will allow transitions that lead to an inconsistent

store.

– Jesper Bengtson, Magnus Johansson, Joachim Parrow and Björn Victor [9]

Unless these producers are coordinated they may produce conflicting constraints,

causing an inconsistency. For example, one agent may impose the constraint x = 3

and another x = 4, resulting in uncontrolled behavior since an inconsistent store

entails any ask condition.

– Vijay Saraswat [71]

As Bengtson et al. point out in their paper (see quote above), the psi-calculus does

not ensure that the constraints in a system are consistent; and according to Saraswat

this precludes the use of constraints to control behaviour. To guarantee that the con-

straint store is consistent requires that operations that change the store are serialised,

but the operational semantics of psi-calculus, with its asynchronous co-operation model

adopted from pi-calculus, has no means to do this.
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5.2.1.3 LOTOS with Global Variables.

LOTOS (Language of Temporal Ordering Specification) is a process algebra based on early

versions of CCS and CSP [23]. In 1995, Khoumsi and Bochmann introduced support for

global variables into LOTOS [44] by allowing an action σ, to be encased in a transaction:

ăθ, σ, ϕą

The action is sandwiched between an enabling condition, θ, and an update function, ϕ. An

action is only enabled if the enabling condition is true (so this is the same as a guard);

and execution of the action results also in execution of the update function that gives

guards new values.

The authors note that certain exclusion rules need to be observed to prevent concur-

rent transactions interfering with each other:

• Variables on which a guard, θ, depends are not written by another concurrent

transaction; and

• Variables written by an update, ϕ, are neither written nor read by another con-

current transaction.

To ensure that this is the case, a locking mechanism is introduced whereby a transac-

tion locks the variables it reads or writes before it actually accesses them; and does not

obtain a new lock after it has released a lock. This scheme has the danger of deadlock-

ing and to avoid this, time-stamps are used to give lock requests a global priority, so the

transaction whose lock has lower priority aborts in the event of a deadlock conflict.

To encode the example in Figure 2.1 would require a guard on x in R to prevent

it happening if y has already happened. Because this guard is based on the state of

P it would be altered by the update function required after x happens in P. As the

transactions for x in P and R are concurrent, this violates the condition that transactions

do not interfere with each other.

5.2.1.4 ACP Guarded Commands.

ACP [4] includes a concept called a guarded command, of the form Φ :Ñ P, with the

intuitive meaning ‘if Φ then P’. This is similar to CSP, so the conditional expression
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(5.1) can be expressed in ACP as:

(cond :Ñ P + ␣cond :Ñ Q)

In ACP there is no stipulation, as there is in CSP, that a propositional variable such as

Φ is local to a process: it can be given a value in one and used in another. However,

observation in one process of a variable set by another process must yield every possi-

ble value allowed by any interleaving of the processes. In the context of the example

in Figure 2.1, every time there is the possibility of some set of variables being observed

in R to have values representing the fact that one of P or Q has advanced, there is also

at the same time the possibility of an observation showing that both have advanced so

that z is allowed.

5.2.1.5 Summary.

None of these approaches can model the example in Figure 2.1 as a simple composi-

tion S = P ∥ Q ∥ R while ensuring that z cannot occur. The point here is that all

approaches have asynchronous co-operation semantics, and cannot realize or simu-

late the synchronous behaviour of a PM composition, in which z is prevented, without

altering the model or introducing extra machinery to coerce synchronous behaviour.

Synchronous behaviour is needed if z is to be blocked because, as Basten et al. [4] put

it:

The independent execution of parallel processes makes it difficult or impossible to de-

termine the values of global variables at any given moment. It turns out to be simpler

to let each process have its own local variables, and to denote exchange of information

explicitly via message passing.

– Jos Baeten, Twan Basten, Michel Reniers [4]

In this quote “independent execution of parallel processes” must be taken to re-

fer to asynchronous co-operation. This conclusion is also reflected by Groote and

Ponse [31] in their result that the combination of guards and parallelism (composition)

leads to an axiom system that is unsound in any reasonable bi-simulation semantics.4

4Although they did offer a way round this problem in the form of a two-phase calculus in which process

terms are rendered free of parallelism in order to prove identity.
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5.2.2 Synchronous Process Algebra

Some authors in process algebra have explored the possibility of synchronous composi-

tion semantics. Three examples are:

• Milner with SCCS [59, 36], a synchronous variant of the (asynchronous) CCS.

• Bergstra and Klop with ASP [10], a synchronous variant of the (asynchronous)

ACP.

• Barnes with SCSP [5], a synchronous version of the (asynchronous) CSP.

These accounts require, as does PM, that when two processes are synchronously com-

posed both engage in all actions; so there is no concept that one machine may engage

in an action and advance to a new state while the other either sleeps or, perhaps, en-

gages in some different concurrent action of its own. The first two use CCS-like com-

position (see Section 5.1.5.4) and the third uses the CSP-like composition used by PM.

All these synchronous algebras describe action behaviour without any treatment of

data, so none provide any treatment of the interaction between data and behaviour

comparable to that in PM.

5.2.3 Coordination Schemes

The foregoing sections assume a clean distinction between synchronous and asyn-

chronous co-operation, but some schemes for describing or implementing composed

processes use asynchronous co-operation as their default model but supply additional

machinery for coordination of the execution. The most general such schemes are termed

coordination schemes, of which the Linda language [29], based on shared tuple spaces is

the archetypical example.

We will define an asynchronous ensemble as a collection of asynchronous activities

that communicate. An activity is a program, process, thread or any agent capable in

principle of simulating a Turing Machine. It could be a person; it could be (recursively)

another whole ensemble.

– David Gelertner and Nicholas Carriero [29]
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Coordination languages aim to address the coordination (communication and syn-

chronisation) needs of the whole spectrum of asynchronous ensembles, from multi-

threaded applications executing on a single processor, through tightly-coupled, fine-

grained parallel processing applications, to loosely-coupled, coarse-grained distributed

applications. Such schemes work by requiring that certain events in the execution of

the system require access to a system resource that is subject to mutual exclusion, so that

two processes cannot access the resource simultaneously. This enables atomicity and

serialisation of the events that affect shared data5.

Coordination schemes can be viewed as hybrid: allowing cooperation between asyn-

chronous computations without incurring the penalty of single-threading all actions in

the system, as a purely synchronous implementation would require. The penalty that

they pay is the possibility of deadlock (see, for instance, the discussion of transaction

processing by Jagannathan and Vitek [42]). This characterisation is instructive, as it

positions such schemes as concerned with programmatic enforcement of the ordering

of events in concurrent computing or parallel programming environments. However,

as explained in Section 5.1.3, PM is not concerned with these issues but only with the

description of ordering. In a sense the pure synchronous co-operation semantics used

by PM can be viewed as “completely coordinated”, not requiring any coordination

scheme of the type represented by Linda and its kind.

5.2.4 Abstract State Machines

In this section we expand on the similarities between the work described here and that

of Abstract State Machines and the related area of Synchronous Reactive Languages. A

connection with Abstract States Machines has already been noted in Section 4.2.8.

5.2.4.1 Parallel Abstract State Machines

Blass and Gurevitch have described a compositional approach Abstract State Machines

for parallel algorithms [13]. The model they describe uses a synchronous paradigm,

advancing in steps from one coherent global state to the next, with parallel execution of

proclets performing the state update. They explicitly rule out the asynchronous model:

5LOTOS with Global Variables, with its locking mechanism on shared variables; and concurrent con-

straint calculi that support constraint store consistency, can be viewed as coordination systems.
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The algorithms we consider have computations divided logically into a sequence of dis-

crete steps. Within each step, many parallel sub-computations may take place, but

they finish before the next step begins. We do not consider the more general notion of

distributed computation, where many agents proceed asynchronously, each at its own

speed, and where communications between agents may provide the only logical ordering

between their actions.

– Andreas Blass and Yuri Gurevitch [13]

Rather than being about interactive processes, ASMs concern algorithms, and there is

no concept of actions or protocols. The composition of the proclets is based on dataflow

rather than process algebraic composition. Having said that, some of the fundamen-

tal issues in establishing formalization of a synchronous parallel model are the same.

In particular, their formalization requires that the proclets of an algorithm obey an

Acyclicity Postulate whereby the information flow digraph that depicts how data flows

between the proclets does not contain cycles. This is equivalent to our requirement,

given in Section 4.3.2, that a protocol model does not contain circular dependencies.

5.2.4.2 Action Machines

Grieskamp et al. working at Microsoft Research have proposed the use of composition

of Abstract State Machines in the context of symbolic execution for program verifica-

tion [30]. Their concept of composed Action Machines bears a close similarity to the

concept of composed protocol machines, albeit in a completely different context. The

following quote clearly shows that the composition they use for Action Machines has

CSP semantics:

The parallel composition of two action machines results in a machine that transitions

both machines simultaneously on a set of synchronized actions and interleaves transi-

tions on other actions.

– Wolfgang Grieskamp, Nicolas Kicillof and Nikolai Tillmann [30]

5.2.5 Synchronous Reactive Languages

Our approach also has something in common with synchronous reactive languages such

as Esterel and Lustre. As described by Berry [12], synchronous reactive languages
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can be thought as executing in discrete steps, sometimes called “ticks”, and in the

introduction to his book [33] Halbwachs relates the concepts in synchronous reactive

programming to the work by Milner on synchronous process algebras. A major benefit

claimed for the synchronous reactive model is that it is deterministic:

Esterel is based on the perfect synchrony hypothesis: control transmission, signal broad-

casting, and elementary computations are supposed to take no time, making the outputs

of a system perfectly synchronous with its inputs. Perfect synchrony has the major ad-

vantage of making concurrency and determinism live together in harmony.

– Gérard Berry [12]

Authors in the area of synchronous reactive languages tend to distinguish reactive

from the transformational and interactive paradigms of computing, and claim the first of

the three as the domain of applicability of synchronous reactive languages:

Reactive systems are computer systems that continuously react to their environment at

a speed determined by their environment. This class of systems has been introduced in

order to distinguish these systems, on the one hand, from transformational systems,

whose inputs are available at the beginning of the execution and which deliver their

outputs when terminating – and, on the other hand, from interactive systems, which

continuously interact with their environment, but at their own rate (e.g. operating

systems).

– Nicholas Halbwachs [33]

This classification seems dubious, as PM would seem to show that the synchronous

approach can successfully be applied to interactive systems.

5.3 Summary

In this chapter we have positioned PM with respect to other paradigms and techniques

for the formal modelling of behaviour. We emphasize the idea that PM is concerned

with behaviour defined by the ordering of actions, and in particular how data and

behaviour interact.
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The synchronous nature of the composition in PM means that, in principle, every

machine in a model engages in every action, with some undergoing a change of state

and others “ignoring” the action. Between actions a model has a well-defined state,

allowing well-defined inter-machine data access. The resultant behaviour is determin-

istic, because it is not subject to race conditions between inter-process data access and

intra-process state change. In consequence, PM has the following properties:

• Composition is closed, in the sense that the composition of two protocol ma-

chine is another protocol machine. Deterministic behaviour and type safety are

preserved by composition.

• The behavioural equality of two machines is established independently of how

they are expressed as compositions and this means that a composition can be

“refactored” without changing its meaning. This can be exploited to engineer

specific formal properties, as it is in the approach to choreography described in

Chapter 9.

• A finite-state protocol machine can be expressed as a single LTS (without com-

position), so that its meaning is rendered in pure topology. However, as this

requires a state-space with a node for every combination of data value that can

occur it is not normally practical; so PM models use data attributes to abstract

the state-space and inter-machine access to describe behaviour constraints based

on these abstractions. In this sense, data and topology are dual in PM as one can

be represented using the other without change of meaning.

This is in contrast to other process algebras where composition is intended to model

independent agents or threads of processing, so composed processes are asynchronous

and there is no concept that topology and data are somehow equivalent or interchange-

able.

In Part III of the thesis we describe applications of PM. These applications address

both “object” and “process” modelling and this supports our contention, stated in

Chapter 1, that PM successfully spans the two paradigms.
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Topological Transformations

in discussing applications of PM in Part III we will be concerned to reason about be-

haviour defined as PM models. Generally, the basis for reasoning is topology and the

results are obtained using arguments based on the graphical representations. To pre-

pare for this, this chapter provides a repertoire of topological transformations that are

useful in developing and analyzing the behaviour of protocol machines expressed as

labelled transition systems.

6.1 Topological Representation

For the subset of machines that are termed stored-state (see Section 4.4.4) it is possi-

ble to use a labelled transition system (LTS) to represent an abstraction of the machine

definition. This abstraction captures the actions (sα) and decisions (sδ) parts of each

step and the relationship between the two. This is possible for stored-state machines

as the machine’s decisions are fully dependent on the actions. This form of represen-

tation is not defined for derived-state machines as their behaviour cannot be depicted

in topological form.

6.1.1 Topology Formalism

We define a representation of a stored-state machine as the tuple:

P = xΛP, ΣP, ΓP, ∆Py

where:

108
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ΛP is the alphabet of P, the set of actions which P does not ignore, as defined in Sec-

tion 4.5.3. Elements range over a, b, x, y, . . . .

ΣP is a finite set of states of P, as defined in Section 4.2.7.1. Elements range over σi,

σj, . . . .

ΓP Ď (ΛP ˆ ΣP) is a binary relation. xx, σiy P ΓP means that x is allowed by P when P

is in state σi. xx, σjy R ΓP means that x is not allowed by P when P is in state σj.

∆P is a total mapping ΓP Ñ power(ΣP)zt∅u that defines for each member of ΓP the next

state or states that P adopts as a result of allowing an action. So ∆P(xx, σky) =

tσl , σmu means that if P allows x when in state σk it will then adopt either state σl

or state σm.

If ∆P maps each member of ΓP to a single state, then P is deterministic. Note that in gen-

eral we do not assume determinism, although if used to represent a protocol machine

an LTS must be deterministic.

We also take it that an LTS for P has a single state ‚P P ΣP that is identified as the

initial state. This is the state that the machine is in after its initiation step (see Sec-

tion 4.2.4). We do not allow the initial state to have incoming transitions, so a machine

cannot return to it. (Any LTS that has returns to its initial state can be transformed into

one that does not by replicating the initial state and its transitions and removing the

incoming transitions from one copy).

A state σ that has no outgoing transitions, so tx | xx, σy P ΓPu = ∅, is called a

terminal state. An LTS is not required to have a terminal state and can have more than

one.

6.1.2 Transitions, Paths and Traces

It will be useful to identify the transitions in P uniquely. The labels given by ΛP do

not do this as it is quite possible for two transitions in the graph of an LTS to carry the

same action label.1

1Even if the LTS is deterministic, as the transitions carrying the same label can have different starting

states.
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Transition Identifiers. We give each transition of P a unique identifier, using elements

of the tuple ΘP Ď ΣP ˆΛP ˆ ΣP defined as:

ΘP = txσ, x, σ1y | (xx, σy P ΓP)^ (σ1 P ∆P(xx, σy))u

and define functions:

• label to extract the action label from a transition, and

• labels to extract a sequence of action label from a path.

Formal definitions of these are given in Appendix A.6.

Paths. A path is a sequence of elements from ΘP that represent a connected topologi-

cal route following the direction of the arrows on the transitions. For a representation

P we define:

• ΠP(σ) as the set of all paths starting at state σ.

• ÝÑΠP(σ) as the set of all finite paths starting at state σ but unable to progress be-

yond a return to a state already visited.

• ÝÑΠm
P (σ) as the set of maximal finite paths starting at state σ but unable to progress

beyond a return to a state already visited, so end by reaching a terminal state or

a state already visited).

Formal definitions of these are given in Appendix A.6.

Traces. The set tracesP = labels(ΠP(‚)) is the set of traces of P.

Fn: paths. To obtain the set of paths that correspond to a given trace we define the

function paths with signature:

paths :: tracesP Ñ power(ΠP(‚))

as:

paths(τ) = tπ | labels(π) = τ u
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If P is deterministic, so that:

@ τ P tracesP : π1, π2 P paths(τ)ñ π1 = π2

then we use path(τ) to return the single path for that trace.

6.2 Topology Weaving

Topology weaving constructs the topological representation of the parallel composi-

tion of two topological (stored-state) machines. The technique can be used repeatedly

to combine multiple machines. This is a well-known technique described elsewhere,

for instance Sassone et al. [72].

6.2.1 Weaving Representations

Suppose we have two stored-state machines, P and Q. Using the semantics of CSP ∥
composition we can create a representation of P ∥ Q as follows:

ΛP∥Q = ΛP ∪ ΛQ

ΣP∥Q = ΣP ˆ ΣQ (the Cartesian product of ΣP and ΣQ)

Given x P ΛP∥Q and a state xσp, σqy P ΣP∥Q, we determine whether xx, xσp, σqyy P ΓP∥Q

as follows:

xx, xσp, σqyy R ΓP∥Q

xx, xσp, σqyy R ΓP∥Q

xx, xσp, σqyy P ΓP∥Q

if (x P ΛP ^ xx, σpy R ΓP)

if (x P ΛQ ^ xx, σqy R ΓQ)

otherwise

and we construct ∆P∥Q(xx, xσp, σqyy) as follows:

∆P∥Q(xx, xσp, σqyy) = txσ
1
p, σqy | σ1p P ∆P(xx, σpy)u

∆P∥Q(xx, xσp, σqyy) = txσp, σ1qy | σ1q P ∆Q(xx, σqy)u

∆P∥Q(xx, xσp, σqyy) = txσ
1
p, σ1qy | σ1p P ∆P(xx, σpy) ^

σ1q P ∆Q(xx, σqy)u

if (x P ΛP ^ x R ΛQ)

if (x R ΛP ^ x P ΛQ)

otherwise

The initial state of the woven representation is ‚P∥Q = x‚P, ‚Qy.



6.3 Unwound Form 112

6.2.2 Reasoning with Woven Representations

Weaving representations enables topological reasoning about models expressed as a

composition. Behaviour of the model as a whole can be deduced based on the single

representation obtained by weaving the composites. This technique is used in Chap-

ter 9 to reason about choreography realizability.

6.3 Unwound Form

This chapter describes a topological transformation used in the context of reasoning

about choreography realizability. The transformation achieves a single unwinding of

all the cycles in an LTS.

UNWOUND FORM
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The unwound form on the right consists of the LTS formed from the members of Π (•) (shown solid ) combined with the 

original LTS omitting its start state (shown dotted). 

The traces of the solid sub-system (taking the dotted states to be end states) are exactly the members of Π(•). Those 

that revisit a previous state (flagged with * in the list above) end on the corresponding dotted state of the original LTS. 

P P

Figure 6.1: Unwound Form

6.3.1 Definition of Unwound Form

Given an LTS P with topological representation xΛP, ΣP, ΓP, ∆Py we proceed to create

the unwound form 8ÝÑP as follows:
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a. Consider the members of ÝÑΠ
m
P (‚) as the full set of complete traces of an LTS ÝÑP

with ΛÝÑP = ΦP. The traces of ÝÑP never have a repeated element, so ÝÑP is acyclic.

We form ÝÑP as follows:

• Use the equivalence relation technique described in Section 4.2.7.1 onÝÑΠ
m
P (‚)

to define the members of ΣÝÑP apart from the terminal states.

• For each π P
ÝÑΠ

m
P (‚) add a fresh member to ΣÝÑP as a terminal state for π.

b. Label each terminal state in ΣÝÑP with end(π), the end state of the path π P
ÝÑΠ

m
P (‚)

for which it was added.

c. Form the LTS 8P as a copy of P without its start state, so Φ 8P = ΦPztθ | θ P ΦP ^

begin(θ) = ‚Pu.

d. Form the unwound form 8ÝÑP by joining ÝÑP and 8P. The joining is done by identi-

fying each terminal state of ÝÑP with a state of 8P using the labels attached in step

b.

e. Convert the transition labels in the unwound form, so far labelled using ΦP, back

to labels from ΛP by converting θ to label(θ).

Figure 6.1 shows an example of the unwound form of an LTS. Note first that, by con-

struction, the unwound form 8ÝÑP has the same traces as P.

Note also that every state of 8ÝÑP maps to a single state of the original LTS P. For 8P

this is obvious as it is based on a copy of P. ForÝÑP it is because the equivalence relation

used to establish the states requires that two partial traces that are equivalent have the

same continuations. The begin state of the identifier of the first transition of any such

continuation fixes the equivalence class to a given state of the original LTS P.

6.3.2 Reasoning with Unwound Form

The purpose of creating the unwound form of an LTS is to reason about cycles. Sup-

pose a collaboration follows a cycle, so that a pattern of message exchange between

the participants is repeated as might happen in an negotiation scenario where partic-

ipants engage in cycles of bidding and counter-bidding. In such a situation there is

sometimes the possibility that messages from different instances of the cycle cannot

be distinguished, and this could result in participants misdiagnosing the state of the
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collaboration. Perhaps a message from the second iteration of the cycle arrives quickly

and is incorrectly interpreted as belonging to the first cycle.

In the unwound form the first iteration of any cycle is represented in ÝÑP whereas

subsequent iterations are represented in 8P. Provided it can be shown that messages

that correspond to transitions in ÝÑP can be reliably distinguished from messages that

correspond to exchanges in 8P, this kind of “cycle confusion” cannot take place.

6.4 Topological Reduction

Topological Reduction is a technique that we use in the context of choreography theory,

to extract participant contracts from a global definition of the behaviour of a collab-

oration. Given a machine P and a filter F :: ΛP Ñ boolean on the alphabet of P we

wish to define a reduced machine R whose alphabet (set of labels on transitions) is

tx|x P ΛP ^F (x)u and which satisfies:

t P tracesP ñ filterF (t) P tracesR (6.2)

In other words every trace in P has an equivalent trace in R.

Note that (6.2) in general allows R to introduce new traces, that were not present in P.

We will describe two methods of reduction, simple and exact, where the first can result

in new traces in the reduction and the second cannot. In the discussion of reduction in

choreography in Section 9.11 we will discuss the merits of exact reduction.
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Figure 6.2: Two Forms of Reduction



6.4 Topological Reduction 115

6.4.1 Simple Reduction

The simple reduction involves:

• Removing some of the transitions.

• Merging the states that are disconnected by the removed transitions.

The upper reduction on the right of Figure 6.2 shows an example. The reduced

machine is produced by removing transitions carrying the labels d or f .

Formally, simple reduction is defined as follows. Suppose that we have an LTS P

with topological representation xΛP, ΣP, ΓP, ∆Py. We define a binary relation Φ(F ,P) Ď

ΣP ˆ ΣP as:

xσi, σjy P Φ(F ,P) ô D x P ΛP with

␣F (x)^ (xσi, x, σjy P ΘP _ xσj, x, σiy P ΘP)

This means that a pair of states belongs to the relation Φ(F ,P) if there is a transition

between the two states in either direction using an action that is not retained by F .

We now define a relation R(F ,P) between states as:

σkR(F ,P)σl ô (σk = σl) _ D t P ΣP
˚ with:

(t1 = σk)^ (last(t) = σl)^ (1 ď i ă length(t)ñ xti, ti+1y P Φ(F ,P)) (6.3)

so σkR(F ,P)σl means that either σk and σl are the same state or there is a chain of states

that joins the two and all links of the chain are removed (not retained) by F . Note that

the transitions that form the links of the chain do not have to be in the same direction.

It is easy to see that R(F ,P) is an equivalence relation. We designate the set of equiv-

alence classes by Σ(F ,P) and the quotient function of the relation by: R(F ,P) :: ΣP Ñ

Σ(F ,P).

The construction of the reduction has two steps:
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Step 1. We create a machine PÓ as follows:

ΛPÓ = t θ | θ P ΘP ^ FΘ(θ)u (6.4a)

ΣPÓ = Σ(F ,P) (6.4b)

ΓPÓ = txθ, σy | FΘ(θ) ^ xlabel(θ), σ1y P ΓP ^ R(F ,P)(σ
1) = σu (6.4c)

∆PÓ(xθ, σy) = tR(F ,P)(σ
1) | σ1 P ∆P(xlabel(θ), σ2y) ^ R(F ,P)(σ

2) = σu (6.4d)

where:

• FΘ is defined in terms of the reduction filter F by FΘ(θ)ô F (label(θ))

• In (6.4c): σ P ΣPÓ and σ1 P ΣP.

• In (6.4d): σ P ΣPÓ and σ1, σ2 P ΣP.

Step 2. We form the reduction Pó by converting the labels on PÓ to elements of Λ(P)

using the label function, so a label x in PÓ is replaced by label(x) in Pó. The states

and transition topology of Pó is the same as that of PÓ, excepting that two or more

transitions using the same start and end states may be combined if they have they

same label after conversion.

This construction forms the LTS whose states are the equivalence classes of R(F ,P)

and from which transitions not retained by F have been eliminated. A transition in

Pó that is retained in the reduction under F joins, as its start and end states in Pó, the

images of the start and end states in P under the quotient function of F . The LTS Pó is

called the simple reduction of P under the filter F .

6.4.2 Exact Reduction

Exact reduction of a machine is a reduction that does not introduce any new traces. If

Pó is an exact reduction of P under a filter F then Pó satisfies:

tracesPó = tfilterF (t) | t P tracesPu (6.5)
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The key idea in creating Pó as an exact reduction of P is to use a set of states for Pó

that is the powerset of the set of states of P. A given state in Pó is the set of states that

could pertain in P after a given sequence of actions (transition labels) preserved by the

reduction.

Formally, exact reduction is defined as follows. Suppose that we have an LTS P with

topological representation xΛP, ΣP, ΓP, ∆Py and a boolean filter F :: ΛP Ñ boolean. We

wish to construct a machine Pówhose alphabet (set of labels on transitions) is reduced

to the set retained by F and which satisfies (6.5). The construction has two steps:

Step 1. We create a machine PÓ as follows:

ΛPÓ = t θ | θ P ΘP ^ FΘ(θ)u (6.6a)

ΣPÓ = power(ΣP) (6.6b)

ΓPÓ = t xθ, σy | FΘ(θ) ^ begin(θ) P σ u (6.6c)

∆PÓ(xθ, σy) =
!

t σ1 | D σ2 P σ and θ1 P ΘP and

π P prefixes(ÝÑΠ
m
P (end(θ1))) with

label(θ1) = label(θ) ^ begin(θ1) = σ2 ^

FΘ(π) = ăą ^ σ1 P visits(π) u
)

(6.6d)

where:

• FΘ is defined in terms of the reduction filter F by FΘ(θ)ô F (label(θ))

• In (6.6b) and (6.6c): σ P ΣPÓ.

• In (6.6d): σ P ΣPÓ and σ1, σ2 P ΣP.

Note that a value of ∆PÓ(xθ, σy) in (6.6d) is always a set containing exactly one member

of ΣPÓ.

Step 2. We form the reduction Pó by converting the labels on PÓ to elements of Λ(P)

using the label function, so a label θ in PÓ is replaced by label(θ) in Pó. The states

and transition topology of Pó is the same as that of PÓ, excepting that two or more

transitions using the same start and end states may be combined if they have they

same label after conversion.



6.4 Topological Reduction 118

The LTS Pó is called the exact reduction of P under the filter F . The construction uses

a state space defined in (6.6b) using the power set of the set of states of P. Each member

of a given element of ΣPó represents a set of states in P that could pertain, given the

actions that have been allowed so far. As defined in (6.6d) a transition for an action x

between σ and σ1 in Pó exists if and only if one or paths in P obey the following:

• Has a first transition with action label x.

• Starts from a state of P in σ,

• Following the first transition, has one or more continuation paths (possibly of

zero length) that are completely removed by the reduction filter, and which con-

tinuation paths visit states of P belonging to σ1.

Moreover, all the states of σ1 must be accounted for by visitation of a continuation

path generated as described above. The idea is that the end state σ1 in the reduction

represents exactly the uncertainty as to what state now pertains in P after an action,

given both that there may be more than one transition in P labelled with that action,

and the partial knowledge of what has taken place in P because some transitions are

filtered out and so “invisible” . Because the representation of uncertainty is exact, no

new traces can be introduced and thus the reduction satisfies (6.5).

6.4.3 Path-Deterministic Reduction

In both reduction methods, simple and exact, we define the process as two steps where

the first step generates an intermediate LTS PÓ that uses transition identifiers from P

as its alphabet. This intermediate LTS is called the path-labelled reduction of P. This is

used to form the final reduction Pó in the second step.

As the elements of the alphabet of the path-labelled reduction PÓ belong to ΘP (the

transition identifiers in P), each transition in PÓ corresponds to exactly one transition in

P.

The path-labelled reduction is more than just an artefact of the construction, as it

is used in the statement of conditions for realizability of a choreography discussed in

Section 9.6. The following definitions will be important in that context.
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PATH-NON-DETERMINISM

The path-labelled reduction of P to {x},      , has two transitions for x from the initial state 

so is path-non-deterministic.  (However      , in this case, is deterministic.)
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Figure 6.3: Path-non-deterministic Reduction

A reduction Pó is said to be path-non-deterministic if the following condition holds:

There is a state in the path-labelled reduction PÓ with outgoing

transitions labelled θ1 and θ2 with θ1 ‰ θ2 but label(θ1) = label(θ2)
(6.7)

Fig 6.3 shows an example. A reduction that is not path-non-deterministic is said to

be path-deterministic. Note that if Pó is path-deterministic then it is also bound to be

deterministic in the usual sense that every state has at most one transition for a given

label in its alphabet.

Fn: tranTrace. If Pó is path-deterministic then the transitions in PÓ and Pó are in

one-to-one correspondence and so the two systems are isomorphic. Moreover, because

if Pó is path-deterministic it is also deterministic, given τ P tracesPó we can obtain the

corresponding path as pathPó(τ). Under the isomorphism there will then be exactly

one corresponding path in PÓ. If we apply labels() to this path we obtain a trace in

PÓ corresponding to τ in Pó. This is called the transition trace for τ and we define

the function tranTrace :: tracesPó Ñ tracesPÓ to return it. Note that the elements of

tranTrace(τ) are members of ΘP, the transition identifiers in P.

6.4.4 Ambiguous States

We will be interested in whether a state in a reduction maps to a unique state of the

original machine. A state σ P ΣPó is termed unambiguous iff:

@ σ1 P σ : (σ2 P ΣPó)^ (σ1 P σ2)ñ (σ2 = tσ1u) (6.8)

where σ1 P ΣP and σ, σ2 P ΣPó.
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The condition (6.8) requires that σ contains only a single state of P, and that this

state of P is always by itself in any state of Pó to which it belongs. A state that is not

unambiguous is termed ambiguous.

6.5 Connected Form

Finally we define the creation of a topologically connected stored-state approximation

of a derived-state machine called the connected form. The motivation for creating a

connected form of a derived-state machine is to allow application of a topological rea-

soning technique that demands a stored-state form. Examples of using connected form

machines in formal reasoning will be found in Chapter 9.
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Figure 6.4: Suspendable Bank Account
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Figure 6.5: Connected Form
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Figure 6.4 shows a bank account that can be suspended. When in the suspended

state Account2 prevents any Withdraw action. The left side of Figure 6.5 shows a further

derived-state machine Account3 which controls when Close, Release and Suspend may

take place based on the balance of the account. The right hand side of Figure 6.5 shows

Account3˚ which is a connected form representation of Account3. While the original

uses a derived state, the connected form is a traditional stored-state machine.

The connected form uses the transitions shown as dashed arrows in Figure 6.5 as a

surrogate for the state function. Whereas the state function tells us exactly the effect

of depositing or withdrawing funds on the state of the machine, the surrogate transi-

tions can only show the possibilities. Generally the transitions added as surrogates

for a state function create a machine that is non-deterministic, so does not qualify as a

protocol machine. This is the case here and Account3˚ is non-deterministic. The con-

nected form, however, is a derivative created only for topological analysis/reasoning

purposes. It does not replace the machine from which it was derived.

6.5.1 Creation of Connected Form

Creation of the connected form of a derived-state machine is done in three steps:

Step 1. Form the state space as defined by the machine’s state function, but with the

addition of a ‚ for the initiated state.

Step 2. Add transitions between the states to create a topological surrogate for the

state function.

Step 3. Create transitions representing the constraints of the original machine, but in

topologically connected form.

Step 1 identifies the three states: t‚, in credit, overdrawnu. In step 2, transitions (shown

as dashed for graphical emphasis) are added as a surrogate for the state function. In

step 3, transitions for Close, Suspend and Release are shown, starting and ending in the

same state as they do not affect the state of this machine.

Step 2 merits some elaboration. The transitions that need to be added in this step

(those shown as dashed arrows) are identified as follows:
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• The state function is examined to determine the set of attributes referenced in the

calculation. In this case, it is just balance from Account1.

• The machine(s) that own these attributes are examined to determine which tran-

sitions cause their values to change. In this case it is Open, Deposit and Withdraw

as can be seen from the update bubbles attached to these transitions in Account1.

• Corresponding transitions are added to each state of the connected form machine

being constructed, according to how they can alter the state. For instance, With-

draw decreases the value of balance so its effect on Account3˚ is either to leave

the state unchanged or to cause it to change from in credit to overdrawn.

Finally note also that, in some cases, step 3 may involve removing transitions added

in step 2. Suppose that Account3 were to constrain Withdraw only to happen in the

state in credit, as it does Close, then the dashed transition for Withdraw starting from

overdrawn added in step 2 would be removed in step 3.

6.5.2 Formalization of Connected Form

The notion of a connected form can be formalized as follows. Suppose that we have a

model M defined over a universe U, so that M is an independent machine with ΩM =

UzA. Suppose P is a derived state component machine of M. The connected form

machine P˚ is an independent version of P whose topology can be used to reason

about the effect P in M. We assume that P is finite-state protocol machine with a state

attribute stateP P ΩP.

The connected form P˚ is defined as:

ΩP˚ = tstatePu (6.9a)

BP˚ = restr(BM , A∪ tstatePu) (6.9b)

The connected form P˚ of P is created per (6.9) by redacting M so that the offered

data is only the state of P. The machine so generated will not, in general, conform to the

well-formedness conditions (4.10d) and (4.10e) for a protocol machine so an LTS con-
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structed using the recipe given in Section 4.4.4 will, in general, be non-deterministic.2

Nevertheless, the LTS so constructed will show:

• the possible effect of all actions in the model on the state of P, and

• the constraining effect of the state of P on all actions of the model.

and can be used to reason about the effect of P in M, as follows.

By (6.9b) BP˚ is an abstraction of BM and so any sequence of actions or transitions

between states not possible in P˚ will not be possible in M either. Thus machine

Account3˚ in Figure 6.5 can be used to make assertions about the sequencing of actions

that Account3 allows, for instance:

• A Suspend cannot immediately follow an Open.

• A Release or Close cannot immediately follow a Suspend.

As observed in Section 5.1.4, rendering a full model in pure topological form generally

results in a state space too large to handle, a well known problem in topological model

proving known as state space explosion [51]. Using connected form machines allows a

degree of such reasoning while keeping the state space small.

2Strictly speaking, this procedure would not generate a topological representation with a ‚ as the

initial state. However this is normally added, as it has been in Account3˚ in Figure 6.5, to comply with

the conventions for LTS topology given in Section 6.1.
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Chapter 7

Object Modelling

As the introduction to this thesis explains, PM originally emerged from ideas in object

modelling and this chapter expands on this theme by describing the use of PM as an

object modelling medium. To motivate the use of PM in this context, consider the

following example.

A certain bank allows its customers to open and maintain any number of separate accounts,

but imposes the rule that a customer may only withdraw funds from an account if the result

of the withdraw is that she remains in credit overall (where “overall” means across all of her

accounts).

A graphical model for this is shown in Figure 7.1.

7.1 The Challenge

A significant driver in the development of PM was the apparent difficulty of extending

earlier methods of object lifecycle modelling to cases such as the one sketched above.

Consider the Shlaer/Mellor model of a bank account shown on the left side of Fig-

ure 1.1. To adapt this model for the rules given above, our reasoning might proceed as

follows:

• Clearly the machines for each account will maintain the individual account bal-

ances. The overall balance will need to be kept by the customer machine.
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CUSTOMER & ACCOUNT

closed
Open

Deposit

Close

acct-no := Open.acct-no;
owner := Open.customer;
balance := 0;

balance := balance + 
Deposit.amount;

active

Withdraw

Account

balance := balance –
Withdraw.amount

D
State Function:
if (Account.owner.totalBalance ≥ 0) 

return “customer in credit”;
else    return “customer overdrawn”;

Withdraw

Funds Check

Register

OpenCustomer

totalBalance:
totalBalance := 0;
for acct in select(Account where Account.owner == th is) {

totalBalance := totalBalance + acct.balance;
}

return totalBalance;

registered

customer

in credit

Customer models a customer. 

A customer first registers 

after which she may open any 

number of accounts. 

customer := Register.customer;

Customer also owns a 

derived attribute 

totalBalance which is the 

net balance of all accounts 

held by the customer.

Account enforces the basic 

protocol of the account and 

maintains the balance.

Funds Check enforces the 

rule that a withdraw cannot 

take the customer 

overdrawn overall (in terms 

of the net position on all 

accounts held).

An account is modeled as

Account Funds Check||

customer

overdrawn

Figure 7.1: Customer and Account

• This means that all actions that affect the customer balance, all the deposits and

withdraws for all the customer’s accounts, must be fed to the customer machine.

• As only it knows the funds available in the overall balance, the customer machine

has to make the determination of whether a withdrawal is allowed. If it allows

a withdrawal it must update its own record of the overall customer balance and

forward the withdraw to the account to which it applies.

As well as being complex, this scheme violates the DRY (“Don’t Repeat Yourself”)

Principle.1 This principle, which has no formal basis in computer science, distils accu-

mulated practical experience in building models where data and behaviour interact,

1See http://en.wikipedia.org/wiki/Don’t_repeat_yourself

http://en.wikipedia.org/wiki/Don't_repeat_yourself
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and holds that models that contain redundancy tend to be more complex, fragile and

difficult to amend than models that do not.2 Keeping a total balance at the customer

level is not compatible with this principle, as it can be derived from the balances in the

individual accounts.

An alternative might be to consider having the customer machine read and sum the

balances from the individual accounts, but as the machines in a Shaer/Mellor model

operate asynchronously it is hard to see how it would be possible to prevent updates to

individual accounts while the summing process is underway. It is then not possible to

maintain the discipline that customer remains in credit overall. This is the same issue

that was discussed in section 2.1. Perhaps some kind of locking mechanism could be

used to prevent updates in the accounts while summing is in progress. This would re-

quire a mechanism along the lines of that in “LOTOS with Global Variables” examined

in Section 5.2.1 with the problems of complexity noted there.

Adaptation of the Jackson notation shown on the right side of Figure 1.1 presents

different issues. The notation used for action ordering is essentially a graphical form

of regular expression (using * to represent repetition and o for selection) and does not

support ordering constraints based on data, such as the constraint on Withdraw based

on balance that we require here.

Data intensive systems are riddled with behavioural rules of the sort exhibited in

this example, presenting us with the challenge of being able to represent such rules

simply and without the need for redundancy of fact. Meeting this challenge was a key

driver in the development of PM.

The use of PM for building such models is an example of the Constructive mode of

use, as described in Section 4.4.5.

7.2 ModelScope

ModelScope is a language and tool created by the author and a colleague, Nicholas

Simons, to explore the possibilities of executable PM models. The main features of

ModelScope are:
2The author can attest to the value of this principle from his own experience in software engineering.
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MODEL Bank

# OBJECT definitions

OBJECT Customer
NAME Full Name
ATTRIBUTES Full Name: String, !Total Balance: Currency
STATES registered
TRANSITIONS @new*Register=registered, registered*Open=registered

OBJECT Account
NAME Account Number
INCLUDES Funds Check
ATTRIBUTES Account Number: String, Owner: Customer, 

Balance: Currency
STATES active, closed
TRANSITIONS @new*Open=active, active*Close=closed, 

active*!Cash Deposit=active, active*!Cash Withdraw=active

BEHAVIOUR !Funds Check
STATES customer in credit, customer overdrawn
TRANSITIONS @any*Cash Withdraw=customer in credit

# EVENT definitions

EVENT Register
ATTRIBUTES Customer: Customer, Full Name: String

EVENT Open
ATTRIBUTES Account: Account, Owner: Customer, 

Account Number: String

EVENT Cash Deposit
ATTRIBUTES Account: Account, Amount: Currency

EVENT Cash Withdraw
ATTRIBUTES Account: Account, Amount: Currency

EVENT Close
ATTRIBUTES Account: Account

CUSTOMER AND ACCOUNT – MODEL FILE

The “!” indicates  that  this machine 

has a derived state.

The “!” indicates  that  this 

transition uses an update function. 

The “!” indicates  that  this attribute 

is derived.

The INCLUDES indicates that Funds 

Check is composed with Account. 

EVENT is the term ModelScope uses 

for action.

Figure 7.2: Customer and Account - Model File

• A textual modelling medium, using a combination of a new language to describe

protocol machines (Figure 7.2 shows the model definition for the Customer and

Account example in this language); and Java for defining functions required to

perform updates and derive attributes and states (Figure 7.3 shows the Java func-

tions for the Customer and Account example).

• An execution environment that interprets the model to generate a browser based

run-time user interface. Figure 7.4 shows a snapshot of the user interface running

the Customer and Account model. In the snapshot the user has just attempted a

Cash Withdraw from Account 001 belonging to customer Fred that exceeds Fred’s
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public class Customer extends Behaviour {

// Calculate the Total Balance for the Customer
public int getTotalBalance() {

int totalBal = 0;
Instance[] myAccounts = this.selectByRef("Account", "Owner");
for (int i = 0; i < myAccounts.length; i++)

totalBal = totalBal + myAccounts[i].getCurrency("Balance");
return totalBal;
}

}

public class FundsCheck extends Behaviour {

// Return state based on the Total Balance of the Owner of the Account
public String getState() {

return (this.getInstance("Owner").getCurrency("Total Balance") < 0) ? 
"customer overdrawn" : "customer in credit";

}

}

public class Account extends Behaviour {

// Update Balance for a Deposit
public void processCashDeposit(Event event, String subscript) {

int newBalance = this.getCurrency("Balance") + event.getCurrency("Amount");
this.setCurrency("Balance", newBalance);
}

// Update Balance for a Withdraw
public void processCashWithdraw(Event event, String subscript) {

int newBalance = this.getCurrency("Balance") - event.getCurrency("Amount");
this.setCurrency("Balance", newBalance);
}

}
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Figure 7.3: Customer and Account - Call Backs

overall balance. This has taken the account into the state customer overdrawn and

generating a post-state error in the Funds Check machine.

The specification of ModelScope was done before much of the theoretical work on

the denotational semantics of PM given in the first part of this thesis; and while it

is largely faithful to the theory that has since been established it is not a complete

implementation of PM and in some minor ways is incorrect.
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Figure 7.4: Customer and Account - ModelScope

7.3 Modelling Variation

This section is concerned with the question of how to model behavioural variants. We

examine the traditional inheritance based approach and compare it with the composi-

tional approach in PM. The key question is how inheritance of behaviour should work.

7.3.1 Inheritance of Behaviour

Extending inheritance to include behaviour is problematic because the normal mech-

anisms of inheritance, as applied to attributes and operations (methods), do not apply

to behaviour in any obvious way. Attributes and operations take the form of a list or

collection of individual items, and these lists can be refined by selectively overriding

individual members of the list and/or extending the list by adding new members. But

the behaviour of an object, if represented as a single modelling artefact such as a UML

Statechart, is a single undifferentiated entity. There is no obvious simple way of merg-

ing multiple statecharts, or of extending or refining all or part of a single statechart.

Most research into how behaviour should be inherited has focused on making for-

mal statements about the relationship between the behaviour of a child and the be-

haviour of its parent in a generalization hierarchy. Taking their cue from the work
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done by Liskov on typing structures [52], the “Three Amigos” in their UML Users’

Guide [15] give substitutability as the proper determinant of compatibility between par-

ent and child in a generalization hierarchy:

A generalization is a relationship between a general thing (called the superclass or par-

ent) and a more specific kind of that thing (called the subclass or child).

. . .

The child may even add new structure and behaviour, or it may modify the behaviour of

the parent. In a generalization relationship, instances of the child may be used anywhere

instances of the parent apply - meaning that the child is substitutable for the parent.

– Grady Booch, James Rumbaugh and Ivar Jacobson [15]

However UML gives no rules for Liskov conformant refinement of statecharts, and

subsequent academic work to formulate such rules has shown that it is not simple, as

evidenced by the following quote from Simons et al. in their paper [75] on this subject:

The basic premise of component substitutability is ‘no surprises’, yet these examples

show how difficult it can be to avoid unexpected behaviour or even failure. The syntac-

tic rules for matching interfaces are well known: a component must provide at least as

many methods as expected, and the signatures of those it provides must match (be sub-

types of, with covariant results and contravariant arguments) the expected signatures.

However, previously published semantic rules for matching behaviour have ranged from

the cautious to the liberal.

– Anthony Simons, Michael Stannet, Kirill Bogdanov and Michael Hol-

colme [75]

Other researchers into behaviour refinement and conformance have concluded that

substitutability does not uniquely define conformance and have proposed different

kinds of conformance. For instance:

• Ebert and Engels propose observable compatibility or invocable compatibility [21]

• Schrefl and Stumptner propose observation consistency, weak invocation consistency

or strong invocation consistency [73]

• van der Aalst and Basten propose protocol inheritance, projection inheritance, proto-

col/projection inheritance or life-cycle inheritance [76]
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It seems that different kinds of conformance align to different circumstances or require-

ments, although determination of the appropriate alignment is still a matter of debate.

7.3.2 Mixins

A key observation in PM is that if R = P ∥ Q then R has conformance of the kinds

underlined in the list above to both P and Q. This is by virtue of the semantics of

composition, and there is no requirement to follow any refinement rules. The natural

approach in PM is to create machines that represent partial definitions and to model

variation by combining these machines in different combinations in the style of “lego

bricks”. This corresponds to the paradigm known as mixins which first appeared in the

Flavors programming language developed by Howard Cannon in the late 1970s [19]

and discussed from a theoretical point of view by Bracha and Cook [16].

Object-oriented programming systems have typically been organized around hierarchi-

cal inheritance. Unfortunately, this organization restricts the usefulness of the object-

oriented programming paradigm. This paper presents a non-hierarchically organized

object-oriented system, an implementation of which has been in practical use on the

MIT Lisp Machine since late 1979.

– Howard Cannon [19]

Others have expressed a similar view that composition has advantages over inher-

itance.

Favor object composition over class inheritance.

– Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides [28]

Figure 7.5 shows a set of machines that could be used as mixins to build differ-

ent kinds of bank account. The repertoire of accounts in a system would be deter-

mined by the instantiable assemblies seeded in the model at initiation (as described in

Section 4.6.3) or, equivalently, the assemblies modelled by the INCLUDES structures in

ModelScope. The table in the lower part of Figure 7.5 shows the relationship between

the actions shown as labels on the transitions in the graphical syntax and how these

might be represented as action fields. Note that the mixins in Figure 7.5 are object ma-

chines, as defined in Section 4.6.2; and that the term this used in the state functions and
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BANK ACCOUNT MIXINS

D

State Function:
if (this.balance ≥ this.limit) return “in limit”;
else return “over limit”;

Funds Out

Limit Control

over

limit

in

limit

D

State Function:
if (this.balance ≥ 0)return “in credit”;
else return “overdrawn”;

Close Control

Close

in

credit

over-

drawn

closed
Open

Funds In

Close

balance := 0;

balance := 
balance + 
Deposit.amount;

active

Funds Out

Balance

balance := 
balance –
Withdraw.amount;

Mixins that can be combined to build 

different kinds of Bank Account.
Open

Suspend

Suspension

suspended

Release

released

Funds Out

||||||

Open

Deposit

Withdraw

Transfer

opened

Current

limit := Open.limit;

Open

Deposit

Transfer

opened

Savings

Graphics Action Fields

Machine Action Label Account Type Action Type Account Direction Source Target

Current Open ”Current” ”Open” this ”Neither”

Deposit ”Deposit” this ”In”

Withdraw ”Withdraw” this ”Out”

Transfer ”Transfer” ”Both” this

Transfer ”Transfer” ”Both” this

Savings Open ”Savings” ”Open” this ”Neither”

Deposit ”Deposit” this ”In”

Transfer ”Transfer” ”Both” this

Transfer ”Transfer” ”Both” this

Suspension Open ”Open” this ”Neither”

Suspend ”Suspend” this ”Neither”

Funds Out this ”Out”

Funds Out ”Both” this

Release ”Release” this ”Neither”

Balance Open ”Open” this ”Neither”

Funds In this ”In”

Funds In ”Both” this

Funds Out this ”Out”

Funds Out ”Both” this

Close ”Close” this ”Neither”

Limit Control Funds Out this ”Out”

Funds Out ”Both” this

Close Control Close ”Close” this ”Neither”

Figure 7.5: Bank Account Mixins
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in the table in Figure 7.5 refers to the common object id of a composition of mixins that

forms a single object.

If used as the replacement for inheritance, mixins provide an expressive power

equivalent to multiple inheritance [16]. While mixins have been supported as con-

structs in programming languages, for example in Lisp, Simula, Python and Smalltalk,

they have not generally been seen as a construct in modelling languages, which have

tended to employ hierarchical inheritance structures.

PM modelling supports various kinds of re-use and polymorphic behaviour, for in-

stance in the account example:

• The Balance machine can be used in any type of account to maintain a balance.

• The Limit Control and Close Control can be used in any account that has a balance,

whether that balance is maintained by a Balance machine or in some other way.

• The Funds In and Funds Out actions in the Balance machine do not have a spec-

ified action type and are thus abstract. If a new action Charge Fee were introduced

and it was also coded as (Account=this) and (Direction="Out") it would cause

the balance to be decremented without any change to the Balance machine.

The ability of PM to model a complex domain and to support evolution of the model

as the domain changes is noted by Verheul and Roubtsova in an exercise modelling the

Health Insurance Industry [79]:

Two sorts of conclusions can be drawn from this study. Firstly, the paper illustrates the

property of local changeability of protocol models using the real process of changes tak-

ing place in insurance industry. The changes in insurance products introduced in the

last six years were modelled locally. Even changes in the business process (Personal

Budget and Mandatory Deductibles) remained local as they were modelled as new

protocol machines. New protocol machines were equally composed with the existing

protocol machines in the model and the ordering of sequences of accepted events of old

machines was preserved in the new model. Localization of changes in the business

process is the direct consequence of the CSP parallel composition used in Protocol Mod-

elling and cannot be achieved in many other conventional notations, for example in state

machines and activity diagrams.
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Secondly, the result of the study is an executable and evolvable reference model of the

Health Insurance Applications that combines the types of Insurance Products available

at the moment. The model is abstract, technology independent, represents entities, re-

lationships and business processes and embodies the basic goals and ideas of Insurance

Applications. Based on these properties . . . the model can be seen as a reference model

for the Health Insurance Industry.

– Jaco Verheul, Ella Roubtsova [79]

7.3.3 Mixins as Aspects

Modelling based on hierarchies is prone to what Ossher and Tarr refer to as the “Tyranny

of the Dominant Decomposition” [66], whereby the structure of the model will be dom-

inated by the model architect’s view of the key elements of the model and their rela-

tionships and connections. The more a core modelling language imposes hierarchical

structures on a model, the less likely that all the elements of a problem and their rela-

tionships can be accommodated, as the structure chosen for some elements necessarily

means that others cross-cut. This problem is immediately manifest with single inheri-

tance structures, where the single hierarchy of the class structure is the tyrant, and the

modeller has to resort to using a specialist techniques (such as aspect based modelling

languages) to represent those elements that clash with the main structure.

As observed by Filman and Friedman [24] and by Apel et al. [3], a pure mixin ap-

proach has no requirement for hierarchy and thus helps avoid this tyranny.

In using inheritance to achieve aspects, single superclass inheritance systems require all

aspects to match the class structure of the original program, while multiple inheritance

systems allow quantification independent of the program ’s dominant decomposition.

Mixins with multiple inheritance are thus a full aspect-oriented programming technol-

ogy.

– Robert Filman and Daniel Friedman [24]

The use of PM for aspect-oriented modelling has been examined by the author and

Roubtsova in [55].
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7.4 Conclusions and Further Work

As presented in the introduction to this thesis, PM has its origins in early notions about

object modelling which promoted the importance of modelling object states and lifecy-

cles. PM has built on this ambition by providing a language for modelling behaviour

that supports abstraction and polymorphism. The compositional style of PM is in con-

trast to the mainstream of OO programming, but is arguably well suited to the aim

of modelling leading naturally to a “mixin” approach to the creation of behavioural

variants.

The ModelScope tool has enabled PM to be used to build and refine object models

in industrial applications. Such models are executable and can be used to validate

abstractions in the context of creating a software design or creating domain reference

models. Ideally the output from such an exercise should feed directly into develop-

ment of the final software but, given the mismatch with established programming

structures mentioned above, this is not straightforward and work is required to make

this seamless.

Further work in this area could include investigation of the following questions:

• Could PM ideas be used as the basis for a programming language that sup-

ports direct expression of the interaction between state and behaviour, perhaps

building on the work done by Aldrich et al. on a paradigm they call “Typestate-

Oriented Programming” [2]?

• How does the expressive power of PM mixin-based modelling compare with

the more usual inheritance-based approaches, particularly multiple inheritance

schemes; and how does the associated typing scheme fit with established formal

notions in inheritance and typing, such as the Liskov Substitution Principle?



Chapter 8

Contracts

This chapter explores the idea of contracts as partial specifications of software systems.

We start by introducing a general framework for defining the semantics of contracts in

software engineering. We then describe a form of behavioural contract called a protocol

contract that uses PM as its form of expression. This form of behavioural contract plays

an important role in the work on choreography in Chapter 9.

8.1 The Challenge

The idea of using contracts in the design and testing of software is well established,

particularly because of the work of Bertrand Meyer in promoting Design by Contract1

(DbC) [56]. DbC is primarily about ensuring the correctness of the design of algorithms,

where an algorithm is given a starting state (which can be thought of as the input to

the algorithm) and executes to an ending state (which can be thought of as the output

from the algorithm). A simple DbC contract is specified in terms of conditions on the

starting and ending states termed pre- and post-conditions. An algorithm satisfying the

contract will guarantee that, provided the starting state meets the pre-conditions, the

ending state will meet the post-conditions. This is a simple yet powerful concept. For

example, the contract for a “sort” algorithm might be specified as follows:

• The pre-condition is that a finite list of items is provided, and the items in the list

support a collating operator whereby any two items in the list can be compared

1“Design by Contract” is a registered trademark of Eiffel Software in the United States.
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to determine whether they are equal or, if not, which is greater.

• The post-condition is that the ending state contains the same items as the start

state, but arranged in non-descending sequence by the collating operator.

This completely and formally defines what is required of the sort algorithm, indepen-

dently of the construction or selection of an algorithm to implement it. DbC works

well here because we are able to define the result of the sort without needing to specify

or constrain in any way the intermediate states the software may take up during the

computation. The concepts and terminology of contracts: pre-conditions, post-conditions,

assertions and invariants have now become part of the currency of software engineering,

and many programming languages provide support for DbC. The entry for Design by

Contract in Wikipedia lists over a dozen languages with native support, and numerous

products that provide non-native support for DbC.

It is tempting to suppose that the ideas of DbC are universal in computing and can

be carried across seamlessly to the world of interactive software, but this is not the case.

In a lecture entitled “Turing, Computing and Communication” given by Robin Milner

in 2006 celebrating the work of Alan Turing, he calls the world of algorithm the Old

Computing, and the world of interaction the New Computing [61] and advocates that the

two worlds should be thought of as different paradigms. Interaction involves protocol

as well as computation and this complicates the idea of contractual conformance. If an

interactive software component must obey a certain protocol in communicating with

its environment, how do you specify the protocol in the contract? Is it enough that

interactive software observes the correct protocol if this ensures that it is compatible

with its environment? Or must its contract specify the computation it performs as well

as its protocol?

More recently the same question, concerning how to achieve a formal abstract speci-

fication of behaviour, has emerged in the arena of executable process languages (BPEL):

The WS-BPEL specification also introduces the concept of abstract processes: In con-

trast to their executable siblings, abstract processes are not executable and can have

parts where business logic is disguised. Nevertheless, the WS-BPEL specification intro-

duces a notion of compatibility between such an under-specified abstract process and a
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fully specified executable one. Basically, this compatibility notion defines a set of syn-

tactical rules that can be augmented or restricted by profiles. So far, there exists two such

profiles: the Abstract Process Profile for Observable Behavior and the Abstract Process

Profile for Templates. None of these profiles defines a concept of behavioral equivalence.

– Dieter König, Neils Lohmann, Simon Moser, Christian Stahl and Karsten

Wolf [45]

The challenge in this area can be summarized thus: How do we make the concept

of contract more general, so that it can be extended from its traditional domain of

algorithms to apply to interactive behaviour?

8.2 A Framework for Contract Semantics

The paper suggests a general theory of contracts, where a contract is seen as a lemma in

the proof of a property of a system. If the lemma is satisfied by a component, then the

overall system, embedding that component, should satisfy the property.

Like all good ideas, this seems obvious once you see it.

– Mehmet Akşit (In a peer review of the author’s paper [53])

First we propose a conceptual framework for contracts in software. The central idea is

that the semantics of a contract must be defined with reference to a proposition about

the software system as a whole, and that satisfaction of the contract will ensure that it

is true. Based on this we propose a framework for thinking about contracts, as follows.

For a given system S and contract C we require:

• A formal system of reasoning T .

• A proposition P that we require to be true of S.

• A set E of statements true of S and which when combined with the fact that C is

satisfied in S enables construction of a proof of P in T .

The idea is that the predicate “the contract C is satisfied” is a required component of

the proof of the proposition P . By ensuring that S satisfies C we ensure that P is met
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in S. While framework defines what is guaranteed by satisfaction of C (the proposition

P) it says nothing about how we determine whether or not S meets C.

Suppose it is possible to replace part of S in such a way that E is preserved but C

is not necessarily preserved. We can say that a replacement “substitutes” if it ensures

that C is satisfied and thereby preserves the truth of P . Substitutability is therefore

defined in terms of the proposition P, and a replacement that successfully substitutes

for the proposition P may fail to do so for another predicate P1.

As concrete examples of application of this framework, we apply it first to DbC and

then consider its application to interactive software.

8.2.1 Application to Design by Contract

DbC has its origins in Hoare Logic [37], a system for formal reasoning about the cor-

rectness of algorithms. Hoare Logic is used to establish one of two forms of correctness

in an algorithm:

• Partial Correctness, which simply requires that if an answer is returned by the

algorithm it will be correct.

• Total Correctness, which additionally requires that the algorithm terminates.

If we are to base a contract framework on Hoare Logic (as DbC is based), then these

forms of correctness are the propositions that can be established. We can therefore

think about the semantics of contracts in DbC by equating as follows:

• T is Hoare Logic.

• P is a statement of correctness (partial or total) of S.

• E is a partial proof of P in the form of a set of statements about S in Hoare Logic.

• C is a contract specified in DbC form.

The notion here is that C relates to a replaceable procedure or function invoked within

S; and the proof is an argument in Hoare Logic showing that P is true of S. Assuming

that E is not affected by the substitution of the procedure or function, then if such

replacement meets C we know that P remains true in S.
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It may be that the structure of the proof of P is composed of many contracts, C1 +

C2 + C3 + . . . ; and it can be recursively decomposed, so C1 = C11 + C12 + C13 . . . .

Exploiting this, of course, is the idea behind the DbC strategy for software develop-

ment. However, this recursive structure is a property of Hoare Logic and procedural

algorithms, and not inherent in the proposed contract framework.

8.2.2 Application to Interactive Software

The key to thinking about contracts for interactive behaviour is to note that we are gen-

erally not concerned, or not necessarily concerned, with whether or not a “correctly”

computed answer is returned. Consider playing chess against a computer chess game.

Both you and the software will expect that a protocol is observed whereby each of you

alternates with moves, and that the moves are legal according to the rules of chess. But

it doesn’t make sense to talk about “correctness” of the interaction, in the sense that

this word is used for algorithms.

Consider a player, D, who is completely deterministic in that there is only one move

that D will make for a given configuration of the board; and a chess game G against

whom D plays. We can ask: what proposition we would like to be true of the sys-

tem D + G, where + represents “plays against”, for the purposes of considering what

contract the game G should satisfy? Some possibilities are:

a. D + G always executes a valid game of chess, and is deterministic so that there

are only two distinct games that ever get played; which one of the two occurs

being determined by who has the first move.

b. As above, except that D + G is non-deterministic so that many different games

are possible.

c. As above, except that D always wins.

Of these, perhaps the second seems the most useful. In terms of the substitutability of

G, the second would mean that, having replaced G with G1, you would still be able to

play chess, but the games would be different and perhaps better. It is often the case, as

it is here, that the protocol is important but the computation is not; so the computation

(algorithm) by which the chess game computes its next move from the disposition of

pieces on the board does not form part of the contract. This is in contrast with classical

DbC, which is entirely concerned with the results of algorithmic computation.
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The general implication of our framework is that, if you wish to use contracts as

part of a software engineering process, you have to decide on the proposition whose

truth you want the contract to enforce, and you have to decide on the reasoning system

that is to be used as the basis for verification. These will then determine the form

and nature of the contract you should use. In the context of procedural algorithms,

Hoare Logic and the correctness propositions it supports are the obvious choice. In

the context of interactive software, because of the complexities of interplay between

computation and protocol, there are other choices that can be made. The following

sections describe a form of contract based on PM, called a protocol contract. In the

next chapter, Chapter 9, protocol contracts will be used in the context of a proof of

the proposition that a collaboration choreography is realizable; and this represents an

example of the framework described above in the domain of interactive software.

8.3 Protocol Contracts

This section describes a kind of behavioural contract called a protocol contract defined

using PM.

8.3.1 Protocol Contract Formalization

A protocol contract C defined in a universe U is specified as a pair xC, Fywhere:

C is an independent protocol machine defined over U, called the

contract machine of C

F is a subset of the alphabet of C, F Ď alphabetC, called the fully

constrained actions of C

(8.1)

An independent protocol machine M satisfies a contract C, written M $ C, iff:

M ∥ C = M (8.2a)

and:

@ A P F : D an independent machine X such that M = X ∥ C and

s P asSet(BX) with con(A ∪ sα)ñ sδ ‰ refuse
(8.2b)
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The first condition (8.2a) means by (4.45) that alphabetC Ď alphabetM. You would

not expect a design (M) to satisfy a contract (C) if its alphabet does not include all the

actions in the alphabet of the contract. Note that the composition is heterogeneous,

otherwise the equality would not be possible.

The second condition (8.2b) requires that if an action A is fully constrained by the

contract then contract machine C fully determines whether the action will be refused

or not by M. Whereas being allowed by the contract C is always a necessary condition

for an action A P alphabetC to be allowed by a machine M $ xC, Fy, if A P F then

being allowed by C is a necessary and sufficient condition for A to be allowed by M

(assuming that M is robust, so does not crash). We give an example in the next section.

8.3.2 Protocol Contract Example

Consider Figure 8.1. The left hand side specifies a contract for the behaviour of a bank

account. The right hand side shows the design of a bank account, Account = Account1 ∥
Account2 ∥ Account3. We now show that the design satisfies the contract.

Account clearly obeys the upper part (state machine) of the contract, as the state

diagram Account1 of the Account is the same as the state diagram, C, of the contract.

This means that Account ∥ C = Account, thus meeting (8.2a).

We now wish to show that Account meets the lower part of the contract, which lists

the events that are fully constrained by the contract. To do this, consider the Account

reformulated as shown in Figure 8.2 so that:

Account = Account11 ∥ Account12 ∥ Account2 ∥ Account3

In this reformulation, the machine Account1 has been split into two machines, Account11

and Account12. The first of these specifies the action sequencing on Open, Deposit, With-

draw and Close; and the second maintains the balance but does not constrain action

sequencing.

The machine Account11 is now identical to C, so:

Account = C ∥ Account12 ∥ Account2 ∥ Account3
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The machine Account12 ∥ Account2 ∥ Account3 plays the role of X for both Open and

Deposit in part (8.2b) of the contract definition above. As none of Account12, Account2

or Account3 can ever refuse the actions of type Open and Deposit, these are fully con-

strained by the contract. However, as Account2 can refuse Close and Account3 can refuse

Withdraw, these are not fully constrained by the contract.
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Figure 8.1: Bank Account: Contract and Design

Suppose I have a bank account and I know, because the bank tells me, that the

account conforms to the contract shown on the left of Figure 8.1. Suppose also that I

know that the account has been opened but not closed. Then I know that, in terms of

the contract, it is in the state active. From this I can deduce that, for instance:

• I can make a Deposit and the account will allow this in its current state. This is

because Deposit is fully constrained by the contract.

• I may or may not be able to Withdraw or Close, as the contract does not fully

constrain these and so does not guarantee that these will be allowed when in the
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Figure 8.2: Bank Account Reformulated

contract is in the active state. In other words, the bank has rules about when a

withdrawal can be made and when an account may be closed, but the contract

does not include these rules.

• If I close the account, and the bank permits this operation, I cannot then do any

further deposits or withdraws. This is because the sequencing rules of the con-

tract cannot be violated.

In this way, a contract allows determination of what is possible for a machine, based

on partial knowledge of its state.

8.3.3 Dependency in Contracts

By definition (8.1) machine part of a protocol contract has to be an independent ma-

chine. However, this can be composition that includes dependent machines. Suppose

that we want to enhance the contract for the Bank Account to fully constrain Withdraw,

with the rule that a withdrawal must not take the account overdrawn beyond its limit.

The obvious way to do this is to include the machine Account3 in the contract, so that
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the protocol machine of the contract becomes C1 = C ∥ Account3. However Account3

has a derived state based on balance, and the contract needs to know what this is as

the contract machine must be independent. This means that balance has to be defined

within the contract and so we add it as an attribute to the contract, along with the up-

date rules (as shown in the bubbles in Account1) that maintain its value. This means

that we now have C1 = Account1 ∥ Account3.

In general, we allow the use of data and dependent machines in the definition of a

contract provided that they are in composition with other machines so that the contract

machine as a whole is independent. This requires that any inter-machine references

used in the contract are fully resolved within the contract.

8.4 Behavioural Conformance

The ability to specify the set of fully constrained actions in a protocol contract gives the

power to dictate the degree of behavioural conformance required. Suppose you have a

machine M with alphabet alphabetM. Suppose that you have another machine M: and

you want to ensure that this machine has invocable compatibility (in the sense used by

Ebert and Engels in [21]) with M. Then you require that M: conforms to the contract

xM, alphabetMy. This will require that if M allowed a particular trace of invocations

(where each invocation is an action in alphabetM) then M: must allow it too. However

if you only want observable compatibility then you only require that M: conforms to

xM, ∅y. This only requires that M: = M ∥ M: so any trace of invocations to M: if

restricted to actions of alphabetM will also be a trace of invocations to M.

If you choose a contract xM, A1ywhere A1 is a non-empty proper subset of alphabetM

then you have a form of conformance that is between invocable compatibility and observ-

able compatibility. In this way protocol contracts provide a generalised notion of be-

havioural conformance of which invocable compatibility and observable compatibility are

extreme forms.
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8.5 Composition and Decomposition of Contracts

Protocol contracts can be composed and sometimes decomposed, as we describe be-

low. Composition of contracts is important in the context of choreography realizability.

Decomposition is addressed too, for sake of completeness.

8.5.1 Composition

If C1 = xC1, F1y and C2 = xC2, F2ywhere C1 and C2 are both defined over a universe

U, then their composition is defined as follows:

C1‘ C2 = xC1 ∥ C2, F1 ∪ F2y

Theorem B.14 shows that if a machine P satisfies the two contracts C1 and C2 then P

also satisfies C1‘C2.

8.5.2 Decomposition

Suppose that C = xC, Fy and that C = C1 ∥ C2 where C1 and C2 and both defined

over U. It is reasonable to ask whether C can be decomposed into two contracts, C1

and C2, the former using C1 and the latter using C2, in such a way that:

P $ C ñ (P $ C1)^ (P $ C2)

This is possible provided that:

F ∩ alphabetC1 ∩ alphabetC2 = ∅ (8.3)

and the decomposition, giving C = C1‘ C2, is:

C1 = xC1, F ∩ alphabetC1y and C2 = xC2, F ∩ alphabetC2y

The reason for the stricture (8.3) is as follows. Suppose that P $ C and that A P

(F ∩ alphabetC1 ∩ alphabetC2). While the pattern of occurrences of A in P is fully

described (i.e., fully constrained) by C1 ∥ C2, it may not be fully described by either

C1 or C2 alone because it depends on the way the two processes synchronize on A.

In this case A cannot belong to the set of the events fully constrained by a contract

defined in terms of either C1 or C2 alone, so the decomposition fails.
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Theorem B.14 shows that, if (8.3) holds, then a machine P satisfies C1‘C2 then P

also satisfies the decomposed parts C1 and C2.

Finally, combining the results for composition and decomposition we note that:

If F1 ∩ F2 = ∅ then (P $ C1‘ C2)ô (P $ C1^ P $ C2)

8.6 Conclusions and Further Work

This chapter proposes a framework for thinking about contracts in software, by seeing

satisfaction of the contract as a requirement in the construction of a proof of some

proposition, so that a substitution that preserves satisfaction of the contract preserves

truth of the proposition. We go on to define protocol contracts, a form of behavioural

contract based on PM, which we use in the next chapter in the context of choreography

theory, where the proposition in question is that enactment of a collaboration is bound

to follow its choreography.

Protocol contracts are expressed as protocol machines and rely on the semantics of

PM, in particular synchronous composition and the treatment of data. This enables

contracts that require conformance on data, in terms of required values for both inter-

nal storage attributes and message fields, as well as behaviour, in terms of the required

message sequencing protocol. In addition, protocol contracts include a mechanism for

specifying for a given protocol event (a message send or receive), whether the stric-

tures it defines for that event represent necessary and sufficient or merely sufficient

conditions for the event to occur. Here it differs from the more usual approach where

this distinction is made at the meta-level, as part of the semantics of contract protocol

conformance, with the implication that you have to make a choice on the semantics.

Over the last few years a number of approaches have been proposed for including a

notion of contracts in multiparty collaborations, some of this related to work on chore-

ography (the subject of the next chapter). Some notable examples are:

• In [7] Bartoletti and Zunino propose an abstract theory of contracts which they

call “Contract-Oriented Computing”. They define a logic called Propositional Con-

tract Logic (PCL), that extends intuitionistic logic to capture and reason about con-

tracts; and a calculus for contracting processes that embeds PCL. The operational
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semantics of the calculus enable reasoning about whether contracting processes

will honour their declared contracts.

• In [14], Bocchi et al. propose a generalisation of the notion of DbC to enable

effective specification and verification of distributed multiparty protocols. This

proposal allows choreography definitions to be decorated with assertions, pred-

icates on data values, and provides a formal mechanism to project these global

assertions as obligations on the participants. A proof system makes it possible

to establish that the collaboration will respect the global assertions provided that

all participants meet their respective local obligations.

• In [6] the authors of the above papers propose a method of reasoning about dis-

honesty in collaborations, and give a sound criterion for detecting when a partic-

ipant is honest, even in the presence of dishonest participants. In [49] Lange and

Scalas apply this idea to choreographed collaborations, where the choreography

is synthesized by composing the contracts advertised by the participants.

There are a number of questions concerning how the work in this thesis relates to these

ideas that are worth exploring:

• Can the contract framework of Chapter 8 be used to capture these other models,

and if so could this add to the power or utility of contract-oriented computing?

• How does this relate to the ideas set out in Section 9.11, concerning the method

used for projection of participant behaviours from a choreography, relate to other

work on the ability to recognise “dishonest” behaviour in a collaboration?



Chapter 9

Choreography

This chapter describes the use of PM in the context of choreographed collaborations. Here

PM provides a medium for describing the choreography itself, a depiction of the possible

orderings of message exchanges between the participants in the collaboration; and the

behavioural contracts that describe how each participant should behave to collaborate

successfully. We show how the use of compositional descriptions brings new tech-

niques and power to the task of establishing that a choreography is realizable, meaning

that the collaboration as enacted matches the choreography that was the basis for its

design.

9.1 The Challenge

With networks now providing universal connectivity across organizational bound-

aries, business-to-business e-commerce and cross-organizational workflow applica-

tions are increasingly common. In such applications, two or more organizations ar-

range for their systems to collaborate in a shared business process, communicating by

message exchange across a network infrastructure. The interaction between the sys-

tems engaged in the services can become complex, involving multiple message types

and many different possible patterns of message exchange.

Current software engineering practice does not offer a generally accepted approach

to the design of extended multiparty collaborations and consequently industry prac-

tice generally resorts to two expedients:

150
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• The use of multiple simple collaborations, each involving only a pair of partic-

ipants and invoking manual intervention when the collaboration enters a state

that, because of the fragmentation of the process, the software is not designed to

handle. While this ensures that the complexity of the software is bounded to a

level that can be validated using conventional software engineering techniques,

in general it results in business processes that are slower, less scalable and more

expensive than they need be.

• The use of “packaged” solutions that require business processes to adhere to pre-

defined proprietary templates. The templates are provided by specialist vendors

who are able to invest in evolving and validating standard solutions over time.

This works for some well standardized applications, but sometimes requires that

processes are forced to fit and, more importantly, does not address cases where

competitive advantage stems from innovative custom solutions.

This attests to the value in obtaining a general approach to designing extended col-

laborations, simple and practical enough to be used routinely in the context of custom

solution design.

Designing services that can engage successfully in extended collaborations is a chal-

lenge. Unlike a program or process that follows a single procedural description, a

collaboration involves the concurrent interaction of independent participants and is

subject to various unpredictable factors at execution time that can affect its behaviour,

progress and outcome; in particular:

• Differences in the relative speed or scheduling of the hardware/software at each

participant.

• Variations in latency of message transfer by asynchronous messaging systems.

• Execution choices made by the infrastructure, independently of the application,

when handling synchronization across distributed components1.

Considered as a whole, the behaviour of a collaboration is the emergent behaviour of

the interaction between its participants and is non-deterministic in nature. This non-

determinism renders conventional testing techniques ineffective, as it is very hard or

1Such as using a 2-phase commit mechanism for synchronous message exchange.
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impossible to design a test strategy that provides adequate coverage of the execution

possibilities, and it is not generally possible to repeat runs to recreate errors. As Owicki

and Lamport observe [67]:

There is a rather large body of sad experience to indicate that a concurrent program can

withstand very careful scrutiny without revealing its errors. The only way we can be

sure that a concurrent program does what we think it does is to prove rigorously that it

does it.

– Susan Owicki and Leslie Lamport [67]
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The emerging approach to building extended service collaborations that are prov-

ably reliable is to base the design on a global contract that specifies the allowable pat-

terns of message exchange between the participants from a global perspective. Such a
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global contract is known as a choreography. Building a collaboration based on a chore-

ography has three steps as depicted in Figure 9.1:

Step 1. At design-time, a choreography is developed which describes all meaningful

sequences of message exchange between the participants.

Step 2. Using some kind of mechanical process, a specification of the behaviour of

each participant is extracted from the overall choreography2.

Step 3. At run-time the participants interact, each behaving according to its own be-

haviour specification.

At run-time (step 3) the participants behave independently. Each is free to send and

receive messages according to its own behavioural specification, without any central

orchestrating or controlling entity to enforce conformance to the original choreogra-

phy.

This procedure guarantees a degree of compatibility between the designs of the be-

haviours of the participants but, unfortunately, this is not enough by itself to guarantee

that the behaviour of the collaboration at step 3 does not depart from the choreography.

It may be that the collaboration deadlocks leaving messages unprocessed, or allows

patterns of message exchange not envisaged in the original choreography definition

resulting in combinations of states in the participants that were not intended and have

no meaning. As the choreography specifies the meaningful sequences of exchange it is

clearly important that departure from it is not possible, as such departure represents

entering an unintended and meaningless state. The behavioural rules embedded in

the participants must therefore be strong enough to prevent such departure and this,

in turn, requires that the choreography conforms to certain structural conditions. The

problem of determining general conditions on the form of a choreography which are

sufficient to guarantee that the interaction of extracted behaviours is bound to adhere

to the choreography is known as the realizability problem.

Investigations into choreography realizability address the question: Given a partic-

ular communication model (e.g., unbounded FIFO queues in each direction between

each pair of participants), and a process for extracting participant behaviours from a

2In the jargon of choreography theory this is called “end-point projection”.
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choreography, what are sufficient conditions on the form of the choreography to guar-

antee that the collaboration will always follow the choreography?

As discussed by Kazhamiakin and Pistore [43], the rules for realizability depend on

the form of communication model used for the collaboration, in particular whether com-

munication between participants is synchronous or asynchronous. Our main interest is

in collaborations that use asynchronous communication. This means that a sender trans-

mits a message on the assumption that the receiver is able to receive it, and the mes-

sage may take time to transit so that the receive happens at a later time. With this form

of communication, the sender and receiver do not engage in a send/receive simul-

taneously, which would require some kind of transactional infrastructure across the

participants. Where the participants in a collaboration are geographically distributed

a transactional infrastructure is complex and difficult to operate, so an asynchronous

messaging infrastructure is more practical.

We will explore asynchronous exchange, where we assume a communication model

that:

Provides an unlimited FIFO queue in each direction between each pair of

participants.
(9.1a)

Has finite network latency, so a message sent will arrive at its recipient in

finite time.
(9.1b)

A participant cannot be blocked on a send. (9.1c)

9.2 Modelling Choreography

We will be using PM to model both the choreography (as constructed in Step 1 in

Figure 9.1) and participant processes (as extracted from the choreography in Step 2).

More accurately, we define protocol contracts for participant processes.

This means that message sends and receives will be represented as actions. In gen-

eral, PM allows an action in a protocol machine to be a combination of input and output.

However for the purposes of choreographed collaborations we will assume that all ac-

tions are either wholly output (send) or wholly input (receive) as this is required in

asynchronous message exchange.
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Figure 9.2: Order Processing Example: Choreography

We represent a choreography using the symbol C which is a pair xC, Fywhere:

• C is an independent protocol machine that defines the possible global sequencing

of message exchanges in the collaboration, and
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• F is a statement that specifies which actions in the participants are fully con-

strained by the choreography.

We assume that the collaboration involves a fixed finite set of participants, P. These

are independent and isolated agents that communicate only by message passing.

Figure 9.2 shows a choreography for collaboration between four participants: a Cus-

tomer (Cust) a Supplier (Supp), a Bank (Bank) and a Delivery Company (Del) engaged

in placing and processing an order. The choreography is expressed as three com-

posed machines whose actions represent message exchanges between the participants.

The transitions are labelled with the sender and receiver and message type being ex-

changed. So in Figure 9.2 a label:

Cust>Supp:Place Order (9.2)

represents the exchange of a Place Order message sent by participant Cust (the Cus-

tomer) to participant Supp (the Supplier). The composition obeys the usual rule, so

that an exchange that appears in more than one machine can only take place when

allowed by all the machines in which it appears.

9.3 Choreography and Participant Universes

Like all protocol machines both the C and the participant processes are defined over

universes of possible data observations as defined in Section 4.1.5 on page 40. To sup-

port its role as the basis for the design of a collaboration, the universe of a choreog-

raphy has a structure that relates to the universes of the participants. This section

describes the structure of the universes of a choreography and of its participants.

We will use:

• P to represent the set of participants involved in the collaboration

• P, Q, R to refer to individual participants in P; and Pj, j = 1 . . . n, to index over

all participants in P

• [P] to denote t tPu | P P P u

• [P]2 to denote t tP, Qu | P, Q P P^ P ‰ Q u ; and T to refer to an element of [P]2

• 6, 61, 62 to refer to members of [P] ∪ [P]2
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9.3.1 Choreography Universe

A choreography is defined over a universe:

UC = x UC, AC, DC, VC, fixesC y

and this universe is partitioned as follows:

• AC is partitioned by participant, with the subset for participant P denoted by

AC
tPu. This partitioning represents which participant is able to calculate (derive)

the value of the symbol and therefore use it as part of an output message. It does

not affect which participant can have the symbol as part of an input message.

• UCzAC is comprises two disjoint parts:

– One part is partitioned by participant, with the subset for P P P denoted by

(UCzAC)
tPu. This part contains symbols that are private to each participant.

– The other part is partitioned by unordered pair of participants, with the sub-

set for T P [P]2 denoted by (UCzAC)
T . This part contains symbols whose

value is synchronised between two participants.

We require that the partitioning obeys:

AC =
ď

tPu P [P]

AC
tPu (9.3a)

P, Q P P with P ‰ Q ñ AC
tPu ∩AC

tQu = ∅ (9.3b)

UCzAC =
ď

6 P [P]∪ [P]2

(UCzAC)
6 (9.3c)

61, 62 P [P] ∪ [P]2 with 61 ‰ 62 ñ (UCzAC)
61 ∩ (UCzAC)

62 = ∅ (9.3d)

Based on the partitioning we can construct the subset of UC related to a participant

P as:

UC
P = AC

tPu ∪
ď

6 P [P]∪ [P]2^ P P 6

(UCzAC)
6

Notice that the subsets for different participants are not disjoint, so if P ‰ Q:

UC
P ∩ UC

Q = (UCzAC)
tP,Qu
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Finally we require that:

AC Ď DC (9.4a)

@ P P P : closed(restr(VC, UC
P)) (9.4b)

@ T P [P]2 : closed(restr(VC, (UCzAC)
T )) (9.4c)

These are to be interpreted as follows:

• The first (9.4a) says all actions of a choreography are output per (4.11), as all

action symbols are derived.3

• The second (9.4b) requires that a derived symbol that belongs to a given partic-

ipant can be computed entirely within the subset of the universe related to the

participant. In particular this is true of derived action symbols, these being the

symbols that are sent by that participant.

• The third requires that a partition of the non-action part of the universe indexed

by a pair of participants cannot use symbols of another partition of the non-action

part of the universe for calculation of a derived symbol. Suppose that the parti-

tion indexed by tP, Qu uses a symbol in the partition indexed by 6 ‰ tP, Qu. If

tP, Qu ∩ 6 = tPu then the derivation can only take place in P and not in Q, as

would be required for the symbol to be shared between the two.

9.3.2 Choreography Messages

We assume that the choreography universe UC contains a set of special symbols XC Ď

AC used to encode the labels that appear on the transitions in a choreography, such as

labels on the transitions in Figure 9.2. This set is defined as:

XC = t exchangeC
Pi | Pi P P u with exchangeC

Pi P AC
tPiu

with valid values for exchangeC
P P XC specified by:

val(restr(VC, exchangeC
P)) =

t P > Pi:m | Pi P P ^ Pi ‰ P ^ m PMC u∪ tnullu
(9.5)

3This is a curious statement. It reflects the fact that the choreography is, in a sense, a merger of all

participants and must be able to send all messages.
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where MC is the set of message types in the choreography, for instance Place Order,

Confirm Order; and null is a special value used where there is no transition label to be

encoded.

The symbols in XC are referred to as the exchange symbols of the choreography. The

example (9.2) would be encoded as an action of the choreography as:4

t (exchangeC
Cust = Cust>Supp:Place Order) u

Note that there is no implication that an action in a choreography is limited to a

single observation using an exchange symbol: further fields may be specified if it is

required to further constrain the message content. For instance we could encode the

above action as:

t (exchangeC
Cust = Cust>Supp:Place Order), (product = Widget) u

which would specify that only orders for Widgets are handled. Any attempt by the

customer to place an order for a different product would then be a violation of its

projected protocol contract, and not be allowed by the choreography.

Fn: sender, receiver. We define the following functions on the actions of a choreogra-

phy universe UC:

• sender :: restr(UC,AC)Ñ P∪ tnullu

• receiver :: restr(UC,AC)Ñ P∪ tnullu

with null R P, as:

sender(A) = Pj

receiver(A) = Pk

sender(A) = null

receiver(A) = null

+

if val(restr(A,XC))ztnullu = tPj > Pk:mu

where Pj, Pk P P and m PMC
+

otherwise

which gives a non-null value to sender(A) and receiver(A) provided that A contains a

single well-formed and non-null exchange label.

4This action encoding is simplified, as shortly we will see that actions always contain a full set of

exchange symbols, with those not belonging to the sender having value null. The null-valued symbols

have been omitted here.
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Well-formedness conditions for a choreography machine C defined over the chore-

ography universe UC are required as follows.

@ t P stems(BC) with tτ Ť VC :

length(t) ą 1 ñ sender(tα) ‰ null (9.7a)

sender(tα) = P ñ symb(tα)zXC Ď AC
tPu ^ XC Ď symb(tα) (9.7b)

The first (9.7a) requires that every step has a sender. The second (9.7b) requires that

the action of a step only uses fields that belong to the sender; and that the action also

contains null exchange labels for all participants other than the sender. This last condi-

tion ensures that, even when choreography machines are composed, every step in the

composition only has a single sender; so that both (9.7a) and (9.7b) are preserved by

homogeneous composition of choreographies.

9.3.3 Participant Universe

Figure 9.3 shows a protocol contract for Customer, one of the participants, expressed

as three composed machines. The other participants will have similar contracts. The

actions of a contract represent message sends and message receives. The transitions are

labelled:

! > Supp:Place Order

? < Bank:Request Deposit
(9.8)

representing a send (to the Supplier) and a receive (from the Bank) respectively. The

composition obeys the usual rule, so that a send or receive that appears in more than

one machine can only take place when allowed by all the machines in which it ap-

pears. The composition of the machines is to be interpreted as the contract machine of

a protocol contract for Customer. The other component of the contract, the set of fully

constrained actions, is shown in the lower part of Figure 9.3 as FCust. This implements

the requirement that the choreography fully constrains all receive actions.

Each participant has its own universe, so P P P has universe:

UP = x UP, AP, DP, VP, fixesP y
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D]

! > Supp: 

Request

Cancel

? < Supp: Accept Cancel

? < Supp:

Reject

Cancel

! > Supp:

Place

Order

? < Supp: 

Accept

Order

! > Supp:

Request Amend

? < Supp: Accept Amend

? < Supp: Reject Amend

? < Supp: 

Reject

Order

PARTICIPANT 

PROTOCOL 

CONTRACT

CUSTOMER

D]

? > Supp:

Accept Order

? > Supp: 

Invoice

! > Bank:

Pay Order

? < Bank: 

Payment

Receipt

? < Supp:

Accept

Cancel

? < Supp:

Accept Amend
! > Supp:

Place Order

! > Bank:

Pay

Deposit

? > Bank:

Request 

Deposit
D]

? < Supp:

Accept 

Order

? < Del:

Request

Delivery Date

! > Del:

Confirm

Delivery Date

? < Supp: 

Invoice

? < Supp: 

Accept

Cancel

F
Cust

=

? < Supp: Accept Order

? < Supp: Reject Order

? < Supp: Accept Cancel

? < Supp: Reject Cancel

? < Supp: Invoice

? < Bank: Request Deposit

? < Bank: Payment Receipt

? < Del: Request Delivery Date

? < Supp: Accept Amend

? < Supp: Reject Amend

? < Supp: Accept Cancel

? < Supp: Reject Cancel

? < Supp:

Accept Amend

Figure 9.3: Order Processing Example: Customer Contract

The participant universes must obey the following well-formedness constraints:

AP ∩ UC = AC (9.9a)

(UPzAP) ∩ UC =
ď

6 P [P]∪ [P]2^ P P 6

(UCzAC)
6 (9.9b)

DP ∩ UC = DC ∩ UC
P (9.9c)

restr(VC,AC ∪ UC
P) Ť restr(VP,UC) (9.9d)

where:
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• (9.9a) requires that every participant can handle all the actions of the choreogra-

phy.

• (9.9b) requires that the use of the non-action symbols of a participant universe

conforms to the partitioning of the choreography universe.

• (9.9c) requires that the subset of derived symbols of a participant universe that

belongs to the choreography matches the set of derived symbols of the choreog-

raphy, partitioned to that participant. Note that this together with (9.7b) means

that if a participant is sender for a given message, the symbols of that message

are derived in that participant’s universe.

• (9.9d) requires that any set of observations that is valid in the universe of the

choreography, restricted to the symbols used by the participant, is also valid in

the universe of a participant, restricted to the symbols of the choreography. In

particular, this requires that any set of observations using only the symbols of

AC ∪ UC
P that is valid in VC is also valid in VP.

In formulating these constraints we are taking a notational short-cut by equating

symbols in the participant universes with symbols in the global universe. For instance,

(9.9b) says that a symbol x in (UCzAC)
tP,Qu belongs to both UP and UQ. Strictly speak-

ing these are not the same symbol as they are projections to different participant uni-

verses and should be differentiated, perhaps as xP and xQ. Later, in Section 9.7.2, we

justify this short-cut by showing that values projected to different participants from a

single symbol are synchronized during enactment of a collaboration.

9.4 Semantics of Projection

In common with other mainstream choreography methods we use end-point projection,

whereby the behaviour of the participants is extracted in a mechanical fashion from

the choreography definition. Thus in Figure 9.3 the three machines that describe the

Customer behaviour are projected from the three machines in the choreography. This

forms Step 2 of the collaboration design process shown in Figure 9.1 on page 152. In

this section we formalize the notion of projection.
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We define projection for a single independent well-formed choreography machine

C defined over a universe UC. The projection of process has two stages:

• Global projection which projects to a process defined in the universe of the chore-

ography, UC.

• Local projection which casts the global projection to the universe of a participant.

9.4.1 Global Projection

Given a participant P P P we define a boolean projection filter FP on the actions of a

choreography or a participant as:

FP(A)ô P P t sender(A), receiver(A) u

Given a choreography machine C then a global projection of C to P, denoted Cóg
P is

any independent protocol machine defined over UC satisfying:

alphabetCóg
P
= t A | A P alphabetC ^ FP(A) u (9.10a)

Cóg
P ∥ C = C (9.10b)

ΩCóg
P
= ΩC ∩ UC

P (9.10c)

where:

• (9.10a) means that every action preserved by the filter is in the alphabet of Cóg
P

and all other actions of the choreography are ignored by Cóg
P.

• (9.10b) requires that Cóg
P contains all completions that are possible in C.

• (9.10c) restricts the owned data by Cóg
P to the portion of the choreography uni-

verse belonging to P.

This is called the global (signified by the superscript g) projection as it is still defined

over the choreography universe, UC.

In general there is no guarantee that a machine satisfying (9.10) exists or that it is

unique. If a projection Cóg
P does exist, then C is the said to be projectable to P.
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A consequence of (9.10) is that a message can only update the portion of the owned

data ΩC of the choreography that “belongs” to either one of the participants involved

in the exchange, or is shared by both. For instance suppose that P and Q are sender

and receiver of a message instance m and that this exchange leads to an update of the

value a symbol x P ΩR with R R t P, Q u. But by (9.10b) we require that:

Cóg
R ∥ C = C (9.11)

and as the symbol x belongs to the owned data of both machines on the left hand side

of (9.11) it must be updated by both. However, by (9.10a), Cóg
R ignores m so cannot

update x. This means that m can only update symbols that belong to:

(UCzAC)
tPu ∪ (UCzAC)

tQu ∪ (UCzAC)
tP,Qu

It is for this reason that the choreography universe is partitioned by [P] ∪ [P]2 as de-

scribed in Section 9.3.1.

9.4.2 Local Projection

Local projection casts a global projection to the universe of a participant. The local

projection of Cóg
P to P is denoted by CóP. It is created by adding local actions (as

ignored actions, per (4.42)) to ensure that CóP defines behaviour exhaustively (obeys

(4.10c)) for all possible actions in UP.

The resultant machine is defined over UP. This is possible because:

• By (9.9b) and (9.10c), the offered data of the global projection also belongs to the

participant universe.

• All actions of the choreography are retained in the projection, and local actions

in the participant that are not part of the choreography are added as ignored

actions to the projection according to the definition in Section 4.5.1. This gives

exhaustive treatment of the actions in UP.

• As projections are independent machines, exhaustive treatment of perceived data

is trivially given.
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9.5 Topological Projection

The reasoning on realizability, set out in the rest of this chapter, is conducted in the

medium of graphical (state machine) representation of protocol machines, rather than the

formal denotation of completions. This reflects practice and practicality, as this is the

medium in which the work of authoring and analyzing choreographies is carried out.

We will use topological reduction, as described in Chapter 6.4, as the means of project-

ing independent choreography machines represented in topological (LTS) form.

9.5.1 Projection Construction

Given C expressed as a single independent machine with a topological representation,

and a participant P P P to which we want to project, we create the global projection

Cóg
P by using the topological reduction of the representation of C using the projection

filter FP (as defined in Section 9.4.1) to define the set of completions for Cóg
P up to

the offers part of each step. As a projection must be a protocol machine, the reduc-

tion used for the projection must be path-deterministic (as described in Section 6.4.3).

This is because we do not assume that two transitions in a topological representation

that carry the same label necessarily perform the same update, so could have different

instructions in their attached “bubbles”. If the reduction were merely deterministic

(as opposed to path-deterministic), two transitions carrying the same label but differ-

ent update bubbles could not necessarily be distinguished. This gives the following

condition:

The reductions of the topological representation of a choreography C

to create participant projections must be path-deterministic.
(9.12)

For the offers part we require that it is possible to define a family of data constructors

to generate the offered data of the choreography, denoted by C6, 6 P [P] ∪ [P]2, for

C. The family has one data constructor for each participant and one for each pair of

participants, with signatures:

C6 :: actions(asSet(BC))
˚ Ñ restr(UP, ΩC ∩ (UCzAC)

6)

For any t P stems(BC), for any tPu P [P], CtPu must satisfy:

CtPu(actions(t)) = restr(tω, ΩC ∩ (UCzAC)
tPu)

CtPu(actions(t)) = CtPu(actions(trunc(t)))

if FP(tα)

otherwise
(9.13a)
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and for any tP, Qu P [P]2, CtP,Qu must satisfy:

CtP,Qu(actions(t)) = restr(tω, ΩC ∩ (UCzAC)
tP,Qu)

CtP,Qu(actions(t)) = CtP,Qu(actions(trunc(t)))

if FP(tα)^FQ(tα)

otherwise
(9.13b)

The definitions (9.13) mean that:

• When presented with a sequence of actions corresponding to a stem in C, the

values generated by CtPu for the offered symbols partitioned to tPu match the

values that ΩC would give those symbols for the same stem.

• Actions in the stem t that do not involve P either as sender or receiver, do not

affect the value of CtPu(actions(t)).

• When presented with a sequence of actions corresponding to a stem in C, the

values generated by CtP,Qu for the offered symbols partitioned to tP, Qu match

the values that ΩC would give those symbols for the same stem.

• Actions in the stem t that do not involve both P and Q, one as sender and the

other as receiver, do not affect the value of CtP,Qu(actions(t)).

This family of functions allows generation of the offers part of a projection to P P P

as follows:

t P prefixes(Cóg
P) ñ tω =

ď

6 P [P]∪ [P]2^ P P 6

C6(actions(t)) (9.14)

The topological reduction of the choreography as described in Chapter 6.4 combined

with the data constructor (9.14) results in a projection that meets (9.10) as follows:

• The topological reduction removes all the actions that are not retained by FP, so

these actions do not affect the behavioural state, as defined in Section 4.2.7.1, of

the projection.

• The topological allows (does not remove) any sequence of actions that belongs to

C.

• By (9.14), the offers of a step in a prefix of Cóg
P will always be a subset of the

offers in the corresponding step of a compatible (per (4.21)) prefix of BC.

The first of these means that (9.10a) is satisfied, and the second and third mean that

(9.10b) and (9.10c) are satisfied.
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If (9.12) is met and the offers part of projection can be constructed successfully ac-

cording to (9.14) then we say that C is projectable to P.

9.5.2 Participant Contracts

We will use the projections of a choreography as protocol contracts, as described in

Chapter 8, for the participants in a collaboration. This recognises that the choreogra-

phy does not fully describe the behaviour of participants but just defines the protocol

that each participant must use to interact with other participants.

As described in Chapter 8, a protocol contract comprises two parts:

• a contract machine

• a subset of the alphabet of the contract machine giving the fully constrained actions

The first is provided by CóP the local projection of C to P. The second is the set of

receive actions in P, generated from the exchanges in CóP for which P is receiver.

Having the choreography fully describe the circumstances under which a message can

be received means that if all participants are blocked from sending (so a participant will

simply stop when it reaches a send action) then, because a participant cannot otherwise

refuse a receive that its contract allows, the collaboration is bound eventually to reach

a state with no messages remaining unreceived in the network.5 This condition is

required to establish realizability and we will assume, as standard, that choreographies

fully constrain message reception in the participants.

9.6 Realizability

Being able to create participant contracts from a choreography is not enough to guar-

antee that the choreography “works”, in the sense that interaction of projected be-

haviours is bound to adhere to the choreography. Our aim is to be able to construct

(design) choreographies that we know to be “realizable” and we now proceed to ex-

plore how this is done.

5This assumes that participant processes progress, so do not crash or deadlock for other reasons, not

associated with the choreography.
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There are three key results in describing the treatment of choreography realizability

using PM:

Result 1. Showing that a choreography that is defined as a single independent ma-

chine is realizable provided that it obeys conditions termed asynchronous projectable.

This is addressed in Section 9.7

Result 2. Showing that a choreography that is defined as a homogeneous composi-

tion of independent realizable machines is itself realizable, in other words “compo-

sition preserves realizability”. This is addressed in Section 9.8

Result 3. Determining realizability of a choreography that is expressed using a com-

position involving dependent machines. This is addressed in Section 9.9

9.6.1 Definition of Realizable

We start by defining what we mean by realizable. Suppose that a collaboration is de-

signed from a choreography according to the scheme in Figure 9.1 on page 152 and

that we observe the enactment (Step 3) as a total ordering of the message send action

and message receive actions. We assume this ordering is truthful in that respects the

causality of the system, as described by Lamport [46], and where actions are observed

as simultaneous we order them arbitrarily in a way that respects causality, for instance

using timestamps generated by a vector clock mechanism, as described by Fidge and

Mattern [22]. We consider realizability in terms of snapshots taken between two suc-

cessive actions of the ordering. In any snapshot there are, in general, some messages

that are “in flight” (sent but not yet received).

We define realizability of the choreography to mean:

From any snapshot of the collaboration, it is possible to determine

the corresponding state of the choreography.
(9.15a)

At any snapshot of the collaboration, those sends allowed in the

corresponding state of the choreography may happen as the next

action in the collaboration, and only those sends.

(9.15b)

If a message is sent it is guaranteed to be received. (9.15c)
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9.6.2 Asynchronous Projectable Machines

In this section we define the notion of a machine that is asynchronous projectable. We

will go on to show that a choreography defined using a machine that is asynchronous

projectable is realizable.

Fn: bufferSet. As a preliminary we define a function bufferSet :: PˆPÑ power(ΛC)

defined for distinct P and Q as:

bufferSet(P, Q) =

t x | x P ΛC ^ (sender(x) = P_ (sender(x) = Q^ receiver(x) = P))u

This definition will be used shortly to ensure that a participant can determine unam-

biguously which path in a choreography is being followed.

Given a choreography machine C we establish asynchronous projectable conditions

in the unwound form 8ÝÑC constructed as described in Chapter 6.3 on page 112. C is

asynchronous projectable iff:

In a given state of 8ÝÑC only one participant may send. (9.16a)

8ÝÑC is projectable (as described in Section 9.5.1) to each member of

P
(9.16b)

A participant P only sends from an unambiguous state in 8ÝÑCóg
P

(9.16c)

For every distinct pair P, Q P P the reduction of 8ÝÑC using filter

FbufferSet(P,Q) is path-deterministic.
(9.16d)

It was noted in Section 6.3.1 that every state of 8ÝÑC corresponds to exactly one state of

C, and that both machines have the same traces. As a result, if any of (9.16a), (9.16b)

or (9.16c) were false in C it would also be false in 8ÝÑC . So if they are all true in 8ÝÑC they

are also all true in C.

9.6.3 Relay Form

A consequence of the conditions for asynchronous projectability is that a choreography

has a certain topological form termed relay form.
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Figure 9.4: Relay Trace

Suppose that σ is a state of C and that σ is not a final state, so there is at least one

transition starting at σ. By (9.16a) only one participant P may send from σ. If any

transition ending at σ is for an exchange that does not involve P as either sender or

receiver it is removed in reduction to P. This would make σ an ambiguous state, vio-

lating (9.16c). Therefore if σ1 and σ2 are adjacent states of C so that σ2 can be reached

by a single transition from σ1, and P is the sender in σ1, then one the following must

be true:

• P is also the sender in σ2

• Q with Q ‰ P is the sender in σ2 and transitions from σ1 to

σ2 have Q as receiver.

(9.17)

Any machine that has a single sender in each state, as required by (9.16a), and which

conforms to (9.17) is said to have relay form or, equivalently, to be a relay machine. If C

is a choreography machine then the predicate:

relay(C) (9.18)

evaluates to true iff C meets (9.16a) and (9.17). Note that the three choreography ma-

chines depicted in Figure 9.2 on page 155 all have relay form.

The term “relay” is by analogy with a relay race, in which a baton is passed from

one runner to the next. Only the participant “holding the baton” may send, and the

holder must “pass the baton” to the next sender6. While in possession of the baton

6This analogy is not exact, as there is no representation of the baton in the choreography. A send event

that “passes the baton” is syntactically and semantically identical to one that does not.
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a participant may pass through any number of states as sender, and send any num-

ber of messages to different participants, before passing the baton to the next sender.

Although all the transitions from a given state must all have the same sender, differ-

ent transitions from the same state may have different receivers. Figure 9.4 shows an

example of a relay trace choreography between three participants.

Note that relay form of itself is not sufficient for asynchronous projectability as it

does not require that condition (9.16d) holds.

9.7 Result 1: Single Machine Realizability

This section addresses the first result listed in Section 9.6. We assume in this section

that we have a choreography C = xC, Fy between a set of participants P where:

• The universe of the choreography and the universes of the participants are con-

figured as laid out in Section 9.3.

• C is a single independent protocol machine satisfying the asynchronous pro-

jectable conditions (9.16).

• F requires that receives are fully constrained by the choreography.

• All participants obey a contract obtained by projection of C as described in Sec-

tion 9.5.

9.7.1 Path Matching

In this section we show that, given these assumptions, any enactment of a collabora-

tion is path matched, meaning that all participants follow a single completion of C. In

the next section we will show that this means that the choreography is realizable, as

defined above in Section 9.6.1. We use induction over the states of a collaboration to

prove that it is path matched, and for this we define the concept of an enactment.

An enactment E captures the complete history of a collaboration to some point. Con-

ceptually it is a sequence of snapshots of the state of the collaboration. Each snapshot

contains:
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• The state of each participant’s choreography contract (including the values of

any owned attributes), and

• The content of every buffer between participants.

A new snapshot is added to the enactment whenever any participant executes a chore-

ography action (a send or a receive), and for this purpose the choreography actions

executed in the collaboration are given a global sequence as described in Section 9.6.1.

We use enactment state to refer to the last state (snapshot) of E. In addition we will use:

• Eg to denote the subsequence of the sequence of sends and receives in E consist-

ing of just sends, and

• EP to denote the sequence of choreography actions (message sends and receives

of this collaboration)7 executed so far by participant P.

An enactment E is path matched iff:

D π
g
E P ΠC(‚) with pathC(E

g) = π
g
E (9.19a)

@ P P P D πP
E P prefixes(πg

E) with tranTraceCóP(E
P) = filterFΘ

P
(πP

E) (9.19b)

where ΠC(‚) is a sequence if transitions in C starting from the initial state ‚ as de-

scribed in Section 6.1.2 on page 109. The first condition (9.19a) requires that there be

a path in the choreography C that matches the trace defined by the sequence if sends.

The second requires the sequence of choreography actions in each participant is a pre-

fix of this choreography path, filtered to that participant. Note that because the chore-

ography is a protocol machine and therefore deterministic, given Eg there is at most

one π
g
E P ΠC(‚) with pathC(E

g) = π
g
E.

We now use mathematical induction to show that if the choreography is asynchronous

projectable, obeying conditions (9.16), the following conditions are sustained in a col-

laboration:

The collaboration is path matched, so obeys (9.19) (9.20a)

7The participant may also engage in other actions which are not part of the collaboration. For instance

it may also be participating in another, separate, collaboration. These are not visible for the purposes of

the current argument.
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Figure 9.5: Induction Cases

In any enactment state E there is at most one sender. (9.20b)

P is sender in enactment state Eñ length(πP
E) = length(πg

E) (9.20c)

We consider moving from an enactment state E to the next enactment state E1 as a

result of a single choreography event (a send or a receive). Without loss of generality,

we suppose that the event that moves the collaboration EÑ E1 is performed in partic-

ipant P, and is a send to participant Q or a receive from participant Q. There are four

cases as depicted in Figure 9.5 and considered below.

Case 1. Send and remain sender. As a consequence of (9.16a) and (9.16b):

The only send transitions possible from a given state in a partici-

pant are those possible from the corresponding state of the chore-

ography.

(9.21)

This is because, in a reduction to P (whether simple or exact) the outgoing transitions

from an unambiguous state from which only P can send are exactly those outgoing

transitions from the unique corresponding state in the choreography and thus path

matching is preserved.

Case 2. Send and cease to be sender. The argument is the same as Case 1 above,

except that P ceases to be sender so that the number of senders is now 0.
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PATH AMBIGUITY

1a

R > P: y

2a

R > P: y

R > P: y

2b

acyclic cyclic

Transitions not in 

bufferSet (P, R)

1bR > Q: x

R > Q: z

R > Q: x

1b’ 2b

R > P: y

unwound cyclic

1b

2b’

R > P: y

Transitions not

in bufferSet (P, R)

R > Q: x

R > Q: x The states 1b’ and 

2b’ are introduced 

by unwinding the 

cycle.

Figure 9.6: Path Ambiguity

Case 3. Receive but don’t become sender. In this case we require that the trace E1P

based on the new enactment state obeys (9.20c). This requires that:

D πP
E1 P prefixes(πg

E) with tranTraceCóP(E
1P) = filterFΘ

P
(πP

E1) (9.22)

It is clearly possible that (9.22) is met, as follows. Suppose that the message that is

received by P from Q was written in the step that ended with enactment state E;. All

the messages sent to P up to enactment state E; can be received by P because:

• The communication model (9.1b) means that these messages cannot be delayed

indefinitely in the network so must reach P.

• The requirement stated in Section 9.5.2 that participant contracts fully constrain

receives means that P is able to consume any message that is available as the next

in one of its buffers as soon as it arrives.

• The communication model (9.1c) means that P cannot be blocked at a send, so

cannot be prevented from advancing to its next receive by intervening sends.

• Because, by the induction assumption, (9.20) is met at E; there is a path in the

choreography that matches the sequence of sends up to and including E;.
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• Projection semantics (9.10b) guarantees that the receives in P’s projected behaviour

can receive the messages sent to P by any other given participant in the order in

which they were sent by that participant; and the communication model (9.1a)

means that the network preserves this order.

If (9.22) can be met in moving from E to E1 and moreover there is only one receive

that is possible for P, then (9.22) must be met. This is the case when:

• There is only one receive that P can execute, as its current state in CóP only has a

single exit transition.

• There is more than exit transition from the current state in CóP, but only one

receivable message can be available at the head of the FIFO buffers by which P

receives from other participants.

The only eventuality in which departure from (9.22) is possible is where there is more

than exit transition from the current state in CóP and messages satisfying these tran-

sitions can be available simultaneously to P at the head of the FIFO buffers by which

P receives from other participants. If this were the case, it would lead to path ambigu-

ity whereby it is possible for P to depart from the choreography, in violation of path

matching. There are two sub-cases of path ambiguity to consider, acyclic and cyclic, as

shown in Figure 9.6.

In the acyclic case, shown top left of Figure 9.6, we imagine that lower path in the

choreography, involving the z message, is the one that has actually been taken. How-

ever we suppose that a different path is possible from this state in which P instead

receives a y message from R, shown in the upper path of the choreography. Moreover,

we suppose that the lower (true) path has a later message of type y sent to P from R,

which we assume without loss of generality to be the first exchange of a message of

type y to P from R after state 1a. This later message could be available already in the

buffer between R and P and could be consumed by P in error, taking P along the upper

(false) path of the choreography. However this would only be possible if both of the

following were true:

• There are no other transitions between states 1a and 2a in Figure 9.6 involving R

as sender and P as receiver, as such messages would appear in the buffer between
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R and P before the y message, making the y message unavailable for consump-

tion.

• There are no transitions between states 1a and 2a that have P as sender as then

the choreography, and so also by (9.20c) CóP itself, would have had to advance

through this state before the transition for the y message beyond it could be

reached.

These transitions all belong to bufferSet(P, R). If there are no such transitions between

states 1a and 2a and all other transitions were removed, the resultant reduced LTS

would have two transitions for label y starting from the same state but representing

different transitions in the original choreography. This would be in violation of asyn-

chronous projectability condition (9.16d).
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Figure 9.7: Cycle Ambiguity Example

The cyclic case, shown at the top right of Figure 9.6, is similar. The possibility here is

that the y message that is sent on exit from the circuit is available to P while messages

destined for P sent within the loop are still in transit and not yet visible to P. In this

case P could falsely assume that it can take the y transition immediately. An example

of this is shown in Figure 9.7, where P might receive the y message from R and exit

the loop, even though a b message from Q is still on its way. The b message would

then never be received and would remain marooned in the network. As in the acyclic

case, the confusion is between y messages in different traces; the difference with the

acyclic case is that the two messages both relate to the same transition in the chore-

ography. This is addressed by using the unwound form of the choreography as the

basis for asynchronous projectability so that transitions, instances of which are sepa-

rated by a circuit, become separate transitions, with different transition identifiers, in
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the graphical LTS. The unwound form, in the lower half of Figure 9.6, shows this for

the y transition which now appears twice. If these can be distinguished using (9.20c),

in the manner described for the acyclic case, then the confusion cannot arise.

Case 4. Receive and become sender. The reasoning that P continues on the correct

path of the choreography, so that path matching is preserved, is as for Case 3. We need

to establish that (9.20b) and (9.20c) are preserved.

As, by assumption, the enactment has obeyed (9.20) to E, a send has been executed

for every transition in π
g
E. This means that at E all the sends in filterFΘ

R
(π

g
E) for all R P P

must have been used, so in particular there can be no send in filterFΘ
P
(π

g
E) beyond

filterFΘ
P
(πP

E). This could not be the case if length(πP
E1) ă length(πg

E) and P is to become

sender at E1. As this case involves a receive and doesn’t advance the choreography

state, length(πg
E1) = length(πg

E). This establishes (9.20c).

Now suppose that R (with possible R = Q but R ‰ P) is sender in E1, so that both R

and P are senders in E1. As the states of R and the choreography are both unchanged by

EÑ E1, this means that R was the sender in E and hence that length(πR
E) = length(πg

E).

As, by assumption, P is sender in E1 this gives length(πR
E1) = length(πg

E1) = length(πP
E1)

so that P and R are equally advanced in the choreography and agree on its state. If both

are senders at E1 then by (9.16c) both must be in an unambiguous state, establishing

both to be at a single state of the choreography. This single state must be the same in

both, so it is impossible by (9.16a) for both to be senders. This establishes (9.20b).

The induction starts at the initiated state of the collaboration, at which the choreog-

raphy and all projected participant machines are at their initial ‚ and all buffers are

empty.

9.7.2 Data Synchronization

In this section we consider the degree of data synchronization achieved between the

owned data Ω of each participant. First recall from (9.10c) that the owned data of each

projection is based on the partitioning of the universe. Now suppose that we have

an enactment state Eempty where all the FIFO buffers between participants are empty,

so that every participant is at the same state in the choreography as determined by
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DATA SYNCHRONIZATION

QP
R

{P,Q}

{P,R}

{P,Q}

{Q,R}

{P,R}

{Q,R}
The arrows show data 

synchronization between shared 

portions of ΩP, ΩQ and ΩR when 

all message buffers are empty.

Note that each of ΩP, ΩQ and ΩR

may also have a non-shared 

(private) portion, not shown.

Figure 9.8: Data Synchronization

pathC(E
g
empty). Figure 9.8 shows how the owned data of the participant contracts will

be synchronized in this enactment state. For instance, if x P ΩC ∩ (UCzAC)
tP,Qu then x

will have a value in both ΩP and ΩQ that is synchronized with the value that would

pertain in ΩC after following pathC(E
g
empty).

In an enactment state E␣ empty where the buffers are not empty, suppose that P is the

sender of last(Eg
␣ empty). Then P’s owned data will be synchronized with the choreog-

raphy, as will the owned data of any other participant whose input buffers are empty.

The owned data of participants whose input buffers are not empty will be synchro-

nized with an earlier state of the choreography, depending on their progress along the

choreography path pathC(E
g
␣ empty).

9.7.3 Proof of Realizability

It is now easy to establish that the three conditions for choreography realizability given

in Section 9.6.1 are met. Condition (9.15a) follows immediately from (9.19a) as the state

of the choreography can be determined from the global sequence of sends. Condition

(9.15b) follows from (9.21). Condition (9.15b) can be established by assuming it is un-

true and reaching a contradiction as follows:

Suppose that a choreography follows a path πg that results in one or more messages

being unreceivable and remaining forever “in flight” in a buffer. There must be a first

such message mfail, being the first message instance sent in πg that cannot be received.

Without loss of generality, suppose that P is the intended receiver. By (9.19b) P follows
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a path that has a receive for every message sent to it in πg in the order sent, and as by

assumption all up to mfail are successfully received P must advance to the point where

it can receive mfail. No message written later than mfail can overtake it in the buffer so mfail

must be available at the head of a buffer for P to receive. As described in Section 9.5.2,

the projected choreography contract for P requires that receives cannot be blocked so

P must therefore receive mfail.

9.8 Result 2: Composite Choreographies

Defining a choreography as a single machine is limiting, in particular because it means

that at any point in a collaboration a given participant can either send or receive but

not both. In this section we consider choreographies defined as a homogeneous com-

position of independent choreography machines (compositions involving dependent

machines are considered in Section 9.9).

With the use of composition a given participant is able to both send messages and to

receive messages at a given state of the choreography. For example the choreography

in Figure 9.2 on page 155 is a composition of three machines and the following is a

possible state:

• In the top machine, the Customer is about to send Request Amend to the Supplier.

• In the middle machine, the Customer is ready to receive any of Accept Amend,

Accept Cancel or Invoice from the Supplier.

• In the lower machine, the Customer is about to send Confirm Delivery Date to the

Delivery Co..

The choreography has three relay machines in composition and each has its own “ba-

ton”. You can have as many relay machines composed in the choreography as you

like. We now show that a composition of realizable choreography machines is also

realizable.
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9.8.1 Distribution of Reduction over Composition

In general reduction does not distribute over composition. So if we have choreography

C = xC, Fy with C = C1 ∥ C2 then, in general:

Cóg
P ‰ (C1óg

P) ∥ (C2óg
P)

This follows from Hoare’s work on concealment in CSP. The relevant result concerns

concealment of a set of actions c in the composition of P and Q, and states that:

If α(P) ∩ α(Q) ∩ c = ∅ then (P ∥ Q)zc = (Pzc) ∥ (Qzc) (9.23)

where, using Hoare’s notation, α(P) denotes alphabet and z denotes concealment. This

result shows that in general concealment only distributes over composition if no con-

cealed action belongs to the intersection of the alphabets of the components. We can

equate removal of an action by reduction with concealment, so (9.23) implies that re-

duction only distributes over composition if no action removed by the reduction be-

longs to the intersection of the alphabets of the components.

The strategy for projection of choreographies expressed as compositions is to project

the components individually, and compose local projections. We now show that where

the components are individually realizable then this strategy realizes the choreography

as a whole.

9.8.2 Composition Preserves Realizability

We assume that the choreography, C = xC, Fy, between a set of participants, P, is

defined as a homogeneous composition of n independent machines over a universe

UC:

C =
ź

i P t1...nu

Ci (9.24)

where i indexes over the components of the choreography and is called the choreogra-

phy index. In this section we assume that each of these machines Ci has a topological

representation that is the basis for projection. We consider in Section 9.9 the case where

a choreography involves dependent machines and so where topological representation

is not possible.



9.8 Result 2: Composite Choreographies 181

The contract for a participant, Pj P P, is a composition of independent protocol

machines:

CóPj
=

ź

i P t1...nu

CióPj (9.25)

where CióPj
is the machine for participant Pj projected from choreography machine

Ci. This projection, along with the standard stipulation that a choreography fully con-

strains all receive actions in Pj, forms a protocol contract for each Pj P P.

We suppose that every component Ci of the choreography is asynchronous pro-

jectable, so that individually their projections are path matched. We suppose that the

collaboration is at enactment state E and that the global sequence of sends so far is

Eg. Suppose that each Ci is in state σi, so that the choreography as a whole is in state

ă σ1, σ2, . . . , σn ą. By the same reasoning used for a single process, realizability con-

ditions (9.15a) and (9.15b) are met.

In order to show that (9.15c) is met, suppose that a message instance mfail is the first

one sent in the global sequence of sends Eg that cannot be received. Suppose that mfail

was sent in a transition in P with an exchange symbol value P>Q:m and that the set of

machines in the choreography that engage in this exchange is given by:

Cfail =
ź

t(exchangeC
P = P>Q:m)u Ť alphabetCi

Ci

so all other machines in C ignore this exchange. We now observe that, at a point of

sending m f ail , the projections of all the component machines in C f ail to P must be syn-

chronized at states able to participate in the send of m f ail . This means that the paths

followed by each of the projections must reach this send. As all the machines are path

matched, the paths followed by the projections to Q must all contain the correspond-

ing receive for m f ail . As, by assumption, no previous message sent in the choreography

fails to be received, all the projections of component machines in C f ail to Q must reach

the receive. Q must obey the “fully constrained actions” part of the protocol contracts

projected from the choreography, it cannot refuse to receive a message whose receipt

is allowed by the choreography, so m f ail can be received by Q.
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9.8.3 Data Synchronization

Where a choreography is defined as a composition of independent machines, the re-

marks in Section 9.7.2 apply to each machine independently. It must be remembered

that the last participant to send will, in general, be different for different machines in

the composition.

9.8.4 Refactoring Choreographies
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Figure 9.9: Relay Property and Composition

As is probably clear, the use of composition in choreographies is a device that en-

ables realizability to be established easily. The set of components chosen in the compo-

sition is not determined or tied to the set of participants, for instance the choreography

in Figure 9.2 on page 155 has four participants and is modelled as a composition of

three processes.

As Figure 9.9 shows, the relay property can be both created and destroyed by com-

position. The author of a choreography has the freedom to engineer and refactor the

machines of the choreography to achieve realizability. It also important to understand

that this freedom to refactor without altering the behavioural semantics of the compo-

sition exists because the composition is homogeneous, as the component machines are
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all defined over a single universe. Such refactoring is not, in general, possible in the

context of heterogeneous composition as the different universes constrain the structure

of the composition.
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toPay := toPay –
Instalment.amount;
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if (C1.toPay ≤ 0) return “done”;
else return “not done”;
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Figure 9.10: Instalments Example
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9.9 Result 3: Dependent Choreography Machines

So far we have considered choreographies constructed from independent machines. It

is axiomatic in PM that sometimes behavioural rules are not describable just in terms

of independent machines (that can be described in pure topology) but need the use of

data and derived states. In this section we explore the use of data and derived states

to describe a choreography.

9.9.1 Interpretation of Dependency in Choreopgraphies

We consider choreographies defined as homogeneous compositions, where one or

more of the composites uses a derived state. Where a message exchange is constrained

by a pre-state constraint in a derived-state machine to start at a state σ it has the fol-

lowing semantics:

• The sender can only send when in state σ; and

• The receiver can only receive when in state σ.

Corresponding semantics are given to a post-state constraint.

The reason for this interpretation, whereby sender and receiver are both constrained,

is as follows:

• If only the sender were constrained, the constraint should properly be repre-

sented as a business rule in the sender rather than as part of the choreography.

• If only the receiver were constrained, the choreography would not in general be

realizable as the receiver cannot be guaranteed to obey the constraint.

Realizability requires that both sender and receiver be able to determine whether they are

in, or will enter, the derived state used to constrain the exchange.

For example, the process shown in Figure 9.10 requires that both P and Q track

the amount of money that has been transferred, as P must stop sending and Q says

“Thanks” when the requested amount has been reached. Both machines must know

that the requested amount has been reached for this protocol to work. Note that ma-

chine C1 does not have relay form as both P and Q can send from state s2. Moreover
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the technique for projection described in Chapter 6.4 applies to independent machine

and could not be applied to C2. The strategy here will be:

• To show that C1 and C2 in composition is realizable.

• To describe a mechanism for projection of derived-state machines.

9.9.2 Realizability Analysis of Derived-State Machines

We argue that the connected form, as described in Chapter 6.5 can be used in place of

the original derived-state machine in the context of realizability analysis as follows.

As the connected form machine describes the transition possibilities of the machine it

approximates, its prefixes are a superset of the prefixes that are possible for the original

derived-state machine. If the prefixes of the connected form conform to the conditions

(9.16) for asynchronous projectability, the subset that constitute the prefixes possible

for the original derived-state machine must also conform.

Suppose that in a machine C of choreography C is dependent on a symbol x which

is provided by another machine C1 of the choreography, so:

x P ΩC1 ∩ symb(perceives(asSet(BC))) (9.26)

Suppose moreover that x P (UCzAC)
tP,Qu. The behaviour of C is then only defined

in projections to P and Q as, according to (9.9b), x is not present in the universes of

other participants. As we require that the state is computable in both the sender and

the receiver of an exchange, C cannot constrain an exchange that involves participants

other than P and Q so:

alphabetC Ď t A | A P restr(UC,AC)^ tsender(A), receiver(A)u = tP, Qu u (9.27)

This implies that the behaviour of C cannot be dependent on any other symbol y with

y R (UCzAC)
tP,Qu as y would not be present in projections of C to both P and Q and

could not constrain exchanges between these two participants. Noting that x can be

a derived symbol, based on other symbols in (UCzAC)
tP,Qu, we can, without loss of

generality, take it that C’s dependency is confined to x and that x represents the state

of C.
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Using the concepts defined in Section 6.5.1 we form the connected form C˚ of C.

We use this connected form, combining it with other machines using the technique

in Chapter 6.2 where required, to determine that an assembly involving derived-state

machines has asynchronous projectability. In Figure 9.10 on page 183 the connected

form, C2˚, of C2 is composed with C1 to form C1 ∥ C2˚ and this machine, shown at

the bottom of Figure 9.10 allows realizability to be established.

9.9.3 Projection of Derived-State Machines

Using connected form enables analysis for realizability, but as the connected form ma-

chine is an approximation of the original derived-state machine it cannot be used as

the basis for projection, and we need to look for another basis for projection.

By (9.27) the alphabet of C involves only the two participants P and Q. This means

that C is completely preserved in projection to P and Q and completely lost in projec-

tion to all other participants. In particular, all transitions in C are retained in projection

to P and Q. This allows us to invoke Hoare’s result (9.23) and distribute projection

over composition. Thus we take the projection of C to P and Q to be C (unchanged)

and compose locally with the projections from other machines of the choreography.

9.10 Choreography Contract Framework

With the idea that the contracts extracted from a choreography are concerned with

ensuring that a collaboration “works”, in the sense that it realizes the choreography,

we can construct an instance of the framework set out in Section 8.2 as follows:

• T is a combination of topological and inductive reasoning, based on the prop-

erties of parallel composition in PM, the definition of projection, and the well-

formedness conditions for realizability.

• P is a statement that the choreography must be realizable, meaning that the col-

laboration of participants extracted from it meets (9.15) given in Section 9.6.1

above.

• C is a set of protocol contracts, projected from the choreography, that the partici-

pants must satisfy.
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• S is an implementation of the participant behaviours such that each satisfies its

projected contract.

The motivation for using this contract based approach for the design of participants

is that:

• The choreography does not completely specify the behaviour of a participant.

This is supported by the use of protocol machines, which specify possible order-

ings of actions but leave the choice of action in a given state open.

• A participant can simultaneously engage in two or more completely indepen-

dent choreographies and, in this case, each choreography gives rise to a contract

for the participant. This is supported by the fact that protocol contracts can be

composed, as described in Section 8.5, the composition of two being another con-

tract.

• Realizability of a choreography for asynchronous collaboration requires that re-

ceive actions in a participant must not be prevented (refused). For instance, sup-

pose that a customer requests a loan from a bank. The bank may either grant or

deny the loan, at its own discretion. But the customer has no discretion about

choosing which message to receive: it must receive whichever the bank sends.

This is specified in the contract using the mechanism for fully constrained ac-

tions, F.

Finally, note that a contract is concerned with protocol (that a loan once requested is

either granted or denied) and not with computation. How the bank decides whether

to grant or deny a loan is of no consequence for realizability of the choreography, and

two banks that both obey the collaboration contract are substitutable for each other

with respect to realizability even if the processes and criteria they use for deciding

when to grant and when to deny credit are completely different.

9.11 Simple versus Exact Reduction

In Chapter 6.4 we described two forms of reduction: simple reduction and exact reduction.

Both of these can be used to project a choreography to obtain participant contracts. This

raises the question of which is “better”.
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Both techniques model their states using members of the powerset of the set of states

of the choreography; and you can view each member of the powerset as a representa-

tion of your uncertainty: “I could be any of these states, but I don’t know which one

I am actually in”. Exact reduction gives exactly the right measure of uncertainty after

each filtered trace. The member of the powerset you are in after the filtered trace rep-

resents exactly the set of states of the original choreography you could be in. Simple

reduction, on the other hand, can give incorrect uncertainty. Sometimes the member

of the powerset you are in after a filtered trace is a superset of states of the original

choreography that you could actually be in. It is this inexact representation of uncer-

tainty in simple reduction that then allows impossible traces. As we see below, this has

consequences for the safety of a collaboration enacted using the projected behaviours.

9.11.1 Well-Behaved Projections

In Section 4.4.2 we defined a concept of well-behaved models: a model that is guaran-

teed to preserve data integrity. Here we explore the consequences of assuming that a

choreography is well-behaved.

Suppose a choreography machine C is both realizable and well-behaved. If exact

reduction as described in Section 6.4.2 is used to create participant contracts then the

projected participant contracts will also be well-behaved. This is because exact reduc-

tion guarantees that the behaviour of a projected participant cannot depart from the

behaviours allowed by the choreography, as defined in (6.5). If the data image of the

choreography remains within the valid universe then the partition of the image be-

longing to a participant will remain within the valid universe as well. This means that

data integrity in the participants is preserved, so that the participant contracts are also

well-behaved.

If on the other hand simple reduction as described in Section 6.4.1 is used, there

may be paths in a projection that were not present in the choreography. Suppose a

participant P in a collaboration misbehaves by sending a message to another partici-

pant Q that the choreography does not allow. If Q’s behaviour was created by simple

reduction it could allow receipt of this rogue message and as a result could follow a

path in Q not possible in the choreography. This is despite the fact the rogue message

conforms to the valid universe VC of the choreography, and therefore by (9.9d) of Q
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as well. The well-behaved property of the choreography now provides no guarantees

for the participant, which could depart from the valid universe so that data integrity is

lost. This means that participant contracts created using simple projection are not, in

general, well-behaved. For this reason, exact reduction is to be preferred over simple

reduction.

SIMPLE VERSUS EXACT REDUCTION

P > Q: a

P > Q: b

Q > P: c

Q > R: d

Q > R: e

Q > P: c P > R: h

P > R: f

S > Q: a

S > Q: b

Q > P: c

Q > S: e

Q > S: f 

Q > P: c Q > P: g

Q > P: d

Simple reduction to {P} gives a 

reduction that is not 

path-deterministic.

Exact reduction gives a path-

deterministic reduction.

Exact reduction to {P} gives a 

reduction that is not path-

deterministic.

A refactoring that allows

exact reduction.

R > P: g

S > P: h

S > Q: a

S > Q: b

Q > S: e

Q > S: f 

Q > P: g

Q > P: d

Q > P: d

Q > P: g

S > Q: a

S > Q: b

Q > P: c Q > S: e

Q > S: f 

S > P: h

Figure 9.11: Simple versus Exact Reduction

9.11.2 Refactoring For Projectability

As Figure 9.11 shows, it is possible that simple reduction of a choreography is not

path-deterministic but exact reduction is. In some cases, as shown in the lower half

of Figure 9.11, it may be possible to refactor a choreography that cannot be reduced

using exact reduction into one that can, thus allowing the guarantee of well behaviour

to be regained. This is a further example of the idea introduced in Section 9.8.4 that a
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choreography may be refactored to establish desired properties.

9.12 Choreography and Objects

The choregraphies illustrated so far have been modelled as a fixed population of ma-

chines all instantiated at the start of a collaboration. In some cases a choreography

requires instantiation of new machines as the collaboration progresses.

CHOREOGRAPHY

HEARTBEAT

Q maintains a “heartbeat” check that R is responsive.

Process:

5 Ack

6 Fail

1    Start

P

R

2 Ping

Q

OK
Q > R: Ping

fail
Q > P: FailC2

State Function:
badCount := 

(select Ping where Ping.waiting || ( ¬ Ping.waiting && Ping.response > 10)).size;
if  (badCount > 5) return “fail”;
else               return “OK”;

P > Q: Start

C1

Q > R :Ping

Q > T: Set Timer

T > Q: Time Up R > Q: Ack

Q > R :Ping

waiting := true;
response := 0;
start := Clock.now;

waiting := false;
response := Clock.now – start;

Ping

T

3 Set 

Timer

4    Time 

Up

1

2

5

6

3      4 

P sends a Start message to Q. 

Q then starts sending timed “Pings” to R.

Q uses a timer T to time sending of “Pings”.

R should respond to each “Ping” with an “Ack” 

(acknowledgement). However R may not respond.

If too many “Pings” are not acknowledged, or not 

quickly enough, Q sends a “Fail” to P.

The choreography fully constrains all receive actions, and the send actions for: 

Q > R: Ping, Q > T: Set Timer, Q > P: Fail.

Figure 9.12: Heartbeat Example
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Figure 9.12 shows a choreography for a “heartbeat” process, where participant Q

monitors whether participant R is functioning by repeatedly sending “pings” to which

R is expected to respond within a fixed time. If too many pings fail to get a response

within the fixed time then the monitored participant is deemed to have ceased func-

tioning.

Each ping instantiates a machine of the choreography, and so the population of ma-

chines changes over the life of the collaboration. In terms of PM, this is supported by

the ideas described in Chapter 4.6. As described there, a dynamic population of ma-

chines is formally represented as a fixed population whose members are “woken up”

by an action that they do not ignore; in this case the exchange of a “ping” message.

With this formalization of instantiation, the theory given in the earlier parts of this

chapter concerning realizability carries across, without change, to choreographies that

involve a dynamic population of machines.

9.13 Related Work

A number of other authors have looked at choreography definition and the rules re-

quired to ensure realizability. In this section we discuss related work and provide

a commentary on how this work relates to this thesis. We focus on work on asyn-

chronous choreographed collaborations.

Session Typing. Work by Honda et al. [40] addresses the question of realizability of

asynchronous multiparty collaborations using a behavioural typing discipline called

Session Typing. The scheme defines global types, which represent choreography; and

local types, which correspond to our participant contracts. The local types are abstracted

from the global type by a projection calculus, similar to that we describe in Chapter 6.4.

The conditions we give for asynchronous projectability are captured in their notion of

linearity, which aims to enforce the discipline that in two communications, sending actions

and receiving actions should respectively be ordered temporally, so that no confusion arises.

Linearity is established by a process called causality analysis based on the dependencies

between the exchanges of the global type. This analysis requires that there are sub-

sequences in the choreography that observe a similar discipline to that we require in

relay machines.
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B1 > B2: Share

The choreography fully 

constrains all receive actions

CHOREOGRAPHY

B1 > S: Title

S > B1: Quote

S > B2: Quote

B2 > S: Quit

SHARED BOOK 

BUYING Buyer 1 sends a book title to the Seller.

Seller sends back a quote to both Buyer 1 and Buyer 2.

Buyer 1 tells Buyer 2 the share of the cost he can 

contribute.  (This could happen either before or after 

Buyer 2 receives the quote from the Seller.)

Buyer 2 notifies the Seller whether she accepts the 

quote (OK) or not (Quit).

If Buyer 2 has accepted the quote, she then sends her 

address to the Seller.

The Seller sends back a delivery date.

Process:

4   Quit or OK

3   Share

5   Address

2   Quote

6     Date

B1

B2

S

1

2

2

2

3

4

4

4

4

5

6

CONTRACT FOR  BUYER 2 (B2)

? < S: Quote

! > S: Address ? < S: Date

! > S: Quit

! >S: OK

! > S: Quit

? < B1: Share
! > S: OK

1

2

3

4

5

6

2   Quote

1   Title

B2 > S: OK B2 > S: Address

S > B2: Date

S > B1: Quote

B2 > S: Quit

B2 > S: OK

F
B2

= ? < B1: Share   ? < S: Quote   ? < S: Date

Figure 9.13: Shared Book Buying Example

Where there is indeterminacy of ordering in the global type, sequencing is imposed

using a device called a channel. Consider the Shared Book Buying Collaboration exam-

ple which is described in [40] and to which we show a protocol modelling solution in

Figure 9.13. In the Session Typing solution the channel device is used to address the

indeterminacy in the ordering of receipt of the Quote and Share messages by B2 by im-

posing an ordering: Quote followed by Share. This is not required in the protocol mod-

elling solution, and it seems that channels are used to remove the natural concurrency

of the collaboration which in our approach is expressed explicitly using composition
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COMPETITION

X and Y are in competition to 

answer a question correctly  within a 

time limit. The outcome of the 

competition can be any of:

• X wins

• Y wins

• Both win (the prize is split)

• Neither wins

Question

Decision

Question

Question

Answer

1 2

2

3

4

5

5

Decision

Decision

If both X and Y reply with the right answer 

within the allowed response time, the prize is 

split.

If only X replies with the right answer within 

the allowed time, the prize goes to the X. 

Similarly for Y.

If neither replies with the right answer within 

the allowed time, no prize is awarded.

P sends a question to Q.

Q forwards the question to two contestants, 

X and Y.

Either, both, or neither of X and Y reply.

Q sends its decision on the winner back to P.

P forwards the decision to  X and Y.

Process:

P > Q: Question X > Q: Answer

P > Q: Question Y > Q: Answer

Q > X: Question

Q > Y: Question

P > Q: Question Q > P: Decision

1 2 3

1 2 3

1 4

CHOREOGRAPHY

P > X: Decision

5

P > Q: Question Q > P: Decision

1 4

P > Y: Decision

5

Y

P Q

X

The choreography fully constrains all receive actions, and fully constrains send actions for: 

Q > X: Question, Q > Y: Question, P > X: Decision and  P > Y: Decision.

Q decides as follows:

1

2   

3

4

5

Figure 9.14: Competition Example

in the choreography and the extracted participant contracts. This means that the Ses-

sion Typing approach, at least as described, is not able to describe collaborations that

necessarily entail a race. An example is given in Figure 9.14 which describes a simple

competition in which two contestants, X and Y, are asked a question and a prize is

awarded for correct answers. A choreography expressed as four composed protocol

machines is shown in Figure 9.14, and we note the following:

• The collaboration involves a race, because the sequencing of the receipt of an-

swers from X and Y is unknown in advance and cannot be constrained by the

choreography. This is handled using a composition of two machines in the chore-

ography, shown one above the other at the bottom left of the figure, allowing the
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ordering of receipt of the answers from X and Y to be unspecified.

• The provision of the Decision by Q back to P and then by P on to X and Y is

depicted by the two machines at the bottom right of the figure. Note that it is

possible for P to send notification of the decision to X or Y before they have

responded, as it is possible that either or both failed to respond quickly enough.

• The four machines in the choreography are independent, relay, and determin-

istic when reduced to pairs. So the choreography is projectable and therefore

realizable under our theory.

In attempting to create a global type for this collaboration we have a choice about how

to express the sending of the question to X and Y and the subsequent receipt of their

answers by Q. One possibility is to use two session types composed in parallel, fol-

lowing the same strategy that is used in Figure 9.14. However, while the syntax of

global types allows parallel composition, the projection of a global type that involves

parallel composition is undefined if a given participant is involved in both the types

being composed, either as the sender or the receiver of a message, so this approach is

excluded. The other possibility is to serialize the two exchanges whereby X and Y send

their answers to Q in a single global type. In this case we need to address the ques-

tion: should these two exchanges use the same or different channels? Neither choice

appears to be satisfactory. If we choose to use different channels then P is forced to

receive the answers in a defined order, as the receives on the channels must be serial-

ized in P’s logic. This clearly violates the intention of the collaboration. If we choose

to use the same channel then the global type fails to obey the condition for linearity8

(the Session Typing equivalent of our projectability condition) and this means that re-

alizability is not guaranteed. As some collaborations, such as e-auctions, are likely to

involve such intentional race conditions the difficulty of modelling this using Session

Types seems a weakness.

Session Nets. The syntax used in Session Typing uses a linear syntax that has expres-

sive limitations. This has been explored by Fossati et al. [25] in their paper on “Mul-

tiparty Session Nets” where they give the example shown at the top of Figure 9.15.

As the authors point out, this flow cannot be represented by the global type syntax

8This is because a chain of two receipts on the same channel from different senders, as we would have

here, is considered “non-causal” and makes the global type non-linear. See Honda et al. [40]
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CROSSED BLOCKS EXAMPLE

A choreography with crossed branch and  fork blocks expressed in Petri Net syntax. 

As presented by Fossati et al. in “Multiparty  Session Nets”. 

A > B: a

A > C: d

A > C: b

A > B: c

A > B: a

A > B: c

B > A: e

A > B: g

A > B: h

B > A: i

A > C: b

A > C: d

C > A: f
A > B: g

A > B: h

The same choreography expressed in PM as four composed machines.

Figure 9.15: Crossed Blocks Example

of Session Typing - firstly because the “criss-crossing” of the middle two of the four

paths from p0 to t cannot be expressed in the tree structure of a linear syntax; and

secondly because each of these paths flows from the initial branch through a fork, but

then goes through a merge before the join. This interleaving of choice (branch-merge)

and parallel (fork-join) structures is not supported by the nesting of choice and parallel

constructors imposed by standard global type syntax. In order to support choreogra-

phies with such flow structures the authors describe:

• Formation rules for choreographies expressed using Petri Net style notation dis-

playing branch and fork structures that guarantee realizalibility. Flows con-
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structed according to these rules are referred to as well-formed nets.

• A conformance relation between syntactic end-point types and well-formed nets

which allows each end-point type to be validated against a net independently,

while guaranteeing that their behaviour in composition respects the behaviour

of the global net.

This approach extends the applicability the use of locally typed processes to a wider

class of choreography. However the approach requires that parallel forks are expanded

into sequential interleaved outputs in each branch in order render the ordering of

sends expressible as a local type. However, if the parallel arms of a fork are seri-

alised differently in different participants deadlock can result and this is addressed

by requiring for conformance that outputs are prioritised over inputs. This has two

arguably adverse consequences:

• No mechanism is given for deriving local types from the choreography, perhaps

because the restructuring required would make it very complex. The paper does

not address how end-point processes are obtained.

• The prioritisation rule can introduce unnecessary latency in execution. Suppose

a participant cannot perform an output in one arm of a fork (e.g., because it is

waiting for information from elsewhere, not part of the choreography) but an

input arrives that can be received in the other arm. Serialisation with output

priority will delay handling the input until the output can be completed. This

delay is an artefact of the methodology as it is not required by the choreography.

The lower half of Figure 9.15 shows the choreography rendered in PM as four com-

posed machines, and it is not difficult to show that the set of traces induced by each

of the two representations are the same. Considering the PM representation, the four

machines all have relay form and no repeated transition labels, so the choreography

is realisable. End-point projections can be obtained from the PM choreography using

reduction, and do not entail any serialisation of parallel arms of the forks so no unnec-

essary latency is incurred, so neither of the consequences identified above pertain.

IOC/POC. Work by Lanese et al. [48] defines an approach similar to that used in Ses-

sion Typing, but without the use of channels. The scheme defines Interaction-Oriented
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Choreography (IOC), which represents choreography; and Process-Oriented Choreography

(POC), which corresponds to our participant contracts. A POC for each participant is

abstracted from the IOC by a projection calculus. The authors give realizability condi-

tions, which they call connectedness conditions, for both synchronous and asynchronous

collaborations. These conditions correspond very closely to those we describe for pro-

jectability of a single stored-state choreography machine.

The IOC/POC scheme allows parallel composition of processes in a choreography

and, unlike Session Typing, allows the same participants and message types to appear

in different composed processes. This means that the IOC/POC scheme has the ability

to model concurrency involving races, and could be used to express the choreography

for the Competition Example in Figure 9.14 on page 193. However there is no con-

cept of CSP style synchronization or of the use of data and derived states, so it is not

possible to articulate a choreography as a set of separate partially synchronized de-

scriptions. This means that the approach would not, as currently described, be able to

describe a choreography that requires a combination of stored and derived state spaces

such as the Instalments Example in Figure 9.10 on page 183 and, as published so far,

the IOC/POC approach does not use data or computation at all.

Conversation Protocols. In their work, Fu et al. [26] describe an approach for the real-

ization of asynchronous collaborations based on Conversation Protocols. A conversation

protocol corresponds to a choreography and is projected to give peer (i.e., participant)

behaviour. Both the choreography and the projected peer behaviours are modelled as

Finite State Automata (FSA). The authors identify three conditions on a conversation

protocol that must be met for realizability: Lossless Join, which requires that the pro-

tocol should be complete when projected to individual peers; Synchronous Compatible,

which ensures that the protocol does not have illegal states; and Autonomy, which im-

plies that at any point in the execution each peer is determined on the choice to send,

or to receive, or to terminate. Although stated in different terms, these correspond

quite closely to our asynchronous projectability conditions. The Autonomy condition

allows more than one peer (participant) to be in send mode at the same point in the

choreography, so is more relaxed than our projectability condition (9.16a) which limits

sending to a single participant. This more relaxed condition is balanced by the stricter

requirement of Lossless Join to ensure realizability. As we point out in Section 9.8,
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different machines in our compositional approach can have different senders and this

gives our approach equivalent expressive power to Conversation Protocols.

This formalism used for Conversation Protocols does not use parallel composition

at all. This does limit expressive power. For instance, if:

(PąQ:a) ∥ (QąP:b)

is expressed as a Conversation Protocol (i.e., with no composition) then it violates Au-

tonomy as P and Q are both sending and receiving in the initial state of the choreogra-

phy. However both components are clearly asynchronously projectable, so the chore-

ography is realizable under our theory. The same issue would arise in attempting to

model the Order Processing choreography in Figure 9.2 on page 155 as a Conversation

Protocol as, for instance, there is a state where the Customer can send a Request Cancel

and also receive an Invoice.

In later work, [27], the authors have added some capability to model data and com-

putations. This is done by using Guarded Finite State Automata (GFSA) for both chore-

ography and projected peer behaviours. The general idea is similar to that which we

describe, with data and computation being used to specify rules in the choreography.

However, the scheme is significantly less ambitious than ours in that the guard of a

transition only expresses the relationships between the message that is being sent and

the last message of each class sent or received by the sender; so there is no notion of

a choreography owning and maintaining attributes as we have. Updates are confined

to changes to message fields and it would not be possible to compute a guard con-

dition on accumulated amounts9 such as is required for the Instalments Example in

Figure 9.10 on page 183. The authors describe an algorithm for checking realizability

of a choreography described as a GFSA, and this bears some similarities to the tech-

nique described in Section 9.8 but a detailed comparison has not been undertaken.

BPMN2. The Business Process Model and Notation (BPMN2) [65] developed by the Ob-

ject Management Group (OMG) is the latest in a number of attempts to create an in-

dustry standard language to describe choreography10. The new standard is notable in

9At least not without including such amounts as extra fields in the messages. But message content is

normally fixed by business considerations or standards, and not open to this kind of change.
10Previous attempts include WSCI and WS-CDL.
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that it is the first to our knowledge to attempt to include rules for realizability, with the

following statement:

There are constraints on how Choreography Activities can be sequenced (through Se-

quence Flow) in a Choreography ... The basic rule of Choreography Activity sequencing

is this:

• The Initiator of a Choreography Activity MUST have been involved (as Initiator

or Receiver) in the previous Choreography Activity.

– Object Management Group [65] page 336

This partly captures our idea of relay form, but is clearly an incomplete treatment

of the conditions for realizability.

The BPMN choreography language has no compositional capability of the kind dis-

cussed and advocated in this thesis.

9.14 Necessary Conditions for Realizability

All of the treatments of choreography catalogued in the previous section concern them-

selves with establishing sufficient conditions for a choreography to be realizable, and

this is also the case for the results presented for PM. In practical terms this allows for

false negatives, because a choreography that is, in fact, useful and realizable does not

meet the sufficiency criteria required for realizability. This invites the question, what

are necessary conditions for realizability? Some recent work has addressed this ques-

tion.

Establishing necessary conditions for realizability enables the determination that a

given choreography is not realizable, and one conceivable approach to this is exhaus-

tive exploration of possible enactments using model checking. The problem is that

model checking on collaborations with unbounded queues between participants is not

decidable as the enactment state space is infinite. However in their paper on the de-

cidability of choreography realizability [8], Basu et al. establish that choreography

realizability is guaranteed if enactment of projected participant behaviours connected

by queues limited to a single message is language equivalent to the choreography,
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where language equivalence here is based on the possible sequences of sends. Since

both the choreography and the enactment with limited queues have finite state spaces,

it is possible to use standard model checking tools to establish the required language

equivalence between them. This result provides a means of establishing that a chore-

ography is not realizable, by establishing that it fails the language equivalence test,

albeit by exhaustive exploration of the state space of the bounded enactments.

QUEUE DEADLOCK

If P uses a single input queue and the c message from Q arrives first and is placed 

ahead of the a message from R then P will be unable to proceed as its projected 

behaviour requires that it receives the a message first. 

This deadlock would not occur if P had separate input queues from R and Q.

Choreography

R > P: a Q > P : cR > Q: b ? < R: a ? < Q: c

Participant  Contract for: P

Figure 9.16: Queue Deadlock

The communication model adopted by Basu et al. in this work has a single input

message queue for each participant, in contrast to model used in this thesis where each

participant has an input queue for each other participant. The choice we have made is

deliberate, as using a single queue gives the possibility of “queue deadlock” as shown

in Figure 9.16, so we do not think the single queue model is appropriate. However, the

proof techniques used by Basu et al. rely on their assumed model, as their model en-

ables departure of an enactment from its choreography to be tied to a single message:

the one at the front of the queue for some participant at the point where the departure

occurs. It is the ability to tie departure to a single message that allows such departure

to be replicated in a bounded system where only one message is allowed in a queue.

In our model a participant may have a number of messages visible to it via its mul-

tiple input queues, and an enactment’s departure from its choreography results from

making an incorrect choice on which to process. The context of an incorrect choice is

thus constituted of both the “correct” message that was not chosen and the “incorrect”

one that was, so cannot be associated with a single message. This means that the result

proved by Basu et al. does not carry through to the work described in this thesis.
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It is interesting to speculate on whether it is possible to formulate necessary condi-

tions for realizability using the multiple input queue model we have used; and also

whether conditions can be formulated that do not rely on exhaustive search of the

enactment state space for evaluation. One possibility to attempt to adapt their rea-

soning to our communication model, but this does not appear straightforward. An-

other approach is to ask whether any realizable choreography expressed as a single

PM machine must be decomposable into a composition of relay machines (as defined

in Section 9.6.3 on page 169). If so, being expressible as a composition of relay machine

becomes a necessary condition for realizability; and while this does not furnish a com-

plete answer, it is a significant part of it. A possible attack on this question could be

along the lines sketched below.

Suppose that a choreography C is expressed as a single LTS. We assert that, if C is

realizable, every path of C must be an interleaving of relay “threads”, such a thread

being a sequence of transitions where the sender in each transition (apart from the first)

is either the sender or the receiver of the previous transition. The justification for this

assertion can be seen as follows.

First, we identify the possible starter actions, those that can start off the collaboration:

startersC = t label(θ) | θ P ΘC ^ begin(θ) = ‚ u

Now assume that each participant starts with a Lamport clock set to zero, and consider

any transition θ in C with label(θ) R startersC. Because its action cannot be the first, in

any enactment θ must carry a Lamport timestamp greater than zero. As only a relay

thread can support strictly increasing Lamport timestamps, any path in C that contains

θ must have a relay subsequence that contains θ but doesn’t start with θ. This identifies

relay predecessors for θ. This argument is then applied recursively to the predecessors

until an action in startersC is reached. By this argument every transition, unless it is for

a starter action, is in a relay thread.

If all the paths in C are interleaved relay threads, it may be possible to re-express C

as a composition of relay machines. We do this first under the simplifying assumption

that no two transitions in C share the same label:

@ θ1, θ2 P ΘC : label(θ1) = label(θ2)ñ θ1 = θ2 (9.28)
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The significance of this assumption is discussed at the end of this section.

We define the set reductions(C) as the set of all exact reductions of C, so for each

member x P power(labels(ΘC)) there is a member of reductions(C) that is C reduced to

retain only those labels in x.

We now construct the machine Cz as follows:

Cz =
ź

M P reductions(C)^ relay(M)

M (9.29)

and the contention then is that Cz = C. This contention is supported by the following

observations:

• Every relay thread in C is preserved in at least one machine in the composition

Cz. This means that every interleaving of relay threads in C is present in Cz and

so Cz contains every realizable path in C.

• Every choice made by C must be made as a choice by one participant between

two or more sends in one state of the choreography. Because the transitions that

represent the different choices have the same sender they conform to relay form

and will all be present in at least one machine in the composition Cz. This means

that Cz reflects every choice that may be made by a participant in enactment.

• Because exact reduction is used and, as discussed in Section 6.4.2 on page 116,

this technique cannot introduce new traces, there is no relay thread in Cz that is

not present in C.

This reasoning requires formal verification, and this is identified in the next section as

further work required.

The reason for the assumption (9.28) is to ensure that all relay threads are preserved.

Without it the reduction of C to the labels that occur on a given relay thread may not

be a relay machine, as some subset of these labels also occur in a non-relay relationship

elsewhere in C causing the reduction to be non-relay. This can only happen if a given

label can appear on more than one transition, so (9.28) ensures that all relay threads are

preserved. If a choreography does not meet (9.28) it can be made to do so by renaming
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RELABELLING FOR RELAY FORM

R > Q: b

P > Q: a Q > S: x

P > Q: a Q > S: x

P > Q: a Q > S: x

Q > S: x Q > S: x Q > S: x

R > Q: b R > Q: b

R > Q: b Q > S: x2

P > Q: a Q > S: x1

The choreography on the left is realizable 

but cannot be expressed as a relay 

composition unless the x messages are 

distinguished as x1 and x2.

C C

Figure 9.17: Relabelling for Relay Form

message types. So if, for instance, the label:

Cust>Supp:Cancel

appears on two transitions these can be relabelled:

Cust>Supp:Cancel1 and Cust>Supp:Cancel2

Figure 9.17 shows an example of a realizable choreography that requires relabelling

of transitions to enable expression as a relay composition. Note that relabelling fully

within the choreography C will generate more versions of the labels than is shown in

Cz, but after refactoring to remove equivalent labels the result is as shown.

The ability to re-express any realizable choreography as a relay composition after

suitable relabelling of transitions means that, at least up to message renaming, this

form is necessary for realizability.

9.15 Conclusions and Further Work

We claim that the approach to choreography described in this thesis makes a significant

advance over other proposals in three respects:

• We use composition in the articulation of a choreography, so that a single choreog-

raphy can be expressed as a composition of partially synchronized descriptions.

This gives our approach the expressive power to model cases where the order-

ing and/or certainty of message receipt is unknown in advance and cannot be
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constrained by the choreography. These kinds of collaboration are hard or im-

possible to handle without composition.

• We demonstrate that realizability of a choreography defined as a composition

only needs to be established individually for the components of the composition. In

other words, composition preserves realizability. Determining realizability for a sin-

gle component is easier than analyzing the choreography as a whole, thus sim-

plifying the analysis.

• We allow the use of data and computation in the definition of a choreography, so

that the decision on whether it is permissible to engage in a message exchange

can be determined by the result of a calculation. This is in contrast with most

other published approaches, which only guarantee realizability on the basis of

patterns of message exchange.

If sufficiently simple, powerful and robust conditions on the form of a choreography

can be formulated, along with a simple procedure for extracting participant behaviour

definitions, then designing extended collaborations can become routine. If the chore-

ography is built to obey the rules, the resulting collaboration is bound to work.

We believe that the development of advanced distributed collaborations will require

techniques that enable designers to construct solutions that are transparently correct so

that, as far as possible, realizability is guaranteed. The modelling formalisms used to

represent choreographies and the resultant behaviour contracts must play the key role

in this, and the use of compositional modelling appears to be the natural paradigm to

express and analyse the inherent parallelism of distributed behaviour.

If choreography-based approaches are to succeed they must provide the expressive

power to capture real business collaborations, but also allow realizability to be verified

using techniques within the competence of mainstream software engineers. We believe

that the ideas we discuss here take us significantly nearer achieving this combination

and we hope that this work will help inform future directions in the design of chore-

ography modelling languages. In particular, we suggest that composition capabilities

should be at the heart of such languages.

A number of lines of further work are possible which we discuss here.
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Expressive Power. As was noted in the discussion of the flow depicted in Figure 9.15

on page 195, some of the choreography languages that have been proposed have lim-

itations in their expressive power. To assess where PM stands a number of questions

would need to be addressed:

• How should “expressive power” be measured? Could use be made of patterns,

such as the workflow pattern catalogue compiled by van der Aalst et al. [77]?

• How does the expressive power of PM compare with other choreography lan-

guages? Are there any limitations that would impair its use or value?

Developments in Choreography. There is potential for PM to contribute to new lines

of research in choreography. Particular opportunities here are:

• Can the ideas sketched in Section 9.14 lead to a formulation of necessary condi-

tions for choreography realizability that does not require model-checking tech-

niques (exhaustive exploration of the state space) for evaluation?

• Rather than extracting participant behaviours from a choreography it is poten-

tially possible to do the reverse, forming choreography by combining local be-

haviours. This is known as “synthesis” and has been explored for instance by

Lange et al. [50] who use an automata model for building a choreography from

a (finite) set of communicating automata expressing local behaviours. Would it

be possible to use PM formalisms to reproduce this and extend it with the data

dimension?

Distributed Workflow. The author has explored the use of PM to model workflow

[54], using a form of deontic modality to model “motivation” in workflow and estab-

lish conditions under which a distributed, choreography based, workflow will always

progress to completion in finite time. There are a number of ways in which this work

can be taken further, by addressing the following questions:

• What possibilities are there to enhance the power of the progress analysis by

combining topological reasoning (based on analysis of the state/transition space)

with non-topological reasoning?

• How would PM workflow models map to commonly used workflow and collab-

oration infrastructures?
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Appendix A

Notations and Utility Functions

A.1 Notations

A.1.1 Notations for Sets

If X is a set and Y is a set of sets we use X Ť Y to mean that there is an member of Y

containing X. So:

X Ť Y ô D Y P Y with X Ď Y (A.1)

Similarly we use X Ű Y to mean that there is no member of Y that contains X.

We also use Ť on a set of sets:

X Ť Y ô @ X P X : X Ť Y (A.2)

We use ] to denote union of a set of sets, so:

] X =
ď

XPX

X (A.3)

and similarly \ to denote intersection of a set of sets, so:

\ X =
č

XPX

X (A.4)
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We use power(X) for the power set of X:

power(X) = t x | x Ď X u (A.5)

A.1.2 Notations for Sequences

We use:

• X˚ for the set of finite sequences of elements from the finite set X.

• X8 for the set of all sequences (both finite and infinite) of elements from the finite

set X.

• " for concatenation. So if t is a sequence of items and s is an item then t"s is the

sequence obtained by appending s to the end of t. Similarly, if t1 and t2 are two

sequences, then t1"t2 is their concatenation.

• ti is the ith item of the sequence t, numbering starting at 1.

We use:

• t1 Ď t to mean that t1 is a subsequence of t, so t1i = tnj where

1 ď n1 ă n2 ¨ ¨ ¨ ď length(t) is an increasing sequence of indices.

• t1 Ă t to mean that t1 is a proper subsequence of t, so t1 Ď t and t1 ‰ t.

A.2 Utility Functions on Sequences

Fn: length. To obtain the length of sequence we define the function length with sig-

nature:

length :: X˚ Ñ N

which returns the length of an element of X˚. For instance, length(ăą) = 0.

Fn: last. To return the last element of a non-empty finite sequence we define the

function last with signature:

last :: X˚ztăąu Ñ X

If t P X˚ then last(t) = tlength(t).
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Fn: prefixes and stems. A prefix of a sequence t is any finite sequence that can be

extended by successive concatenation zero or more times to the right to equal t. A

stem of a sequence t is a finite proper prefix of t; so a stem is always shorter than the

sequence it prefixes. If X is some set of elements then we define functions prefixes and

stems with signatures:

prefixes :: X8 Ñ power(X˚)

stems :: X8 Ñ power(X˚)

prefixes :: power(X8)Ñ power(X˚)

stems :: power(X8)Ñ power(X˚)

as:

prefixes(t) = t t1 | length(t1) ď length(t)^ @ i with 1 ď i ď length(t1) : t1i = ti u

stems(t) = t t1 | length(t1) ă length(t)^ @ i with 1 ď i ď length(t1) : t1i = ti u

prefixes(S) =
ď

tPT
prefixes(t)

stems(S) =
ď

tPT
stems(t)

Fn: trunc. To remove the last item from a finite sequence we define the function trunc

with signature:

trunc :: X˚ztăąu Ñ X˚

as:

trunc(t) = t1 where

length(t1) = length(t)´ 1 ^ @ i with 1 ď i ď length(t1) : t1i = ti

Fn: asSet. To recover the underlying set from a sequence we define functions asSet

with signatures:

asSet :: X8 Ñ X

asSet :: power(X8)Ñ X

as:

asSet(t) = te | D i with 1 ď i ď length(t) and e = tiu

asSet(S) =
ď

t P S

asSet(t)
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Fn: filter. To filter a sequence to those items for which some predicate on items is true

we define the function filter. Given a set X and a predicate ϕ(e) defined on all members

of X, we define functions filter with signatures:

filterϕ :: X8 Ñ X8

filterϕ :: power(X8)Ñ power(X8)
as:

filterϕ(ăą) = ăą

filterϕ(t
"e) = filterϕ(t)

"e

filterϕ(t
"e) = filterϕ(t)

if (ϕ(e))

otherwise

and:

filterϕ(S) = t filterϕ(t) | t P S u

A.3 Utility Functions on Observations

Fn: symb and val. To extract the set of symbols used in a set of observations we

define functions symb with signatures:

symb :: E Ñ power(Y)

symb :: power(E)Ñ power(Y)

symb :: power(power(E))Ñ power(Y)

as:

symb(w) = twsymbu

symb(W) =
ď

w P W

symb(w)

symb(W) =
ď

W P W

symb(W)

The function val works in a similar way on the value parts of observations.

Fn: restr. To restrict observations to those that use a given set of symbols we define

functions restr with signatures:

restr :: power(E)ˆ power(Y)Ñ power(E)

restr :: power(E)˚ ˆ power(Y)Ñ E˚

restr :: power(power(E))ˆ power(Y)Ñ power(power(E))
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as:

restr(W, Y) = tw | w P W ^ wsymb P Yu

restr(W˚, Y) has length(restr(W˚, Y)) = length(W˚) and

restr(W˚, Y)i = restr(W˚
i , Y)

restr(W, Y) = t restr(W, Y) |W P Wu

A.4 Utility Functions on Steps

Fn: actions. To extract the action parts from a structure of steps we define functions

actions with signatures:

actions :: S˚ Ñ power(E)˚

actions :: power(S˚)Ñ power(power(E)˚)

actions :: power(S)Ñ power(power(E))

as:

actions(t) has length(actions(t)) = length(t) and actions(t)i = ti
α

actions(B) = tactions(t) | t P Bu

actions(S) = tsα | s P Su

Fn: perceives and offers. Corresponding functions are defined for perceives and offers.

Fn: decisions. To extract the decision parts from a structure of steps we define func-

tions decisions with signatures:

decisions :: S˚ Ñ tallow, refuse, crashu˚

decisions :: power(S˚)Ñ power(tallow, refuse, crashu˚)

decisions :: power(S)Ñ power(tallow, refuse, crashu)

as:

decisions(t) has length(decisions(t)) = length(t) and decisions(t)i = ti
δ

decisions(B) = tdecisions(t) | t P Bu

decisions(S) = tsδ | s P Su
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Fn: symb. To extract the set of symbols used in a structure of steps we define func-

tions symb with signatures:

symb :: S Ñ power(Y)

symp :: power(S)Ñ power(Y)

symb :: S˚ Ñ power(Y)

symb :: power(S˚)Ñ power(Y)

as:

symb(s) = symb(sτ)

symb(S) =
ď

s P S

symb(s)

symb(t) =
ď

1 ď i ď length(t)

symb(ti)

symb(B) =
ď

t P B
symb(t)

Fn: restr. To restrict a structure of steps to use a given set of symbols we define func-

tions restr with signatures:

restr :: S ˆ power(Y)Ñ S

restr :: S˚ ˆ power(Y)Ñ S˚

restr :: power(S˚)ˆ power(Y)Ñ power(S˚)

as:

restr(s, Y) = step(restr(sα, Y), restr(sπ, Y), sδ, restr(sω, Y))

restr(t, Y) has length(restr(t, Y)) = length(t) and restr(t, Y)i = restr(ti, Y)

restr(B, Y) =
ď

t P B
restr(t, Y)

A.5 Utility Functions on Machines

Fn: nextP. To give the set of steps following a given prefix we define the function

nextP with signature:

nextP :: prefixes(BP)Ñ power(asSet(BP))
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as:

nextP(t) = t s | s P asSet(BP) ^ t"s P prefixes(BP)u

Note that if P is a protocol machine then tδ ‰ allow ñ nextP(t) = ∅.

Fn: completionsP. To obtain the set of completions that all have a given prefix we

define the function completionsP with signature:

completionsP :: prefixes(BP)Ñ power(BP)

as:

completionsP(t) = t t1 | t1 P BP ^ t P prefixes(t1) u

Fn: matchesP. To obtain the prefix of a protocol machine that matches a given se-

quence of universe elements we define the function matchesP with signature:

matchesP :: U˚ Ñ prefixes(BP)

as:

matchesP(U˚) =

ăą

matchesP(trunc(U˚))

matchesP(trunc(U˚))"s

where s P nextP(matchesP

if (U˚ = ăą)

if (nextP(matchesP(trunc(U˚))) = ∅)

otherwise

(trunc(U˚))) and sτ Ď last(U˚)

Note that matchesP is only defined if P is a protocol machine so that BP obeys (4.10).

When this is the case (4.10c) guarantees that the step s used in this definition always

exists and (4.10d) guarantees that it is unique.

Fn: zipU. To create a sequence of steps from three elements:

• A set of symbols that are offered by the steps

• A sequence of elements from the universe U

• A sequence of decisions
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we define the function zipU with signature:1

zipU :: power(U )ˆU˚ ˆ tallow, refuse, crashu˚ Ñ S˚

as:

length(zipU(Ω, U˚, δ˚)) = min(length(U˚), length(δ˚)) and

@ i with 1 ď i ď length(zipU(Ω, U˚, δ˚)) :

zipU(Ω, U˚, δ˚)i = step(restr(U˚
i,A), restr(U˚

i,Uz(A∪ Ω)), δ˚i, restr(U˚
i, Ω))

A.6 Utility Functions on Topological Representations

Fn: begin, end. To obtain the beginning state from a structure of transitions we define

functions begin with signatures:

begin :: Θ Ñ Σ

begin :: Θ8 Ñ Σ

as:

begin(θ) extracts the first component of θ, the begin state

begin(t) = begin(t1)

and similarly for end.

Fn: label. To obtain the label(s) from a structure of transitions we define functions

label and labels with signatures:

label :: Θ Ñ Λ

labels :: Θ8 Ñ Λ8

labels :: power(Θ8)Ñ power(Λ8)

labels :: power(Θ)Ñ power(Λ)

The first extracts the middle component of an identifier, the label on the transition. The

remainder are defined respectively as follows:

@ i with 1 ď i ď length(t) : labels(t)i = label(ti)

labels(I) = tlabels(t) | t P Iu

labels(S) = tlabel(s) | s P Su

1The name zip is intended to capture the idea that the function “zips” together two sequences, one of

universe elements and one of decisions.
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Fn: Π. To obtain the set of all paths starting at a given state we define functions Π

with signatures:

ΠP :: ΣP Ñ power(ΘP
8)

ΠP :: ΣP ˆ ΣP Ñ power(ΘP
8)

The first defines the set of, possibly infinite, paths starting at a given state σ:

ΠP(σ) = tπ | @ i with 1 ď i ď length(π) : πi P ΘP ^ begin(π1) = σ ^

@ i with 1 ď i ă length(π) : begin(πi+1) = end(πi)u

The second defines the set of, possibly infinite, paths between states σ and σ1:

ΠP(σ, σ1) = tπ | π P Π(σ)^ end(π) = σ1u

Fn: ÝÑΠ . To obtain the set of all finite paths starting at a given state but unable to

progress beyond a return to a state already visited we define functions ÝÑΠ with signa-

tures:

ÝÑΠP :: ΣP Ñ power(ΘP
˚)

ÝÑΠP :: ΣP ˆ ΣP Ñ power(ΘP
˚)

as:

ÝÑΠP(σ) = tπ | π P ΠP(σ) and

@ i, j with 1 ď i, j ď length(π) and begin(πi) = begin(πj) : i = j u

and:

ÝÑΠP(σ, σ1) = tπ | π P ΠP(σ, σ1) ∩ÝÑΠP(σ) u

Fn: ÝÑΠ
m

. To obtain the set of maximal finite paths starting at a given state but unable

to progress beyond a return to a state already visited we define the function ÝÑΠ
m

with

signature:

ÝÑΠ
m
P :: ΣP Ñ power(ΘP

˚)

as:

ÝÑΠ
m
P (σ) = tπ | π P

ÝÑΠP(σ)^ π R stems(ÝÑΠP(σ)) u (A.7)
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Fn: visits. To obtain the set of states visited by a given path we define the function

visits with signature:

visits :: Θ8 Ñ power(Σ)

as:

visits(π) =
ď

θ P asSet(π)

( tbegin(θ)u∪ tend(θ)u )
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Proofs

B.1 Normal Form in fixes is unique

Theorem B.1. We show that the normal form of fixes is unique. This is done by show-

ing that any symbol used in normal form representation must be used in any represen-

tation.

Proof. We assume that a universe U that is well-formed by (4.7) has two fixes defined,

fixes and fixes’, that purport to give the same derivations but possibly have different

representations.

If fixes and fixes’ give the same derivations, we must have:

@ v, v1 P restr(E ,D) with vsymb = v1symb and V P fixes(v), V1 P fixes’(v1) :

con(V ∪ V1)ñ v = v1
(B.1)

for otherwise there would be an element U P U with (V ∪ V1) Ď U for which fixes and

fixes’ give different derivations (fixes) for the same symbol.

We assume that fixes and fixes’ obey (B.1) and that fixes is in normal form. Further

we assume that in fixes a certain derived observation v has a fix V that uses a symbol

y, so y P symb(V), but that the equivalent fix in fixes’ does not use y. We show that this

violates (B.1), giving a contradiction.
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As fixes(v) is in normal form, y cannot be removed by fix reduction. This means

that there must be some v: ‰ v with v:symb
= vsymb and some V: P fixes(v:) with

y P symb(V:) so that:

con((V ∪ V:)z(restr(V:, tyu))) but ␣con(restr(V ∪ V:, tyu)) (B.2)

for if this were not the case changing the value of y in any element of fixes(v) would

still fix to v and so y could be removed from fixes(v) by fix reduction.

We now note that there must be an element V1 of fixes’ that fixes a value for vsymb and

has:

con(V1 ∪ ((V ∪ V:)z(restr(V:, tyu)))) (B.3)

for if not there would be a U P U where fixes’ does not fix any value for vsymb in

violation of (4.7b). Moreover because V1 obeys (B.3) we know that con(V ∪ V1), and as

we assume fixes and fixes’ obey (B.1) this means that V1 P fixes’(v).

By assumption y R symb(V1) and hence con(V: ∪ V1). However, V: fixes v: and

V1 fixes v and v ‰ v:. So fixes and fixes’ do not obey (B.1) and cannot give the same

derivations. This means that y must be used to fix v in both fixes and fixes’. If fixes and

fixes’ use the same symbols it is not possible to construct a normal form different from

fixes so normal form is unique.

B.2 Normal Form in machines is unique

Theorem B.2. We show that the normal form of machines is unique. This is done by

showing that any symbol used in normal form representation must be used in any

representation.

Proof. We assume that P – Q and t P (prefixes(BP
norm)∩ prefixes(BQ

norm)) with possibly

t =ăą, and that P is in normal form. Moreover we assume that a step sp P next(t) of

P uses a symbol y but that the equivalent step of Q does not use y. We show that this

violates the assumption that P – Q, giving a contradiction.
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Suppose that sp1 P nextP(t) with y P symb(sp) ∩ symb(sp1). Because P is in normal

form, y is required to distinguish behaviours, so we must have U˚, U˚1 P U˚ with:

t"sp P prefixes(matchesP(U˚)) and t"sp1 P prefixes(matchesP(U˚1)) (B.4a)

and, using k = length(t) + 1, also:

1 ď i ď length(U˚)^ i ‰ k ñ U˚
i = U˚1

i and

restr(U˚
k , Uztyu) = restr(U˚1

k , Uztyu)
(B.4b)

and:

decisions(matchesP(U˚)) ‰ decisions(matchesP(U˚1)) (B.4c)

for if no such U˚ and U˚1 existed then y could be removed from sp and sp1 by step

reduction.

By (4.10c) we have sq P nextQ(t) with t"sq P prefixes(matchesQ(U˚)). As by assump-

tion y R symb(sq) and because U˚ and U˚1 are the same apart from the value of y in

their respective kth elements, we also have:

t"sq P prefixes(matchesQ(U˚1))

and as U˚ and U˚1 are identical beyond their respective kth elements, we must have:

matchesQ(U˚) = matchesQ(U˚1)

and so:

decisions(matchesQ(U˚)) = decisions(matchesQ(U˚1)) (B.5)

but as P – Q, (4.14) and (B.5) then require that:

decisions(matchesP(U˚)) = decisions(matchesP(U˚1))

which contradicts (B.4c). This means that sq must use y as well. But if corresponding

steps in P and Q use the same set of symbols it is impossible to construct a normal

form different from P, so normal form is unique.
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B.3 Composition can preserve acyclicity

Theorem B.3. We show that it is always possible to choose two nodes of an acyclic

graph so that the result of merging the nodes is acyclic.

Proof. Consider a topological ordering m1, . . . , mn of the nodes of the graph so that

mj Ñ mk ñ k ą j and m1 is a terminal node. Suppose that mi, 2 ď i ď n, is the

first node in the ordering connected by an edge to m1. There cannot be any other

dependency path from m1 to mi otherwise there would have to be a node earlier than

mi in the ordering connected to m1 for such a path to use as its first link. So composing

m1 and mi yields a new but smaller (containing fewer nodes) acyclic graph.

B.4 Composition is abstract

Theorem B.4. We show that the results of composition do not depend on representa-

tion, so:

P – P1 ^Q – Q1 ñ P ∥ Q – P1 ∥ Q1 (B.6)

Proof. Suppose that the machines are defined over universes as follows:

• P and P1 over U

• Q and Q1 over U1

• P ∥ Q and P1 ∥ Q1 over U2

where:

• For homogeneous composition: U2 = U1 = U

• For heterogeneous composition: U2 = U1 ‘ U

and consider a sequence U2˚ P U2˚.

This gives rise to a unique sequence U˚ = restr(U2˚,U ) P U˚ and a unique sequence

U1˚ = restr(U2˚,U 1) P U1˚. Because:

decisions(matchesP∥Q(U
2˚))i =

decisions(matchesP(U˚))i ∥ decisions(matchesQ(U1˚))i
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and:

decisions(matchesP1∥Q1(U2˚))i =

decisions(matchesP1(U˚))i ∥ decisions(matchesQ1(U1˚))i

then because P – P1 and Q – Q1 have by (4.14) that:

decisions(matchesP∥Q(U
2˚))i = decisions(matchesP1∥Q1(U2˚))i

and so P ∥ Q – P1 ∥ Q1.

B.5 Composition is commutative and associative

Theorem B.5. We show that composition of two protocol machines is commutative

and associative. This rests on the step composition operator (4.23) having these proper-

ties.

Proof. As all parts of the step composition operator are symmetric in s1 and s2, com-

mutativity of the machine composition construction follows.

If we consider ((s1 ∥ s2) ∥ s3) it is obvious that the operator is associative for the

action, decision and offers parts. The perceives part is not obvious. By (4.23b) and (4.23d)

we have:

((s1 ∥ s2) ∥ s3)π = (((s1π ∪ s2π)z(s1ω ∪ s2ω)) ∪ s3π)z((s1ω ∪ s2ω) ∪ s3ω)

which reduces to:

((s1 ∥ s2) ∥ s3)π = ((s1π ∪ s2π) ∪ s3π)z((s1ω ∪ s2ω) ∪ s3ω)

As set union is associative, associativity of the perceives part of step composition, and

hence of step composition as a whole, follows. This means that the composition con-

struction (4.25) is associative.

B.6 Composition is closed

Theorem B.6. We show that composition of a set of protocol machines, all having the

properties given in (4.10), yields a machine that also qualifies as a protocol machine,

so that the composition operator is closed.
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Suppose that P, Q are protocol machines defined over a universe U, and suppose that

we are constructing a completion of their composition. We use mathematical induc-

tion, assuming that all steps used so far satisfy (4.10) and consider a next step, sp ∥ sq.

Each condition of (4.10) is considered in turn.

Consistency with the universe: (4.10a).

Proof. Because sp and sq obey (4.10a) and by definition of Ť:

D U1, U2 P U with spτ Ď U1, sqτ Ď U2

which requires that symb(U1 ∪ U2) Ď U . As by (4.21), con(spτ ∪ sqτ) and by the

definition of the total universe (4.6) we must have U3 P U with spτ ∪ sqτ Ď U3.

Correct use of symbol sets: (4.10b).

Proof. This follows directly from the fact that sp and sq obey (4.10b) and from the defi-

nition of step composition, (4.23).

Exhaustiveness of steps: (4.10c).

Proof. Given a universe element U, (4.10c) guarantees that there are steps sp and sq

with spτ Ď U and sqτ Ď U. This means that sp „ sq and gives a step sp ∥ sq with

(sp ∥ sq)τ Ď U.

Uniqueness of steps: (4.10d).

Proof. Suppose that two steps, sp ∥ sq and sp1 ∥ sq1 both match a given universe element

U. As all must match U, by (4.10d) for P and Q we have sp = sq and sp1 = sq1. This

means that the composed step is unique.

Determinism: (4.10e).

Proof. We suppose that P ∥ Q does not obey (4.10e) but that both P and Q do obey and

show a contradiction. We will rely on (4.28) and take it that P is independent machine.
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We consider steps that match a set of observations Uϵ Ť restr(U,Uz(ΩP ∪ ΩQ)) that

fixes the external data for P ∥ Q. Because we assume P is independent and obeys

(4.10e), this gives a single step sp of P with spδ = allow. The only way that P ∥ Q can

violate (4.10e) is if there are two steps sq and sq1 with sqδ = sq1δ = allow which are

distinct in the sense that sqω ‰ sq1ω but such that (sp ∥ sq)ε and (sp ∥ sq1)ε both match

Uϵ. This requires that con((sp ∥ sq)π ∪ (sp ∥ sq1)π), so:

con(((spπ ∪ sqπ)z(spω ∪ sqω)) ∪ ((spπ ∪ sq1π)z(spω ∪ sq1ω))) (B.7)

By assumption, Q obeys (4.10e), so we must have ␣ con(sqπ ∪ sq1π) otherwise sq and

sq1 could not be distinct. This requires that we have observations, v and v1, with

␣ con(tvu ∪ tv1u) and v P sqπ and v1 P sq1π. Then, if v is in the left hand component of

the union in (B.7), we must have both of:

• v1 is not in the right hand component of (B.7), and this requires v1 P spω, and

• v is in the right hand component of (B.7), and this requires v P spπ.

However, v1 P spω and v P spπ cannot both be true as by (4.10a) we must have con(spτ).

So v cannot be in the left hand component of (B.7), and this requires that v P spω. A

similar argument shows that we must also have v1 P spω, and this is a contradiction as

we must have con(spω). This means that distinct steps sq and sq1 with the same external

image cannot exist, and this establishes (4.10e) for P ∥ Q.

B.7 Decomposition is unique

Theorem B.7. We show that there is a unique decomposition of the completions of a

composite machine P ∥ Q into the completions of P and Q from which they derive.

Uniqueness of decomposition requires that:

@ s P asSet(BP∥Q) and sp1, sp2 P asSet(BP) and sq1, sq2 P asSet(BQ) with

sp1 ∥ sq1 = sp2 ∥ sq2 = s : sp1 = sp2 ^ sq1 = sq2
(B.8)

Proof. If sp1 ∥ sq1 = sp2 ∥ sq2 then (4.23) gives:

sp1α ∪ sq1α = sp2α ∪ sq2α (B.9a)

sp1ω ∪ sq1ω = sp2ω ∪ sq2ω (B.9b)

(sp1π ∪ sq1π)z(sp1ω ∪ sq1ω) = (sp2π ∪ sq2π)z(sp2ω ∪ sq2ω) (B.9c)
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Clearly (B.9a) and (B.9b) give:

con(sp1α ∪ sp2α) (B.10a)

sp1ω = sp2ω (B.10b)

Now we assume that we have observations:

v1 P sp1π and v2 P sp2π with ␣ con(tv1u∪ tv2u) (B.11)

and proceed to show a contradiction. The assumption (B.11) requires that both of the

following are true:

• Either v1 is in the left hand side of (B.9c) or v1 P sp1ω ∪ sq1ω

• Either v2 is in the right hand side of (B.9c) or v2 P sp2ω ∪ sq2ω

However, we cannot have v1 in the left hand side of (B.9c) and v2 in the right hand side

of (B.9c). So without loss of generality we can assume that:

v1 in the left hand side of (B.9c) (B.12a)

v2 P sp2ω ∪ sq2ω (B.12b)

By (B.9b) and (B.12b) we have :

v2 P sp1ω ∪ sq1ω (B.13)

But (B.12a) means v1 P (sp1 ∥ sq1)π and (B.13) means v2 P (sp1 ∥ sq1)ω and this contra-

dicts (4.10a) for P ∥ Q. So assumption (B.11) must be false and we have:

con(sp1π ∪ sp2π) (B.14)

Combining (B.10a), (B.10b) and (B.14) gives con(sp1τ ∪ sp2τ) and (4.10d) then gives

sp1 = sp2. A similar argument gives sq1 = sq2 and this establishes (B.8).

B.8 A combined universe is well-formed

Theorem B.8. We show that, under suitable conditions, if U and U1 obey (4.7) then so

does U ‘ U1.
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Lemma. First, we show that a acyclic graph always contains a node that is only “points

to” leaf nodes. In other words there is always a node n such that:

@ n1 with n Ñ n1 : E n2 with n1 Ñ n2 (B.15)

Proof. We suppose that this is not the case. We can then choose any node and follow

the link that navigates to a non-leaf node on which it is dependent. We can repeat this

without end, and this leads to an infinite path that never reaches a leaf. In a finite graph

this must entail a cycle, contradicting the assumption that the graph is acyclic

To prove the main result we consider the relation FU between symbols in a universe

U based on fixes:

xd, yy P F ô d P D ^ y P symb(
ď

v P restr(E ,tdu)

fixes(v)) (B.16)

which relates a derived symbol d to any symbol used by any fix for a value of d. We

refer to this as the derived symbol relation for the universe U.

We then require for a combined universe U ‘ U1 that:

The combined derived symbol relation FU ∪ FU1 is acyclic (B.17)

and we show that the combined universe then obeys (4.7).

The valid universe contained by the total universe: (4.7a).

Proof. This follows directly form the definition of the combined universe (4.31a) and

the fact that both component universes obey (4.7a).

Exhaustiveness of fixes: (4.7b).

Proof. We imagine a directed graph formed from the combined derived symbol rela-

tion FU ∪ FU1 whose nodes are symbols. The leaves of this graph are the symbols in:

symb(
ď

v P restr(E ,tdu)

fixes(v) ∪
ď

v1 P restr(E ,td1u)

fixes1(v1) ) z (D ∪D1) (B.18)

and we suppose that these nodes are endowed with values. By the earlier lemma,

there is a non-leaf node in this structure which is only fixed by leaves. Without loss

of generality suppose that the symbol of this node belongs to D. By (4.7b) in U this
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node has a fixed value. We now remove the edges that join this node to the leaf nodes

used to fix it. The result of this is still acyclic as removing edges cannot create a cycle,

so we can repeat the process until every node has a value, establishing (4.7b) for the

combined universe.

Uniqueness of fixes: (4.7c).

Proof. We suppose that both U and U1 obey (4.7c) and consider two graphs of the com-

bined derived symbol relation of the two. These graphs are topologically isomorphic.

We suppose that the leaves of both graphs have been endowed with values in the

same way, so corresponding leaves have the same values, and that the non-leaf nodes

have been given values according to their fixes. We suppose that at least one non-leaf

node receives different derived values in the two graphs, and consider the subgraph

comprising all the nodes which are given different values in the two graphs. As this

subgraph is acyclic it must have a leaf node, and without loss of generality suppose

that this node is derived in U. This node is fixed to two different values by a given set

of basis symbol values in the two graphs, which is a contradiction as it violates (4.7c)

in U. This means that U ‘ U1 obeys (4.7c).

Correctness of derivation : (4.7d).

Proof. We assume that there is a V P V2 with ␣closed(V) and show a contradiction.

The assumption means that must be a v: P restr(V,D2) such that:

@W P fixes2(v:) : W Ę V (B.19)

However, as by (4.31b) we know that:

restr(V,U ) P V ^ restr(V,U 1) P V1

and this requires that V contains fixes for all derived symbols in both D and D1. More-

over, because all these fixes are consistent with V they are consistent with each other.

Because the construction of fixes2 by (4.31c) proceeds by recursively combining consis-

tent fixes, it will be able to form an element of fixes2(v:) that is consistent with V. This

contradicts the assumption (B.19) that no such fix exists and completes the proof.
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Derivation uses persistent data: (4.7e).

Proof. This follows directly from the compatibility condition (4.30a) on combined uni-

verses.

Completeness of combined universe : (4.7f).

Proof. We suppose that we have:

W1, W2 Ť V2 (B.20)

with:

closed (W1) and closed (W2) and con(W1 ∪ W2)

and show how to construct V: P V2 with W1 ∪ W2 Ď V:.

We start by selecting any W: Ť V2 with:

symb(W:) ∩D2 = ∅ ^ symb(W: ∪ W1 ∪ W2)zD2 = U2zD2

As W: contains no derived symbols, and using closed1 to mean closed in U1, this con-

struction gives:

closed(restr(W:,U )) and closed1(restr(W:,U 1))

and by (4.7e) for U and U1 this means that:

restr(W: ∪ W1 ∪ W2,U )) Ť V and restr(W: ∪ W1 ∪ W2,U 1)) Ť V1

We now imagine a graph of the combined derived symbol relation FU ∪FU1 in which

the nodes corresponding to symb(W: ∪ W1 ∪ W2) have been endowed with their val-

ues. This endowment gives values to all the leaf nodes as W: is constructed to include

all non-derived symbols, and by (B.20) and (4.7f) for W1 and W2 all derived symbol

values will have fixes valid in their respective universes. We can then remove the links

that connect the derived values to the nodes that fix them and then, because by the

lemma above, we must have a node that is only fixed by leaves and give this node

the fix so determined. We repeat this process until nodes are given values and denote

by W; the set of observations for derived symbols created by this process. This gives

V: = W; ∪ W: ∪ W1 ∪ W2 with:

W1 ∪ W2 Ď V: and V: P V2

which means that W1∪W2 Ť V2 and establishes (4.7f) for the combined universe.
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B.9 Well-behavedness is abstract

Theorem B.9. We show that if P obeys (4.34) in any representation then it will obey it

in normal form.

Proof. We suppose that the representation BP of a machine P obeys (4.34) and that P:

is the normal form of P so BP: = BP
norm. We assume step s: P asSet(BP:) does not obey

(4.34) and show a contradiction.

Firstly, we assume s:δ
= allow but that s:τ

Ű V. We suppose that t: P stems(BP:)

with t:"s: = matchesP:(U˚). As P: is in normal form we cannot remove any symbol

in symb(s:) by step reduction, and as normal form is unique we have:

symb(last(matchesP(U˚))) Ě symb(s:)

and this means that last(matchesP(U˚))τ
Ű V. Then, as P obeys (4.34):

last(matchesP(U˚))δ
‰ allow (B.21)

As we assume that P – P: then (4.14) requires that:

decisions(matchesP(U˚)) = decisions(t:
"

s:)

and so:

last(matchesP(U˚))δ = s:
δ

and this with (B.21) contradicts the assumption.

Secondly, we assume s:δ
= allow but that ␣ closed(s:τ

). We must then have v, v1 P

restr(]V,D) with v P s:τ and ␣ con(tvu∪ tv1u) and:

• W P fixes(v) with con(W ∪ s:τ
)

• W1 P fixes(v1) with con(W1 ∪ s:τ
)

for if no such v, v1, W, W1 existed then every derived attribute in s: would be deter-

mined to a single value, but this would require closed(s:τ
) and we assume that this is

not the case.
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We can use step expansion to add to s: all symbols in symb(W1)zsymb(s:) to form a

new representation P;. This must generate a step s; in P; with W1 Ď s;τ and this means

that s;τ
Ű V as s; contains a fix to v1 but also contains v. Suppose:

t:
"

s; = matchesP;(U˚;)

As s; is created from s: by step expansion we have:

t:
"

s: = matchesP:(U˚;) and s;
δ
= s:

δ
= allow (B.22)

As we assume that P – P: then (4.14) requires that:

decisions(matchesP(U˚;)) = decisions(t:
"

s:)

and this and (B.22) gives:

last(matchesP(U˚;))δ = s:
δ
= allow (B.23)

However as P: is in normal form we cannot remove vsymb by step reduction and as

normal form is unique, vsymb P symb(last(matchesP(U˚;))) as well, so we must have:

v P last(matchesP(U˚;))
τ

By construction of s; we know last(U˚;) contains W1 which fixes v1 so we know by

(4.7c) that last(U˚;) cannot contain a fix for v. This means that:

␣ closed(last(matchesP(U˚;))
τ
) (B.24)

The combination of (B.23) and (B.24) contradicts the assumption that P obeys (4.34).

This establishes that P:, the normal form of P, must obey (4.34).

B.10 Heterogeneous composition preserves well-behavedness

Theorem B.10. We show sufficiency of conditions (4.38) to ensure that heterogeneous

composition of well-behaved machines yields another well-behaved machine.

Proof. We suppose that (4.38) holds, and show that P ∥ Q is well-behaved. We suppose

that P and Q are both well-behaved and take steps sp and sq respectively giving a

composed step sp ∥ sq. We show that if sp and sq both obey (4.34) and the conditions

(4.38) hold, then so does sp ∥ sq. We use:
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• closed to denote closed in U

• closed1 to denote closed in U1

• closed2 to denote closed in U2 = U ‘ U1

and assume:

(sp ∥ sq)δ = allow (B.25)

As by (B.25) and (4.23c) we must have spδ = sqδ = allow, and as P and Q are well-

behaved we have:

closed(spτ) ^ spτ Ť V (B.26a)

closed1(sqτ) ^ sqτ Ť V1 (B.26b)

The conditions (4.38) allow us to construct sets of observations that only use symbols

that are shared between U and U1 and have no derived symbols from D, and such sets

are therefore closed and valid in U. Thus:

restr(sqαzspα,U ) Ť V and closed by (4.30c) and (4.38b) (B.27a)

restr((sqω ∪ sqπ)z(spω ∪ spπ),U ) Ť V and closed by (4.30c) and (4.38a) (B.27b)

Now we use (4.7f) on (B.26a), (B.27a) and (B.27b) to give:

restr(spτ ∪ (sqαzspα) ∪ ((sqω ∪ sqπ)z(spω ∪ spπ)),U ) Ť V and closed (B.28)

which gives:

restr(spτ ∪ sqτ,U ) Ť V and closed (B.29)

Similarly we have:

restr(spαzsqα,U 1) Ť V1 and closed1 by (4.30c) and (4.38b) (B.30a)

restr((spω ∪ spπ)z(sqω ∪ sqπ),U 1) Ť V1 and closed1 by (4.30c) and (4.38a) (B.30b)

and use (4.7f) on (B.26b), (B.30a) and (B.30b) to give:

restr(sqτ ∪ (spαzsqα) ∪ ((spω ∪ spπ)z(sqω ∪ sqπ)),U 1) Ť V1 and closed1 (B.31)
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which gives:

restr(spτ ∪ sqτ,U 1) Ť V1 and closed1 (B.32)

Finally we can use (4.31b) on (B.29) and (B.32) to give:

spτ ∪ sqτ Ť V2 and closed2

which establishes (4.34) for P ∥ Q.

B.11 Derived-state is abstract

Theorem B.11. Given that the universe over which P is defined is in normal form, we

show that if P obeys (4.40) in any representations then it will obey it in normal form.

Proof. We assume that P does not obey (4.40) in normal form but that some non-

normal representation does obey (4.40) and show a contradiction. There must be a

step s P BP
norm with sδ = allow that does not obey (4.40). By (4.34) we have closed(sτ)

and so there is a W P fixes(restr(sτ, stateP)) with W Ď sτ. As s does not obey (4.40)

there must then be a y P symb(W) with y R ΩP. As by assumption the universe is in

normal form we cannot use fix reduction on W to remove y. Moreover fix expansion

on s cannot remove y and so all other representations of P must also not obey (4.40).

This contradicts the assumption that some non-normal representation does obey (4.40).

This establishes the result.

B.12 Ignore is closed

Theorem B.12. We now show that if P and Q both meet conditions (4.42) for an action

A then so does P ∥ Q.

First we note that if P and Q both have state attributes, stateP and stateQ, then the de-

rived pair (stateP, stateQ) serves as a state attribute stateP∥Q. This is because, as argued

in Section 4.3.3, any continuation of tp ∥ tq can be decomposed uniquely into continu-

ations of tp and tq. As the set of continuations of tp and tq is determined by stateP(tp)

and stateQ(tq) respectively, the set of possible continuations of tp ∥ tq is determined by

(stateP, stateQ).
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Now suppose we have action A ignored by both P and Q and:

• stems tp P stems(BP) and tq P stems(BQ) with tp „ tq

• steps sp P asSet(BP) and sq P asSet(BQ) with sp „ sq

• con(spα ∪ sqα ∪ A)

and address homogeneous and heterogeneous composition in turn.

Homogeneous composition.

Proof. We assume that both P and Q are defined over the same universe U, and that

A P ignoresP ∩ ignoresQ. We show that A P ignoresP∥Q.

Suppose that the left hand side of (4.42) holds for (sp ∥ sq). We observe that:

• If either spτ Ű V or sqτ Ű V then spτ ∪ sqτ Ű V.

• If either restr(spω, ΩPzD) ‰ restr(tpω, ΩPzD) or

restr(sqω, ΩPzD) ‰ restr(tqω, ΩPzD) then

restr(spω ∪ sqω, (ΩP ∪ ΩQ)zD) ‰ restr(tpω ∪ tqω, (ΩP ∪ ΩQ)zD).

This requires that both sp and sq observe the left hand side of (4.42), so spδ = sqδ = allow

and this establishes (4.42) for P ∥ Q.

Heterogenous composition.

Proof. For heterogeneous composition, we assume that P is defined over universe

U and Q over U1 with U2 = U ‘ U1. We suppose that restr(A,U ) P ignoresP and

restr(A,U 1) P ignoresQ. We show that A P ignoresP∥Q.

We observe that if y P (ΩP ∪ ΩQ)zD2 then y P ΩP ^ y R D and/or y P ΩQ ^ y R D1.
With this observation the argument given above for homogeneous composition carries

across.
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B.13 Composition of contracts preserves satisfaction

Theorem B.13. We show that if two protocol contracts C1 = xC1, F1y and C2 =

xC2, F2y are both satisfied by a machine P then P also satisfies their composition

C1‘C2.

Proof. Firstly we show that P satisfies the behaviour part of the composed contract:

P $ C1 and P $ C2 ñ P = C1 ∥ P and P = C2 ∥ P

so P = (C1 ∥ C2) ∥ P

Secondly we show that P satisfies the fully constrained actions part of the combined

contract. For this, suppose A P F1. Then D X with P = C1 ∥ X and X never refuses A.

P $ C2 ñ P = C2 ∥ P

so P = (C2 ∥ C1) ∥ X

This completes the proof.

B.14 Decomposition of contracts preserves satisfaction

Theorem B.14. We show that if a machine P satisfies a contract C1‘C2 and (8.3) holds

then P also satisfies the decomposed parts C1 = xC1, F1y and C2 = xC2, F2y.

Proof. Suppose that stricture (8.3) is met and that P $ C. We have:

P = C ∥ P = C1 ∥ C2 ∥ P (B.33)

And by (B.33) and (4.29):

prefixes(BP) Ě prefixes(B(P∥C1)æP) Ě prefixes(B(P∥C1∥C2)æP) = prefixes(BP)

so:

BP = B(C1∥P)æP (B.34)

Moreover by (4.20): ΩP Ď Ω(P∥C1) Ď Ω(P∥C1∥C2) = ΩP so:

ΩP = Ω(P∥C1) (B.35)

Together (B.34) and (B.35) require that:

P = C1 ∥ P (B.36)
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Suppose A P F ∩ alphabetC1. As P $ C, D X with P = C ∥ X and X never refuses A.

So P = C1 ∥ (C2 ∥ X).

As by stricture (8.3) A R alphabetC2 so X1 = (C2 ∥ X) can never refuse A and we

have:

P = C1 ∥ X1 and X1 can never refuse A (B.37)

(B.36) and (B.37)ñ P $ C1. Similarly, P $ C2. This completes the proof.



Appendix C

Semantic Function

We develop a semantic function for PM, by providing mapping from concrete syntax to

the semantic domain of completions developed in Part II. Because we have not defined

a concrete syntax for PM in detail, the semantic function given here is illustrative.

C.1 Decision Function

For development of a semantic function we will work with an alternative definition of

the behaviour of a machine, based on the definition of machine equivalence given as

(4.14). This alternative definition of a machine using a “decision function” Υ so that a

machine is defined as:

xU , ΩP, ΥP y (C.1)

where, as previously, ΩP is the set of offered symbols, but in place of BP we use a

decision function ΥP . This function has following signature:

ΥP :: U˚ Ñ tallow, refuse, crashu˚ (C.2)

and gives, for any finite sequence of universe elements, the corresponding sequence of

decisions that P would make. We can readily convert between the two forms of defini-

tion of behaviour, expressed as completions BP or expressed as a decision function ΥP,

as follows:

@ U˚ P U˚ : ΥP(U˚) = decisions(matchesP(U˚)) (C.3a)

235
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to go from BP to ΥP and:

prefixes(BP) = tzipU(ΩP, U˚, ΥP(U˚)) | U˚ P U˚ u (C.3b)

to go from ΥP to BP.

C.2 Execution machine

In order to create a Semantic Function we assume that we have a concrete machine M

that has a set Ξ of possible execution states. Moreover we assume that M supports a

name-space (a set of names) Λ which is partitioned into two disjoint parts Λstore and

Λbuffer, the first used being used to name data elements of persistent data storage and

the second used to name data elements in a message buffer.

We assume a semantic mapping symbols :: power(Λ) Ñ power(Y) from the name-

space to the symbols used in the formalisation so that:

U Ď symbolsJΛK
A Ď symbolsJΛbufferK (C.4)

C.3 Computational Functions

There is no unique way for realizing PM as a computational system and in order to

make a semantic mapping we have to assume some choices. A key choice is the way

that derivation is handled, where there are two alternatives:

• To embed derivation functionality in the data management system, so that it is

separate and independent from the components that implement protocol ma-

chine behaviour.

• To embed derivation logic in the components that implement protocol machine

behaviour, so that the data management system is “dumb”.

The first of these requires that the data management system has a capability to host and

execute derivation rules. This is possible in some environments, such as databases that

support “views” (derived tables that a created by executing SQL on the fly). However

the second approach is more conventional (and is the one adopted in the ModelScope

tool described in Section 7.2) so that is the approach we take here.
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We assume that the behaviour of M is defined by three deterministic computational

functions:

initialise :: Ξ Ñ power(Ξ)

update :: Ξ Ñ power(Ξ)

derive :: Ξ Ñ power(Ξ)

(C.5)

which together determine how the machine behaves. The first of these initialises stor-

age at the start of execution. The second defines how storage is updated when an

action is processed, and in graphical PM representations such as Figures 1.2 on page

20 and 7.1 on page 126 corresponds to the bubbles attached to the arrows and the

implicit state updates depicted by the transition arrows. The third defines how de-

rived attributes and fields are calculated, and corresponds to the derivation definitions

shown in boxes in Figures 1.2 and 7.1. Each step in the life of the machine consists of

executing update followed by derive, apart from the first which is initialise followed by

derive. The machine only retains the new state achieved by a step if it does not crash

and the results of initialise (for the first step) or update (for subsequent steps) and derive

agree, so every variable that is given a value by both parts of a step is given the same

value; otherwise the machine executes a “rollback” to its state before the step.

The use of the powersets in (C.5) reflects the fact that these computational functions

do not fully determine the resultant state of M, so for a given “start state” there is, in

general, a set of possible “end states” that are compatible with the computation of the

functions. This is not to say that the functions are non-deterministic, only that the data

that each can update (its range) is not the full state of M.

We further assume that each of these functions has a domain, being the data it uses to

calculate its output; and a range, being the data that it update as a result of execution.

These are given as subsets of Λ by domain(initialise), domain(update), domain(derive),

range(initialise), range(update) and range(derive).
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We now proceed to construct JMK. We start with the universe for which we can

define:

U = symbolsJdomain(update)K ∪ symbolsJrange(update)K ∪
symbolsJdomain(derive)K ∪ symbolsJrange(derive)K (C.6a)

A = U ∩ symbolsJΛbufferK (C.6b)

D = symbolsJrange(derive)K (C.6c)

Ω = (symbolsJrange(update)K ∪D) z A (C.6d)

For (C.6d) it is assumed in line with (4.38a) that DzA Ď Ω. Mappings for fixes and V

are given in the next section.

Furthermore, we assume that the results of the computational functions update and

derive are only defined for some computational states of M, so that there are sets

precon(update) Ď Ξ and precon(derive) Ď Ξ outside of which their results are unde-

fined. The initialise function is defined for all states so has precon(initialise) = Ξ.

C.4 Behavioural Mapping

For behavioural mapping we assume a semantic mapping:

map :: Ξ Ñ power(E)

map :: power(Ξ)Ñ power(power(E))

which in the first form maps a given stable computational state of M to the corre-

sponding set of observations of values for all the symbols corresponding to Λ; and in

the second maps a set of stable computational states of M to the corresponding set of

sets of observations, so if Ξ1 P power(Ξ) then:

mapJΞ1K = t mapJχK | χ P Ξ1 u

This gives mappings:

U = restr(mapJΞK,U )

fixes(v) Ě t restr(mapJχK,UzD) | χ P precon(derive) ^ v P mapJderive(χ)K u
V = t V | D χ P (precon(update) ∩ precon(derive)) with

V = restr(mapJχK,U ) ^ closed(V) u
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where the fixes are not completely determined as we don’t care what values are fixed

when χ R precon(derive).

We proceed to construct a decision function ΥM for JMK, the mapping of M to the

semantic domain of PM. As a preliminary we define the function:

decideM :: UˆU Ñ tallow, refuse, crashu

as follows:

decideM(U1, U2) =

allow

crash

refuse

if
(
@ χ1, χ2 P Ξ with

mapJχ1K Ě restr(U1,UzA) ∪ restr(U2,AzD) and

mapJχ2K Ě restr(U2,Uz(A∪D)) :

χ1 P precon(update) ^ \ mapJupdate(χ1)K Ď restr(U2, Ω ∪ (A∩D)) ^

χ2 P precon(derive) ^ \ mapJderive(χ2)K Ď restr(U2,D) ^

symb(\ mapJupdate(χ1)K ∪ \ mapJderive(χ2)K) Ě Ω
)

if
(
@ χ1, χ2 P Ξ with

mapJχ1K Ě (restr(U1,UzA) ∪ restr(U2,AzD)) and

mapJχ2K Ě restr(U2,Uz(A∪D)) :

χ1 R precon(update) _

(\ mapJupdate(χ1)K Ď restr(U2, Ω ∪ (A∩D)) ^ χ2 R precon(derive))
)

otherwise

(C.7)

In (C.7) U1 and U2 represent the starting and ending configurations of a step in JMK.

The execution state χ1 is used to model the update part of a step using update, and the

execution state χ2 is used to model the derivation part of a step using derive. For a step

to be allowed the following must pertain:

• The domain of update is the non-action part of the starting image including de-

rived attributes (restr(U1,UzA)), combined with the non-derived fields of the

new action (restr(U2,AzD)). These together must satisfy the pre-condition of

update and the result of update must match the offered attributes and output ac-

tion fields at the end of the step (restr(U2, Ω ∪ (A∩D))).

• The domain of derive is the set of non-derived and non-action attributes at the

end of the step (restr(U2,Uz(A ∪ D))). These must satisfy the pre-condition of
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derive and the result of derive must match the derived attributes and fields at the

end of the step (restr(U2,D)).

• The combination of update and derive must completely populate Ω.

Similarly for initiation of JMK, we define a function initM :: U Ñ tallow, crash, refuseu

as:

initM(U) =

allow

crash

refuse

if
(
@ χ1, χ2 P Ξ with mapJχ2K Ě restr(U,Uz(A∪D)) :

\ mapJinitialise(χ1)K Ď restr(U, ΩzD) ^

χ2 P precon(derive) ^ \ mapJderive(χ2)K Ď restr(U,D) ^

symb(\ mapJinitialise(χ1)K ∪ \ mapJderive(χ2)K) Ě Ω
)

if
(
@ χ1, χ2 P Ξ with mapJχ2K Ě restr(U,Uz(A∪D)) :

\ mapJinitialise(χ1)K Ď restr(U, ΩzD) ^

χ2 R precon(derive)
)

otherwise

(C.8)

Note the following in (C.8):

• The range of initialise is confined to the non-derived offered data of the initialised

state. Action data is not included in order to conform to (4.12).

• There is no pre-condition restriction on χ1 as it must be possible to initialise M

from any state.

We use initM and decideM to define the decision function ΥM for JMK as follows:

ΥM(U˚) =

ăą

ă initM(U˚
1) ą

ΥM(trunc(U˚))"decideM(last(trunc(U˚)), last(U˚))

last

ΥM(trunc(U˚))

if (length(U˚) = 0)

if (length(U˚) = 1)

if (length(U˚) ą 1 ^

(ΥM(trunc(U˚))) = allow)

otherwise

which then gives definition of the completions using (C.3b).
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