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Abstract

Over recent decades, theoretical neuroscience, helped by computational methods
such as Reinforcement Learning (RL), has provided detailed descriptions of the
psychology and neurobiology of decision-making. RL has provided many insights
into the mechanisms underlying decision-making processes from neuronal to be-
havioral levels. In this work, we attempt to demonstrate the effectiveness of RL
methods in explaining behavior in a normative setting through three main case
studies.

Evidence from literature shows that, apart from the commonly discussed cog-
nitive search process, that governs the solution procedure of a planning task, there
is an online perceptual process that directs the action selection towards moves that
appear more ‘natural’ at a given configuration of a task. These two processes can
be partially dissociated through developmental studies, with perceptual processes
apparently more dominant in the planning of younger children, prior to the mat-
uration of executive functions required for the control of search. Therefore, we
present a formalization of planning processes to account for perceptual features of
the task, and relate it to human data.

Although young children are able to demonstrate their preferences by using
physical actions, infants are restricted because of their as-yet-undeveloped motor
skills. Eye-tracking methods have been employed to tackle this difficulty. Explor-
ing different model-free RL algorithms and their possible cognitive realizations in
decision making, in a second case study, we demonstrate behavioral signatures of
decision making processes in eye-movement data and provide a potential framework
for integrating eye-movement patterns with behavioral patterns.

Finally, in a third project we examine how uncertainty in choices might guide ex-
ploration in 10-year-olds, using an abstract RL-based mathematical model. Through-
out, aspects of action selection are seen as emerging from the RL computational
framework. We, thus, conclude that computational descriptions of the developing
decision making functions provide one plausible avenue by which to normatively
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characterize and define the functions that control action selection.
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Chapter 1

Computational Approaches to
Decision Making and Behavioral
Analysis

ABSTRACT

This chapter introduces the two main formal methods of investigation used through-
out this thesis: reinforcement learning and Bayesian model fitting. The chapter
provides preliminary discussion of the purpose and requirements of each technique,
and closes with a summary of the goals of the thesis and its structure.

1.1 Introduction

Over the last decade, an explosive growth in the use of Machine Learning methods
within the behavioral and cognitive sciences has occurred. This is arguably for
the reason that Machine Learning approaches include mathematical models that
describe various types and aspects of learning processes. Therefore, they form a
suitable overall framework to describe various behavioral and cognitive phenomena.

Machine Learning methods can be classified into three main categories based on
the type of learning that is involved: Supervised Learning, Reinforcement Learning
and Unsupervised Learning. In this thesis we will focus on Reinforcement Learning
models in order to demonstrate their use and strengths in modeling decision making
processes. The suggested models will be fit to human data by an approach known
as Bayesian inference. This aims to find, for a parametrized model and a dataset,
the values of the parameters that maximize the probability of the data given the
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Method Problems Examples
Supervised Learning Prediction predict next day’s temperature

Reinforcement Learning Optimization select actions to maximize profit
Unsupervised Learning Structure of Data find similarities among data

Table 1.1: Machine Learning methods overview. The three main types of learning
can be used to learn to solve different types of problems. Supervised Learning is
used to train models in order to learn to make predictions given inputs. Rein-
forcement Learning trains models in order to be able to map inputs to actions that
ultimately will lead to the maximization of a specific utility function. Unsupervised
Learning is used in order to discover structural relationships among the input data
or create compact representations of the latter (e.g., image compression).

model. We begin by presenting a concise overview of the three types of learning (a
high level overview with examples is presented in table 1.1).

Supervised Learning consists of the family of models that learn the functional
relationship of a system between its input variables and the observed responses.
The main problem related to Supervised Learning techniques is prediction of the
target response from input data. During the training phase of this type of model,
the data used contain examples of inputs and outputs collected by actually mea-
suring the system (or the process) that is being modeled. Furthermore at each
training episode the model outputs a response which is compared to the actual
observed response and the difference of the two is used to update the parameters
of the model. This kind of training is named supervised training or training with
a teacher as the model is presented with a response for each input sample, and
a ‘teacher’ or supervisor provides either the correct answer or an error related to
how close/far the model’s response falls from the actual system’s response. This
is simply characterized by a loss/error function which is specified by the model
designer.

Unsupervised Learning techniques, or learning without a teacher, are mainly
models that capture structure or identify properties of the data. A hidden structure
can be captured if data are projected into a lower or higher dimensional space, thus
creating lower or higher representations of the data. By this process, additional
information such as groupings among data points that might be formed can be
identified. These representations can be very useful as they can effectively com-
press information and extract only the most important features (dimensions) of
it. Additionally one might be interested in identifying similarities among the data
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items. Thus, unsupervised learning methods are mainly used for dimensionality
reduction and clustering. Unsupervised learning methods lack a direct measure of
success, such as the loss function in supervised learning methods. Thus, it is diffi-
cult to assess the validity of inferences drawn from the output of such techniques.
One must resort to graphical visualizations of the results or heuristics that could
possibly provide a measure of effectiveness of the method used, as the latter is a
matter of opinion and cannot be objectively verified.

Reinforcement Learning is the field of Machine Learning that studies decision
making processes and in general can be seen as an optimization method. The
main framework consists of an agent whose goal is to find the best actions in an
environment in order to maximize a utility function. At each time step the agent
takes an action which affects the state of the environment and receives a reward
regarding how good or bad that action was. The reward can be sparse and delayed
which makes the problem difficult as the agent cannot map easily every course of
action to a specific value of the reward. Furthermore, the agent has to explore
sufficiently in order to discover behaviors that lead to better outcomes.

One can see Reinforcement Learning methods as lying in between Supervised
and Unsupervised Learning methods. Naturally, someone could wonder about the
differences between the supervised learning methods described above. We illustrate
these differences with a simple example. We assume that we have built a robot and
we would like to program it in order to drive a car. In a supervised learning fashion
we would provide to the robot many pair-examples of images of the road and proper
actions related to the steering of the wheel. The robot will try to minimize the
error between its actions and the correct actions provided by us. Hopefully, the
robot will learn which angle it should steer the wheel in order to drive according
to the samples provided to it. If the training examples were collected by a bad
driver the robot will adopt similar behavior. In a Reinforcement Learning context,
we can design a general reward function (e.g., penalizing the robot when it hits
other cars or gets out of its lane) and let the robot decide which actions are good
or bad given the images of the road. In this case the robot will try to optimize the
reward function by exploring different action sequences and eventually will learn
an optimal behavior under reward constraints.

In this thesis we demonstrate the application of the Machine Learning frame-
work in Developmental Cognitive Neuroscience. More specifically, we examine the
effectiveness of Reinforcement Learning methods for describing and explaining the
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development of various decision making processes in humans, such as planning and
learning to decide by trial and error. As discussed above, Reinforcement Learning
is suitable in scenarios in which an agent has to take decisions in order to maximize
a reward function or achieve a goal. Thus, in the experimental design the reward
is explicitly expressed either in the form of accumulated points or a signal/gesture
that something important was achieved. Furthermore, we attempt to characterize
the behavioral patterns of different aged population by specific model parameters.

Our main methodological approach is Bayesian model fitting of Reinforce-
ment Learning models on behavioral data collected from various experiments.
The following two sections describe in broad terms the elements of the two for-
mal approaches (Reinforcement Learning and Bayesian model fitting) used mainly
throughout the whole thesis, while the final section of this chapter outlines the
remaining chapters of this thesis.

1.2 Elements of Reinforcement Learning

As discussed above, Reinforcement Learning (RL) is a behavior-inspired type of
learning focused on the problem of a learning agent (human, animal, robot etc)
that tries to achieve a goal by interacting with its surrounding environment. The
core idea behind RL is learning by obtaining rewards, while avoiding punishments,
for selecting actions in order to achieve a goal. A block diagram that illustrates the
agent-environment interaction is given in fig. 1.1. Below, we provide some informal
definitions of the key elements of RL in fig. 1.1.

Figure 1.1: Agent-Environment interaction.

• Agent: The agent is the learner or decision-maker. It might be an animal,
a human, a robot or a machine. In general, an agent can perceive, act and
learn.
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• Environment: Everything that the agent interacts with can be considered
part of the environment. The agent, by using its sensors or sensory organs,
perceives the state of the environment and selects an action. The environment
changes in response to these actions and presents new situations to the agent.
The environment can also contain a reward that the agent can receive and
attempt to maximize over time.

• States: The set of environmental states S, represents the unique charac-
terization of all the important information regarding the environment. This
set can be finite or infinite, and discrete or continuous. For example, the
configuration of a chessboard is a state in the game of chess. All states in a
chess game form a large but finite and discrete set of states. To give another
example, a particle that moves in space can be characterized by its coor-
dinates (relative to the origin of a coordinate system) and velocity. These
characteristics, at every time step, could also be considered as a form of state
(i.e. st = (x, ẋ), where the first vector element is the particle’s position vector
and the second one the particle’s velocity vector). In this formulation, each
element of the state vector represents a feature of the state. In this example,
each feature can take infinite different values, and the combination of these
values is also infinite; thus the state space is continuous and the number of
states is infinite.

• Action: An action is a specific behavior performed by an agent in order to
bring itself closer to a goal, which usually is to maximize the total amount
of reward the agent receives in the long term. The set of actions A consists
of all possible actions in a given domain. As with the the case of states, the
action space can be discrete or continuous and finite or infinite. For example,
when we have to decide which of two slot machines1 to play, there are only
two possible actions, |A| = 2, so the action space is finite and discrete. On
the other hand if we navigate with a joystick, the actions are infinite and
the action space continuous, as there are infinite positions of the joystick.
Furthermore, in some states, the whole set of actions A might not be available,

1Slot machines, also known as one-armed bandits, are gambling machines with three or more
reels which spin when a button/lever is pressed/pulled. A gambler presses the button and the
reels start spinning. Then pressing again the button, the reels stop and the payoff received is
based on patterns of symbols visible on the reels. For example, a high payoff is usually received
when the symbols on the reels, at the point where they stopped spinning, are the same.



1.2 Elements of Reinforcement Learning 6

as might be the case for an infant who does not yet have the motor ability
to select some actions. The set of available actions in a particular state
s is usually denoted by A(s) ⊆ A. Action selection depends on the policy
(defined next). An important issue with regard to action selection is the
trade-off between exploration and exploitation. The term exploration refers
to the tendency for an agent to select actions randomly, in order to test
the outcomes of novel options that it has never chosen before. Exploration
enables the agent to sample experience from the environment. When the
agent makes use of this experience, and selects actions according to it, he or
she can exploit the acquired knowledge. Exploitation is the tendency to limit
one’s action choices to only those which have been selected previously or for
which the agent already has knowledge about. In this way, the agent can
make use of previous knowledge about the consequences of the action. The
way in which a balance of exploration and exploitation is achieved, either in
human behavior or an artificial agent’s behavior, is an open question in the
Artificial Intelligence (AI) community.

• Policy: The agent implements a mapping from states to actions. This map-
ping is called a policy denoted by π : S ×A → R, which is a probability
distribution over actions given states. The probability of taking action a at
time t, at state s, P (at = a|st = s) is denoted by π(s,a). It can be deter-
ministic (i.e using specified criteria to select an action in a particular state)
or stochastic (i.e using a probability distribution over actions given states).
One common choice is to use the Boltzmann distribution, which describes the
probability of selecting an action given the “energy”2 E(s,a) of that action
and the value of the exploration/exploitation parameter or reward sensitivity
β:

π(at|st) = eβE(st,at)∑
a′ eβE(st,a′) (1.1)

where a′ denotes all possible actions at the given state. Alternatively, the
ϵ-greedy or ϵ-soft greedy policy is designed such that for a fixed probability

2Here we use the term “energy” to resemble the usage of this function with its usage in
Statistical Mechanics were it originated. Later this “energy” will be substituted by value functions
which will be introduced later in this chapter.
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ϵ the agent explores and for 1− ϵ exploits:

π(at|st) =

ϵ , choose random action

1− ϵ , choose action that max E(s,a)
(1.2)

Using the above ‘glossary’ the RL problem can be framed as follows: Agent and
environment interact at each of a sequence of discrete time steps t = 0,1,2, . . .3 and
at each temporal instance the agent receives some representation of the environ-
ment’s state st ∈S and selects an action, αt ∈A, where S and A are the state space
and action space respectively. At time t + 1 the agent receives a reward rt+1 ∈ R,
as a consequence of its action and then finds itself in a new environment state st+1.
Reinforcement learning methods formalize how the agent changes its policy as a
result of its experience in order to maximize the total amount of reward received.

1.3 Bayesian Model Fitting

Scientific modeling consists of making hypothesis about the nature of the under-
lying function of a process. One aspect of modeling makes use of explicit mathe-
matical expressions that aim to describe the relationship between a stimulus and
the observations that are evoked by it. Many times this mapping is of great in-
terest but the form of the underlying function is unknown, or it is not derived by
a physical law and thus does not have an explicit expression. One way to over-
come this difficulty and approximate the underlying process is to use computational
approaches.

Some of the computational approaches attempt to capture (or learn) the general
behavioral pattern of the function that describes the generative process of our data,
especially when that process is rather complicated and cannot be expressed by
an explicit formula. In order to use these methods we need to make an initial
assumption about the function that maps stimuli to observations. For this reason
we characterize the input-output relationship as a parametrized function of the
input. In order to approximate the whole process and make predictions, we need

3Time is considered discrete for simplicity. In addition, for the sequence to converge, there are
two formulations which we need to consider. The first one, in which the time horizon is infinite
and the reward is discounted by a factor γ; and the second one, in which the time horizon is
finite, for example t = 0,1,2, ...T , and no discount factor. For generality we consider the infinite
case with discount factor γ.
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to estimate the parameters that under the initial hypothesis, reflected in the form
of the function selected, lead to the best fit of the observed data.

In general, we can consider two possible avenues for fitting a model to a collected
data set. One method is to update the parameters of the model in a way that
the error between actual response and model’s response gets minimized. Another
approach is to consider that the observed data were generated by a model which is
represented as a parametrized probability distribution. Therefore, the response is
treated as a random variable. In this approach, we attempt to find the parameters
of the probability distribution (probability density function) that maximize the
likelihood of the observed data. If we have prior knowledge over the possible
parameters, then using Bayes rule we can estimate a distribution over possible
parameters given the data, and attempt to maximize this quantity. Thus, we
will end up having a distribution over model parameters which best describes the
responses. In both cases we can use the resulting models to make predictions for
unseen stimulus. In case the observed responses are normally distributed, the two
approaches are equivalent (see Bishop (2006) for a detailed derivation), although in
general the two approaches tend to differ. In this thesis, we adopt the probabilistic
method to estimate the parameters of a model.

The main assumption in Bayesian modeling is that the parameters of the model
are not fixed, rather they are sampled from a probability distribution (the prior).
As we described, someone can use a likelihood function, that describes the observed
data, along with a prior distribution over the parameters of that likelihood function
in order to get a probability distribution over the parameters given the data (the
posterior). The posterior distribution not only enables us to make predictions from
new input data, but also it can provide a measure of how uncertain we are for that
prediction. This is one of the main advantages of Bayesian methods. Furthermore,
in some cases in which there is available knowledge regarding the possible range of
values of the parameters, the usage of prior distributions over parameters can help
to restrict the optimal parameters search to that range of values leading to better
parameter estimates.

For example, the outcome of tossing a coin can be described by a random vari-
able that takes values 0 or 1 representing head or tail respectively. The likelihood
of getting a specific outcome can be described by a Bernoulli distribution with
parameter p representing the probability of the coin to appear one of the two out-
comes after being tossed. Therefore, we express the likelihood of the coin resulting
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in Heads (or Tails) as a parametrized distribution function (a model). After a
number of tosses we can use the collected data and the model in order to predict
how likely it is for our toss to result in head. For this we need to estimate what is
the value of the model parameter that most likely generated the collected data. In
order to estimate the model parameter we can use maximum likelihood techniques.

Although maximum likelihood methods provide a good estimate of the model
parameter, there might be cases in which prior knowledge about the distribution or
the range of the values of the parameter is available. Furthermore, we might not be
interested in a point estimate of the model parameter, rather we may be interested
in estimating a probability distribution over all possible values of it. Hence, we can
make use of Bayes rule (likelihood × prior) and estimate the posterior distribution
of the model parameter. This estimation can be implemented by sampling the
resulting distribution of the product of the likelihood and the prior distributions,
or using again a point estimation (maximum a posteriori) to find the most likely
model parameter that maximizes the posterior distribution given the observed data.
Eventually we will end up not only with a model parameter estimation that is
most likely responsible for generating our data, but also with an estimation of the
uncertainty of how accurate our calculation is.

From the aforementioned approach it is apparent that we assume a form of
stochasticity in the model parameters’ nature. As we will see in the following
chapters, human behavior appears to have a form of noise and we wish this to
be reflected by our modeling approach. For this reason, our models will assign a
probability to any possible action. This immediately creates a form of a proba-
bilistic model of action and accounts for the stochastic nature of human or animal
actions. Thus, the determination of a model parameter given any observed data
can be quantified statistically under the notion of the probability it assigns to the
data. Therefore, Bayesian Inference is a reasonable and mathematically justified
choice for fitting the models to their data.

1.4 Organization of the Thesis

Each chapter of the main body of this thesis describes a separate case study that
addresses questions regarding decision making problems, mainly in children com-
pared to adults. The modeling efforts presented provide a mechanistic description
of behavior in a normative setting. Normative behavior emerges from optimal ac-
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tion selection — optimal in a Reinforcement Learning sense. Organisms are viewed
as decision makers that attempt to select their actions in order to maximize their
expected reward, given (or not) knowledge about the environment’s action-reward
structure and constraints on the kinds of computations they can perform. Opti-
mality is expressed explicitly or implicitly in all case studies in the form of a reward
signal that is present during, or at the end, of each task.

The work presented is separated into three main case studies:

• The first one is driven by questions regarding mental planning. Various tasks
were used in order to explore different aspects of mental planning, and the
modeling approach was fixed across tasks.

• In the second study we show how learning action-effect relationships can be
viewed as a reward maximization problem. We used behavioral results of one
experimental procedure but propose various theoretical and computational
interpretations.

• The third study focuses on interpreting the behavioral patterns of one exper-
imental task using only one mathematical model with different components
that have cognitive interpretations. The reward signal in the task follows
every single action choice of the participant.

Where it is feasible, attempts are made to link the modeling components to func-
tional aspects of cognition.

In each case study chapter we first introduce the reader to the scientific lit-
erature regarding the context of the problems we address. Next, we present the
computational formulation (according to Reinforcement Learning framework) of
these problems and then we describe the behavioral experimental procedures and
subsequent data analysis. Finally, we discuss the lessons that can be learned by
applying the RL framework and Bayesian model fitting to the specific type of
problem.

The detailed structure of this thesis is as follows:

Chapter 2: This chapter provides a more detailed introduction to the RL frame-
work, key theoretical and computational results, and discusses briefly
cognitive applications of it. It introduces the reader to the MDP
(Markov Decision Processes) framework and the traditional algorithmic
solutions of them. We also briefly discuss model-based and model-free
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RL and their links to goal-directed and habitual behavior respectively.
We then demonstrate some of the RL algorithms with a simple toy
example, in which an artificial agent learns to navigate in a room do-
main in order to get to a specific spatial location. Finally, we provide
a review of the neurological and behavioral evidence of RL and discuss
how the method has been used to characterize the patterns of striatal
dopamine and action selection in organisms.

Chapter 3: This chapter gives a detailed description of the Bayesian methods
we use to fit RL models. This links the algorithms described in the
previous chapter with actual behavior. We illustrate these with a sim-
ple example simulating a situation in which someone has to decide to
gamble between two slot machines.

Chapter 4: This chapter presents a case study of action selection in mental plan-
ning tasks in which the reward is very sparse (i.e., given only on com-
pletion of the task). Step-by-step motivation is introduced as a reward
shaping function (Ng et al. (1999)) and is used to guide RL tree search
models that account for planning. To examine the phenomenon, we
use two different planning tasks to collect human behavioral data. Fur-
thermore, we compare the fitted models’ parameters across different
age groups and consider cognitive interpretations of parameters within
models.

Chapter 5: The main goal of the case study presented in this chapter is to model
computationally the process that humans utilize in order to learn from
a demonstration video, and then transfer this knowledge to the real
world. It was conducted with collaboration with the Radbound In-
stitute of Nijmegen university in Netherlands, as part of the student
exchange policy of the Marie Curie early-stage researcher programme.
The specific project was co-supervised by Sabine Hunnius and the re-
search was carried out along with Claire Monroy, in a duration of 3
months. We use various RL models and formalization of the problem
along with eye-tracking and behavioral data to explore the learning
mechanism that takes place during the experiment. Finally, we com-
pare adults performance with infants’ performance and extract insights
on their respectful behavior.
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Chapter 6: This case study explores the relation of exploration with uncertainty
on available options. The work was also conducted in Radbound Insti-
tute with collaboration with Ezgi Kayhan. The author’s contribution
was mainly on the computational modeling and data analysis parts.

Chapter 7: In this chapter we conclude the thesis. We highlight the main contri-
butions and stress the usefulness of Reinforcement Learning models in
explaining the behavioral patterns for each case study. Furthermore,
we analyze the limitations of the models used and what could be done
to potentially overcome these. A section in which future directions are
discussed, is provided at the end of the chapter.

All the computational work was implemented by the author of this thesis without
the use of any external decision making toolboxes (unless it is explicitly stated).
In addition, the experiments that are represented in a computerized form were also
designed and programmed by the author.



Chapter 2

Reinforcement Learning I:
Concepts and Algorithms

ABSTRACT

In this chapter we introduce the mathematical foundations of Reinforcement Learn-
ing methods. We present in detail the characteristics of two main RL categories,
Model-based and Model-free, and how these methods can be algorithmically real-
ized. Apart from the different examples of RL algorithms, we illustrate their applica-
tion with a simple navigation problem at the end of the chapter. This demonstrates
how RL agents can generate optimal behavior in a given environment. Addition-
ally, we describe how RL relates to cognitive neuroscience by explaining the firing
of dopaminergic neurons and linked neuronal and behavioral scales.

2.1 Introduction

Humans and animals are required to make decisions at each step in their daily
life, from muscle movements to higher cognitive decisions such as deciding between
options that will change the course of their future (e.g., education, investments,
family, etc.). Some of these decisions are consciously considered and processed
whereas others, such as muscle movements, are not. Some decisions are the result
of a long learning process beginning during early developmental stages, such as the
coordination of the limbs.

Decision theory, which can be applied in different fields (economics, mathemat-
ics, neuroscience, psychology, etc.) and levels (from deciding what clothes to wear
for a particular occasion to coordination of dance movements), potentially provides
a unifying framework for investigating action selection. Fundamental questions
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about how such a decision-making system develops, remain unanswered.
Most of the time, action decisions involve a situation in which an agent comes

across a state of the world (the environment in which the agent exists and interacts)
in which it needs to select an action in order to achieve a goal, complete a task,
or cause a change to that initial state. Decision theory quantifies what action
should be chosen in the context of a given utility function (defined below) and some
knowledge of the environmental states. The decision-theoretic framework combines
a probabilistic model of the world with the goals of an agent that are formalized
by a utility function. Using this framework it is possible to make predictions on
how someone would decide within a specific context.

A utility function is a hypothesized function that increases with increasing
desirability of the outcome. Usually, it is assumed that an agent tries to maximize
the expected utility which is defined as the sum over all products between the
probability of being in a particular state and the reward at this state (the value
of the utility function at this state). By choosing according to this criterion the
agent selects its actions rationally. To give a simple example, we can imagine how
someone could decide how to maximize his or her profit by gambling with two slot
machines.

In general, decision theory relies on three parts. The first establishes a prob-
abilistic relationship between an agent’s actions and the states of the world that
the agent may achieve. The second quantifies the value of being in possible future
states, in terms of expected reward from these states, and the third combines these
components formulating an optimization problem to select the optimal choice or
option.

One issue that needs to be taken into account is the uncertainty of the state of
the environment that the agent inhabits. In most realistic situations the agent has
partial knowledge about the real state of the environment. However, given some
observations that the agent’s sensory system might receive, it is possible to assign
a probability distribution over the real states of the world, and thus attempt to
make a decision with only the partial information that is available. An illustrative
example is given by Cassandra et al. (1994):

“You stand in front of two doors: behind one door is a tiger and behind
the other is a vast reward, but you do not know which is where. You
may open either door, receiving a large penalty if you choose the one
with the tiger and a large reward if you choose the other. You have the
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additional option of simply listening. If the tiger is on the left, then
with probability 0.85 you will hear it on your left and with probability
0.15 you will hear it on your right; symmetrically for the case in which
the tiger is on your right. If you listen you will pay a small penalty.
Immediately after you choose either of the doors and receive the reward
or the big penalty in case the tiger was behind the door, the problem
resets and you will again be faced with the two doors choice with the tiger
randomly repositioned. How long should you stand and listen before you
choose a door?” Cassandra et al. (1994, p. 7)

In the above problem, it is clear how important is the action selection. The term
action selection can be interpreted in various ways. For example, action selec-
tion could refer to motor control commands, or to high-level cognitive tasks such
as making career-related decisions. Throughout this thesis, we conceptualize ac-
tion selection as the process of choosing the next action during each step in a
sequential task. It combines habitual/routine sequential behaviour and intentional
goal-directed behaviour.

Following Norman and Shallice (1986), performance of an action may be auto-
matic or under deliberate control. An automatic action is performed without the
agent who executes it being aware of an intention to perform it, such as a reflex.
A general situation of this type is in the initiation of routine actions or habitual
behaviour. Such behaviour is usually elicited by a given stimulus. The specific re-
sponse is the one that is most strongly associated with the stimulus. The stimulus
comes from the environment in which the agent acts.

The control of action though is more complicated. Actions that can be classified
as automatic can also often be carried out under deliberate conscious control when
desired. These action sequences have the ability to run themselves automatically,
without conscious control, yet to be modulated by conscious control when needed.
Possibly these phenomena occur by the interaction between two different functions:
one that will account for intentional control of action (top down control) and a
second one that will be initiated by environmental stimuli (bottom up, affordances).

According to Gibson’s concept of affordances (Gibson, 1986), the sight of an
object triggers a sensorimotor process that generates neural activity relating to
the most suitable grasp for that object based on the contextual information, but
a single object may activate different affordance representations in the anterior
intraparietal (AIP) area of the brain. This bottom-up, sensory-driven activation of



2.1 Introduction 16

multiple affordances is automatic and independent of the requirements of the task
at hand, according to evidence from psychophysical experiments (Caligiore et al.,
2010).

At the same time, in a particular task reward-driven behavior can lead to a
suppression of stimulus-driven behavior. Thus, the interplay between top-down
and bottom-up control of action is of great importance but it complicates the
decision-making problem. From a developmental perspective, three factors need
to be taken into account: Top-down intentions, bottom-up affordances, and the
emergence of habits.

The necessity to integrate the three sources of information, which develop along
different time scales, is apparent. Mathematical and computational approaches
offer potential insight into how these factors might interact, and result in successful
control of action. One critical question, that we attempt to address in our work,
is the role of learning in the above context: how do humans or animals learn their
preferences for different actions and outcomes?

Reinforcement Learning is a computational framework that combines learning
and decision making, as an agent learns its preferences by interaction with the
environment. This framework has been used successfully to interpret empirical
results from behavioral experiments that involve action selection problems in or-
der to complete sequential tasks (for extensive reviews refer to Dayan and Daw
(2008); Lee et al. (2012); Niv (2009)). Unlike abstract decisions analyzed in eco-
nomic theories, biological organisms do not always receive information about the
consequences of selecting alternative actions. Instead, they face the challenge of
learning how to predict the outcomes of their actions by trial and error, which is
the core of reinforcement learning.

Our intentions are to investigate how action selection develops through in-
fancy and childhood, using computational approaches from Machine Learning (and
in particular Reinforcement Learning) and mathematical methods from Bayesian
Statistics. Using these, we will explore how internal models for action selection
may emerge and be combined or modulated by intention, and how such a process
may be represented in the developing cognitive system. This will lead to a bet-
ter understanding of how such a decision making system for action selection may
develop, and how this system is influenced by the environment.

One can distinguish between habits and goal-directed actions (Dickinson, 1985;
Wood and Neal, 2007). Reinforcement Learning has been linked to goal-directed as
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well as habitual behaviour (Balleine and Dickinson, 1998). More specifically, new
knowledge about the environment can be acquired without experiencing directly
any reward, perhaps by inferring the outcome of a future state using a model as a
representation of the dynamics of the environment that an agent could maintain.
This is referred to as model-based RL. It contrasts with model-free RL, where
the agent relies entirely on experienced rewards and penalties. For example, a
model-free architecture such as Actor-Critic (described in section 2.4), can store
preferences in the form of artificial synaptic weights between state and actions
which represent stimulus-response associations. More specifically:

Model-based: With the term “model” we do not mean anything else than a dis-
tribution over transitions P(s,a,s′)(i.e., probabilities of moving from state
s to state s′ using action a) and a distribution over rewards R(s,a,s′)(i.e.,
probability of receiving a reward r following the transition). This is a very
generic concept; if the environment (or the reward delivery system) is de-
terministic, then the notion of distribution is not appropriate and the case
is reduced to the so-called tabular case, where one can store one value per
state in an array allocated in a computer’s main memory (Szepesvári, 2010).
A model can be used in various ways to find optimal solutions using differ-
ent algorithms that are categorized within Dynamic Programming methods.
With respect to cognitive or behavioral concepts, RL models are considered
formal descriptions of how an agent plans ahead its actions.

Model-free: These types of methods use no models of the environment in or-
der to learn. The term Reinforcement Learning is usually linked only to
model-free methods, whereas model-based methods are linked to Dynamic
Programming. A main difference between model-based and model-free learn-
ing is that the agent needs to sample enough knowledge from the environment
in order achieve its goal, and usually this is characterized as trial-and-error
learning. To illustrate the difference we give a simple example in which an
agent with a very basic model-based system faces a very basic model-free
agent: an agent that has some knowledge about the rules of chess, and an-
other agent that has no knowledge of chess. The first agent can plan, which
means it can think ahead about its moves and their consequences, evaluate
them, and then act. The second agent, however, will start moving the pieces,
without following any rules, and upon receiving feedback (from an imaginary
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referee) will attempt to correct its actions to be consistent with the game
rules. Its moves will be completely random at the beginning, and only later
will it learn that some moves are good and some are bad. The other agent will
use its model to evaluate different possible outcomes from its current state,
including searching some steps ahead. This gives the model-based agent the
advantage of choosing actions which will most likely have rewarding out-
comes. On the other hand, a disadvantage is that an inaccurate model will
lead to non-rewarding actions.

Model-based and model-free algorithms are very important aspects of decision mak-
ing. Especially in psychology, researchers have argued for years that the human
brain uses both of these systems, when making decisions (see Dolan and Dayan
2013 for a review). We clarify here that the computational approaches of these two
systems are also useful when modeling human behavioral data.

2.2 Mathematical Formulation

Sequential decision making problems, such as the ones mentioned in the previous
sections (e.g., chess), can be described by the Markov Decision Processes (MDPs)
framework. Before defining an MDP we will first describe the concept of Markov
chains. A Markov chain is a model for a random process that evolves over time,
such that the next state is dependent on the current state but not prior states.
A simple infinite Markov chain is given in fig. 2.1 which represents the transition
probabilities from state to state. The property described above is referred to as
Markov property given formally by:

P (st+1|s1, · · · , st) = P (st+1|st) (2.1)

This property is very important for memoryless procedures, as it describes how
an agent is able to plan and act using only the information available its current
state. To illustrate this we can use the example of a chess game in which a player can
plan a move even with his/her chess pieces already set in an arbitrary configuration.
All the necessary information for planning and acting is given in the current state.
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s1 s2 s3 · · ·
P (s2|s1) P (s3|s2) P (s4|s3)

Figure 2.1: A simple Markov chain (first order Markov Model). Each state depends
only on its previous state (Markov property.

2.2.1 Markov Decision Processes (MDPs)

An MDP (Puterman, 1994) is a model for controlled random processes in which
an agent’s choice is determined by the probabilities of transitions within a Markov
chain and leads to rewards. Formally, a MDP is a tuple (S,A,P ,R,γ) where S is
a finite set of states, A a finite set of actions, P : S×A×S →R a state transition
probability matrix with elements pa

ss′ = P(s′|s,a), indicating the probability of
transition from state s to s′ by selecting action a, R : S×A→R a reward function
and γ ∈ [0,1] a discount factor.

When all the components of the tuple are known, standard Dynamic Program-
ming (Bertsekas, 2000) algorithms can be used to obtain the optimal value function.
We define the total discounted reward at time-step t:

vt =
∞∑

k=0
γkrt+k+1 (2.2)

A reward received k time-steps in the future is worth only γk−1 times what it would
be worth if it were received immediately. Values of γ close to 0 lead to "myopic"
evaluation (consider only current rewards) whereas values close to 1 lead to "far-
sighted" evaluation, meaning that the learner values long term rewards almost as
much as immediate rewards. It is worth noting that eq. 2.2 has an infinite horizon
but with the discount factor it is guaranteed to converge. Another alternative
would be to use a finite horizon, in which case we could have the choice to omit
the discount factor.

We introduce here two very important value functions1, the state-value function
and the action-value function:

• State-Value function of an MDP is defined as the expected return starting
1Value functions are functions that give an estimate of the total reward expected in future,

starting from each state and following a particular policy
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from state s, and then following policy π:

V π(s) = Eπ[vt|st = s] (2.3)

This gives an estimate of how good it is for the agent to be in a given state.

• Action-Value function of an MDP is defined as the expected return start-
ing from state s, taking action a, and then following policy π:

Qπ(s,a) = Eπ[vt|st = s,at = a] (2.4)

This gives an estimate of how good it is for the agent to perform an action
in a given state.

2.2.2 Bellman Equations

The Value functions described above utilize specific recursive equations that help
to compute them, for any state s and policy π. These equations are called Bellman
Equations (Bellman, 1954) and are given by:

V π(s) =
∑
a∈A

π(s,a)
∑

s′∈S
Pa

ss′

(
Ra

s +γV π(s′)
)

(2.5)

Qπ(s,a) =Ra
s +γ

∑
s′∈S
Pa

ss′
∑

a′∈A
π(s′,a′)Qπ(s′,a′) (2.6)

These equations can be easily derived if we decompose the corresponding value
function (eq. 2.3, 2.4) into the sum of immediate reward and discounted reward
of the successor state (for detailed derivation the reader is referred to Sutton and
Barto (1998, p.70)).

2.2.3 Bellman Optimaility Equation

The goal for any given MDP is to find the policy that receives the most reward.
To find the optimum policy we need to maximize one of the equations 2.5,2.6. By
definition, the optimum value functions are given by:

V ∗(s) = max
π
{V π(s)} (2.7)
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Q∗(s,a) = max
π
{Qπ(s,a)} (2.8)

The optimal value functions specify the best possible performance in an MDP,
and this MDP is considered solved if these functions are known. For any MDP, there
exists an optimal policy that is better or equal to all other policies. All optimal
policies achieve the optimal state/action-value function. An optimal policy can be
found by maximizing Q∗(s,a). Then the optimal state-value function is related to
the optimal action-value function by:

V ∗(s) = max
a
{Q∗(s,a)} (2.9)

According to the above and eq. 2.9, and using the decomposition of the value
function to immediate reward and successor state, the Bellman Optimality Equation
is given by

V ∗(s) = max
a

Ra
s +γ

∑
s′∈S
Pa

ss′V ∗(s′)

 (2.10)

with
Q∗(s,a) =Ra

s +γ
∑

s′∈S
Pa

ss′V ∗(s′) (2.11)

To find the optimal policy a general rule can be applied:

π∗ = argmax
a
{Q∗(s,a)} (2.12)

The Bellman Optimality Equation expresses the fact that the value of a state
under an optimal policy must equal the expected return for the best action from
that state. For any MDP there is at least one optimal deterministic policy.

2.2.4 Partially Observable MDPs (POMDPs)

There are occasions where the agent cannot determine the current state with com-
plete reliability. An appropriate way to model sequential decision making processes
under such uncertainty is to formalize these kinds of problems into POMDPs. Us-
ing such a model an agent can plan optimally according to its belief by taking into
account the uncertainty associated with its actions and observations.

A POMDP is generally defined as a tuple (S,A,P ,R,Ω,O,γ) where:

• S,A,P ,R,γ describe an MDP;
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• Ω is a finite set of observations the agent can experience in the enviornment;

• O : S ×A→ Π(Ω) is the observation function which gives a probability dis-
tribution over possible observations for each action and resulting state.

An important difference between MDPs and POMDPs is that in the case of POMDPs
the state of the world is hidden, and the only information that the agent has is an
observation that it receives at each state. Thus the agent maintains and updates
a probability distribution over the states of the partially observable environment
which represents its belief about the state of the world. In short, an agent being in
belief state b performs action a and receives an observation o. Then, it updates its
belief state according to b′ = τ(b,a,o) which is the probability of doing the above
transition. The agent can update its current belief state b according to Bayes rule,
using the belief update function:

b′(s′) = const ·O(s′,a,z)
∑
s∈S
P(s,a,s′)b(s) (2.13)

where const is the normalization constant.
The solution of a POMDP consists in finding an optimal policy π∗ which speci-

fies the best action choice in every belief state and depends on the planning horizon
and the discount factor. In order to do that we need to compute the optimal value
of a belief state over the planning horizon which, for infinite horizon, is given:

V ∗(b) = max
a∈A

R(b,a)+γ
∑
o∈Ω
P(o|b,a)V ∗(τ(b,a,o))

 (2.14)

Then the optimal policy is defined as:

π∗(b) = argmax
a∈A

R(b,a)+γ
∑
o∈Ω
P(o|b,a)V ∗(τ(b,a,o))

 (2.15)

The function b(s) is defined into a continuous space, and thus can take infinite
values. This allows an infinite number of belief states, making it intractable to
compute a policy for all possible belief states in a finite amount of time. However,
the optimal value function over a finite horizon is piecewise linear and convex
(Kaelbling et al., 1998) and a very close approximation to V ∗ can be computed
in a finite amount of time. The exact value iteration algorithm and variations of
it have been used to compute optimal policies in partially observable stochastic
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domains. However exact algorithms can be applied only to small problems of 10
to 20 states due to their high complexity (Littman, 1996).

Approximate value iteration algorithms are used in more complex domains such
as: Point Based Value Iteration (PBVI) by Pineau et al. (2003), which bounds the
complexity of exact value iteration to the number of belief points in its set; Perseus
algorithm by Spaan and Vlassis (2005), which instead of updating all belief points at
each iteration, updates only the belief points which have not been improved in the
current iteration; HSVI (Smith and Simmons, 2004, 2005) which uses an heuristic
to select the belief point on which to do value iteration updates; Other interesting
strategies provide online approaches in which the policy needs to be computed only
for the belief states that are encountered during the execution (Kearns et al., 2002;
Paquet et al., 2005; Ross, 2007; Ross and Chaib-Draa, 2007; Satia and Lave, 1973;
Washington, 1997).

2.3 MDP Solvers

Value functions are non-linear and in general there is no closed form solution; for
this reason iterative solution methods are preferred. A vast variety of methods for
solving the Reinforcement Learning problem exists in the scientific literature. Most
of the main (value-based2) methods have three key ideas in common (Sutton and
Barto, 1998):

• The objective of all the algorithms is the estimation of value functions.

• Their main operation is to back up values along state trajectories (i.e., gath-
ering the reward at the end of a trajectory and propagating it back to the
start of the trajectory).

• They maintain an approximate value function and an approximate policy,
and they try to improve each on the basis of the other.

In general, all value-based MDP solvers tackle an MDP in two phases:

1. Policy Evaluation: The solver uses a fixed policy to calculate the value
function for some or all of the states.

2All algorithms used in this thesis use value functions. Example of non-value-based algorithms
are policy search algorithms.
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2. Policy Improvement: The algorithm improves the previous policy using
values obtained in the policy evaluation step.

The steps 1 and 2 are repeated until an ending criterion (e.g., the policy remains
unchanged after some iterations).

Furthermore a main categorization of the methods depends on the existence
or not of an MDP model (planning algorithms use such a model whereas learning
algorithms do not). An illustration of the relation between the different methods
can be seen in fig. 2.3. The three main method categories are:

• Model-based: A model-based algorithm learns a model P(s′|s,a) of the en-
vironment and uses this model to update the value function and derive a pol-
icy. The model might be given a priori, or learned by experience on-line, and
the algorithm executes model-based control design on the estimated model.
Dynamic Programming is one of the most common model-based methods used
to solve RL problems, as it needs a perfect description of the environment.

• Model-free: It is possible to estimate value functions without using a model
(defined by the distributions of transitions P and rewards R). Methods that
use experience, to directly learn a value function are categorized as model-
free methods. Such methods are the Temporal Difference (TD), Q-Learning,
SARSA, Monte Carlo methods, etc.

• Policy Search: Experience is used to evaluate different policies and directly
search in the space of policies. Usually gradient methods are used for the
search of the optimum. Some advantages of these methods are good conver-
gence properties, effectiveness in continuous spaces and the fact that they
can learn stochastic policies. The main issue in policy search methods is
the computation of the gradient, which in general suffers from the common
problems of gradient search methods (i.e., existence of local minima).

Another categorization of learning algorithms that should be considered, are the
On-line and Off-line learning algorithms. One approach to this problem is to use
a simulator for the environment and train the learner off-line. The simulator will
provide many training examples and the learning procedure will be fast. This
is very useful when the environment can be easily and accurately modeled (i.e.,
backgammon, chess, etc.), providing an advantage to the off-line learning proce-
dure. Furthermore, because the off-line method uses simulated experience, it does
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Figure 2.2: Common approaches to learning with experience: Model-free, Model-
based and Policy Search. With the term Experience we mean a set of states s, ac-
tions a and rewards r. From sampled experience a model can be used (or learned)
along with common Dynamic Programming approaches (e.g., Value Iteration) to
estimate value functions; this consists a Model-based approach. In a Model-free
approach the value functions are estimated by samples of state-action pairs along
with their respective reinforcement signal. Policy search follows a different ap-
proach, in which a policy function is directly estimated from sampled experience.
These approaches are basic and present a generic view of Reinforcement Learning
approaches.

not face the problem of the trade-off between exploration and exploitation, as it
designs the control solution before applying it to the real environment. On the
other hand, when the environment can not be modeled accurately, we may wish
the agent to explore it and learn. On such occasions, on-line methods are preferred.

Other methods can be characterized as On/Off-policy methods (e.g., off-policy
Actor-Critic, off-policy TD-Learning, on-policy SARSA learning (Rummery and
Niranjan, 1994). The most well-known off-policy method is Q-learning (Watkins,
1989; Watkins and Dayan, 1992). In an on-policy setting, the agent learns only
about the policy it is executing. In an off-policy setting, an agent learns about a
policy or policies different from the one it is executing.
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2.4 A Toy Example

In this section we will describe briefly some algorithmic realizations of the various
methods that solve MDPs. In order to do that, we will use a simple domain in which
we can assign a task to our agent. Our domain consists of a grid map (fig. 2.3)
of 169 tiles (the states) with 65 of them resembling "walls". The agent starts from
the initial position, indicated in green (tile 25), and its goal is to reach the state
indicated by the red color (tile 107). There it receives a reward. If an action leads
it to a wall state then it remains at that position. The actions that the agent can
use to reach its goal are: north, north-east, south-east, south, south-west, west,
and north-west.

Figure 2.3: The grid world domain. Our agent will execute here a simple task:
Starting from position 25 we want to end at position 107 where it gets a reward
R = 100 and the episode terminates. The reward given at state 107 is the only
reward that the agent receives in the whole domain.

The first method that we demonstrate is the model-free algorithm Q-learning,
(alg. 2.1). This algorithm is characterized as model-free for the reason that it does
not maintain any distribution over the dynamics (state transitions) or the rewards
(model). It learns by sampling experience from the environment iteratively, initially
by trying different random actions and with the received feedback it decides which
actions are good or bad. Eventually it learns what the optimal actions are to select
at each position in order to reach the goal state.

The second method that we use is the Actor-Critic (Barto et al., 1983) algorithm
(alg. 2.2). Briefly, this algorithm explicitly represents the policy independently of
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Algorithm 2.1 Q-learning. The Q function is set to either zero values or small
random numbers to give to the agent some initial “preference” for actions.

Initialize Q(s,a)
for each episode do

Initialize state s
for each time step t of the episode do

Select action at from π(at|st) dependent on Q(st, .)
Observe reward r and new state st+1
Update:
Q(st,at) = Q(st,at)+α[r +γmax

a′
Q(st+1,a′)−Q(st,at)]

end for
end for

Algorithm 2.2 Actor-Critic
Initialize P (s,a)
for each episode do

Initialize state s
for each time step t of the episode do

Select action at from π(at|st) dependent on P (st, .)
Observe reward r and new state st+1
Evaluate Temporal Difference Error:
δt = rt +γV (st+1)−V (st)
Update the actor:
P (st+1,a) = P (st,a)+βδt

Update the critic:
V (st+1) = V (st)+αδt

end for
end for

the value function. The policy representation is known as actor, as it is used to
select actions. The actor is evaluated by the critic, which typically is the value
function. The evaluation is the usual temporal difference error by the critic used in
the RL literature. However, the algorithm does not only update the value function
but also the policy representation, indicating which action a is preferred in each
state s.

Finally, we demonstrate the above algorithms in a model-based-model-free algo-
rithmic combination, the Dyna algorithm (alg. 2.3). The Dyna algorithm creates a
model of the world using experience gained by a model-free algorithm. Thus, online
planning and learning from sampled experience are combined into one framework.

Given the Q function, an agent at time step t, in state st, decides to select an
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Algorithm 2.3 The Dyna Q algorithm
Initialize Q(s,a) and Model(s,a)
for each episode do

Initialize state s
Select action αt observe reward r and new state st+1
Q(st,at) = Q(st,at)+α[r +γmax

a′
Q(st+1,a′)−Q(st,at)]

Model(s,a)← st+1, r
repeatN times

s← random previously observed state
a← random action previously taken in s
s′, r←Model(s,a)
Update:
Q(s,a)←Q(s,a)+α[r +γmax

a′
Q(s′,a′)−Q(st,at)]

until
end for

Favorite
model-free
algorithm
e.g. Q-

learning.

action at, with probability given by the Boltzmann function (eq. 2.16)

p(at|st) = eβQ(st,at)∑
a′ eβQ(st,a′) (2.16)

This is an example of the softmax policy. The agent does not always “listen” to
the highest value of the Q function, but depending on β it might explore other
options.

To demonstrate the performance of each of these algorithms, we predefined the
number of episodes to 200 and the number of time steps of each episode to 40,000.
We ran each algorithm for 100 simulations, and took the average number of time
steps for each of the 200 episodes. In terms of performance Dyna algorithms need
less interaction with the environment to learn the task, because they create an
estimated model of the world from experience gained by the model-free methods,
and for such kind of problems they perform well.

An illustration of such a performance is shown in fig. 2.4, which shows how
fast an agent learns (in terms of how many steps are needed until the goal state
is discovered). On average with fewer time steps needed. The Dyna architecture
incorporates a planning process which is simulated with a model-free algorithm
(i.e., Q-learning or Actor-Critic). Without the planning (N = 0) each episode adds
only one step to the policy. The planning process constructs a model of the domain
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which can be exploited by the agent to decide which action to select. In contrast,
the model-free algorithms try to learn optimum actions by sampling experience
(state transitions dependent on actions, and the resulting rewards of these actions).
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Figure 2.4: The Q-Learning, Actor Critic and the Dyna versions of each these. At
the beginning, because the agent behaves randomly we observe great variance in
the number of the time steps needed to complete the episode (or usually finding
the goal). Later, the agents have explored sufficiently the environment, and they
exploit more their knowledge so the variance drops.

The difference in those algorithms, naturally, has an effect in their collected
overall reward (fig. 2.5). Because of the non-zero discount factor γ, the number of
time steps affects the overall collected reward. Thus, the more time the algorithm
needs to terminate an episode (i.e., finding the goal state) the less the value of the
reward will be. If the agent wanders until the terminal condition of an episode,
40000 time steps, the reward will be discounted so much that it will be close to
zero. As we observe, the Dyna versions of the algorithms manage to collect more
reward as they reach the goal faster than their simpler counterparts.

We also present an example of the Q-value function learned throughout training
(fig. 2.6). The learned Q-value function, indicates the preference of an action at
a particular state. Within the figure, states with darker colors are preferred less.
After the training, we can let the agent repeat the task following the policy given
by eq. 2.16, and the Q function learned before. Then the agent will most likely
step toward the tiles with lighter color and choose the action that is indicated by
the blue arrow.
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Figure 2.6: What is learned by the agent. An example of Q-value function values
(normalized) after the learning process in the four rooms domain. The color gradi-
ent indicates the level of preference on a specific state (i.e., position in the room)
and the arrows the corresponding preferred action (policy).
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The above demonstration gives some insights into how a computational algo-
rithm can be used to represent learning and acting in an unknown environment.
Furthermore, some different architectures were discussed: a model-free approach
through which the agent samples knowledge from the environment and learns, a
combination of actor-and-critic architecture, and lastly we incorporated a forward
model which accounts for planning.

The Actor-Critic-based model is very important because, while the model-free
system gathers experience and information from the environment, the model-based
planning system utilizes this information to take optimal actions. This model-
free/model-based interaction will be discussed later on. The above algorithms
form a basis of models that can be used to possibly explain an organism’s decision-
making system, and the underlying mechanisms which still remain elusive.

2.5 Neural Basis of Reinforcement Learning

Reinforcement Learning conceptually has its origins in Psychology, especially the
model-free approach. Model-based on the other hand, owes its mathematical for-
mulation mainly to Dynamic Programming and Optimal Control field. In this
section we describe how a model-free approach managed to explain computation-
ally the firing pattern of dopaminergic neurons. This was a very important attempt
to connect the behavioral scale with the neural scale in the brain, and marked the
RL framework as a formal theoretical tool for explaining various behavioral and
neuronal patterns related to decision making.

The phasic activity of dopamine neurons has been found to resemble a type
of learning algorithm signal (Montague et al., 1996; Schultz et al., 1997). These
findings support the dopamine hypothesis, according to which neurons in the ven-
tral tegmental area (VTA) and substantia nigra pars compacta (SNc) behave in
accordance with reinforcement learning models, based on reward prediction error.

However, the dopamine neurons do not encode raw reward value directly. In-
stead, they encode the difference between an expectation of reward and reward
received. Evidence of the firing pattern of dopamine neurons was provided by
Schultz (1998), who examined the behavior of monkeys in classical conditioning
tasks. This is illustrated in fig. 2.7.

One of the first attempts to computationally model this firing pattern was in-
troduced by the simple conditioning model of Rescorla et al. (1972). This model
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ht

Figure 2.7: Peri-stimulus time histogram (PSTH) of spikes from monkey neurons in
VTA and SNc areas, while it was performing a simple conditioning task. Top: Prior
to conditioning, the dopamine neurons fire immediately after an unexpected reward
received. In a Rescorla-Wagner (RW) model (δ = r− r̂) there is no expectation of
a reward and thus r̂ = 0 and δ = r > 0 hence a positive error in the prediction of
reward. Middle: After learning, the conditioned stimulus predicts reward, and the
reward occurs according to the prediction hence there is no error in the prediction
of reward r̂ = r and δ = 0. It seems that the dopamine neurons are activated by the
presentation of the conditioned stimulus but fail to be activated by the predicted
reward. Bottom: After learning, the conditioned stimulus predicts a reward but
the rewards fails to occur and the dopamine neurons’ activity appears to dip,
reflecting the negative error in the prediction of reward (r = 0 and δ =−r̂ < 0).
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(R-W) is identical to the delta rule and simply states that the updating of weights
w, which weight stimuli features, should be in the direction specified by the differ-
ence between actual r and estimated reward r̂, δ

∆w = δ ·x (2.17)

and
δ = r− r̂, where r̂ =

∑
x ·w (2.18)

where x is the input stimuli. The R-W model does not take future rewards into
account, but only immediate rewards. To overcome this, a slightly modified model
that is known as the Temporal Difference (TD) learning rule was established (Sut-
ton and Barto, 1998; Sutton, 1988). The TD algorithm is well-suited algorithm to
study the dopamine signal and its relation to synaptic plasticity, and consequently
learning.

The TD algorithm is similar to the R-W model but it accounts for future re-
wards. Thus the modified delta rule, which specifies the direction in which the
weights should change, is:

δ = (r +f)− r̂ (2.19)

where f represents the future reward that might be encountered. TD learning
rule explains everything that R-W rule does, and more. For example, animals
learn that a predictor of a predictor is also a predictor of reward which is second
order conditioning. The R-W rule fails to capture second order conditioning as it
accounts only for immediate rewards.

It is natural to wonder how a system can know what kinds of rewards are coming
in the future. Experience of the past comes as the answer to this question. In order
to predict future rewards a system takes account of the past knowledge, and uses it
to make the best decision possible. Because knowledge of the sum of future rewards
is not available, the TD method uses bootstrapped estimates of this sum, which
evolve as a function of the difference between temporally successive predictions.

The TD method guides learning so that predicting future rewards become more
accurate. It has been used successively to model various conditioning phenomena
and its fit to the firing of dopamine neurons has led to significant research progress
(for example see Daw et al. 2013). However not all aspects of dopamine cell activity
can be modelled using traditional TD algorithms. Sometimes, rewards are not
delivered immediately after an action is taken but they might be received with a
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delay. Montague et al. (1996) introduced the tapped delay linear model to solve the
problem. Daw et al. (2006) extended further the TD algorithm, by using Partially
Observable Markov Decision Processes and semi-Markov dynamics, to incorporate
variability in reward timing and allow for a greater range of state representations.

Despite the continuing efforts directed at establishing a precise role that dopamine
might play in reward learning, a general theory that incorporates all aspects of
dopamine’s functions remains elusive.

2.6 Behavioral Evidence of Reinforcement Learn-
ing

To date, the RL framework has been used broadly to model the mechanism of how
organisms select their actions in a constrained environmental context. In order to
model a function, it is necessary that some simplifications and approximations be
made. In this way, mathematical equations can explicitly describe decision making
functions and then be evaluated. Computational modeling seeks to establish ex-
planatory frameworks for cognitive or neural functions (Boden, 1988). It is based on
the assumption that the brain processes information in an iterative ‘algorithmic’
way. In particular, cognitive functions are described as mathematical quantities
that are ‘learnt’ in an iterative fashion, identical to that of a common computa-
tional algorithm. Usually such computations minimize or maximize quantities of
external or internal importance (e.g., Dayan and Abbott 2005; Friston 2010). Such
models also describe explicitly the variables of the process, and there are various
methods that can fit such models to human (or animal) data in order to provide
evidence for the appropriateness of the model and also for comparison with other
similar models.

Apart from from neural evidence, from extracellular recordings in behaving ani-
mals and functional imaging of human decision making, of the existence of a key RL
signal (temporal difference reward prediction error3) in the brain, there is evidence
that humans and animals utilize a number of parallel decision making systems.
Balleine et al. (2008; 1998) suggested that instrumental behavior is controlled by
two learning mechanisms: a goal-directed one which consists of the acquisition
of incentive value by the reward, and a stimulus-response habit mechanism that

3The reward prediction error δ, is defined as the difference between real outcome and predictive
outcome from the previous trial: δt = outcomet−predictiont−1.
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involves learning about the instrumental contingency between the response and
reward.

Daw et al. (2005) were one of the first to formalize the dual-action choice sys-
tems using the computational theory of reinforcement learning. Specifically, they
suggested that the prefrontal circuit serves as a model-based reinforcement learning
method, which is described by dynamic programming or tree search methods. In
this method, a task is represented as a tree with all possible situations (states) that
can be faced when engaged with the task. Each transition from state to state is
realized by possible actions and their given rewards. In contrast, the dorsolateral
striatum supports habitual or reflexive control and thus reinforcement learning is
more appropriate to describe it. Such an approach represents only the expected
future value Q for each action in each state, unpaired with future contingencies.

It is worth mentioning, that the models that were used in the study above
were based on Bayesian RL (e.g., Dearden et al. 1999, 1998; Strens 2000). The full
model was a dual-controller reinforcement learning model consisting of a model-free
learner (Bayesian Q-learning) and a model-based learner (Bayesian tree search).
With the Bayesian approach, Daw et al. (2005) tracked uncertainty about values
of actions, along with the values themselves. The uncertainty exists because each
system starts with little or no prior experience of the task. A controller4 achieves
dominance if the value provided by the controller has the least uncertainty. Finally,
the probability of selecting an action is proportional to the “winning” value. It has
to be noted, that for simplification the controllers are considered independent,
contrary to other theories and architectures (e.g., Doya 1999; Sutton and Barto
1998), where the controllers interact (e.g., like the Dyna algorithm5, Silver et al.,
2008).

Daw et al. (2005) simulated the two-controller reinforcement learning model on
a simple two-choice task, in which trained food-deprived rats performed a series
of actions to obtain rewards. Their key quantitative results were consistent with
qualitative expectations for the given task. By devaluing the reinforcer of an action,
they observed that the model-free system continued to perform learned actions,
consistent with the definition of habitual behavior (i.e., outcomes are not taken
into account, except after long periods of training); in contrast, the model-based

4A function that controls action selection: in our case the model-based/model-free controllers.
5In this case though the problem was the balance between exploration and exploitation. As

model free methods are used for experience sampling whereas the model based methods for
planning, a hybrid system would attempt to optimally balance both.
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system did not perform previously trained actions and it allowed for the prediction
of the immediate outcome of an action or the long-term outcome of series of actions.

Other work (Daw et al., 2011) has further highlighted the interaction of these
two systems in the two-stage task6 common paradigm. Noting that both strategies
were evident in their results, they suggested that action selection in their model
is based on a weighted sum of both systems. Consistent with other findings from
research on animal learning (Balleine and O’Doherty, 2010; Dickinson, 1985) they
found evidence that the brain employs a combination of both strategies.

Both model-based and model-free systems have advantages and disadvantages.
The model-based system appears more computationally costly in terms of time
and neural resources, as it considers almost all contingencies from a given state.
However, is more accurate and can adapt to environmental changes more rapidly.
Thus, it should be used by an organism sparingly, such as whenever there are not
enough ‘data’ from the model-free system. The model-free system is more efficient
computationally, but requires more sampled experience from the environment. In
cases where the organism has been under excessive training, or when few actions
need to be evaluated, habitual responding is optimal in terms of time and resources.
It is worth noting, that the model of the environment in model-based computations
should either be given or learned (the agent uses an adaptive model of the reward
and state transition dynamics in the form of an assumed probability distribution
and updates it according to observations). Thus, it can adapt and change its
decision tree quite quickly whereas the model-free system needs extensive training
to achieve this.

Both systems feature statistical and computational properties that provide
adaptive reasons for both to be employed within the same brain. The superior sta-
tistical efficiency of the model-based system might dominate the decision-making
process in early instrumental trials. At this early stage, the complex noisy calcula-
tions of a model-free system, which are based on bootstrapping, are inefficient and
a precise model-based mechanism would be favored. However, once the statistical
inefficiency of bootstrapping has been overcome, a model-free response from the
brain dominates the decision system.

The interaction of both systems is under active investigation. In particular,
there is a general trend towards the hypothesis that model-based predictions train

6The common implementation of this, is to present 2 images which probabilistically lead to
another two images which they lead to a scalar reward value. Usually the probabilities for each
action-state transition are set to 0.7 and 0.3.
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the model-free predictions either offline (e.g., during sleep Foster and Wilson 2007;
Wilson and Foster 2006) or online (Doll et al., 2009; Gershman et al., 2014) or
by providing prediction errors that can be used directly by the model free system
(Daw et al., 2011).

Nature, from composite particles to living organisms, is governed by the prin-
ciple of the least “energy”. This means that every system tries to minimize energy
consumption while satisfying other constraints (e.g., staying alive). This is also
true for the neural system. In real life, humans and animals tend to create habits
in order to ‘save mental or physical resources’. On the other hand, when infor-
mation/initial experience is not enough to create automated responses to specific
stimuli, a planning system should be enabled for optimal action selection. For
example, the more an athlete trains the more his responses become habitual and
thus his actions are faster and more accurate. An experienced chess master could
play almost habitually many games of chess, but in the face of a challenge he
must evaluate all courses of action from his current state (although his decision
tree would be much more pruned than an average player7). In sum, much of the
progress in cognitive research to date is consistent with the existence of multiple
decision-making systems in the brain.

2.7 General Discussion

Reinforcement Learning provides a formal framework for mathematically express-
ing decision making problems in the context of the maximization of a utility func-
tion. This utility function can represent time, points or abstract reward signals
with binary (0 or 1) or continuous values. Therefore, all cases that involve optimal
action selection (i.e., maximizing a reward function or achieving a goal) can be
framed as MDPs and solved computationally.

As discussed in ch. 1, organisms (artificial or not) can be viewed as decision
makers that attempt to select actions in order to maximize a specific reward func-
tion. The reward function can be positive/negative feedback from the environment
that the agent interacts with, or an abstract reward that could account even for
internal satisfaction/disatisfaction and progress. The RL framework in conjunction

7Experienced chess players have also demonstrated a better planning ability than average
players (Unterrainer et al., 2006) in the Tower of London task (Shallice, 1982). This probably
indicates that they are more skilled in searching decision trees for the best sequence of moves.
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with this view enables us to analyze behavioral patterns observed when humans or
animals are engaged in a various range of tasks. Such tasks include mental planning
puzzles, video games, goal-driven tasks, navigation tasks, etc. Therefore, although
seemingly mathematically abstract, RL can provide a tool that could extract useful
insights on the computations involved in a decision making process.

Once the interaction of an agent with a task is converted into a MDP, spe-
cific solvers can be used to estimate optimal policies. The two main categories
of solvers used throughout the thesis are Model-based and Model-free RL. Each
one represents a different computation that takes place in the decision making sys-
tem of the agent. In the first case, the agent has knowledge of the action-reward
structures of the task, thus it can create a mental forward model - usually in the
form of a decision tree - from its current state, accounting for all possible contin-
gencies that it could encounter in the future. Then the computational problem
would consist of selecting the best action from its current state given the decision
tree. In the second case, the agent needs to learn how to take optimal decisions by
gathering enough experience by a trial-and-error type of interaction with the task.
The computation being performed in this case consists of iterations of exploratory
or exploitative actions with the task, which ultimately would lead to an optimal
behavior (policy).

In this chapter, we demonstrated how RL as a computational framework can
create agents that generate optimal behaviors in various types of tasks. We also
referred to how RL models could explain neural dopaminergic activity which links
patterns from the neural scale to the behavioral scale. In the next chapter we will
make use of this framework to describe mechanistically how actions are generated
from parametrized RL) models, and how Bayesian model fitting methods may be
used to determine values of these parameters in order to fit the models to human
data.



Chapter 3

Reinforcement Learning II:
Bayesian Fitting to Behavioral
Data

ABSTRACT

Computational algorithms for reinforcement learning are based on a prediction error
signal in order to approximate a reward function iteratively. Using such algorithms
we can design computational models that represent quantitative hypotheses about
how the brain approaches a problem and which are amenable to direct experimental
testing. Trial-by-trial analyses of such data are suitable for developing a detailed
and dynamic picture of learning. In this chapter we describe the computational
approach used by researchers to analyze data from reward learning or decision mak-
ing experiments, and illustrate it with examples. The whole process is described in
detail by Daw (2011), but we summarize and illustrate it here as these methods are
used extensively throughout the whole thesis.

3.1 Introduction

In a standard experiential decision experiment, such as a ‘bandit’ task, a subject is
offered repeated opportunities to choose between multiple options (slot machines)
and receives rewards according to her choice on each trial. The data usually consists
of a series of choices and rewards from such a process. Computational theories claim
that there is some kind of a relationship between the entire list of past choices and
outcomes, and the next choice. Standard RL models (such as Q-Learning) assume
restricted functions by which previous choices and feedback give rise to subsequent
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choices. More specifically, the algorithm envisions that subjects track the expected
reward from each slot machine, via some sort of running average over the feedback,
and it is only through these aggregated “value” predictions that past feedback
determines future choices.

It is also useful to separate a computational theory into two parts: the learning
model, which describes the dynamics of the model’s internal variables such as the
reward expected from each slot machine, and the observation model which describes
how the model’s internal variables are reflected in observed data. Essentially, the
latter model, regresses the learning model’s internal variables onto the observed
data (e.g., choices). In other words, it acts as the ‘link function’ in generalized
linear modelling.

The observation models are typically noisy whereas the learning ones are de-
terministic. That is, given the internal variables produced by the learning model,
an observation model assigns some probability to any possible observations. The
“fit” of different learning models (or their parameters) to any observed data can
be quantified statistically in terms of the probability they assign to the data. This
procedure lies at the core of the methods that follow. In fig 3.1 we present a general
‘recipe’ that can be used in order to perform the same analysis presented in this
chapter.

3.2 Choice Generative Processes

As we described in the previous chapter, we are interested in the mechanism of how
a subject processes the available environmental information and makes decisions.
A model describes this mechanism explicitly. This mechanism can be seen as a
function f with a stimulus as the input and a choice as its output. Characterizing
such a function as a mathematical object, for each of the N available subjects, we
need to define a set of parameters θi where i = 1 . . .N . Eventually the set of choices
ci for each subject i, will be the output of a function of the model parameters:
cj

i = f({θ}i). This indicates that the jth choice of subject i was generated by the
process f .

A generative process is a process where a set of outputs is realized by a parametrized
function or a model. In fig. 3.2, we demonstrate with a graph such a process.
The model, governed by its parameters θi, generates choices ci. At the top level,
we assume that the model parameters are generated by another process which is
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Figure 3.1: A general flowchart of the computational analysis used throughout the
thesis. As discussed, Reinforcement Learning can be applied to model the behav-
ior of a subject that is engaged with a task that is goal-driven (i.e., maximize the
total reward). Once the actions of the subject have been collected we can start
the process of behavioral analysis. First, a model will represent our hypothesis
on the mechanism underlying the decision making process that generated his ac-
tions. If the model of the environment is known to the participant (i.e., all possible
contingencies from every state of the task) then Model-Based methods should be
preferred. In cases in which the participant learns by exploring/exploiting different
choices without any explicit knowledge of the environment, then Model-Free meth-
ods should be used. Finally, under the model assumption we can perform Bayesian
Inference to estimate the most likely parameters that generated the observed ac-
tions. Having the model parameters we can extract useful insights on the behavior
of different population groups that participated in the experiment.
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Figure 3.2: A graph representing a generative process. A function which is
parametrized by a set of θi parameters, represents the mechanism we attempt to
model, receives as input a set of stimuli and generates choices. If the model param-
eters are assumed to be generated from another stochastic process, parametrized
by k, then we form an hierarchical model and the parameters at the top level are
usually referred to as hyperparameters.

parametrized by hyperparameters k.
The process of inference follows exactly the opposite direction of a generative

process: from bottom to top. This means that having the observed choices made
by a subject, we need to hypothesize one or more forms of a mechanism that
presumably generated the choices. Parameter estimation consists of inferring the
parameters of this hypothesized mechanism and then comparing multiple forms of
it, eventually keeping the one that describes the data the best.

In the following sections we will demonstrate how such an inferential process is
realized, by using three Bayesian approaches: Maximum Likelihood (ML), Maxi-
mum a Posteriori (MAP) and Markov Chain Monte Carlo estimation (MCMC).

3.3 Parameter Estimation by Maximum Likeli-
hood

Model parameters can characterize a variety of scientifically interesting quantities
such as how quickly subjects learn and how sensitive they are to different rewards
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or punishments. Here we discuss how we can estimate the parameters of a RL
model M in a Bayesian framework using data (action sequences) collected from
a simple example. This will enable us to extract behavioral insights by linking
the observed action sequences to the model parameters. Therefore, we satisfy
our initial assumption that the actions were generated by a model with specific
parameters and that model is responsible for the observed behavior. All methods,
the simulation example and the inference scheme were coded in MATLAB by the
author of this thesis exclusively.

Suppose that we have some free parameters θM that parametrize our model.
This model (the composite of our learning and observation models) describes a
probability distribution over possible data setsD, or likelihood function P (D|M,θM).
According to Bayes rule

P (θM|D,M)∝ P (D|M,θM)P (θM|M) (3.1)

the posterior probability of the free parameters, given some data, is given by the
product of the likelihood of the data, given the parameters (our assumptions about
how the model describes the processes that we want to model) with a prior prob-
ability over the parameters. In a maximum likelihood framework (as also in the
maximum a posterior approach (MAP) that we describe below) we seek a point
estimate of the parameters rather than a distribution over all possible parameter
values. This setting of the parameters is the one that maximizes the likelihood
function and is the one that is most likely to be used by the modelM to generate
the data. This optimum set of parameters is denoted by θ̂M.

We illustrate the above with a simple example. Consider a two-arm bandit
problem, where we need to choose sequentially between two slots machines (ct ∈
{L,R}) in order to obtain maximum accumulated reward after some trials T, t =
1 : T . In this example a reward rt ∈ {0,1} is received stochastically at each trial.
According to a simple Q-learning model, the subject assigns an expected value to
each machine (Qt(L), Qt(R)) at each trial. These values are initialized with 0 and
the value for the chosen slot machine is updated according to the learning rule

Qt+1 = Qt(ct)+α · δt (3.2)

where 0≤ α≤ 1is a free learning rate parameter, and δt = rt−Qt(ct) is the predic-
tion error. Next, we assume an observation model according to which the subject
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makes its choices ct depending on the Qt values. One of the most common ap-
proaches to subject’s action selection is the softmax distribution

P (ct = L|Qt(L),Qt(R)) = exp(β ·Qt(L))
exp(β ·Qt(R))+exp(β ·Qt(L)) (3.3)

It is worth noting, that this equation defines a policy, which is a mapping from
states to actions, as defined in Chapter 1.

The parameter β is known as the inverse temperature parameter or reward
sensitivity, and its role is to tune the amount of exploration/exploitation in subjects’
choices. Eq. 3.3 is also equivalent to logistic regression (a type of generalized linear
model, GLM), in which the dependent variable is the binary choice ct and the
predictor variable is the difference in values Qt(L)−Qt(R) with β as the regression
weight, connecting the Qs to the choices. For more than 2 choices the logistic
regression generalizes to the multinomial logistic regression.

Although we noted the equivalence of eq. 3.3 with logistic regression, it is not
possible to use the well-studied methods for regression of generalized linear models.
This is because although the observation stage of the model represents a logistic
regression from values Qt to choices ct, the values are not fixed but are dependent
on the parameter α of the learning process. As this does not enter the likelihood
linearly, they cannot be estimated by a generalized linear model, and we must
search for the full set of parameters that optimize the likelihood function. It is
straightforward to write a function that takes in a dataset (a sequence of choices
c1:T and rewards r1:T ) and a candidate setting of the free parameters, loops over
the data computing equations 3.2 and 3.3, and returns the aggregate likelihood of
the data. In our experiment the likelihood is just the product of the probability of
each choice at each trial, given by

L(α,β) =
T∏

t=1
P (ct|Qt(L),Qt(R)) (3.4)

It is worth mentioning that the quantity in eq. 3.4 is often an exceptionally small
number and it is numerically more stable to compute its log. This computational
problem needs to be taken into consideration during algorithmic implementations
as it might lead to extreme estimations of the parameters. Since the logarithmic
function is monotonic, this quantity has the same optimum as the non-logarithmic
case, but it is less likely to underflow the minimum floating point value of a com-
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Figure 3.3: Parameter space search method

puter. In general, optimizers in various software packages tend to minimize a func-
tion, and thus, in our parameter estimation procedures, we attempt to minimize
the negative log likelihood of eq. 3.4.

In order to compute the likelihood, one tempting approach is to discretize the
parameter space and compute the likelihood everywhere and simply search for the
best one. This approach is illustrated in fig. 3.3.

Note that this is the negative log-likelihood function estimated at a specified
range of the parameters. The data were generated from a simulation of 100 trials
with parameters α = 0.25 and β = 7. The estimated set of parameters, computed at
the minimum of the negative log-likelihood, was α̂ = 0.30 and β̂ = 5.91. A graphical
analysis of the whole procedure is given in fig. 3.4. We can see in the analysis of
the probability of each choice, how the probability of each action changes, as the
algorithm learns which action is more rewarding.

Each row of fig. 3.4 represents the characteristics of a specific choice (left or right
slot machine in our case). In the left column, the plots represent the probabilities
of changes during the trials. If the participant chose the corresponding alternative
then at the specific trial a vertical dot line is plotted. In the right column the value
function, according to each trial, is plotted in the same diagram with the reward
given for the particular action during each trial. The plots illustrate how the
subject selects an action according to the forthcoming reward. The value functions
indicate to the subject that the left or right machine is most likely to provide a
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Figure 3.4: Analysis of action selection procedure.

reward at each trial. Confidence intervals of the parameters can be estimated from
the inverse Hessian of the negative log-likelihood computed at the optimum θ̂M for
further statistical analysis of the model.

Although the above approach seems tempting, it often leads to poor results
for many reasons (coupled parameters, inappropriate ranges, etc.). In addition,
the models that are typically used have many parameters. To avoid such errors
nonlinear function optimization is usually preferred. MATLAB functions such as
fmincon or fminsearch may be used to find the single best setting of the parameters.
This process, however, is not as automatic as it sounds. The parameter estimation
via function approximation needs supplementary information such as the gradient
and Hessian of the likelihood, parameter boundaries and tuning.

For the above example the nonlinear function approximation gave α̂ = 0.29 and
β̂ = 5.94. In fig. 3.5 we can see the path from the initial conditions (α = 0, β = 1)
until the minimum (α̂, β̂). The likelihood might not have a global maxima and the
whole procedure is dependent on the initial conditions, thus it is advisable to try
different sets of initial conditions and select the ones that optimize the likelihood.
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Figure 3.5: Gradient path to the solution. The heat map represents the likelihood
L(α,β) surface and the two axis the corresponding parameters of it. The cross
symbol in th egraph denotes the true parameter values that were used to generate
the data.

3.4 Parameter Estimation by Maximum a Poste-
riori

For a fully Bayesian treatment it is reasonable to consider a suitable prior P (θM|M)
for the parameters. The prior can also be a hard or smooth constraint on the range
of the parameters (uniform or Gaussian distribution) and regularize their esti-
mates at the optimization procedure, now called maximum a posteriori (MAP).
More informative priors can be selected from population models after processing
data from particular subjects’ groups. In this case hierarchical models of the pa-
rameters can be considered and inference of these can be implemented again with
various Bayesian approaches. Problems might arise during the optimization of the
posterior, and sampling methods such as Markov Chains Monte Carlo (MCMC)
can be useful alternatives of the MATLAB function fmincon.

Here we assume that the two parameters are drawn from two Gaussians

α ∼N (µα,σα) (3.5)

β ∼N (µβ,σβ) (3.6)
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Figure 3.6: Maximum a posteriori estimation by parameter space search.

with µα = 0.5, µβ = 10, and standard deviations σα = 1/30 and σβ = 1/5.
We have to mention that this whole process is for demonstration of the method

and not to extract insightful conclusions about subjects’ behavior, as the data were
simulated artificially. However, the choice of the parameters of the Gaussians has
to do with the range of the parameters, and after some tuning the results are better
than the maximum likelihood method, as expected.

The hyperparameters (the parameters of the priors) can be inferred by Bayesian
population statistics, though here we chose them by hand. As we did in the case
of maximum likelihood, we minimize the negative log-posterior with MATLAB’s
nonlinear optimizer. We also search for optimum solutions using a simple search
of parameter space.

First we search the parameter space as we did before (fig. 3.6). As we can
observe, the MAP estimation (α̂ = 0.29 and β̂ = 6.91) is much closer to the real
values of the parameters, for the reason that the priors provide extra information
about them. The second step is to optimize the posterior with the function fmincon

of MATLAB. The procedure gave α̂ = 0.28 and β̂ = 6.89. Finally, in the next section
we examine MCMC method for sampling from the posterior.
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Figure 3.7: MCMC sampling using the Metropolis-Hastings algorithm.

3.5 Markov Chain Monte Carlo (MCMC) Esti-
mation

The Markov Chain Monte Carlo sampling methods are very popular as inference
methods. One of the reasons that we would need sampling methods is that the
posterior distribution over parameters (assuming that the parameters are indepen-
dent)

P (α,β|D,M)∝ P (D|M,α,β)P (α)P (β) =

=
[∏T

t=1 P (ct|Qt(L),Qt(R))
]
·N (µα,σα) ·N (µβ,σβ) (3.7)

is not amenable to analytic techniques. For this reason we draw samples from this
posterior distribution.

Instead of trying to optimize the a posteriori function, we sample from it.
If we have enough samples, the distribution of them will resemble the posterior
distribution over our parameters and thus we can determine the mode of it and
so the optimum parameters. Here we demonstrate a simple MCMC algorithm,
the component-wise version (i.e., where we sample each dimension separately) of
the Metropolis-Hastings (MH) (Hastings, 1970; Metropolis et al., 1953) algorithm
(alg. 3.1).

The estimated parameter values were α̂ = 0.30 and β̂ = 6.32 and the correspond-
ing procedure is shown in fig. 3.7. As we can, see the proposed model does not
describe the process sufficiently. This process needs a lot of tuning. For example,
the proposed distributions that we sample should have appropriately chosen pa-
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Algorithm 3.1 Metropolis-Hastings (MH) Algorithm
Set t=1
Initialise α and β
repeat

t = t+1
Do a MH step on α:
Generate a proposal α∗ from a suitable distribution (we choose Gamma)
Evaluate the acceptance probability using α∗, α, and β
Generate a u from a Uniform(0,1) distribution
if u≤ acceptance then

accept the proposal and set α = α∗

end if

Do a MH step on β:
Generate a proposal β∗ from a suitable distribution (we choose Gamma)
Evaluate the acceptance probability using β∗, β, and α
Generate a u from a Uniform(0,1) distribution
if u≤ acceptance then

accept the proposal and set β = β∗

end if
until t = T

rameters. However, as we mentioned, the whole procedure was for demonstration
purposes only.

3.6 General Discussion

The approach described above follows a Machine Learning perspective, in which
a learning process generated a data set of observations D and we attempt to find
a mathematical description of it. Specifically, we assumed that our data (actions)
were generated by a model, the learning rule in eq. 3.2 used by the action selection
equation 3.3 which generates actions. Apparently, the inference problem (i.e., find-
ing the parameters of the model that most likely generated the data) is reduced to
a logistic regression problem. Thus, the β parameter has the role of the regression
coefficient in a logistic regression setting. In this sense, the Q values for every ac-
tion in a given state will be the ’data’ in the logistic regression case. However, the
’data’ are not constant values, as in the case of the logistic regression, and change
across time according to the learning rule (eq. 3.2). Moreover, they are dependent
on the learning parameter α.
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Obviously, in a logistic regression setting we are interested in inferring the
regression coefficients which in our case will be represented by the parameter β.
As we discussed, our ’data’, which are reflected in the Q values, are dependent
on another parameter, the learning rate α. This coupling of the two parameters
creates problems in the inference. For example, a poor search on one will also
corrupt the estimates for other parameters.

Point estimates of parameters, such as ML and MAP suffer from the com-
mon problems of such approaches. With ML estimation we seek the parameter θ

that maximizes the probability of the data given that parameter (i.e., maximizing
P (D|θ)). This approach, however takes no account of any information that we
might have about the range of this parameter and eventually will lead to unreg-
ularized solutions. A prior information on the parameters’ constraints, indicating
their likely range, is incorporated with MAP estimation and leads to regularized
solutions. With this method we seek the parameter that maximizes the posterior
probability (P (θ|D)) over possible parameters in the light of the observed data.

With these methods, we characterize the posterior distribution by its mode and,
although this seems very useful, it has some drawbacks. For example, there might
be other set of parameters that lead to high values of the posterior distribution. It
is reasonable to seek these parameters too. Moreover, there might be a correlation
between parameters which may occur in multimodal posterior distributions. With
ML or MAP we estimate a single set of parameter values for a model, and thus
these methods lead to point estimates that characterize a probability distribution
rather than the probability distribution itself. To achieve this we need posterior
sampling.

The reason for using MCMC to estimate parameters is to characterize the full
posterior distribution and not only its mode. In some cases, we might be able to
derive analytical expressions of the posterior distribution but usually this is not
the case, and we have to resort to sampling techniques such as MCMC. Having
a characterization of the posterior distribution we are able to calculate means,
variances and other moments of the distribution.

Ultimately, model selection methods can be used in order to evaluate which
model fits the data best (i.e., the best action selection method that describes sub-
ject’s decision process), and which distributions to use for priors. For example,
in the RL framework, we can test hypotheses such as whether the subjects learn
according to eq. 3.3 or whether they evaluate actions by learning more fundamental
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facts about the task and reasoning about them (model-based RL).
The aforementioned processes can be applied in other data sets as well (fMRI,

neural spikes, etc.). Furthermore the learning rule and action selection rule can be
changed according to the specific problem. Another approach that is commonly
used is the Kalman filter. In this approach, the fitting is done online and the
learning rate can change during each trial.

It is beyond the scope of this thesis to compare different Bayesian methods
for estimating posterior distributions and readers are referred to Bishop (2006)
or Gelman et al. (2014) for an in-depth and detailed treatment on these matters.
Our intentions were to illustrate the link between the machine learning techniques
aiming to extract patterns from data, and how these can be applied in combination
with learning and decision making mechanisms.

To conclude, parameter inference is feasible but not trivial or automatic, and the
whole process needs proper tuning and monitoring. It is common for the inference
program to return odd parameter estimates due to issues such as numerical stability,
problematic reward values and parameter boundaries. Apart from the methods
discussed here, it is necessary for the experimenter to have a substantial amount
of data to test such models.

In the following chapter we put all of these methods into practice by examining
various aspects of cognitive search or planning. Planning can be represented in a
form of a decision tree with all possible contingencies represented as the tree nodes
and branches. We will formulate such types of decision problems as MDPs and
attempt to solve them with RL. Furthermore, we will infer model parameters and
examine the cognitive links of these parameters using the techniques described in
this chapter, and consider how they can be related to developmental science.



Chapter 4

Model-based Analysis of Mental
Planning

ABSTRACT

As discussed in previous chapters, one of the two main decision making systems
thought to be responsible for goal directed behavior and is linked to model-based
RL approaches. This section will first briefly review some evidence of goal-directed
decision making in young children. Thereafter, we present in detail how computa-
tional model-based RL models can account for the behavioral phenomena observed
in mental planning tasks. The main question we ask is related to how the planning
process functions in tasks in which the reward is given only when the task is solved,
and there is no step-by-step guidance during the solution. Furthermore, we are
interested in explaining differences in the way humans’ cognitive search functions
given their age. To relate the above questions to behavioral data, we employed the
Tower of London task and a task that demands navigating among different states in
order to maximize the collection of a form of reward. We introduce a shaping reward
scheme for model-based RL in the case of sparse rewards and report an analysis on
the way humans at different ages prune their decision trees.

4.1 Introduction

In the previous chapters we discussed evidence of two distinct learning systems in
the human and animal brain: Stimulus-Response (S-R) learning, which is linked to
model-free RL approaches, and Response-Outcome (R-O) learning, which is linked
to model-based RL methods. In S-R learning, the behavior learned is considered
habitual - for example, a rat might associate the press of a lever with a rewarding
outcome, and perceive pressing the lever as a desirable action. In R-O learning, the
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behavior is characterized as goal-directed - in our example, the rat associates the
pressing of a lever with a positive outcome. The goal is to obtain the reward, thus
as long as it desires that outcome it will keep pressing the lever. The emphasis —
or, in other words, the learning cue — in the first example is on the action that
was associated with a reward, and even with the absence of the reward the trained
rat will keep pressing the lever. In contrast, in the second case the learning cue is
the outcome, as the lever press is associated with a positive outcome and thus in
the devaluation or absence of the positive outcome, the rat will stop pressing the
lever. The main focus of this chapter is the second case and how this is realized
computationally in the decision making process of humans.

In the domain of human and animal learning, outcome revaluation (which refers
to changing either state transitions or the value of the rewarding outcome) has been
employed to determine whether selection of a response is affected by its outcome.
To determine the role of R-O learning in the control of young children’s instru-
mental behavior, Klossek et al. (2008) trained 18- to 48-month-old children to
manipulate visual icons on a touch-sensitive display to observe different types of
video clips as outcomes. After the training phase, one of the outcomes was deval-
ued by repeated exposure, and children’s propensity to perform the trained actions
was tested in an extinction paradigm (i.e., until the disappearance of the learned
behavior because of the lack of reinforcement of this behavior).

At test, children older than 2.5 years performed the action trained with the
devalued outcome less than other children who were trained with a valued out-
come, thereby demonstrating that their actions were mediated by action-outcome
learning. This means that the older children were able to adjust their preferences
relevant to the outcome, which is sign of goal-directed behavior. By contrast, the
responses of younger children (mean age < 2 years) were resistant to outcome de-
valuation and may have been elicited directly by the icons associated with each
response, rather than mediated by a specific response-outcome expectation. As
discussed in Chapter 2, model-free RL involves prediction of future rewards based
on a value function that reflects accumulated past experience, without encoding
the identity of an outcome. Therefore, behavior that is governed by such a system
is unable to adapt immediately to changes in the outcome.

Klossek et al. (2011) further investigated the importance of choice training
in enhancing the sensitivity to outcome value, and established its critical role in
maintaining goal-directed behavior, not only in rats but also in humans. The
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instrumental response that is sensitive to its outcome value is controlled by a tree-
search mechanism that generates value predictions. The tree-search mechanism
implements a forward model by simulating future states that are associated with
various available response alternatives. If circumstances change, this mechanism
can adapt immediately as it is based on instant-by-instant predictions of a specific
outcome value. The authors concluded that their experimental results suggest
that training an agent in a free choice between two actions which yield different
outcomes benefits goal-directed action control.

Similar results were acquired by Kenward et al. (2009), in which 24-month-old
toddlers learned to retrieve an object from a box by pressing a button, and then
the object’s value was increased by allowing the child to play a game with the toy
obtained from the box in which the specific toy was necessary. After the object’s
subsequent disappearance, these toddlers attempted more frequently to press the
button to in order to retrieve the object as compared to another group of 24-month-
olds who had learned to retrieve the object but for whom the object’s value was
unchanged (i.e., at the play phase the toy was different from the one obtained from
the box, meaning that the value of the object in the box remained at baseline).
They tested whether the the first group’s tendency to press the button in order to
retrieve the object from the box, was increased as compared to the second group,
as the object became more desirable. Their experimental results were consistent
with Klossek et al. (2008; 2011), showing that the sensitivity to outcome value
when selecting actions influences decision-making in young toddlers.

The studies of goal-directed behavior described so far have a common char-
acteristic: a one-step look-ahead mechanism that relates a particular response to
a particular outcome. However, optimal sequential decision making requires a
mechanism that can look ahead many steps into the possible contingencies, and
apparently would be much more complex. Mental planning (or cognitive search)
is an executive function that does exactly this and is central to goal-directed be-
haviour, in any task that requires the organization of a series of actions aimed at
achieving a goal.

In this Chapter we use the Tower of London task (described in section 4.3) as
a domain for testing and modeling the planing mechanism employed by humans.
Although the planning mechanism used in this task has been investigated thor-
oughly (e.g. Albert and Steinberg, 2011; Baughman and Cooper, 2007; Bull et al.,
2004; Newman et al., 2003; Phillips et al., 2001; Shallice, 1982), to our knowledge,
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there are few links to computational modeling within the RL framework. We em-
ploy three reinforcement learning models of planning, and use Bayesian analysis
to fit each model to data from humans performing the ToL task. The data were
obtained from previous studies of children and adults tested in the ToL task and
in a computerized version of it, respectively. The same analysis was conducted
using data from children tested in a spatial navigation task (the Planet task), in
which participants had to choose optimal paths between destinations to maximize
their total reward. Our aim is to investigate further the mechanisms underlying
planning processes, and to contribute theoretically to RL models regarding these
processes.

4.2 Methods

4.2.1 Model-based analysis

Consider a task in which a rat at time-step t is in state st facing two different types
of levers, and has to decide which one to press (choices, c1 and c2). The first choice
c1 leads to a new state s1 or s2 with probability 0.3 and 0.7 respectively. At state
s2 the rat receives a piece of cheese (r = 1). The second choice c2 leads to states s3

and s4 with probability 0.3 and 0.7 respectively, and to no reward. Fig. 4.1 shows
a schematic representation of this task. One way for the rat to decide which lever
to press, is to evaluate how good each future state is by exhaustively searching all
possible choice outcomes it has, from the given state.

The above choice evaluation approach involves traversing a sort of associative
chain, determining that the lever press is worthwhile via its association with cheese.
This approach represents a very simple model-based approach. The environmental
model is considered known (i.e., the state transitions and rewards) after some
training experience. With this information, the rat can simulate possible action-
outcome contingencies and decide accordingly what to do when it is in state st. In
the event of reward devaluation, or any general change in the environmental model,
the rat can use its forward model to take these changes into account and again act
optimally (i.e., earn more cheese).

Models of S-R habitual behavior cannot capture changes in the environment
without extensive retraining under the new conditions. The reason for this is
that the changes cannot be reflected back to the rat’s decision system. A model-
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Figure 4.1: Model Based Analysis. A schematic representation of model-based
learning. Here the model is known (rewards and transitions), thus from state st all
possible outcomes can be evaluated. The circular nodes represent states and the
square ones action-state nodes. Starting from the bottom of the tree and going up,
the first action-state node will give Q(st, c1) = γ

∑
s′∈{s1,s2}P(s′|st,α1)R(st,α1) =

0.3 · 0 ·γ + 0.7 ·γ = 0.7γ. Similarly, we can compute the second action-state node.
At the top state node we compute V = max{0.7γ,0γ} = 0.7γ. Calculations are
based on equations 2.9 and 2.11.

based agent, however, chooses actions using an internal model of the environment:
this includes which actions in which states lead to certain outcomes and a reward
function that represents the outcomes of this chain of action and states. These
choices will adjust automatically in response to changes of the dynamics of the
environment, such as state-transition changes and reward devaluations.

In the rat paradigm, the rat maintains an internal representation of the envi-
ronment (i.e., environmental model which consists of transition probabilities and a
reward distribution) which it can use to reflect back any changes it observes. From
this point it can plan anew its actions, by simulating possible action trajectories
based on this internal representation of the environment. A tree structure can rep-
resent all the possible courses of actions that the rat can take in a computationally
convenient way.

For the reasons we described, model-based approaches are linked to goal-directed
behavior and are appropriate to model cognitive search and animal planning pro-
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cesses. We need to stress that the above simple example is limited and is described
here in order to give the reader an illustration of model-based approaches. There
are other interesting cases where the MDP (sec. 2.2.1) is unknown to the agent and
the problem of balancing exploration and exploitation (sec. 2.3) is much more ap-
parent. Furthermore, the above example can be easily solved by dynamic program-
ming methods such as value iteration methods. However, when the task consists
of a large number of states, then evaluating the whole decision tree, even with a
given horizon, is not a computationally efficient solution. To address this problem,
in this chapter, we present various pruning models which aim to decrease the size
of the decision tree.

In the next section, we describe three model-based RL models used to describe
the mechanism underlying planning (fig. 4.2). The models, the model fitting and
the model comparison procedures are described in detail in Huys et al. (2012) but
we repeat the description here for completeness. All three models assume that
subjects choose actions stochastically, with the probability of choosing action (or
choice) ct from state st at time t given by:

p(ct|st) = eβQ(st,ct)∑
c′ eβQ(st,c′) (4.1)

The parameter β is an inverse temperature that represents the agent’s sensitivity to
rewards. The higher the value of β, the more probable it is for the agent to choose
the action that maximizes the current Q function. Otherwise the agent will choose
a non-optimal action (according to its current evaluation of the decision tree).
Naturally, this leads to exploration of other actions and therefore the parameter β

can be seen as mediator of exploration and exploitation. The three models that will
be used throughout the chapter differ in the calculation of the function Q(st, ct).

The analysis that we will use here, as we mentioned, is model-based RL. This
means that the agent pursues a goal and thus that it is following a R-O learning
scheme. The first model is the Lookahead model. This model is simply a tree search
model in the sense that it searches all available options until the end of the tree:

Qlo(s,c) = R(s,c)+max
c′

Qlo(s′, c′) (4.2)

where s′ is the successor state from state s after selecting choice c.
For a problem with a large action and state space, the evaluation of the whole
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decision tree is computationally costly. Furthermore, we assume that humans have
a limit to the depth and breadth of their simulated decision trees. Thus, there
must be a pruning process that removes certain possible trajectories in the tree, in
order for the decision process to be efficient. We explore this process in the second
model, the Discount model.

In the Discount model, we assume that at each level1 of the decision tree,
a biased coin is flipped in order to determine whether the tree search should be
terminated and return zero reward or proceed to the next level. Let the probability
of stopping be γ, the Q values are estimated by:

Qd(s,c) = R(s,c)+(1−γ)max
c′

Qd(s′, c′) (4.3)

Then the future outcome, k steps ahead, is weighted by the probability (1−γ)k−1

that it is encountered.
The third model we implemented is a modification of the Discount model, which

we refer to as the Pruning model. Originally, this model was used to stochastically
stop the tree search at a point where a big penalty was perceived. For reasons
that will be apparent later in this chapter, we will assume that an agent that tries
to achieve a goal state, will tend to avoid states with large dissimilarity with that
goal state. Thus, we modify the calculation of Q from the Discount model to the
following:

Qpr(s,c) = R(s,c)+(1−x)max
c′

Qpr(s′, c′) (4.4)

where

x =

γS if R(s,c)is a large negative reinforcement

γG else
(4.5)

γS (Specific pruning parameter) is the probability that the agent stops evaluating
the decision tree while it is at a state in which the immediate reward leads to a
subsequent state with great dissimilarity with the goal state. γG (General pruning
parameter) is γ as in the Discount model.

1The first level is the root state and the immediate successor states. The second level consists
of these states and their immediate successor states and so on.
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Lookahead Discount

γG

γG

Pruning

γG

γS

Figure 4.2: The three planning models used for the analysis. The planning process
starts at a (real world) state, the root state, and forwardly simulates all possible
trajectories from the root state, given a reward and transition function. Top left:
the Lookahead model, evaluates the whole decision tree following the root state.
Top right: the Discount model, probabilitstically terminates the tree expansion
on every visited state. Bottom: the Pruning model, combines the pruning proce-
dure from the Discount model with an extra stochastic pruning parameter, which
terminates the tree expansion from a state where great dissimilarity with the goal
state is encountered.
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4.2.2 Model fitting procedure

Because we are interested in developmental applications of the above models, we
will test them in populations of different age. For this purpose, assume a hierarchi-
cal model that describes how data are generated for each age group (fig. 4.3). As
described by Huys et al. (2012), each model is characterized by a set of parameters
ki, for each subject i, that are generated by a Gaussian distribution ki ∼N (µ,v2)
with parameters θ =

{
µ,v2

}
. We will refer to these as hyperparameters. The

whole analysis is applied separately for each of the age groups. We fit the model
parameters and the hyperparameters in a joint scheme, using the EM algorithm
(Dempster et al., 1977), maximizing the marginal likelihood given all data by all
N subjects:

θ̂
ML = argmax

θ
P (C|θ) = argmax

θ

 N∏
i

∫
P (ci|ki)P (ki|θ)dN ki

 (4.6)

where C = {ci}Ni=1 is the set of all actions performed by each subject i. Actions
are assumed to be independent, thus they factorize over trials. To optimize the
marginal likelihood with EM, for the E-step at the jth iteration we use the Laplace
approximation (Bishop, 2006) to approximate the integral of the marginal (eq. 4.6)

P (k|ci)≈N
(

k(j)
i ,Σ(j)

i

)
(4.7)

k(j)
i = argmax

k
P (ci|k)P (k|θ(j−1)) (4.8)

and the parameters are estimated at the maximum of the posterior distribution
(MAP). For the M-step we estimate the hyperparameters θ = (µ,v2), by maximis-
ing the expectation computed at the E-step, as:

µ(k) = 1
N

∑
i

k(j)
i (4.9)

(
v(j)

)2
= 1

N

∑
i

[
(k(j)

i )2 +Σ(j)
i

]
−

(
µ(j)

)2
(4.10)

For the Lookahead model we fitted 1 parameter, for the Discount model 2 param-
eters, and for the Pruning model 3 parameters. All parameters were transformed
before inference to enforce constraints (β ≥ 0, 0≤ γS ,γG ≤ 1). Specifically, because
the optimizing function fminunc performs unconstrained optimization we wish to



4.2 Methods 62

Choices

Parameters

Hyperparameters

Figure 4.3: Graph for inferring parameters and hyperparameters using the EM
algorithm.

transform the parameters in a convenient way in order to preserve the constraints.
For example, for the β parameter we performed an exponential transform that
ensures the parameter remains positive during inference, and for the different γ

parameters we transformed them through a sigmoid function to ensure they take
values between 0 and 1.

The above procedures were verified by using simulated data from a known
decision process. For this, we simulated the specific task which the human attempts
to solve, and we designed an agent that uses the models described in this section
to attempt to solve the given tasks. The agent uses one of the model-based models
with specified parameters and generates sequences of actions in order to solve
the task. Then, we used these sequences to perform inference and recover the
specified parameters. With this approach, we can detect possible problems that
an algorithm might have. Also, more importantly, we can verify that the model
selection procedure (described in next section) can identify from which model the
action sequences were generated from.

4.2.3 Model comparison

Given the three models, and given that the models have different numbers of pa-
rameters, it is important to compare them to understand which best accounts for
the observed data. Following Huys et al. (2012), and having no prior knowledge
about the likelihood of each model, we assume that models are equally likely a
priori. Thus, we examine only the log likelihood of each model logP (C|M). This
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quantity can be approximated by the Bayesian Information Criterion (BIC) as:

logP (C|M) =
∫

P (C|θ)P (θ|M)dθ ≈−1
2BICint = logP (C|θ̂ML)− 1

2 |M | log |C|

(4.11)

where |C| is the total number of choices made by all subjects of the group being
examined, and |M| is the number of prior parameters (i.e., mean and variance for
each hyperparameter) that we estimated empirically above. The first term on the
right hand side of eq. 4.11 was estimated by standard Monte Carlo approximation.
The Bayesian Information Criterion (BICint) here is not the sum of individual
likelihoods, apart from penalizing the model for extra parameters, but the sum of
integrals over individual parameters thus the int (integral) subscript.

logP (C|θ̂ML) =
∑

i

logP (ci|k)P (k|θ̂ML)dk ≈
∑

i

log 1
N

L∑
l=1

P (ci|kl) (4.12)

The second approximation in eq. (4.12) involves a Monte Carlo approximation.
In other words, we sample L samples from the empirical prior (kl ∼P (k|θ̂ML)), and
then average over all P (ci|kl). With this approach we compare not only how well
a model fits the data when its parameters are optimized, but also how well a model
fits the data when we use information about where the group level parameters lie
on average (Huys et al., 2012).

Although the above gives a good comparative measure of model fit, an absolute
measure is needed in order to ensure that the best model does indeed describe
the data generation procedure efficiently. Thus, given the MAP estimation of
each subject’s parameters, we compute the mean total “predictive probability”
for subjects N , in a number of trials T , which is the geometric mean of all the
P (ct|st,ki):

NT

√√√√ N∏
i=1

T∏
t=1

P (c(i)
t |st,ki) (4.13)

where ct is the action selected at trial t by the ith subject, at the state st. It is
a measure of how probable are the data to be generated from a decision process
described by a specific model, characterized by parameters ki.
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4.3 The Tower of London Task (ToL): A Devel-
opmental Study

Human planning has been studied extensively using “look-ahead” puzzles (e.g.,
Klahr and Robinson (1981), Kotovsky et al. (1985), Parrila et al. (1996), Daw
et al. (2011), Balaguer et al. (2016)), in which subjects have to pre-plan mentally
a sequence of moves in order to transform a starting configuration of a puzzle to a
goal configuration, according to a set of rules. In the ToL task (Shallice, 1982), for
example, subjects are required to rearrange three balls on three pegs so that the
configuration of balls matches a goal state (see fig. 4.4), but in doing so they must
adhere to a set of rules or constraints. Thus they must move only one ball at a
time, and place it back on a peg before moving another ball. The ToL task can be
viewed as a sequential decision making puzzle, with a reward obtained if or when
the player achieves the goal state.

Start State Goal State

Figure 4.4: A typical Tower of London problem. The task consists of a board with
three pegs, each one with different heights, and three different coloured balls. The
right peg can contain up to three balls, the middle peg up to two balls and the
left one only one ball. The balls are initialy arranged in one configuration on the
pegs and the goal is to move balls – one at a time and from peg to peg – in order
to achieve the given goal configuration. The problem shown requires 3 moves, but
more difficult problems may require up to 7 moves.

The Tower of London task (ToL) was initially developed by Shallice (1982) as
a task that would make strong use of the general-purpose planning system (e.g.,
fig. 4.4). It is thus extremely well-suited for use with computational models to
simulate human behavior. Because of the task’s suitability in testing planning
performance, the task has been extensively used to assess planning abilities of
neurologically impaired patients. The particular task is similar to the popular task
of Tower of Hanoi (ToH) (Goel and Grafman, 1995; Lucas, 1882) although they
differ in structure and rules.
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In this section we apply three reinforcement learning models of planning to
behavioral data from the Tower of London (ToL) task, and use Bayesian analysis
to fit each model. The datasets we used were collected from 3 to 4 year old children
and 5 to 6 year old children performing the task and from adults aged >28 years
performing a computerized version of the task.

4.3.1 Behavioral Evidence of Planning

Developmental aspects of goal-directed behavior have also been investigated by
other researchers. Klahr and Robinson (1981) used a novel variant of the ToH task
to assess problem-solving and planning processes in preschool children. They tested
4, 5 and 6-year-old children and found that better performance was observed for
tower ending problems2. Furthermore, error propensities were related to the age of
the child. They argue that although younger children have some of the cognitive
capacities for problem-solving processes as in adults, they may differ in encoding
and representational abilities.

Bull et al. (2004), in a different study, compared the performance of young chil-
dren in the ToL and ToH tasks. As the main components in executive functioning
are thought to depend upon three core mechanisms (i.e., the inhibition of prepo-
tent responses, shifting, and updating working memory), they investigated possible
correlations between the tower tasks and some other specifically chosen tasks that
could examine each mechanism separately. They found that age was related to
ToL performance; specifically, older children solved more problems correctly. The
flexibility to shift among potential moves or subgoals was evident in both tasks and
especially in more complex problems. The role of inhibition was found to be more
prominent in the ToL task, although they argue that this might be reflective of
the different instructional sets governing the two tasks. In this study, it was found
that the storage capacity of short-term memory was unrelated to either ToL or ToH
performance, consistent with Welsh et al. (1999) and in contrast with researchers
who had considered tower tasks to place a substantial load on short term-memory,
because of the need to store and retain elements of sequential plan (Pennington
et al., 1996).

Tower tasks such as ToL and ToH, are described as higher-order planning tasks
2Tower ending problems are problems in which the goal state consists of the three balls stacked

at the first peg. In contrast, flat ending problems are problems in which the goal state has all
three balls occupying one peg.
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because successful completion requires the participant to ‘look ahead’ and solve the
problem mentally before physically interacting with the balls or disks. However,
Bull et al. (2004), argued that such tasks need not be solved solely by ‘look ahead’
planning but also using a real-time, ‘perceptual’ strategy (e.g., Simon (1975)).
Participants may use more direct, on-line processing, where the current tower con-
figuration guides the next move. In other words, the participant attempts to bring
the tower configuration successively closer to the goal state with each move, se-
lecting the moves that appear more ‘natural’ at a given configuration. Percep-
tual strategies therefore, do not always lead to the shortest solution path and are
stimulus-driven, which means that they have little to do with planning. The above
findings have important implications for the current study as we were interested
in investigating the underlying mechanisms of these types of planning-based and
perceptual strategies.

Other evidence that supports the contribution of a non-look-ahead process
comes from the work of Goel et al. (1995; 2001). In the first study, patients
with lesions in the prefrontal cortex were tested on the ToH puzzle and compared
with a healthy control group. Their results suggested that patients’ difficulties in
solving the task had little to do with planning deficits; rather their performance
was affected by an inability to resolve a goal-subgoal conflict, which was indica-
tive of a specific kind of perceptual strategy they used. The patients appeared to
employ a perceptual strategy much more than the normal group. In general, both
groups seemed to use a general strategy that did not result in the shortest path.

In their second study, Goel et al. (2001) used a computational model to sim-
ulate the performance of patients with similar impairments as above and normal
subjects. The computational model was built in a hybrid-symbolic-connectionist
architecture called 3CAPS (Just and Carpenter, 1992). It was an attempt to model
the perceptual strategy described above and managed to capture the main effects
of performance in both groups. Their results showed that there is considerable
evidence that both control and patient groups were using the perceptual strategy
found in their first study, and led them to support the working memory hypothesis
of frontal lobe functions. However, this hypothesis was only relevant for a very
narrow range of problems, consistent with the findings of Bull et al. (2004), in
which working memory did not appear to play a significant role. Bull et al. (2004)
suggested that young children did not seem to plan their moves before implementa-
tion, as they did not pause before moving the disks/balls (indicating they did not
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engage in any planning preparation). Instead they appeared to rely on an online
perceptual strategy for deciding their next move in an online way.

In another study, Kaller et al. (2008) tested 4 and 5 year-old children in a
variant of the ToL task. They used problems that either required searching ahead
for an optimal solution or were solvable by step-by-step forward processing. They
found that the 4-year-olds accuracy was lower in problems requiring search ahead
strategies, which revealed an age-related effect of search depth, as the older children
mastered both types of problems equally well. Initial thinking and movement
execution times revealed main effects of goal hierarchy. Goal hierarchy determines
the degree to which the sequence of final goal moves can be derived from the
configuration of the goal state (Kaller et al., 2004). Search depth affected only
initial planning but not movement execution. Furthermore Kaller et al. (2008)
demonstrated the importance of problem structure especially when testing sub-
populations such as children. Most importantly, though, are their developmental
conclusions. The relative inability of younger children in solving three-move ToL
problems could be attributed to the failure to look ahead. The observed interaction
between search depth and age provides strong evidence for this.

Other studies support the correlation between task performance and age. For
example, Albert and Steinberg (2011) explored age differences in strategic plan-
ning using the ToL task. Specifically they tested a sample of 890 individuals
with ages ranging between 10 and 30 years. On relatively easy problems, mature
performance was attained at the age of 17 whereas on more difficult problems per-
formance improved into the early 20s. Their findings also support the claim that
late adolescence is a time of continuing improvement in goal-directed behavior.

Our concern in this section is whether intrinsic motivation might play a role
in the cognitive processes underlying planning. We use computational methods to
explore the effects of more frequent feedback – reflecting intrinsic motivation – on
appropriate moves that may guide the subject towards solving the puzzle. This
type of strategy is an online strategy, similar to that described above, which guides
the subject towards moves that bring the current configuration of the task “closer”
to the goal configuration. Specifically, we model an existing dataset from children’s
planning on the ToL by incorporating a reward shaping function (Ng et al., 1999),
representing the intrinsic motivation of the child, within the framework of model-
based reinforcement learning.
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Figure 4.5: Tower of London task state space.
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4.3.2 Experimental Procedure

To examine the planning process mechanism, we consider existing data from seven-
teen 3-to-4-year-olds (mean age 47 months) and seventeen 5-to-6-years-olds (mean
age 68 months) on six ToL problems of graded difficulty (Waldau, 1999). The
younger children in this study struggled to complete many of the problems, and
in both groups some children failed to complete all problems. Therefore, in the
analysis below we excluded data from children who were breaking the rules of the
game consistently and overall not showing fully understanding of the task, resulting
in a final sample of 10 of the younger children and 13 of the older children.

Each child, seated at a table, was shown a physical demonstration of the ToL
task in which the experimenter moved balls one at a time to various pegs. The
experimenter then asked the child if he or she would like to play the game. After
the child agreed, the experimenter started explaining the rules with a parallel
demonstration of the task. The experimenter explained that a ball could be picked
up only if it was at the top of a peg, could not be placed on the table and then
placed at the top of any peg that has room for it. Furthermore, children were
instructed to only use one hand for moving the balls and they were asked to decide
which hand he or she would use throughout the experimental phase. Next, the
child was informed that the aim of the activity was to match the configuration of
the game shown in a picture held by the experimenter (which was kept at a visible
position throughout the duration of each trial).

After the explanation and physical demonstration of the rules, and upon re-
ceiving approval of understanding by the child, the experimenter started a trial
phase with 2 to 4 of the 4 problems in fig. 4.6 depending on the pace of learning of
the child. This was the first time the child was interacting with the game. It was
noticed that younger children had difficulty with inserting balls at the pegs. Many
times younger children broke the rules or were unable to continue. The instructor
intervened in the solution process to help the child understand the task and the
rules. If the child was unable to continue (for instance, did not know what to do
next or was too shy, or whatever the case was), the experimenter suggested possible
moves in order for the child to understand the goal of the task. Upon completing
a task, whether he or she failed or succeeded, the child was asked to shake a small
toy rod with a head of an animal at its top, which produced a funny sound. This
made the child happy while shaking it and could be perceived as a final reward, so
the child would interpret their own self-produced actions as having a meaningful
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Training Tasks

Figure 4.6: Training problems for the ToL.

and rewarding outcome.
When the experimenter was sure that the child understood the rules of the

game and the whole process, the child was asked if he or she wished to continue
to the real game. Upon confirmation from the child, the real experimental phase
began. All children were tested in the problems in fig. 4.7. The data that were
used for the model-based analysis were collected from the the child’s performance
on these 6 problems. Many times, the child initially declared full awareness of the
task and the rules, but still often violated the rules of the game. Examples of such
violations could be, for instance, picking up a ball in one hand, and moving the balls
left to other pegs at convenience while holding the first ball. In these instances,
the instructor would ask the child if they were aware that they were breaking rules,
but if the child seemed not fully aware of the rules they were allowed to continue
playing. With older children the instructor would terminate the trial, after asking
the child if what he or she did was allowed and then putting the balls back to the
pegs as before the rules were broken, after which the child was allowed to continue
from that state.

Given the population and the number of problems, we reanalyzed the original
video tapes and obtained 60 and 78 action sequences for younger children and older
children respectively. Among younger children, 7 out of 10 performed illegal moves
(37 total), whereas 5 out of 13 of the older children used illegal moves (22 total).
Illegal moves were counted as the transition of a ball from a peg to the hand and
not the other way around. The results are summarized in table 4.1. Some sequence
examples from the table 4.1 are given in fig. 4.8.

It is important to stress that the child participant was responsible for completing
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1.

3.

2.

4.

5.

6.

Tasks

Figure 4.7: Children’s ToL Problems. The number of moves needed to solve the
problems increases with the number of the problem. Thus, the first one is consid-
ered the easiest one whereas the last one the hardest one.

Start State

Start State Goal State

Start State Goal State

Start State

A.

B.

C.

D.

Figure 4.8: Sequence examples of the various cases desribed in table 4.1. A. A
correct solution of a given task. B. Correct solution but with illegal moves. C.
Perception matching: The subject focuses on producing the configuration of the
ToL but ignoring the ball colors. D. A failed sequence.
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Sequences 3-4yrs 5-6yrs
Reached goal correctly 38.3% 64.1%
Reached goal with illegal moves 40.0% 24.3%
Perception matching 20.0% 5.1%
Interrupted/Stopped 1.7% 6.4%

Table 4.1: Summary Statistics for Children performing in the ToL task. The table
shows the percentage of children showing different behaviors in each age group.

a task and declaring that a task was completed. This enables us to capture the
“perception matching” effect we described above. The phenomenon of the direction
of the behavior towards a perceptual match with the goal state (i.e., reaching a
state with the same configuration of the balls as the goal state, except the color of
the balls is different in the goal state, and declaring that the goal state reached)
is much more evident in younger children. For example, a child might have ended
up with the correct flat tower configuration (i.e., one ball at each peg) but with
incorrect colors. This phenomenon occurred more often in the younger children and
gives us insights about the possible mechanisms that interfere during a planning
task.

It is worth noting that in the ToL someone can do location matching without
color matching but not color matching without location matching (e.g., the goal
state has the red ball in the first peg, second position from bottom to top, and the
participant declares as correct position having the red ball at the first peg, but in
a different height than that of the goal state). In order to solve the task correctly
someone needs to match color, location (peg) and height of the peg. In our study,
we mean location matching when we mention perceptual similarity.

Breaking the rules was more often observed in younger children. For instance,
although a child might declare full understanding of the rules, the experimental
phase seemed to confuse them. As we mentioned, some children’s planning process
was interrupted by a motor difficulty of inserting the balls into the pegs. In our
modeling process„ we attempted to take into account as many of these observed
phenomena as possible.

4.3.3 Modelling the ToL task

In problems such as the ToL, the goal is achieved by decomposing it into subgoals
and evaluating the order of simple moves towards the goal (Gilhooly et al., 1999).
It is this evaluation procedure that guides our approach to planning in such a task.
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1

Figure 4.9: A forward internal model that implements planning. The top node is
the starting state whereas the bottom node is the goal state, where the subject
receives a reward (hypothetically r = 1). The two possible solutions are presented:
the pink one and the green one. Some connections have been omitted and other
alternatives are faded for presentation clarity.

We model children’s behaviour on the ToL as a Markov Decision Process (MDP)
and follow model-based approaches. In particular, we model the planning process
as a forward search model (fig. 4.9). We model planning as an expanding tree
with a given horizon. This means that we assume that, for a given moment in
the interaction of the subject with the task, and before the subject acts, he or she
simulates possible outcomes in the form of a decision tree.

4.3.3.1 The Extended State Space of ToL

Within the empirical study on which this work is based, some children (especially
the younger ones) failed to adhere to the task rules. That is, although it was
explained to each child that he or she should only move one ball at a time using
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only one hand, and although the child in each case claimed to understand this
restriction and demonstrated this knowledge in a series of practice trials, sometimes
he or she would still pick up one ball in one hand in order to reorder the position
of the other two balls that would otherwise require a series of moves.

The above scenario typically occurred when the state of the apparatus almost
matched the goal state, with two balls on one peg being in the wrong order (e.g.,
red immediately above blue when blue should have been immediately above red).
One possibility in this case is that the child’s look-ahead process suggests to him
or her that there is great similarity between the current and goal states, yet any
(legal) move would result in a decrease in similarity. From the perspective of
search through a decision tree, pruning of the tree might take place when facing
such situations, leaving the child with only one viable option – to move both balls
at the same time and hence break the task rules.

In order to accommodate breaking the task rules by subjects, we expand both
the state space (from 36 states to 114 states) by adding two more locations rep-
resenting the hands of the child (effectively two additional pegs, each of which
can hold at most one ball), and the set of available actions (adding actions corre-
sponding to moving balls to and from the hands). This yields an extended state
transition matrix T : S ×A with [114×25] entries.

Thus, for the extended ToL with 25 available actions at each state3, and a
decision tree of depth D = 3, the total number of action choices considered by the
lookahead model is 16275. This number is large and we reason that children are
unlikely to evaluate this number of actions during planning. One possibility is that
they prune the decision tree and evaluate action trajectories according to their
expected outcome. Therefore, we expect models that prune to fit the data better
than simple lookahead models.

4.3.3.2 The Reward Function

From a RL perspective, environmental stimuli combined with external rewards or
punishments may elicit certain responses, which ultimately lead to learned be-
haviours. In this context, extrinsic motivation, which means to be moved to do
something because of a specific reward outcome, may be distinguished from intrin-
sic motivation, which means to be moved to do something because it is inherently

3The actual available choices, at each state are given by counting all possible transitions of
the balls at the pegs, including the two extra pegs which represent the hands of the child.
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enjoyable (Deci and Ryan, 1985).
Intrinsic motivation is evident in animal behaviour, in which it has been found

that organisms engage in exploratory, playful and curiosity-driven behaviour even
in the absence of an environmental reinforcement (Harlow, 1950). Similarly, re-
searchers in many areas of cognitive science emphasize the importance of intrinsi-
cally motivated behaviour for human development and learning. In this section we
will describe how intrinsic motivation has a role in the planning process and guides
action selection in tasks in which the reward is sparse and received only at the end
of these.

The design of the transition matrix is straightforward, as the task is determin-
istic, but for the reward function further assumptions are necessary. In the Tower
of London task, the reward from the environment is given to the subject only at
the goal state. In addition to this, however, we assume that subjects are driven
step-by-step towards the goal state by an internal reward function, which is related
to the similarity of the current configuration of the task, state st at time t, to the
desired configuration (i.e., the goal state). By “similarity” we mean the degree
of overlap, in terms of positions of the balls at the pegs, between two states (as
defined in the following paragraph).

We hypothesize that the reward derived from similarity represents the function
of intrinsic motivation which guides actions according to what the person believes
is good or bad and not by the feedback received from the environment. In other
words, in the planning process we assume that subjects evaluate their future actions
in terms of not just whether they achieve the goal state, but (for other states) how
close they bring them to the goal state. Previous work has shown that such a mod-
ification to the reward structure often suffices to render straightforward otherwise
intractable learning problems. Indeed, an appropriate modification to the reward
function (shaping bonuses) can leave the optimal policy invariant whereas other
transformations lead to suboptimal policies (see Ng et al., 1999). In our work we
will use shaping bonuses to represent intrinsic motivation and show how it affects
the children’s planning process.

To calculate state similarity, as required by the internal reward function, we
represent each state within the ToL by a set of 24 binary features (bits). For
each ball we assign three bits to represent its vertical position on the peg and
five bits for the peg that the ball is placed on (three for the real pegs and two
representing the hands). According to this scheme if the red ball is at the low-
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est position on the first peg then it will be represented as Rpos = (1,0,0) and
Rpeg = (1,0,0,0,0). The state vector is the concatenation of the vectors for each
ball: st = (Rpos,Rpeg,Gpos,Gpeg,Bpos,Bpeg). For example for a given configu-
ration, a state can be represented as: st = (Red,Green,Blue), where Red =
( 1,0,0︸ ︷︷ ︸
position

,0,0,1,0,0︸ ︷︷ ︸
peg

) Green = ( 1,0,0︸ ︷︷ ︸
position

,0,1,0,0,0︸ ︷︷ ︸
peg

) Blue = ( 1,0,0︸ ︷︷ ︸
position

,1,0,0,0,0︸ ︷︷ ︸
peg

).

We then define the similarity between two states s and s1 as the inner product
between those states: φ(s) = sT s14. In our case all similarities are between a state
of interest and the goal state. The reward shaping function bonus therefore has
the form F (s,st+1) = φ(st+1)−φ(s) where st+1 is the state one step ahead and
φ(s) = sT sgoal is the similarity between a state and the goal state. The intrinsic
reward function becomes:

Rint(st,st+1) = φ(st+1)−φ(st) = (st+1 · sgoal)− (st · sgoal) (4.14)

According to eq. 4.14, reward is received if the similarity between the future state
st+1 and the goal state is greater than the similarity between the current state st

and the goal state. This means that a child who chooses according to how similar
a configuration of the tower is to the goal state will get or feel rewarded. We use
the ToL problem in fig 4.4 as an example to illustrate the mechanism of intrinsic
motivation, defined in this section, in fig 4.10.

This is an important point: unlike older children and adults, younger children
may actually be rewarded during each sub-action, or task step, if the configuration
more closely resembles the goal state at a perceptual level. This is in contrast
to older children and adults, who might value more the reward at the goal state
rather the virtual reward they get if they move to states that resemble more the
goal state. Thus, a perceptual strategy ignores more sophisticated planning which
is affected by the final reward when the goal state is reached. We expect younger
children to be more likely to use such strategies, because we hypothesize that their
planning abilities are more restricted than older children. By restricted, we refer
to the notion that their planning trees might be over-pruned and thus the available
information to plan-ahead is insufficient.

It seems that some children perceive some configurations (“towers” where all
three balls are on the longest peg, or “flats” where all three balls are on different
pegs) as being the same, independent of the arrangement of colour. The above

4With bold letters we denote the state feature vector.
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Figure 4.10: In order to solve the ToL task in fig 4.10 with the least possible moves
(optimal path), one has to move the green ball first. This move though does not
result in a more similar configuration of the ToL to the goal state than the other
available options, and thus the internal reward, calculated as in eq. 4.14, is Rint = 0.
On the other hand, by moving the red ball the similarity increases and the internal
reward received is Rint = 1. That specific move is very tempting as the goal state
configuration presents the red ball at the third peg, and in the current state the
third peg is empty and the red ball is free to move. In such problems the similarity
increases early in a sub-optimal solution path whereas in the optimal solution path
it increases later. Our similarity formulation captures this tendency to perform
actions that lead to states that are more similar to the goal state and affects the
planning mechanism.

approach helps us capture similarity in the structure of a particular configuration
(i.e., the number of balls on each of the pegs is the same for both configurations
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independent of colour). For example, in fig 4.8 C the sequence ends into a flat
configuration. The similarity of the correct ending configuration in A with the
wrong one in C is 4 (max similarity is 6).

In order to distinguish between goal driven or state-similarity driven behavior,
we introduce a weigthing parameter w, and set:

R(s,c) = (1−w)Rgoal +wRint with 0≤ w ≤ 1 (4.15)

where Rintis given by eq. 4.14 and Rgoal = 1 if from state s and choice c you reach
the goal state, and 0 otherwise. With this definition, eq. 4.5, becomes

x =

γS if Rint(s,c)is a large dissimilarity

γG else
(4.16)

This form of reward, weighs the contribution of each type of reward to the total
reward function, given a state s and a choice c. Thus, a low w will indicate goal-
directed behaviour whereas high w indicates planning driven by state similarity.
We hypothesize that younger children will be better modelled by high values of w

and older children by low values.

4.3.4 Results and Discussion

We fitted the three models described in section 4.2 to the data, in a way that the
extra complexity in the model (extra parameters) reflected better performance of
the model in explaining the data. More specifically, we first fit the simplest model
and then we repeated the fitting procedure after adding a new parameter and, lastly,
comparing the performance of the two. Simple versions of the Lookahead, Discount,
and Pruning models were tested with no Similarity function. Their BICint scores
were higher (for example, for the Discount model without5 a Similarity function the
BICint=1108) than the same models after adding a Similarity function (lower scores
indicate better models). Furthermore, an alternative form of Similarity function
was tested, which was dependent only on the similarity between the immediate
future state and the goal state.

The inferred parameter w was 0.28 and 0.52 (Discount Model estimation) for
5In this case there is only one type of rewarded distributed at the end of the task depending

on the success of the solution.
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Model Old Ch. Young Ch.
Lookahead 1441 1066
Discount 1074 797
Pruning 1071 798

Table 4.2: BICint scores of the three model-based RL models fitted in data from
older and younger children.

Parameters β γG γS w
Model Old Young Old Young Old Young Old Young

Lookahead 3.59 3.47 - - - - 0.15 0.12
Discount 26.37 28.04 0.69 0.67 - - 0.28 0.52
Pruning 29.31 30.84 0.71 0.66 0.57 0.57 0.29 0.51

Table 4.3: Mean parameter estimates for the three models.

older and younger children respectively, revealing a significant difference, t(17) =
3.46, p = 0.002, between the planning mechanisms of the two groups. This sug-
gests, as hypothesized, that younger children pursue a similarity match between
goal state and their current state more, whereas the older children demonstrate
more goal-directed behavior. By comparing BICint scores (table 4.2) and mean
predictive probabilities calculated using eq. 4.13 (e.g., 5-6yrs old group: Lookahead
(0.85), Discount (0.89), Pruning (0.89)), we found that the Discount and Pruning
models describe children’s behavior better than the Lookahead model, although
the extra parameter of the Pruning model does not improve the model predictions
beyond that of the Discount model, at least in the specific ToL problems tested
here. This may reflect a lack of sophistication in planning ability at these ages.
Further investigation of behaviour during specific ToL problems could reveal the
importance of various features that affects their planning process, such as the state
representation and the Similarity function.

An analysis of choice behaviour according to our models shows that older chil-
dren prune, in general, more than the younger children. However, the difference is
very small. This early termination of the decision tree for the younger participants,
appears to be mainly because they are driven by the (perceived) similarity of the
current state to the goal state, leading to them ‘cheating’ by holding two balls at
the same time. In addition, younger children tend to overprune their decision tree
and mostly are driven by the similarity between states. On the other hand, older
children demonstrated a better level of planning (i.e., reaching the goal state by



4.3 The Tower of London Task (ToL): A Developmental Study 80

Lookahead Discount Pruning

R
ew

ar
d 

se
ns

iti
vi

ty
 β

 e
st

im
at

es

0

5

10

15

20

25

30

35

40
(A)

3-4yrs
5-6yrs

P
ru

ni
ng

 m
od

el
 p

ar
am

et
er

 e
st

im
at

es

0

0.2

0.4

0.6

0.8

γ
G

γ
S

(B)

3-4yrs
5-6yrs

Figure 4.11: Model parameters estimates: (A) Reward sensitivity β mean estimates
from the three models. (B) Mean estimates of general pruning γG and specific
pruning γS parameters for the two age groups given the pruning model. Error bars
denote the standard deviation from the mean value.

following the rules consistently). They tend to prune but in a way that leads them
to the goal state without shortcuts (i.e., without picking up more than one ball at
a time). Furthermore, the older children tended not to show confusion in distin-
guishing very similar states. Finally, looking at the reward sensitivity parameter
β (fig. 4.11 A), younger children are slightly more greedy in seeking rewards than
older children, exploiting internal rewards given by state similarity.

One issue with our approach arises from the choice of the similarity function
and the state representation. For example, another alternative more abstract state
representation, could take into account only the position of the balls but not the
color and vice versa. Different Similarity functions can also be defined with different
parametrizations that could potentially better capture the process that directs the
tree search toward similar states. In our case we chose a relatively simple similarity
function which is based on shaping functions defined by Ng et al. (1999), and the
inner product between states. The state representation used, is described in detail
in section 4.3.3.2.

This section has demonstrated a method for analyzing human behaviour in puz-
zle tasks in which the main reward factor is the internal reward, represented by
a shaping reward function. By testing it in a real world example, as the above,
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useful insights can be gained concerning differences in mental planning between
age groups, though further work needs to be conducted to formally explore the
relationship between internal reward representations and planning across develop-
ment.

4.4 The Computerized Version of ToL: An Adult
Study

4.4.1 Experimental Procedure

To solve some of the problems that presented themselves in the above experiment
with children (such as picking up the balls, rules violation, difficulties to place the
balls in the pegs, etc.) an experiment using a computerized version of the ToL task
was conducted. 19 adult participants in total aged over 21 years were tested.

The computerized version of ToL was designed in Matlab (MATLAB, 2015)
with Psychtoolbox 3.0 (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). Initially,
the participant was seated at a table in front of a laptop screen. Upon agreeing
that they were ready to begin the experimental process, the experimenter initiated
the ToL script. The script was designed to store actions, completion time for each
problem per participant and timing per move execution. Timing was measured
from the onset of moving the ball from one peg to another to the moment the ball
made contact with the second peg. Time per move is an important indicator of
ongoing planning process of the subject (Newman et al., 2003), although these data
were not exploited in this study or taken account of in our modeling approach..

The first screen welcomed the participant to the task and explained that she
or he would be solving 15 different ToL problems. Participants were instructed to
aim to use the fewest moves possible. Next, they entered a training phase with two
simple tasks given in fig. 4.12. Here the display split into one large area in which
a 2D graphic realization of the ToL was presented, and a smaller marginal area at
the left of the screen where a small picture of the goal state configuration of ToL
remained on the screen during the trial. A sample display is shown in fig. 4.13. The
experimenter explained the rules of the task and allowed the participant to become
familiar with the task. In this version, rules were already integrated into the script
in order to ensure rule violations were impossible. For example, if the participant
attempted an illegal move, the ball would remain at its current location.
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Training Tasks

Figure 4.12: Training tasks for the computerized version of ToL.

Figure 4.13: A sample screen from the computerized version of ToL. At the top
left corner the goal state is presented to the participant. At the bottom left corner,
inside the gray box, a ’Next Trial’ appears when the participant completes the
trial.
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Additional Tasks
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Figure 4.14: The additional ToL tasks for adults. Some tasks were chosen to create
the perception that with few moves the configuration of the ToL will be identical
to the goal. For example, in problem 8, the first move without planning would be
to move the green ball to the 3rd peg as that state is very similar to the goal state.
However, this will lead into many more moves than having as subgoal to empty
the second peg to help reconfigure the balls at the 1st peg.

When the first trial of the training phase was completed, a box showing “NEXT”
appeared on the edge of the screen encouraging the participant to continue to the
next problem. The NEXT button appeared only if the task was solved. The
first training problems did not require sophisticated planning and the solution was
“driven” by the goal state configuration image. The participants did not show any
significant difficulty in solving the training trials completely, demonstrating full
understanding of the rules and the goal of the task.

After the training phase was finished, a screen appeared indicating that the
real experimental phase would begin. Upon agreement, the participant was left
alone to complete the tasks. The 15 problems that the participants encountered
consisted of the 6 problems in fig. 4.7 with 9 additional problems shown in fig. 4.14.
All problems were presented in a random order.

Some problems were chosen to potentially elicit the use of the online perceptual
strategy described before. For example, in problem 7, the first move that someone
will likely to attempt is to move the red ball to the 3rd peg because this move
seems to bring the current configuration closer to the goal configuration. However,
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in reality this move actually brings the configuration further from the goal. In
order to avoid such mistakes that lead to suboptimal longer paths, the participant
must first plan her action sequences several steps in advance. With such problems,
we attempted to capture the employment of the perceptual matching strategy that
’encourages’ the subject to pursue similarity with the goal states.

4.4.2 Participants

Behavioral data were collected from 19 participants with an age range from 21-
45. The participants were mostly highly-educated and drawn from the faculty of
various institutes during international conferences that the author attended. Each
person was instructed carefully about the rules of the task before participating. As
most of the problems were designed for children, they were not very challenging for
adults (mean execution time for all the 15 problems was approximately 5-7 mins).

4.4.3 Results and Discussion

The BICint scores for the three models are given in table table 4.4.Surprisingly,
in the computerized version of the ToL task there was no significant improvement
with the use of an explicit similarity function. These results might be partially
consistent with the online perceptual strategy described in the previous section. It
might be the case that, as these subjects were adults, they have mature planning
strategies which they used to plan a sequence of moves and then execute them
during most of the trials.

Consistent with our previous results, in table 4.4, we observe a high probability
for pruning (1− γG). In addition, the weight parameter w, which denotes the
amount of influence that the perceptual similarity has on the planning process,
is very low. This accounts for the lack of an improved BIC score with the added
similarity. These results are consistent with the hypothesis that adults demonstrate
advanced planning processes. However, there is no evidence for the influence of a
perceptual strategy. It might be the case that because of the constrained nature of
the experiment (i.e., participants were instructed to use the fewest number of moves
possible and therefore they needed to plan their course of actions), participants that
were keen to use online perceptual strategies were discouraged to do so. In fact,
more than one participant complained that planning ahead is not their preferred
way of solving the task and that they would have preferred to find the solution by
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Model/Parameters β γG γS w BICint
Lookahead 1.07 - - 0.09 7421
Discount 1.26 0.10 - 0.06 7427
Pruning 4.22 0.23 0.02 0.76 7428

Table 4.4: Mean parameter estimates for the three models.

‘simply playing’.
To further test our models we used a pseudo-R2 (Camerer and Hua Ho, 1999;

Daw et al., 2006) in which we compared the negative log-likelihood obtained by
the model with the negative log-likelihood obtained by a null (random) model (i.e.,
β = 0, thus the model uses equal probabilities for all available actions at each
state). The statistic is computed as (R−L)/R for each subject, with R being the
negative log-likelihood of the random model and L the negative log-likelihood of
the planning model. The mean value of the pseudo-R2 for the subjects was 0.98
(compared to a mean value 9359± 2559, over 1000 simulations, of the negative
log-likelihood of the random model) indicating that the proposed planning model
performs better than a random model.

4.5 Application to a Task with Step-by-Step Re-
ward

In the previous sections we investigated human’s performance on a task in which
they had to reach a goal state where they could get a reward. This group of tasks,
in which the reward is given only at the final state, includes the board games such
as chess and Go. In some of these games, there is some kind of immediate reward
if some particular progress has been made in the game (e.g., specific pieces are
captured in chess). However, reaching the goal state has a reward greater than the
sum of all the other intermediate rewards and thus all player moves should aim for
this. The nature of these games is usually complex and requires careful planning
and various strategies to be employed by the player in order to win.

In contrast, there are other planning tasks in which every single action is re-
warded or gets punished and the goal is to maximize the total net income. For
example, in the stock market the goal is the maximization of the net income at
the end of a specified period. The specific trading strategies might be successful
sometimes and some other moments unsuccessful. However, what is really impor-
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tant is that at the end of the specified period the net income has increased. In this
section, we will examine a similar scenario in which participants have to maximize
their outcome after a specified number of moves in a small scale’labyrinth.

4.5.1 The Planet Task

To further test planning in such scenarios we employed a task that was used by
Tanaka et al. (2006) and Huys et al. (2012) to assess aspects of learning goal-
directed behaviors. This task was modified to be suitable for children 3 to 11 year
old. It was programmed in Matlab (MATLAB, 2015) with the Psychtoolbox 3.0
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997). The task consists of a number
of states in which there are always two options available. Depending on the state
and the selected action, a reward or punishment is given. A participant is asked to
choose a course through subsequent states, using a specified number of moves, and
to try to acquire the maximum available reward. The task is illustrated in fig. 4.15.

In this task, a participant has to consider not only the reward given after a
particular transition, but to plan ahead a path that will lead to the maximum
summed outcome at the end of his or her moves. In the ToL task, presented in the
previous sections, the reward was given at the end of the task and we examined
the mechanisms that potentially affected the planning process. Here, we examine
how a human subject, given a number of moves, plans ahead in order to maximize
its future outcome considering state-to-state rewards or punishments.

The whole task is presented as a space journey, and navigation through planets
in a spacecraft. The states consist of four planets of different colors. Two buttons
can be used to make the spacecraft land on a new planet. On each planet the
spacecraft collects or loses precious crystals.

From a computational perspective, the task can be modeled as an MDP with the
rewards and the transitions considered known, as the subject undertakes extensive
training to learn them. The rewards and the transitions can be considered as the
model of the environment which participants after training represent as a cognitive
map. Eventually, the subject has to plan ahead specific steps evaluating all possible
transitions and rewards. Thus, this task can be modeled with exactly the same
methods employed in the previous sections.
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Figure 4.15: Transitions and rewards in the The Planet task.

4.5.2 Experimental Procedure

The youngest participants were recruited and tested by Livia Freier (Ph.D stu-
dent) at the Center for Brain and Cognitive Development, Birkbeck, University of
London. Older children were tested in a non-lab setting (i.e., school). Before the
procedure started, the experimenter explained to the parent of the young partici-
pant the whole process in detail, while the child interacted with various toys at the
reception area of the center. Afterwards, parent and child were led to the lab’s area
for the testing phase. Younger children were seated on the lap of their parent and
were placed in a comfortable position in order to use the laptop. The experimenter
initiated the task through the keyboard.

A summary of the whole experimental procedure is illustrated in fig. 4.16. A
welcoming screen briefly described the task in few sentences. Then the training
phase started. The purpose of this session was for the participant to learn a cog-
nitive map of the two control buttons, indicated by a blue and green sticker at
the keyboard of the laptop, and where the spacecraft could land in various cases.
The participant could navigate freely to whichever planet he or she wants. At the
left of the screen, a map showed the planets and the landing possibilities. The in-
structor made sure that the child learned successfully how to navigate from planet
to planet and assessed the child by asking him/her to move to a planet from the
current position. However, this was not the case in younger children, for whom the
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task eventually was proved too demanding in many aspects.
After the training phase two blocks of trials followed. Specifically, each block

differed at the starting position (state 1 and state 2 respectively — s1 and s2 in
fig. 4.16). In the case that the starting position was state 2, the participant faced
two options: one that led to a big penalty and thus would optimally enforce pruning,
and another one with a smaller penalty. Although the option of an immediate big
penalty seemed repelling, at the end of the course of actions, it led to a greater
sum of rewards than the other option with the smaller penalty.

Each one of the two blocks contained three trials, each with a different total
number of moves that the participant was asked to use (i.e., 2, 3 and 5 total moves).
Each trial of a specific number of moves, was repeated 10 times. There was a
maximum reward indicator on the screen, which denoted the maximum possible
reward in a specific trial, an indicator for the current collected amount of crystals,
and an indicator for the reward that was collected in one transition. The latter one
was accompanied by a happy/sad face depending the number of crystals gained.

4.5.3 Results and Discussion

We performed the same analysis as we had done with the previous tasks. We used
data from 5 children at the age of 4, 5 children at the age of 5, one child at the
age of 9 and one at the age of 11. However, calculating the mean pseudo-R2 from
all subjects, we found a value of R2 = 0.03, a value which indicates that perfor-
mance was close to the random model. Furthermore, after comparing the mean
collected reward from all subjects (r̄subj =−4363±1026) and all trials with the re-
ward obtained by a random model (r̄rand =−4479±557) using a two-tailed t-test,
we found no significant difference (t(11) = 0.40). The maximum total obtainable
reward from the whole task procedure was 800 crystals.

In this experiment we observed various problems. Although our intentions were
to design an experimental task that would be feasible for 3 to 11 year old children,
younger children did not understand the task well. First of all, as we mentioned,
the training phase was not always successful for younger children. Thus, their
transition and reward models were incorrect not letting them plan correctly6. It
seems that, especially for the 3 to 5 year old children, the transitions between
states is confusing. Probably, a modification of the task with clear transitions from

6It would be very interesting though, to attempt to capture that model instead of assuming a
correct model for them during the experimental phase.
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state to state, along with control buttons that would represent the direction of
movement of the spacecraft, would help them to create a correct transition model.
Furthermore, planning steps more than 3 steps ahead seems to increase the load of
their planning system. Thus, a block with 1 to 3 available moves might also help
them to do the task and eventually test their planning capabilities.

Unfortunately, as it is common with modeling procedures that involve human
data, a more careful selection of the population of the participants is needed. In
our case, children younger than 5 years old were tested at the Center for Brain and
Cognitive Development, Birkbeck, University of London, whereas the rest of the
children were tested in schools. The problem of finding schools with children of the
desired age for testing contributes a lot to the testing process organization. For
example, in our case, the data collected belong to children that come from various
age groups making it very difficult to extract developmental results. Taking into
consideration all these factors, we could improve the experimental procedures and
design better tasks, which will lead to better insights of the process under study.

4.6 Exploratory Work for Future Extensions

In this section, we describe some extensions of the above implementations that
might serve as better models to describe the decision making processes involved
in the ToL and Planet tasks. These algorithms examine hierarchical aspects of
behavior and provide a more realistic framework for planning. We implemented
and carry out experiments with all the algorithms described in the next sections
in simulated environments. It remains to adapt them to the context of the tasks
described above so we can test their suitability.

One of the straightforward extensions to our framework, is to cluster actions
into chunks of actions and use an appropriate framework to learn these action
sequences and the corresponding policy. This particular policy will account for
sequences of actions, instead of one action as in our implementation. The main
assumption here is that humans tend to memorize sequence of actions and then use
them at will. It is clear that this process consists of an hierarchical approach to a
task. For example, to navigate from one room to another in the grid world domain
(fig. 2.3), we do not need to consider our actions from tile to tile, if already learned,
but rather to directly move to the entrance of the other room. The Hierarchical
RL provides such a framework and is described below in detail.
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A potential improvement to our planning algorithm is to consider a planning
algorithm that does not prune probabilistically. Instead, an algorithm which takes
account of the reasons of pruning and integrates them into its functionality, might
describe better the human planning process. Monte Carlo Tree Search could be
considered as such a model. However, the fitting process to human data of such
a model is not straightforward. In the next sections we give a description of the
method along with a suitable fitting method.

4.6.1 Hierarchical Reinforcement Learning

Here, we describe an extension of basic RL framework in order to incorporate a
hierarchical structure (i.e., divisibility of ongoing behaviour into discrete tasks,
each of which are comprised of subtask sequences, and which in turn are built
of simple actions). The hierarchical aspect of RL consists of extending the usual
notion of action to include whole sequences of actions (Botvinick et al., 2009) which
are called macro-actions. The Options framework formalizes the RL problem with
such actions, which can be solved with usual RL techniques. An option is in a
sense a ‘mini-policy’. Once an option is selected, actions are selected based on that
option’s policy until the option terminates (Botvinick et al., 2009). Examples of
the options framework are: traveling to a distant place, planning a trip, etc. Each
of these requires completing subtasks using a sequence of actions. Each step of
planning involves foresight and decision making, all the way down to the smallest
of actions. Furthermore many of these options might be part of other options thus
forming hierarchical structures.

There are two main computational approaches to HRL: Sutton (1988) and Di-
etterich (1998). For our experiments we used the one with the options framework,
following Sutton. According to this, the MDPs are generalized as Semi-MDPs, a
special kind of MDPs used for modeling continuous-time discrete-event systems
(e.g., see Puterman (1994)). An SMDP is nothing else than an MDP with options.
In the four-room grid world, for example, an option could be the transition from
one room to another, instead of moving cell to cell.

The RL architecture that was used in HRL is the Actor-Critic, because it is
considered to be a suitable model for brain areas such as frontal cortex and the
Basal Ganglia. In terms of learning option-specific behavior, the agent has to learn
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some predefined subtasks, i.e., to reach a subgoal state7.
The learning procedure is similar to the one used by the ordinary Actor-Critic.

However, in this case the critic, which is responsible for maintaining value functions,
maintains not just its usual value function but also a set of option-specific functions.
At each step, a prediction error is computed based on the option-specific values
of the states visited and the reward received. This prediction error is then used
to update option-action strengths (weighted associations from states to actions)
which iteratively lead to a behavior with increasing directness toward the options
subgoals.

As with the RL framework, the HRL framework has a lot of implications
for neuroscience and psychology. Many studies in the past (Cooper and Shal-
lice, 2000; Lashley, 1951) have asserted that the sequencing of low-level actions
requires higher-level representations. Furthermore, a number of studies (Bruner,
1973; Fischer, 1980) show that hierarchical behavior is observed through the course
of childhood, when simple operations are incorporated into larger wholes. Neural
correlates to HRL are tested in Fernández et al. (2010) with encouraging results
supporting the hierarchical structure.

4.6.2 Monte Carlo Tree Search Methods (MCTS)

Monte Carlo Tree Search (MCTS) (Kocsis and Szepesvári, 2006) is one of the best-
known examples of simulation-based search algorithms. It is a method for finding
optimal decisions in a given domain by taking random samples in the decision
space and building a search tree according to the results. It has already proved
very efficient in Artificial Intelligence (AI) approaches for domains that can be
represented as trees of sequential decisions, particularly in games (Branavan et al.,
2011; Gelly and Silver, 2011; Heinrich and Silver, 2014) and recently in modeling
human decision making processes (Guez et al., 2014b; Hula et al., 2015).

The main idea behind the MCTS algorithm is to simulate thousands of random
games from the current position, using self-play. New positions are added to the tree
in the form of sub-trees and each node of the tree contains a value that predicts
win or loss from that position. This value is simply the average outcome of all
simulated games that visit the position. The search tree guides the simulations

7The problem of discovering subgoals has been addressed by Kazemitabar and Beigy (2009)
and automatic approaches are a topic of much research (e.g., see Bakker and Schmidhuber (2004),
McGovern and Barto (2001), Sutton et al. (1999)
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along promising paths, by selecting the child node with the highest potential value.
Monte Carlo methods have their origins in statistical physics where they have

been used to obtain approximations to intractable integrals. A game-theoretic
value of a move, which is an expectation over rewards of that action, can thus be
approximated by:

Q(s,a) = 1
N(s,a)

N(s)∑
i=1

ziδs(a) (4.17)

where δs(a)is the Kronecker delta which is equal to 1 if ai = a from si = s, N(s,a)
is the number of times action a has been selected from state s, N(s) is the number
of times a game has been played out through state s, and zi is the result (in terms
of reward) of the ith simulation played out from s.

It is possible also to improve the reliability of game-theoretic estimates by bi-
asing action selection based on past experience. Moving selection towards certain
moves is sensible, after obtaining some experience, as these moves seem to have
higher intermediate reward.

4.6.2.1 Bandit-Based Methods

Bandit problems are a class of sequential decision problems, in which one needs
to choose among K actions (e.g., the K arms of a multi-armed bandit slot ma-
chine) in order to maximize the expected sum by taking the optimal action at
every step. The reward distributions are unknown and potential rewards must be
estimated based on past observations. This leads to the choice of amount of explo-
ration/exploitation: exploit the action that seems optimal or explore other actions
that currently seem sub-optimal but may turn out superior in the long run.

For bandit problems it is useful to know the upper confidence bound (UCB)
that any given arm will be optimal. The simplest UCB policy (UCB1, Auer et al.
(2002)) dictates to play arm j that maximizes

UCB1 = Xj +

√√√√2lnn

nj
(4.18)

where Xj is the average reward from arm j, nj is the number of times arm j was
played, and n is the overall number of plays so far. The reward term Xj encourages
the exploitation of higher-reward choices, while the right hand term encourages the
exploration of less-visited choices. Bandit theory plays an important role in the
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MCTS algorithm as it treats every action as a slot machine and uses a similar
action selection method.

4.6.2.2 The Monte Carlo Tree Search algorithm

As we mentioned above, MCTS rests on two fundamental concepts: that the true
value of an action may be approximated using random simulation; and that these
values may be used efficiently to adjust the policy towards a best-fit strategy. The
algorithm progressively builds a game tree, guided by the results of previous ex-
plorations of that tree. As the tree is built the values of moves that are maintained
in its nodes become more accurate.

The basic algorithm involves an iteratively built tree search until some pre-
defined limit is reached. Each node of the tree represents a state of the domain
and directed links to child nodes represent actions leading to subsequent states (in
other implementations actions can be considered as nodes as well). The four main
steps that are applied per search iteration are:

1. Selection: A child selection policy (tree policy) is followed from the root, in
order to find a node with unexpanded children nodes.

2. Expansion: One (or more) child nodes are added to the tree according to the
available actions.

3. Simulation: From the new nodes a simulation is run according to a policy
(rollout policy) until the end of the game or a terminal state.

4. Backpropagation: The simulation outcome is “backed up” towards the root,
updating selected nodes’ statistics.

One of the most popular algorithms in the MCTS family is the Upper Confidence
Bound for Trees (UCT) algorithm. The goal of the MCTS is to approximate
the true game-theoretic value of the actions that may be taken from the current
states. To achieve this, a tree is built iteratively. The way that the tree is built
depends on the child selection method. The value of a child node is the expected
reward approximated by the Monte Carlo simulations. These rewards correspond
to random variables with unknown distributions. Thus, we can treat the choice of
a child node as a multi-armed bandit problem.

The exploration/exploitation dilemma can be addressed using the UCB1 al-
gorithm in an appropriate form for the tree search problem. Hence, every node
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selection is modeled as an independent multi-armed bandit problem. A child node
j is selected to maximize

UCT = Xj +2Cp

√√√√2lnn

nj
(4.19)

where n is the number of times the current (parent) node has been visited, nj the
number of times child j has been visited and Cp > 0 is a constant.

4.6.2.3 Cognitive Basis of MCTS

It is worth mentioning that the recent success of Google DeepMind’s AlphaGo
(Silver et al., 2016) in the ancient game of Go, is mainly based on the MCTS
algorithm with value function approximation performed by powerful convolutional
neural networks. Convolutional neural networks approximate the value function at
the nodes of the tree, given the state of the game which is imported as an image
to the network, in order for the tree search to use it for planning. These networks
implicitly modulate the depth of the tree search, as they can provide an evaluation
score of how good is a particular state in terms of the probability of winning the
game. Then, the MCTS algorithm will direct the search to the most promising
nodes of the tree.

To modulate the breadth of the tree search, Silver et al. (2016) used a pol-
icy network (another convolutional network) trained initially with human expert
data and later improved by policy gradient learning to maximize the outcome (i.e.,
winning games). It outputs a probability distribution over available actions from
a particular state of the game. In brief, it manages to capture the intuition be-
hind promising moves given a configuration of the board. This type of model is
a model-free RL model and is used to approximate a stimulus-response (board
configuration-action) function which is used by MCTS to plan accordingly. Per-
haps, the human/animal brain might perform similar combination of heuristics and
simulated responses which are driven by observed patterns.

The above models, though, do not constitute a straightforward approach in
fitting behavioral data. Guez et al. (2013a) successfully demonstrated the use
of MCTS in modeling human decision making problem realized in the form of a
foraging computer game. Specifically, participants had to control a computer agent
to collect tokens scattered in a 24×16 landscape grid. Tokens moved randomly at
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various locations at fixed time intervals. A computer-controlled agent woke up at
random8 and chased the player’s agent. The participant could escape only at his
safe place, located at the bottom left corner of the screen. If caught the agent lost
all of the tokens.

Guez et al. (2013a) used various MCTS versions (with rollouts, with value
function approximation, etc.). However, such models cannot be fitted with typical
Bayesian methods such as Maximum Likelihood to behavioral data as they are
characterized as likelihood-free models. Instead, we have to rely on approximate
Bayesian computation methods (ABC; for a review see Marin et al. (2012)). Such
methods are based on approximating the likelihood function P (D|M,θ) by simula-
tions (generating data D̂), the outcomes of which are compared with the observed
data D.

In these methods, features (summary statistics) should be designed in order to
capture the structure and characteristics of the player performance, and therefore
simulated data and observed data can ultimately be compared. For example, in
the above case, some of the features used were: Distance from predator, distance
from nearest wall, presence in safe quadrant, presence in predator quadrant and
tokens collected. In the ABC method, a form of sampling is used to sample a
model and parameters (M,θ ∼ P (M,θ)) from a prior distribution. Then, with
this model governed by its sampled parameters, data D̂ are simulated. Task-
related features are computed and the respective results are compared with the
features generated by the observed data. Samples are accepted/rejected according
to a tolerance criterion. Eventually, the posterior P (M,θ|D) is approximated and
further analysis on the appropriateness of the models can be carried out.

As for all statistical methods, there are positive and negative sides to using
ABC-based methods. However, in order for someone to test likelihood-free models
in behavioral data this is the way to go. It is obvious that careful consideration
should be taken at the experimental design stage. Apart from the suitability of a
particular task to test a cognitive function, this task should also be compatible with
the feature extraction process. Inappropriate features might lead to information
loss and eventually bias the discrimination between models.

The ToL task seems a suitable domain to test human planning with such a
MCTS model. The tree search approach used in this chapter assumes that a sub-
ject simulates all possible state-visitations but this is not always the case, especially

8The probability of waking up was conditioned by three threat levels: low, medium and high.
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in tasks where the number of states is large. Furthermore, the pruning process is
something that comes naturally from within the MCTS algorithm: the tree is iter-
atively and asymmetrically generated by the root with longer branches indicating
promising and rewarding plan trajectories. The algorithm will not account for
all the domain states, rather it will select the ones that lead to some kind of re-
ward. In addition, while the pruning models visit a state and then probabilistically
consider/reject the subsequent trajectories, the MCTS algorithm might never sim-
ulate a visit to some states, depending on its sophisticated mechanism. This kind
of approach is much more efficient in terms of computational cost and might be
suitable for explaining the way the human/animal brain approximately operates
under planning.

We implemented the MCTS algorithm, but it was used only for simulations
in the grid world domain and in the ToL. For using it to fit human data collected
from the ToL task, the following summary statistics could be considered: how many
times a ball was moved to an empty peg or at the top of another peg; successful
solution achieved; optimum solution achieved; ‘falling into the perceptual trap’
feature which concerns the times someone moves a ball (even if it is not optimum)
to the same position and peg as the goal state. It is left for future work to fit
different MCTS models to real human data and test its suitability as a model of
human decision making.

4.7 General Discussion

Our general goal in this chapter was to shed light on the characteristics of the
emergence of goal-directed behavior in development. Considering that, in puzzle
tasks, a reward is given only at the end when the task is solved, we investigated
what motivates the planning process during each intermediate step of the task. We
argued that states similar to the goal state are more likely to be chosen by young
children whereas older children are able to plan ahead better.

Linking back to the relevant literature and stressing the importance of a non-
look-ahead mechanism, we described a computational framework that accounts for
such online perceptual strategies. In particular, it seems that perceptual matching
mechanisms must integrate with a general planning process. Therefore, we distin-
guish a general goal-directed mechanism that drives an agent to a goal, but also a
perceptual mechanism that guides action selection by choosing actions that lead to
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a configuration that is closer to the goal state. When the perceptual similarity be-
tween states and the goal state drops to zero, the online process cannot contribute
to the solution of the task anymore and at this point planning takes over.

The similarity function that is utilized by younger children is not monotonic.
In some states its value drops to zero and this is where the planning process is
initiated. However, older children are not usually influenced as much by states
that are similar to the goal, and sometimes they might choose a solution path
which features states completely dissimilar with the goal state. These findings
suggest that perceptual strategies influence general problem-solving solutions for
younger age groups. Moreover, a pre-planning period, followed by plan execution,
was more evident in older children and in adults.

Some adults appeared to follow a mixed strategy in which they used classical
model-based RL mechanisms when they could not detect any perceptual similarity.
These patterns should be investigated more by examining the measured latencies
between move execution and overall time to complete a solution to a given problem.

A straightforward extension of these studies could be the investigation of plan-
ning strategies following the work of Huys et al. (2015). In this study, the same
models were used as in this chapter but with some modifications and extensions.
First of all, instead of each model accounting for a single action, it could account
for a chunk of actions. This enabled the models to capture frequently used action
sequences. Using this type of model that can account for sequences of actions could
yield insights into the strategies used.

Further questions occur regarding the emergence of goal-directed behavior, such
as how it is shaped from a young age and how it evolves throughout adulthood.
Other aspects that we could focus on are to identify the critical ages at which these
differences in planning are first observed. Secondly, goal directed behavior, at least
in the ToL task, seems to be affected by other elements (e.g., state similarity with
the goal state, and features of each state) apart from reaching the goal state. The
influence of such elements should be investigated to develop a better understanding
of the planning process at different ages. The state representation also plays an
important role for planning as features from each state are more or less important
in planning processes given the age.

Finally, seeking converging evidence from eye tracking methodologies in ad-
dition to the computational models and timing measures could reveal important
elements of the aforementioned differences (Hodgson et al., 2000; Kaller et al.,
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2009). For example, eye-tracking is an implicit behavioral measure that can reflect
implicit anticipations and can thus reveal underlying planning processes, which
may not be revealed in overt behavior. In addition, eye-saccades or fixations into
specific areas of interest might be related to specific strategies used by humans
while solving a planning task.

A computerized version of the ToL, which is much more constrained than the
physical, version with alternative problems and difficulties could be used to as-
sess the planning performance of different age-groups. Examining subjects within
a broader age spectrum would enable us to test the validity of model-based ap-
proaches, address possible modifications and potentially capture developmental
differences in the planning process.

The problems in our tasks were selected in order to be feasible but also to
challenge even the adults. For instance, some problems were selected in order to
give the subject the perception of an easy solution (e.g., fig. 4.4), as the starting
state appeared very similar to the goal state, but in reality was not. With such
problems we can potentially examine the planning horizon (i.e., search depth) at
different ages and to what extent state similarity drives planning. Here, further
extensions to the reward function can be implemented and investigated.

At an algorithmic level, dynamic programming approaches (e.g., value iter-
ation) are preferred to model goal-directed behavior as described in Chapter 1.
However, the tasks used extensively in the literature (e.g., two state task, referred
to Wunderlich et al. (2012)) have a very limited state space. Thus, a dynamic
programming algorithm can exhaustively search all possible planning trajectories
with low computational cost, given a fixed planning horizon. However, this is not
the case in more demanding planning tasks such as the ToL task. Monte Carlo
Tree Search (MCTS; Kocsis and Szepesvári (2006)) on the other hand, expands
the decision tree, formed by all possible planning trajectories given a planning
horizon (i.e., an assumed maximum depth of the decision tree), in an asymmetric
way. This means that some states might never be visited. In contrast, in prun-
ing model-based models a state is visited and then the decision tree expansion is
terminated in a probabilistic way. Such an approach is more suitable for modeling
tasks with a large state space, and MCTS is a promising candidate model for the
planning process. Further characteristics of the algorithm, such as the roll-out pol-
icy (i.e., taking random actions from a leaf node of the tree till the end of the game
or a terminal condition), could be explored and related to the cognitive functions
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underlying goal-directed behavior.
Although the performance, in the ToL task, of different aged population samples

has been previously examined (Albert and Steinberg, 2011; Anderson et al., 1996;
Baughman and Cooper, 2007; Gilhooly et al., 1999; Newman et al., 2003), no
links between ToL and model-based Reinforcement Learning approaches have been
introduced previously in the literature. We hope that with the above suggestions we
have contributed to the theoretical framework involving model-based approaches
to planning. In addition, our models could be improved by making use of both
behavioral and eye-tracking data. Using different complementary modalities could
provide a richer view of the mechanisms underlying the planning process.

4.8 Highlights

In this case study we investigated the mechanism that guides planning in tasks
in which the reward is sparse, usually given only at the end, and which are quite
challenging in terms of discovering the whole solution path from the beginning.
Our main hypothesis stated that cognitive search is affected by intrinsic motiva-
tion in order for humans to plan efficiently in such tasks. This was based on the
experimental observations that participants plan and make moves at each time
step regardless the absence of rewards or points at each time step. The intrinsic
motivation was represented as a reward function dependent on contextual features
of the task – and affected by the participant’s perception system (not examined
here). That characteristic was responsible for generating various behavioral pat-
terns found in the experimental results. The task that was chosen was the Tower
of London task (ToL).

In order to explain computationally that phenomenon we employed Model-
based RL models, as the approach is appropriate for planning tasks. More specif-
ically we fitted three models – Lookahead, Discount and Pruning – to data col-
lected in two different studies: children physically solving ToL problems and
adults playing a computerized version of ToL. The data collection from the video
tapes, the computerized version of ToL and all the computational work–model de-
sign and analysis–were performed by the author. The model fitting was performed
with Bayesian methods and the results can be summarized below:

• In tasks such as the ToL, in which the reward is received only when the task
is solved, models that take account of perceptual characteristics of the task
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(similarity among states) described better the observed patterns of the par-
ticipants playing the puzzle rather than models which consider only the final
reward. The intrinsic reward we introduced was represented as an additional
state-by-state reward function and was dependent on the similarity of the
goal state and the states encountered as options at each state of the puzzle.

• Younger children are affected more by the perceptual similarity between their
current state and the available future states in their decision tree as can bee
seen from the value of the w parameter.

• Older children are more likely to prune their decision tree as it was reflected
in the inferred parameter γG which represents the probability of terminating
the search tree. This indicates a more developed planning-decision system
compared to younger children.

• The reward sensitivity β for younger children was slightly higher than for
older ones indicating greedier behavior in seeking rewards compared to older
children, and exploiting internal rewards given by state similarity

In the computerized version of the ToL we argue that state similarity was not im-
portant for planning performance. This outcome was expected as the participants
of this experiment were adults and were strictly instructed to plan their moves
before acting.

Apart from the experimental analysis there was a significant amount of compu-
tational work that considered other methods such as Monte-Carlo Tree Search and
Hierarchical Reinforcement Learning as potential candidate models for modeling
planning. The work was focused on simulations rather than model fitting.

Lastly, we attempted to design a computational experiment to test planning
abilities and performance of young children. Although model fitting did not give
meaningful results for reasons discussed in the main text, we gained useful insights
into computational experimental design for that age.



Chapter 5

Learning of Causal Relationships
Between Continuous Human
Actions

ABSTRACT

In this chapter, we use computational methods to describe the mechanism with
which infants and adults employ in order to learn causal relationships between ac-
tions and effects. Our efforts are based on experimental evidence from eye-tracking
and behavioral data that infants and adults can learn the underlying relationship be-
tween actions and effects during a demonstration phase, and transfer that knowledge
when they attempt to generate the observed effects. To explain computationally the
observed patterns we mainly rely on model-free RL methods as these are suitable
for learning by trial-and-error. Furthermore, we introduce a theoretical framework
based on Bayesian adaptive planning that can effectively describe the whole pro-
cess of learning by demonstration and transfer the acquired knowledge to the actual
interaction with the demonstrated task.

5.1 Introduction

Humans receive on a daily basis a continuous stream of information in the form
of sequential multimodal sensory stimuli (images, sounds, etc.). Causal variables,
that provide structure in this flow of data, are embedded within this temporal
stream of events. For example, when observing a person making a cake, we receive
a series of images containing actions and sounds. This sensory information contains
a structure: the actor always first gathers ingredients, prepares them, mixes them
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and eventually places them in a cake tin. These actions can be grouped into a
hierarchy of macro-actions (i.e., ingredient mixing). Within a group, the order
of each action might not matter (i.e., mixing an ingredient with another one).
However, other actions (first pouring the batter into the cake tin before baking
the cake) must occur in a specific order for the outcome to be successful, and they
reveal a causal relationship between actions and their order. In our example, the
baking action results in the ready-to-be-served cake.

Social reasoning (and especially causal inference) depends on understanding
the relationship between actions, goals and outcomes. Causal inference refers to
the challenge of identifying the subsequences within a stream of actions or events
that correspond to the appropriate causal relationships between these events and
their outcomes. Causal inference can result in learning and imitation of particular
actions (Buchsbaum et al., 2015), which precedes goal identification and selection
for the actor, and finally results in the ability to use this learned sequence of
actions (via observation) to achieve his or her goal. Adults have acquired a lifetime
of experiences that facilitate accurate and rapid causal inference. However, for
naive infants, the statistical information contained within stimuli streams provides
a crucial source of potential knowledge and learning. The learning processes taking
place during observation of action sequences, and how young infants use them
during online processing, is still open to investigation and can lead to significant
contributions to developmental sciences.

There is a large body of evidence suggesting that humans can use statisti-
cal patterns in spoken languages to segment words from continuous speech from
early in development. Saffran et al. (1996) reported that 8-month-olds can seg-
ment a continuous stream of speech syllables into word-like units. In their classic
paradigm, they created two different artificial languages by combining 12 different
syllables to form four trisyllabic words, with no specific meaning, for each language.
A synthesizer generated a continuous stream without pauses of randomly ordered
words from one of the two artificial languages. Critically, after a 2-minute expo-
sure to this stream, infants were tested by exposing them to intact ‘words’ versus
‘part-words’, which included syllables spanning the boundaries of different words
and thus featured lower transitional probabilities between syllables than the intact
words. Their measure of learning was whether infants increased their gaze dura-
tion towards the stimulus when listening to part-words relative to words, which is
considered an indication of recognition of an unfamiliar or novel stimulus.
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Aslin et al. (1998) studied in detail the statistical computation used by in-
fants to solve this word-segmentation task in order to identify the specific learning
mechanism used. It was found the infants can discriminate the differences in tran-
sitional probabilities between words and part-words. The model used was based
on the definition of the conditional probability

P (B|A) = P (A,B)
P (A) (5.1)

where A and B are successive syllables. It is worth noting here the comment of Aslin
et al. (1998), regarding the importance of computation of conditional probabilities:

“The computation of conditional probabilities is an important abil-
ity because, in language as in many other patterned domains, rela-
tive frequency (even complex frequency, such as the frequency of co-
occurrence of pairs or triples of items) is not the best indicator of
structure. Instead, significant structure is typically most sharply re-
vealed by the statistical predictiveness among items (i.e., frequency of
co-occurrence normalized for frequency of the individual components;
see Rescorla (1966))” (Aslin et al., 1998, p. 323).

In a footnote following this comment the authors stated:

“Rescorla (1966) showed that classical conditioning in dogs involves
the computation of a conditional probability or correlation between a
tone and subsequent presentation of shock. One might ask, then, if hu-
man infants can show classical conditioning, is it not already known that
they can compute conditional probabilities? In fact, to our knowledge,
Rescorla’s paradigm has not been run with human infants. But, more
important, our own task involves quite a different order of magnitude of
processing than Rescorla’s. Our word segmentation task, if performed
in its entirety, involves the on-line (running) computation of 20 different
conditional probabilities, each over 45 to 90 occurrences of the compo-
nent syllables and 9 to 90 occurrences of syllable pairs, during a 3-min
learning period. Eight of these 20 conditional probabilities are included
in our test items. Our study, thus asks not merely whether infants can
compute a single conditional probability, but whether they can com-
pute a large number of such probabilities simultaneously” (Aslin et al.,
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1998, p. 323).

An important element of causal inference, is action segmentation: dividing a se-
quence of actions into shorter sequences, or individual actions, and determining
which ones of those can lead to effects in the world. Baldwin et al. (2008) demon-
strated that sensitivity to statistical regularities in continuous action sequences is
also evident in humans. In other words, if people can distinguish words from an ar-
tificial language as described above, they can also extract action steps from within
continuous sequences which have specific causal outcomes, and they can learn these
corresponding associations.

Buchsbaum et al. (2015) investigated thoroughly various scenarios of action
segmentation within continuous action sequences. In a series of experiments, they
presented actions in a continuous way, and their first experiment showed that the
continuous boundary judgment measures, used during event segmentation, align
with the sequence discrimination measures used in statistical segmentation research
(Baldwin et al., 2008; Meyer et al., 2011, 2010). In a second experiment, they found
that people experience the action subsequences that they extract from continuous
streams as meaningful and causal sequences. Lastly, their third experiment showed
that people were able to extract the correct causal variables from within long action
sequences. They also found causal sequences to be more coherent and meaningful
than other sequences with equivalent structure.

Kidd et al. (2012) used a paradigm adapted from Saffran et al. (1996), using
actions and objects in their stimuli sequences. They assumed that infants maintain
expectations over observed events according to the observed frequencies of these
events. According to this, infants should create a representation of their guess
(i.e., a probability θi, where i = 1, . . . ,N with N the number of events) of the true
distribution of events, which is based on the number of occurrence of each event,
and maintain a belief over these representations.

To test their hypothesis they used a a Dirichlet-Multinomial1 model which took
as inputs a sequence of observed events or transitions between events, to compute
expectations about which event is more likely to occur in the future. They argued
that their results showed that human infants employ such an inferential process for

1They were interested in estimating a multinomial distribution parametrized by θ, where θi

is the true (unobserved) probability of an event. This event has a multinomial likelihood, and
as it is common in Bayesian statistics, its conjugate Dirichlet distribution was used as the prior
distribution for the Bayesian inference.
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learning about events in the world. In a following study (Kidd et al., 2014), they
found similar results by using a sequential auditory stimuli paradigm.

In our work, we aim to investigate the role of learning causal effects in a se-
quence of actions. We attempt to answer the following questions: Are infants able
to detect and extract the statistical structure within a continuous dynamic stream
of motion? Does a salient effect after a specific order of actions provide a reinforc-
ing cue that enables naive infants to predict these actions more accurately? Using
computational models with eye-tracking and behavioral data from a novel experi-
mental task, we give useful insights of the learning mechanisms that take place and
attempt to give explanations of the above phenomena.

5.2 Materials and Methods

5.2.1 Experimental Task

The experimental task that this chapter models, was designed and developed by
Monroy et al. (2015a; 2015b), who also collected the data. We give a description
here for completeness (further details are reported in the cited manuscript). Adult
and infant participants observed a video of a sequence of action events using a
multi-object toy. This toy featured six objects that afforded distinct actions and a
central star-shaped light (see fig. 5.1A). The same toy used during the video was
then presented to participants during a post-video behavior play session.

Four sequences of 96 total actions were constructed, using the program “Mix”
(van Casteren and Davis, 2006). These sequences were constrained such that two
deterministic pairs occurred 12 times each (example: A-B and C-D), while all
other possible pairs occurred with equal frequency and thus featured transitional
probabilities of 0.167 (see fig. 5.1B). One deterministic pair caused the central star
on the toy stimulus to light up (the ‘Effect’ pair), while the second deterministic pair
resulted in no effect (the ‘Non-effect’ pair). The second actions of each deterministic
pair were labeled targets. The effect onset occurred at a natural mid-point of the
target action and the offset occurred after the action ended. For example, during
the target action open, the light turned on the moment the yellow door was fully
open and turned off again after it closed2.

2For simplicity, throughout the rest of this chapter we refer to the first action of a pair (Effect
or Non-effect) as Action 1, and to the second action of a pair as Action 2.
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We emphasize that the actions observed are not continuous, but rather dis-
crete, as the actor performs one action (i.e., bend) and then disappears from the
screen for one second before reappearing to perform the next action. However,
this brief pause between actions preserved the natural timing aspect of the ac-
tors’ movements, as it reflected the amount of time required for the actor’s hand
to return towards her body, change direction, and move towards the next object
that would be manipulated. This approach also provided a time window during
which no movement was occurring on-screen, to allow infants to make predictive
eye movements towards the object they expected would be the next target.

5.2.2 Experimental Procedure

Data was collected from one group of adult participants (N=50, mean age=20.7
years, range: 18-25, SD=2.29) and one group of infant participants (N=53, mean
age=19.25 months, range: 18.5-20.5 months, SD=2.38, 22 females). All partici-
pants were seated on a chair in front of a Tobii eye-tracker presentation screen.
Infant participants were seated on a parent or caretaker’s lap during both phases
of the experiment. Prior to the action observation phase, eye gaze was calibrated
using an age-specific calibration sequence3. Following successful calibration, par-
ticipants were shown one of the four possible stimulus sequences. These sequences
contain 96 actions performed on the toy-box by an actor (only the actor’s hand is
visible on the screen). In all sequences the action transition between the actions of
the Effect-pair or Non-Effect pair appear with probability one.

After the video presentation, participants then freely interacted with the toy
stimulus (one minute for adults and three minutes for infants or until they became
disengaged). Importantly, participants were given no explicit task: adults were
simply told they had one minute to play however they like with the object, while
infants were simply presented with the object on the table before them. The
experimenter monitored the participants’ behaviors and pressed the light button
(the participant could not see that action) if the participant performed the Effect
pair. This session was videotaped, and the first two minutes of the infant’s behavior
were later coded offline to assess action performance.

3Calibration procedures differ slightly for infant and adult populations. For complete details,
refer to the cited manuscripts.
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Figure 5.2: Predictive time window. Example frames illustrating the predictive
time window from the learning videos. Red arrows indicate the first frame in
which the hand appears. Source: Monroy et al. (2015a; 2015b). Used with kind
permission of Claire Monroy.

5.3 Data Analysis and Results

5.3.1 Eye Movements data

Raw data from the eye-tracker was preprocessed (see Monroy et al. (2015a; 2015b))
and imported into MATLAB for further analysis. Areas of interest (AOI) were de-
fined around each object as well as the light. Monroy and colleagues were interested
in participants’ abilities to predict the target actions (i.e., the second actions of de-
terministic pairs) before they occurred, which they considered a measure of learning
the action structure. These authors defined a fixation as predictive if it occurred in
the time window (fig. 5.2) during which the agent was performing the first action
of a pair. These actions provide the observer with the necessary information to
make an accurate prediction about what will occur next in the sequence before it
actually occurs.

Monroy et al. (2015a; 2015b) examined participants’ fixations to the correct
target location within each predictive time window. Fixations to the AOI of the
target action were counted as correct, while fixations to any other AOI were counted
as incorrect. The AOI corresponding to the object currently being manipulated or
moving was always excluded from calculations. For the Effect pair, correct fixations
also included fixations to the star. Fixations to the action effect were also excluded
from calculations for the Non-effect pair. For each pair type, we calculated the
proportion of correct fixations out of the total fixations to all objects (fig. 5.3).
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Figure 5.3: Proportions of fixations to correct (C; blue bars) or incorrect (I; red
bars) locations for the Effect pair (EP; left) and the Non-effect pair (NEP; right)
for each age group.

The incorrect proportion was defined as the average number of fixations to the
four remaining objects, out of the total number of fixations to all AOIs (Tummelt-
shammer and Kirkham, 2013). This location measure represents a preference for
looking toward the correct target action, relative to other actions, before it actually
occurred. For the Effect pair the proportions are:

Correct = number of looks to target+star
total number of looks to all AOIs (5.2)

Incorrect = number of looks to other 4 objects/4
total number of looks to all AOIs (5.3)

and for the Non effect pair:

Correct = number of looks to target
total number of looks to all AOIs (5.4)

Incorrect = number of looks to other 4 objects/4
total number of looks to all AOIs (5.5)

As it can be seen in fig. 5.3, the results from the data analyses showed indications
of learning in both infant and adult age group. Adults made significantly more
correct than incorrect fixations across pairs (see fig. 5.3, right histogram), which
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was confirmed by a 2 (Location: Correct vs Incorrect) x 2 (Pair: Effect vs. Non-
effect) repeated-measures ANOVA test. This test yielded a main effect of Location,
such that the proportion of fixations to the correct location was significantly higher
than to incorrect locations, F (1,41) = 12.18, p = .001, η2

p = .23. Further, there was
a Location x Pair interaction, such that the Effect pair elicited a greater difference
between correct and incorrect fixations than the Non-effect pair, F (1,41) = 69.05,
p < .001, η2

p = .63. The same repeated-measures analysis with the data from the
infants also showed main effects of Location and Pair, and a Location × Pair
interaction. Infants made a significantly higher proportion of correct than incorrect
fixations across pairs. Further, as with the adults, pairwise comparisons revealed
that the difference between correct and incorrect fixations was significant for the
Effect pair but not for the Non-effect pair (refer to the manuscripts for a detailed
analysis).

In sum, these analyses revealed that both infants and adults demonstrated in
their gaze behavior that they were able to detect the statistical regularities of
the pair structure, and make correct predictions towards upcoming actions when
they were provided with sufficient information (i.e., after observing deterministic
transitions between the actions comprising a pair).

5.4 Bayes-Adaptive Markov Decision Processes

5.4.1 Introduction

We stress that the above task was designed to address the problem of spontaneous
learning from action observation. There was no indication that a particular goal
should be pursued by the participant. In this section we describe our first approach
to model the whole learning process, given the predefined-pretested task and the
subjects’ data.

The toy-box task was designed to test the ability of human participants to
detect structure in other people’s behavior, and more specifically, whether humans
use this information to guide predictive behaviors and their own action choices. The
combination of the two phases (action observation and action selection) reflect two
distinct forms of behavioral evidence for whether participants did indeed discover
some kind of structure in the sequential actions of the actor. Further, the behavioral
evidence indicates that these two phases were related to each other, which suggests
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that participants may also transfer the knowledge acquired during the observation
phase into their own action selection.

We now turn to the first modeling approach that we implemented in an effort
to formalize computationally the mechanisms by which participants may achieve
this transfer of information. In order to explain our first approach, we illustrate
the process for solving a kind of a riddle: “From the sequences demonstrated to you,
which one turns on the light?”. For example, to turn on the light, a specific sequence
of moves should be executed (Effect pair). The correct sequence is demonstrated in
the video but it is not straightforward to extract it. We assumed that the subject
has an initially (incorrect) model in her mind of how the light is turned on. Then
according to what she infers from the actor’s action sequences, she will update
her model to an approximation close to the real underlying model which describes
the mechanism of turning on the light. Below we introduce a possible framework
relevant for this reasoning, using well-studied models in Bayesian RL (Guez et al.,
2014a, 2012).

The interaction of an agent with the real world, in situations in which he or
she makes a decision in order to maximize the expected future reward - which can
be described as a Markov Decision Process (MDP) - can be decomposed into two
closely-related ‘information-exchange’ processes: Simulation and Interaction with
the real world. During each process, the agent samples the corresponding expe-
rience: in the Simulation phase, simulation-based experience is sampled from an
internal model which approximates the real MDP; during the Interaction phase real
experience is sampled from the environment (the real MDP). These two processes
could be described algorithmically by the integrative architecture of Planning and
Learning, Dyna, discussed in Chapter 2.

As we described in Chapter 4, planning involves simulation of possible action
sequences in a form of a tree search (for example see Daw et al. (2011); Dolan and
Dayan (2013); Huys et al. (2012)), under transition and reward dynamics defined
by a model of the environment. The Bayes-adaptive Markov Decision Process
(BAMDP) framework allows us to consider all possible models. For a task such as
the toy-box, we assume that the participant has to infer the correct transitions that
switch on the light. In this case, it is possible that the participant has a current
belief about which actions change the state of the toy-box (i.e., switching on/off the
light). This can be an instance of an MDP. After the participant starts interacting
with the toy-box, then the belief about the dynamics of the task changes and, thus,
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in the Simulation phase, he or she, will use a different MDP reflecting the newly
acquired information about actions and effects.

In this section we use the BAMDP framework to model the planning process
that takes place in a task such as the toy-box. First, we describe the main math-
ematical framework and then we describe how this framework can be applied to:
a) use prior information from the video demonstration phase, and b) combine that
information with the different hypotheses a participant might have over the state
transitions of the toy-box.
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Figure 5.4: A simple BAMDP. The pa
ss′ denotes the probability of transitioning

from state s to state s′ by choosing action a. In this BAMPD we have two states
where a reward is received upon reaching each one of them (i.e., ra

s1 = −1 and
ra

s2 = +1). This BAMDP can be decomposed into several MDPs if knowledge of
the transition dynamics is available. For example, action 1 leads to the same state
that the agent is in and action 2 to the other state. Another MDP could account
for transitioning from state 1 to state 2 using action 1, and from state 2 back to 1,
using action 2.

5.4.2 Mathematical Formulation

To illustrate the above, we assume a simple two state MDP, with two actions as in
fig. 5.4. In this MDP the transitions are unknown. This means that the agent can
move from state 1 or 2 to each of the states 1 or 2 with whichever action a ∈ {1,2},
according to the probabilities pa

ss′ . We will use this type of approach to model a
subject’s uncertainty on the task dynamics, when encountering this task for the
first time.

As described above, we assume that a participant will go through a simulation
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phase in which he or she evaluates action trajectories according to a belief over
the task dynamics, and later updates this belief according to what experiences
they have encountered by interacting with the task. Eventually, the participant
will attempt to recover the true MDP underlying the task. Problems with such
a characterization can be described by Bayes-Adaptive MDPs (BAMDP) (Duff,
2002). The concept of MDPs are already given in detail in section 2.2.1 but we
repeat here for completeness.

Markov Decision Processes (MDPs): An MDP is a model for controlled ran-
dom processes in which an agent’s choice determines the probabilities of transitions
of a Markov chain and lead to rewards. Formally, an MDP is a tuple (S,A,P ,R,γ)
where S is a finite set of states, A a finite set of actions, P : S×A×S →R a state
transition probability matrix with elements pa

ss′ = P (s′|s,a), indicating transition
from state s to s′ by selecting action a, R : S ×A → R a reward function and
γ ∈ [0,1] a discount factor. When all the components of the tuple are known, stan-
dard dynamic programming algorithms can be used to obtain the optimal value
function.

Bayes-Adaptive Markov Decision Processes (BAMDPs): To explain what
a BAMDP (Duff, 2002) is, it is important to introduce a new concept, the hyper-
state: (s,h). A hyperstate consists of two components, the physical state s of the
Markov Chain and the information state h, which summarizes past history of the
transitions between the physical states. As we will see, a sufficient statistic to
describe a history of past visited states and actions can be given by the counts of
how many times a state was visited and how many times an action from that state
was executed.

In general, the transitional dynamics are unknown and we thus assume a prior
distribution P (P) over all possible models of the environmental dynamics. After
observing a history of visited states and actions ht = s1,a1, s2,a2, . . . ,at−1, st from
controlled interaction with the MDP, the posterior belief about the underlying dy-
namics of the MDP updates according to Bayes’ rule P (P|ht)∝ P (ht|P)P (P). In
this way, the agent iteratively attempts to approximate the real dynamics of the
MDP, and eventually builds a model of the environment (i.e., transition probabili-
ties and reward function).

We illustrate the above with a simple example described in Guez et al. (2013b).
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Let us assume two MDPs (fig. 5.5) represented as trees. Each one has a prior
probability of occurrence 0.5 (P0 =P1 = 0.5). The two MDPs are episodic starting
from state s0 and finishing at the leaves of each tree. We consider a case in which
an agent has uncertainty over state transitions (i.e., which MDP it is facing) which
leads to difficulty in planning. Under the prior distribution over the MDPs, any
action from state s1 to state s2 has expected reward 0. Thus, in state s1 the
agent cannot identify which one of the two MDPs it is facing in order to take an
informative decision. However, the outcome of a transition from state s0 and action
a0 is critical for the agent to identify the MDP that is in. With this information
the agent will have knowledge of the environment it faces with all the transition
probabilities and thus can make an informative decision in state s1.
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Figure 5.5: A BAMDP decomposed into two MDPs. A BAMDP can be represented
as multiple candidate MDPs. In case that an agent is facing a task in which it
cannot distinguish which MDP it is facing, in order to take an informative decision
at each time step, it needs to maintain and update a belief over possible MDPs
(Bayes-adaptivity).

A question that an agent needs to answer at every time step is which tree is
the correct one. To tackle this, the agent maintains a belief over the possible trees
and updates this belief according to its observations. For all these to take place,
the agent maintains a belief over the possible MDPs. According to Bayes rule the
probability of being in MDP1 given transition history ht = s0a0s1 is P (P =P0|ht)∝
P (ht|P0)P (P0) = 0.8–after normalization. Therefore, the agent knows that if the
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resulting state is 80% the state s1 then the current MDP is the MDP1 (P1). The
same applies if the resulting state is 80% the state s2 and then the current MDP is
MDP2 (P2). This result demonstrates how critical is the Bayes-adaptivity of the
agent in order for it to make informative decisions.

Now, we can proceed to the formal definition of a BAMDP. From the above
example, a state can be augmented with the past history to form a new type of state
the hyperstate. The new state space now consists of a set of all possible histories
denoted by S+, where the symbol “+” is used to indicate the augmentation of the
physical state space with the history space. The probability of observing hyperstate
(s′,h′) after executing action a at hyperstate (s,h) can be given by the predictive
posterior distribution

P+((s,h),a,(s′,h′)) =
∫

P
P(s,a,s′)P (P|h)dP (5.6)

and R+((s,h),a) =R(s,a). The tuple (S+,A,P+,R+,γ) forms a Bayes-Adaptive
MDP. To solve a BAMDP we will use state-of-the-art algorithms which are based on
tree search methods (Monte Carlo Tree Search–MCTS) combined with algorithms
that solve bandit problems (UCB1, Auer et al. (2002)), resulting to the UCT
algorithm (Kocsis and Szepesvári, 2006). The MCTS tree search algorithm is very
efficient in a BAMDP case as the state space of all possible histories can be very
large. After practical modifications the combination of all these methods results in
the Bayes-Adaptive Monte Carlo Planning algorithm (BAMCP) (for an in-depth
treatment refer to Guez et al. (2012, 2013b)).

In our approach, when the participant interacts with the real world, he or she
is trying to solve a real MDP, using an approximate model of the dynamics of
that MDP (all transitions can be assumed possible). The experience gained in the
real world is used to update the approximate model which gradually will resemble
more accurately the real world MDP. This updating process can be summed into
the following steps: the participant samples an MDP according to the posterior
P (P|ht), solves it by using planning and thus selecting an action which is considered
most rewarding, applies that action to the real environment, and finally updates
the posterior belief over the dynamics of the task according to the new observations
received (the feedback from the environment).

As we will argue, the choice of the prior distribution describing the transitional
dynamics, which can be extended to uncertainty about rewards, is crucial for the



5.4 Bayes-Adaptive Markov Decision Processes 117

performance of the agent. We assume that infants have a less precise prior than
adults, which should result in less optimal behavior in goal-directed tasks. On the
other hand, having an imprecise prior might also provide flexibility in learning and
adapting in different tasks, whereas the structured prior of an adult might bias his
simulation phases and result in a less optimal solution and eventual model.

In the corresponding literature (Dearden et al., 1999; Strens, 2000) the simplest
prior that can be used is a Dirichlet prior over the transitional dynamics. This prior
has very good analytic properties in conjunction with a Multinomial likelihood. The
Multinomial likelihood can successfully describe the probability of the occurrence
of one-of-K discrete outcomes. According to this we assume that

pa
ss′ ∼Dir(α) (5.7)

s′ ∼Mult(pa
ss′) (5.8)

This form of the prior results in an analytically computed Dirichlet posterior distri-
bution. To compute the predictive posterior as in eq. 5.6, we calculate the expected
value of the transitional probabilities, over all possible models P , weighted by their
posterior distribution. To update the posterior distribution, according to Bayes’
rule, we need only to add to the α parameter of the Dirichlet distribution the counts
of observing a particular event (in our case states occurred in history). The counts
of visits are sufficient statistics for a random variable multinomially distributed.
In our case states are generated by a multinomial distribution, thus the history of
states visited can be described by the visit counts.

Summing up, we described two processes: In the planning phase our virtual
agent tries to act optimally in a completely or partially unknown environment
(BAMDP). It simulates possible future action sequences and estimates their value.
According to this, in a subsequent real-world interaction phase, the agent selects
an action in order to achieve an optimal future outcome. Then, according to the
following observation and reward the agent receives, it updates its approximate
model of the environmental dynamics. This procedure repeats until a policy for
the real underlying MDP has been learned. In our formalization of these processes,
we adopt the BAUCT algorithm developed by Guez (2015).
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5.4.3 Experimental benchmark task: The Toybox

The toybox of Monroy et al. (2015a; 2015b) offers a good testing environment
in order to investigate the plausibility and performance of the above framework.
As described above (see section 5.2.1), the experimental procedure consisted of a
demonstration video, during which participants observed an action sequence com-
prised of underlying transitional probabilities between all possible actions, which
were initially unknown to the participants but which could be learned after re-
peated observations. After this initial phase, subjects were introduced to the real
toy stimulus and could then freely select their own actions. This action sequence
further included a causal event- the distal action-effect- which could also be learned
by the participants and then achieved by themselves.

A straightforward initial approach for modeling the participants’ learning pro-
cesses, which will be used as prior information for the task dynamics is: the observer
is introduced to an environment via the demonstration video, during which we as-
sume that the participants attempt to learn a model of how the toy-box ‘works’.
Additionally, we assumed that humans tend to perceive other human actions as
goal-directed, and are biased to perceive effects as having a cause. Here, we define
a state as fixating on an area of interest (AOI) on the presentation screen, as this
represents the physical location of where observers perceive each action when it
occurs. A model-free approach for learning the transition matrix (i.e., the set of
transitional probabilities between all possible AOIs) could be followed: For a tran-
sition from state s (fixating on a specific AOI) to s′ (fixating on the subsequent
AOI) we update T (s,s′) = T (s,s′) + η (1−T (s,s′)). For all other states s′′ other
than s′, the probabilities are reduced according to T (s,s′′) = T (s,s′′)(1− η), to
ensure that the whole distribution remains normalized.

First, this approximate model of the toy-box transitional dynamics can be used
to test the hypothesis that an initial demonstration phase does indeed inform goal-
directed behavior during the second phase, in which the participant interacts with
the toy-box. Second, a hypothesis can also be made that the action effect (the light
turning on) provides a reinforcer that increases the observer’s ability to learn the
correct causal sequence preceding the light’s occurrence. We adopted a model-free
way for modeling the learning of transitional probabilities from AOI to AOI.

In the second phase, a model (BAMCP) that will combine the learned domain
structure from the demonstration phase, could be tested. The model-based/planning
section of the algorithm will use the approximate model that was possibly learnt
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from the demonstration procedure (based on eye-tracking data). This model can
be learned in a model free way like in Gläscher et al. (2010). Some transition ma-
trices from experimental data are given in fig. 5.6, 5.7, 5.8. These figures represent
the probability of an eye-fixation transition from an AOI to another AOI. More
specifically, we calculated the frequency of which a participant shifts his/her eye
fixation from one AOI to another AOI.

Actor P(s'|s) for Seq. 1

s
1 2 3 4 5 6

s'
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0.8

0.9
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Figure 5.6: Transition matrix from the actor’s movements. In this case, the prob-
abilities of transitions are the observed empirical frequencies of the transitions of
actor’s movements from a state s′ to a state s. For the particular sequence of moves
examined (Seq. 1), the AOIs that correspond to the Effect pair are 2 and 1, for
Action 1 and Action 2 respectively. The AOIs that correspond to the Non-effect
pair are 6 and 4, for Action 1 and Action 2 respectively. The AOI 7 corresponds to
the light. White color indicates high probability of transitioning at this AOI. The
transition probabilities of the Effect and Non-effect pairs appear with probability
one. These transitions are the transitions that we assume the participants might
try to learn at the demonstration phase.

5.4.4 Bayes-Adaptive Planning in Toybox

The model, described in the previous section, that learns the transition proba-
bilities of a participant’s eye-fixations, assumes that the underlying toy-box real
transitional dynamics can be approximated in a model-free way. During the real in-
teraction with the stimulus, the participant’s model of transitional dynamics is not
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Figure 5.7: Adult matrices of transitions of their eye-fixations. Transition matrices
learned using a model-free algorithm of 8 adult participants. The AOIs that cor-
respond to the Effect pair are 2 and 1, for Action 1 and Action 2 respectively. The
AOIs that correspond to the Non-effect pair are 6 and 4 for Action 1 and Action
2 respectively. The AOI 7 corresponds to the light. White color indicates high
probability of transitioning to this AOI.

updated, according to the sampled experience acquired during the participant’s in-
teraction with the toy-box but rather all possible transitions are considered equally
valid and optimal.

According to the BAMDP modeling framework discussed in the previous sec-
tion, an alternative approach would be to consider the whole experimental pro-
cedure as a unified process in which during the observation phase the participant
constructs a prior over the possible transitional dynamics of the MDP (which are
initially hidden), and during the execution phase this prior is used to approximate
the underlying MDP. One way to construct the real underlying MDP is to consider
three states: ‘light off’, the latent state (i.e., one step before switching on the light),
and ‘light on’4 (fig. 5.9).

We used the eye tracking data from the actual experiment to create a prior P (P)
4Alternatively we can consider the states of the toybox in relation to the light state. For

example, the toybox could have two states: state 1, where nothing happens and state 2 which is
the state of the toybox after performing the first action of the effect pair. Performing the second
action of the effect pair the light is turned on and the toybox resets to its first state.
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Figure 5.8: Infants matrices of transitions of their eye-fixations. Transition matrices
learned using a model-free algorithm of 8 infant subjects. The AOIs that correspond
to the Effect pair are 2 and 1, for Action 1 and Action 2 respectively. The AOIs
that correspond to the Non-effect pair are 6 and 4 for Action 1 and Action 2
respectively. The AOI 7 corresponds to the light. White color indicates high
probability of transitioning at this AOI.

a
1
,a

3
,0

a
1
,a

3
,0

a
3 ,10

a 1
,a 2
,0

a 2
,0

a
2
,0

a
2
,0

1

2

3

Figure 5.9: The real MDP underlying the toy-box. Assuming that a2 is the action
that transits the system to the latent state (i.e., one step before switching on the
light), a3 the action that leads from latent state to a ‘light on’ state and a1 the
rest of the actions. Switching on the light rewards the agent with r = 10 and all
other actions return r = 0. From the ‘light on’ state the toy-box can get back to
the state 2 by using action a2 or to state 1 by using all other actions a1.

over transitional dynamics for each individual participant. First, we implemented
the model-free approach (discussed in the previous section) to update the transition
matrix, and we used the resulting matrix as a prior over the possible transitions
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during the action execution phase along with the BAUCT algorithm to model each
participant’s behavior. The reason we used the eye-tracking data is based on the
patterns we found in these data, that reveal that participants can infer the actions
that cause the light to switch on. This can be interpreted as a sign of participants’
understanding (fully or approximately) of the underlying dynamics.

Our intention is to fit the model described by the BAUCT algorithm to the
behavioral data, using the prior knowledge demonstrated in the eye-tracking data,
acquired at the demonstration phase. With such models, it is very difficult to
compute likelihoods of the form P (D|M), where D is the data andM is the model,
thus we have to rely on likelihood-free methods. In brief, we iteratively simulate
data D from a prior distribution P (M, θ) over possible models M and model
parameters θ, and we compute features φ(D) (i.e., summary statistics). We then
compare the model’s summary statistics with the observed summary statistics from
participants’ action sequences and we reject or accept this sample if the difference
is smaller than a criterion acceptance rate. The whole process is described in detail
in Chapter 3.

In this experiment, features are not easy to extract, given that the behavioral
data were too few, and that participants have no prior instructions on what to do
with the toy-box (we assumed that they tried to switch on the light by learning the
proper transitions, although this might not be entirely true). We ran simulations
with the BAUCT algorithm and observed the action sequences generated by the
algorithm. We noticed that the BAUCT after many iterations learns how to switch
on the light. It remains to be examined how this model fits to the human data
with the Approximate Bayesian Computation, as described in Chapter 3.

5.5 Associative Approaches

Associative learning models (Courville et al., 2006; Le Pelley, 2004; Mackintosh,
1975; Rescorla et al., 1972) specify rules for the development of predictions given
the stimuli presented. These models will be discussed in detail in section 5.6.3.1.
Each stimulus is assumed to have an associative strength, which characterizes how
strongly it predicts reinforcement. In our case, according to the results of Monroy
et al. (2015a; 2015b), participants were able to correctly predict the light effect
(reinforcer). Thus, we assumed that each stimulus should have a weight charac-
terizing the prediction of the light effect. These associations should reveal higher
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values when the actor is performing an action from the effect pair which preceded
the actual occurrence of the effect. The weights are updated recursively and pro-
portionally to the reward received.

It has been shown that humans respond to surprising events (i.e., when there
is uncertainty about them) with faster learning (Courville et al., 2006; Dayan and
Jyu, 2003). To capture this behavior within our computational model, an attribute
known as ‘associability’ was added to the recursive updating of the associative
strengths. This attribute tunes how quickly a particular associative strength is
updated. For example, the Pearce-Hall model (Pearce and Hall, 1980) updates the
associative strength Vi for each stimulus i present at time t according to:

∆Vi(t)∝ αi(t)λ(t) (5.9)

where λ(t) is the magnitude of the reward delivered and αi(t) is the associability
of the stimulus. The associability is further modulated by surprise as:

αi(t) = |λ(t−1)−Vi(t−1)| (5.10)

which is the absolute value of the difference between the actual reward λ and the
reward predicted Vi by the model from the preceding trial.

In our case, by carefully observing fig. 5.10, we notice that for each actor’s
action there are several fixations made by the participant to various AOIs. Thus,
we assume that the greater the number of fixations to a particular AOI, the greater
also should be the value of the total duration of these fixations. We expect these
durations to have a higher value just before an event actually happens (i.e., the
light), if the participant is predicting an outcome from that AOI (and thus is
fixating his gaze towards the predicted location). Intuitively, we attempted to use
a similar model as in Pearce and Hall (1980) to explore possible patterns of people’s
gaze fixations. These patterns might reveal the signature of the learning process
that takes place.

5.5.1 Rationale I

In this section we present a second attempt to model the learning process that takes
place during the toy-box task. We assume that learning takes place during the
demonstration phase, and is then available to exploit during the action execution
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phase. Thus, we reasoned that the eye-tracking data can be used as input into a
learning model. This reflects the idea that there should exist a process by which
the participant associates the actor’s actions with the effect in a causal way.

Our initial approach was to use the eye scan paths (i.e., each consecutive AOI
visited) as a temporal set of participants’ choices and fit a model-free model, in-
spired by Hayes et al. (2011). We tested how a model-free model fits the data, and
attempted to infer the learning rate parameter α. However, the inferred parameter
resulted in odd values (very close to zero). As we discussed in Chapter 3, model
fitting might lead to odd values of the inferred parameters for various reasons. In
the approach we followed in this section, there are a lot of factors that might have
led to these results.

One issue with the approach followed here is that it was not possible to directly
associate one of the actor’s action with the gaze behavior of the participant. This
is because the gaze scan paths are at a different temporal scale than that of the
actor’s actions, so it is possible to make many distinct gaze fixations during the time
window that corresponds to one of the observed actions. Furthermore, there may be
repeated transitions that do not reflect learning processes but are rather a feature
of gaze behavior, which is inherently noisy. For example, a person might make
several fixations in different AOIs but their duration is small, or they might make
several fixations that fall within an AOI as they move their eyes from one location
to another, which does not necessarily correspond to their underlying expectations
or beliefs. In our analysis, we did not weight fixations according to their durations,
but instead we created scanpaths as we were interested in eye transitions among
AOIs. This might bias the RL model’s value function towards fixations that are not
informative of the participant’s real preferences (e.g., involuntary eye movements,
information gathering, distractions, etc.).

5.5.2 Method I

To associate the participant’s gaze fixations with the actor’s actions, we trans-
formed all of the gaze fixations that occurred within each time interval (one time in-
terval corresponded to one observed action) into a probability distribution (fig. 5.11).
This distribution can be seen as a reflection of the participant’s beliefs about the
underlying transition matrix during the observed trial (i.e., action). Furthermore,
although we expected the fixations to be biased towards the actor’s action at the
current time interval, we assumed that any fixation to another AOI would reflect
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Figure 5.10: Actor’s actions and subject’s fixations. Actor’s actions are coded
with real integers ranging 1-6 as well as a subject’s eye fixations ranging from 1-7.
Actor’s actions are presented in the first column of the table whereas AOI’s are
represented by the following 7 columns. Within the actor’s action time interval,
the subject makes a number of fixations at different AOIs. When the first action
of the Effect pair is executed by the actor (coded as 2 and highlighted with yellow
color), the subject expects the star-shaped light to turn on. Thus, more fixations
are observed in the ‘star’ AOI. During the second action of the Effect pair (coded as
1 and highlighted with dark yellow) subjects made even more fixations to the light’s
AOI. It seems that the first action of the Effect pair is perceived as a predictor of
a predictor (in our case, the action preceding the light effect is a predictor of the
light effect).

a prediction about what action was most likely to occur next. This was evident
according to the results of Monroy et al. (2015a; 2015b).

As a first attempt to capture the pattern of fixations, we assumed that the
number of fixations at a specific AOI is following a Multinomial distribution. Using
the conjugate distribution of the Multinomial distribution, as a prior we applied
Bayesian online updating, according to the subject’s current fixations, of this simple
Dirichlet-Multinomial model. More specifically we assumed that a fixation at a
particular AOI is represented as a 1-of-7 random vector following a Multinomial
distribution, x∼Mult(p), where p are the parameters of the distribution. A prior
distribution over the parameters is assigned to a Dirichlet distribution p∼Dir(α)
where all α were set to 1/7. The posterior distribution of the probability of fixating
at a particular AOI, is also Dirichlet, p|x∼Dir(α), because of the conjugacy of the
two distributions. Starting with a prior distribution, the online update consists of
updating the pseudocounts α of the Dirichlet, by the number of fixations counted
during each time interval (a time interval corresponds to one action). Thus, if we
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Figure 5.11: The distribution of eye fixations of one participant within 3 time
intervals (equivalent to 3 actor’s actions). The radial gradient inside the bars,
indicates the percentage of time spent at the corresponding AOI, during actor’s
action time interval. For example, small radius of the gradient represents that the
subject spent, in total for that time interval, less time fixating that AOI. At this
time interval, the actor is executing an action on the toy-box which results in a
‘light-off’ or ‘light-on state’, denoted by the light bulb color. The participant has
already been exposed to 25/96 actor’s actions and the shift in attention towards
the AOI of light is apparent. Furthermore, the participant being familiar with the
actor’s action transitions, he or she can predict when the light is about to turn on,
thus there is an amount of fixations also at the AOI of the light, which increases
when the actor is performing the second action of the effect pair.
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Figure 5.12: Predictive Distribution of eye-fixations for a participant at the same
time intervals as in fig. 5.11 (action coding scheme remains the same (i.e., effect pair:
2,1)). The online Bayesian model predicts the probability of fixating at a specific
AOI according to the observed number of occurrences of particular transitions
among actor’s actions.

start with Dir(α) and at the next time interval we observed n1, . . . ,n7 counts for
each one of the 7 AOIs, the posterior will be Dir(α + n1, . . . ,α + n7). Given some
new observations n, and having observed data X, the probability of fixating at the
AOIj is given by the posterior predictive P (x = j|X) = αj+nj∑

j′(αj′+nj′) .

5.5.3 Results I

The results of this modeling procedure revealed that the online Bayesian learner
managed to predict the probabilities of fixating at any AOI during the next time
step (fig 5.12). It seems that participant’s predictions are more accurate when
the actor’s action is one from the Effect pair. This might indicate that the AOI
preference has to do with how much the participant values the particular AOI
according to a cause/effect. This value might be a measure of interest or expecting
surprise for that AOI. It remains to link this value of each AOI to the time spent
on fixating at this AOI at a time interval. Bringing these two descriptions under a
common framework might also shape a theoretical framework for attention during
decision making processes.
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5.5.4 Rationale II

Longer time spent looking at an AOI, usually indicates that the observer expects
something interesting should happen in that location. Under this assumption, we
implemented an adaptation of a RL model to track fixation duration at each of
the seven AOIs (6 “buttons” plus the light area of interest). Instead of estimating
expected reward, the model estimates the expected duration of fixation at a specific
AOI. The choice of “where to look” is made by using the value function of the
duration within a particular AOI, inserted in the Boltzmann function (eq. 2.16),
which was used in previous chapters. In general, the probability distribution over
fixations given by the model closely matches the proportions of fixating at a specific
AOI at each time interval from participants’ data as can be seen in fig. 5.14.

5.5.5 Method II

To associate AOIs with the actor’s actions, in order to strengthen their relationships
according to subjects perspective, we used the simple Rescorla-Wagner (RW) rule

Qt(a,AOI) = Qt−1(a,AOI)+α(dur(t)−Qt−1(a,AOI)) (5.11)

where a is the actor’s action at time interval t, α is the learning rate and the reward
prediction error is the difference between actual fixation duration dur(t) at time-
step t and the prediction of the model from the previous time-step Qt−1(a,AOI).
For selecting the location of fixations, the model computes a probability distribu-
tion, using the Boltzmann function (eq. 5.15), by taking into account the expected
duration of fixation Q during an actor’s action. It is worth noting that by com-
paring the proportion of fixations at each AOI per time interval the Q-learning
model with the Boltzmann distribution for AOI selection method shows reason-
able results (fig. 5.13). However, a Bayesian learner that learns only transitions (a
Dirichlet-Multinomial model) learns the probabilities of fixating at a specific AOI
better.

5.5.6 Results II

Fitting the model (eq. 5.11) to the actual data, we can infer the parameters of
the model (learning rate α, exploration-exploitation trade-off β). By maximum
likelihood, the infants mean learning rate was αinf = 0.27 and for adults αadul = 0.34
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Figure 5.13: Model Predictions for the AOI 2. The AOI 2 corresponds to the
second action of the Effect pair. The y-axis is the Q function which represents the
expected duration of an eye-fixation at the AOI 2. The x-axis represents the time
frame in which the actor acts. It is split in 96 intervals in which each one of them
the actor performs an action. We notice a high expected duration value just before
the light turns on consistent with experimental data.

(significant difference p = 0.005 under a t-test). Thus, the model confirms that both
children and adults learn during the demonstration, but adults learn more quickly.
With these inferred parameters we can simulate the whole participant’s behavior
(i.e., using the model and the inferred parameters to simulate actions). In fig 5.13
is presented an example of the model’s behavior compared to the subject’s actual
duration of fixation patterns within a specific AOI (this AOI is the second action
of the effect pair). In addition, we also present the probability of fixating at the
first AOI of the effect pair as it evolves in time (fig. 5.14).

5.5.7 Discussion

The value function can be interpreted as a measure of expectation or in general
the value of this particular AOI according to the subject. According to our model,
the value function tracks the expected duration of fixation, while the Boltzmann
distribution uses the value function to estimate the probability of fixating at a
specific area. With the framework we described, the subject’s data are used to
extract the patterns given by the fig. 5.11. Extensions and further research could
include a varying step-by-step learning rate such as in a Kalman filter, which could
reveal differences in trial-by-trial learning rates of adults and infants. Another
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Figure 5.14: The probability of fixating at a specific AOI given the time intervals
where the actor acts. The probability increases as the subject learns to expect the
light. Similar patterns for other AOIs weren’t observed.

potential direction would be to implement a polynomial or exponential function
for the learning rate, and potentially examine the form of this function and the
differences among age groups.

5.6 Model Free Learning Rules and Conditioning

5.6.1 Introduction

Learning from observations is an important source of information for humans, and
in particular for young infants and children who have fewer experiences that they
can rely upon when selecting their own actions than adults do. In the previous
section, we described model-free reinforcement learning techniques that were em-
ployed to investigate the learning of an observed action sequence in both infant
and adult populations. Eye-tracking data suggested that participants were able to
detect deterministic action pairs embedded within a sequence of six possible ac-
tions, and demonstrated the ability to make correct gaze fixations to the location
of subsequent actions in the sequence before they occurred.

Crucially, the data from Monroy et al. (2015a; 2015b) indicated a possible
link between both infant and adults’ predictive gaze behavior and their action ex-
ecution following the learning observation phase. We formulated a model in an
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attempt to capture the underlying learning mechanisms that gave rise to this pre-
dictive behavior. The following analysis attempts to give a normative explanation
of how subjects learn from observing another agent’s actions, and then transfer
this knowledge to the action execution phase.

During the video, participants were exposed to the actor’s action, following
which (or during which) they make a decision on where to look. Without being
given any prior instruction, participants tended to be better at predicting the
location of the next action when it preceded a salient effect (i.e., the light), or at
predicting the location of the light itself. We can consider each observed action
as a stimulus, from the subject’s perspective, which is somehow related to the
other actions and eventually the light effect. Thus, participants should associate
all possible actions with each other and with the light effect to a certain extent.
This association will become strengthened or weakened depending on where the
participant looks and whether or not an event occurs at that location.

For each observed trial (a trial refers to one action in the observed sequence) we
determined the particular AOI towards which a participant made the maximum
duration of fixation time. For this measure, we summed the total durations of
all individual gaze fixations for each AOI. This assumption is based on evidence
from prior research on the relationship between attention and eye gaze fixations
(Aslin, 2007). Aslin and colleagues showed that, in a visual attention paradigm,
increased total looking duration reflects increased attention towards the associated
AOI. It is generally accepted that looking times might reflect a combination of a)
stimulus-driven attention, (b) memory of past stimuli, and (c) comparison between
the current and the past stimuli (Kidd et al., 2012).

5.6.2 General Method

To account for the associations between an observed action and the AOI towards
which the participant looked the longest, we implemented a system of rewards as
follows: if a participant predicted correctly the next action, we assigned a reward
r = 1, otherwise the reward given was r = 0. Here, we emphasize that we did not
distribute a reward only when the participant predicted the light effect. Instead, we
allowed the model to receive rewards for any instance in which the participant made
a correct prediction. This allowed us to take into account the entire structure of
the experiment, in which Non-effect and Effect pairs of actions were demonstrated
with the same frequency and thus provided equal opportunities for learning and
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prediction.
As described above, our data were transformed into a time-series of choices

(i.e., gaze fixations) for each AOI to which the participant attended to or made a
predictive fixation, and we assigned rewards according to when these these fixa-
tions were correct or incorrect. These choice-reward pairs can then serve as inputs
to a RL model, that will attempt to describe the computations that the learner
makes during the observation phase. However, we studied the learning phase in the
observation phase isolated from the behavioral phase. Next, we aimed to correlate
the gaze behaviors during the observation phase with the action execution data
from the second phase of the experiment.

5.6.3 Three Models

This subsection presents three nested models of the acquisition of looking pref-
erences. The first uses Rescorla-Wagner learning rule with a simple Boltzmann
function for selecting an AOI to look. The second extends this by adding Tem-
poral Difference learning. The final model retains the Temporal Difference rule
of the second model but elaborates the action selection function by including an
attentional component.

5.6.3.1 Rescorla-Wagner Rule

We describe here the main modeling framework which all associative models that
we explored are dependent upon. For this, we employed the well-studied Rescorla-
Wagner learning rule (Rescorla et al., 1972). The model learns to assign an action
value V (c) to each choice c according to previously experienced rewards. These
functions are learned by a delta rule: if choice c was chosen and reward r ∈ {0,1}
received, then V (c) is updated according to:

Vt(c) = Vt−1(c)+α·δt(c) (5.12)

δt(c) = rt−Vt−1(c) (5.13)

where the α parameter controls the learning rate. Note, the learning rate is consid-
ered fixed throughout the entire observation phase. This learning rate controls the
extent to which the prediction error δ(c) affects the estimation V (c). Specifically,
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when a participant perceives an action, he produces gaze fixations to several pos-
sible AOIs with varying durations. We assume that the participant is influenced
by observing certain subsequences that result in a distal effect. From the series of
various fixations, we assumed that the one with the highest duration is the one with
a particular interest for the participant. For this choice of AOI, the corresponding
value function is updated according to eq. 5.12 and eq 5.13.

According to the RL framework, a participant makes a prediction and fixates
to an AOI, then updates the corresponding value function according to the pre-
vious value function estimation and the amount of reward prediction error after
observing the next action, modulated by the learning rate. We expect that an
ideal learner takes into account more the prediction error rather than relying on
his own estimations, and thus adjusts his predictions better during the whole task.
This indicates a higher learning rate (fast learner) whereas a participant that relies
on his own estimations and regards less the prediction error, which represents the
error between reality and estimation, ultimately will reveal a lower learning rate
(slow learner).

As we mentioned above, participants were not told about the causal relationship
(i.e., the Effect pair of actions that caused the light to turn on) and had to infer it
based on their observations. This could also be considered as a form of second-order
conditioning, which cannot be captured by a simple RL model as that described
above. Second-order conditioning is defined as when a stimulus CS1 is followed by
an unconditioned stimulus US and then another stimulus CS2 is paired with the
first one, predicting the upcoming of the US. In our case, the second action of the
effect pair (CS1) could be first associated with the light effect (US) and then the
first action of the effect pair (CS2) is associated with the second action of the pair.

It is worth repeating that Action 1 is always followed by Action 2 during the
whole course of the observed sequence. Of course, a participant might be condi-
tioned into more actions prior to the appearance of the effect pair which accounts
for higher order conditioning. For example, during the interaction phase some par-
ticipants performed another action before performing the effect pair thinking that
that particular action also belonged to the set of actions that turned on the light.

5.6.3.2 Temporal Difference Rule

Here, we consider the possibility that a model that can account for second-order
conditioning could better explain the observed experimental data. For this, we
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used the Temporal Difference (TD) learning rule which uses eq. 5.12 to update the
value functions but introduces a different form of reward prediction error:

δt(c) = rt +Vt−1(c′)−Vt−1(c) (5.14)

where c′ refers to the learner’s future choice that would select one time step ahead
according to his current policy. It is worth mentioning again that the value function
is the expected reward from that particular choice. Eq. 5.14 differs from eq. 5.12
only by the term V (c′). This reflects the desire to learn not only the immediate
reward but all future rewards following the subsequent choice c′. In our case,
ideally, the choice c would be Action 1 and c′ would be Action 2 of the Effect pair.
In this way, the participant reveals that he or she is conditioned not only by the
Action 2, but also by Action 1, as the latter predicts a predictor of a reward.

However, what does this extra term imply for our experiment, and how do we
expect it to improve the outcome of our model with respect to explaining the data?
During learning, the observer maintains a set of expected reward predictions for
every AOI, reflecting how much reward is expected from making a fixation toward
a particular choice (AOI).

The aforementioned reward is given when the participant successfully predicts
the actor’s following action or the light effect. If the light effect does indeed serve as
a reinforcer for increasing predictions towards it (i.e., looking at the corresponding
AOI when actor is performing Action 2) then the participant should raise the
value of the effect AOI during the trial preceding it. The learner, having observed
Action 1 (Effect pair) followed by Action 2 and then the effect, uses the value
associated with the latter action as a proxy for the following rewards. In other
words, he updates his prediction according to the expected rewards that not only
immediately follow the current choice of where to fixate his gaze but also from all
future ones. This recursive process allows for second-order (or even higher-order)
conditioning to occur between the two action events that activate the effect.

5.6.3.3 Retrospective Gaze Behavior

Given the value estimates during a particular trial, participants are assumed to
choose between their options c ∈ C, where C represents the total number of possi-
ble choices, in a stochastic way (adding some noise to the action selection) with
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probabilities given by the Boltzmann function:

pt(c) = exp(β·Vt(c))∑C
i=1 exp(β·Vt(ci))

, c ∈ C (5.15)

where the β parameter controls the exclusivity with which choices are focused on
the highest valued option. In other words, when the value of β is high the option
with the highest value is very likely to be selected. When β is close to 0, the actions
are selected randomly.

Until now, we took into account a ‘predictive’ general behavior of the partici-
pant. However, the participant in many cases does not predict, but instead follows
the actor’s current movements retroactively. To account for this, we modified the
usual ‘sticky’ parameter that is used in similar behavioral analyses to capture the
effect of persisting on the same choice as the previous trial. Modifying eq. 5.15 by
adding an extra parameter φ, the model can capture the participant’s tendency to
follow what currently is happening on the screen. We will call it the bias parame-
ter, as it reflects the tendency for participants to bias their attention towards the
actor’s movements. The modified action selection equation will then be:

pt(c) = exp(β·Vt(c)+φ·I(c,a))∑C
i=1 exp(β·Vt(ci)+φ·I(ci,a))

, c ∈ C (5.16)

where I(c,a) is equal to 1 if the participant looks longer to the AOI where the action
is occurring and 0 otherwise. Positive values of φ reflect the participant’s choice to
follow the actor’s movements and negative values represent complete avoidance of
attention on what the actor is doing.

5.6.4 Model Fitting

We fit the models with maximum a posteriori estimation (using the Optimization
toolbox of MATLAB):

θ̂
MAP = argmax

θ
P (D|θ)P (θ) (5.17)

where D = {ct, rt, t = 1, . . . ,T} the data, consisted of observed choices and rewards.
A prior on parameters θ = {α,β,φ} can be decomposed to:

α ∼ Beta(1.2,1.2) (5.18)
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β ∼ Gamma(1.2,1.2) (5.19)

φ ∼N (3,2) (5.20)

The parameters of the priors are similar to Christakou et al. (2013). For each
participant and for each model, we computed a set of parameters θ̂ = {α̂, β̂, φ̂}
using gradient search (fmincon–constrained optimization MATLAB function), with
different starting points decreasing the chance of local optima, over the likelihood
of the participant’s choices conditioned on previous rewards and choices for each
trial. Specifically, we estimated the optimal parameters at the minimum of the log
likelihood which is given by the sum of the log-values of the probabilities computed
in eq. 5.16) as:

NLL=
∑

t

logp(ct|Vt(ct)) (5.21)

where the value function is learned according to the model learning rule (eq. 5.12)
along with eq. 5.13 and eq. 5.14).

To test whether the models provided a reliable account of participants data,
we performed the following analyses. First, the relative degree of improvement of
each model, over the chance model (i.e., a model without parameters which selects
choices under pt(c) = 1/|C|where |C| is the set of admissible choices), provides a
descriptive index called pseudo-R2 (see section 4.4.3). This index is defined as
(R−L)/R , where R is the log-likelihood of the random model and L the log
likelihood of one of the models described at the Methods section. Most of the
participants’ model-fits give an index significantly higher than zero, although due
to noise in the data there are participants with low indices.

The baseline model (RW) served as the basic model and all others were derived
from it by adding an extra parameter (i.e., nested models). This enabled us to
compare the baseline model with the rest of the models, and show how increasing
the complexity of the basic model leads to better description of the data using
the Bayesian Model Selection (BMS) method of Stephan et al. (2009). In order
to do this, we computed log-model-evidences for each participant and for each
model. Because the computation of the evidence involves an intractable integral
over parameters (BMS is not dependent on the model parameters as they are
integrated out) we used the Laplace approximation (Kass and Raftery, 1995), which
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Figure 5.15: Probabilities of each age group for producing the effect pair P(B|A)
(Effect) and the non effect pair P(B|A) (Non-Effect). Probabilities were calculated
by the empirical frequencies observed in the data, using the conditional probability
definition P (A|B) = P (A,B)/P (B).

assumes that the posterior over parameters behaves as a Gaussian around its mode.
We then submitted these to the spm_BMS routine from SPM12 (Rosa, 2012) for
model selection.

This type of model selection is a Variational Bayes method that treats the model
as a random variable, and allows one to compute how likely it is that a specific
model generated the data of a randomly chosen subject, as well as the probability of
one model being more likely than any other model. Although the usual treatment
for model selection is to use Bayes factors (Kass and Raftery, 1995), using the
BMS enables us to to use the model evidence for group level analyses without any
constraints on the models compared. A great advantage of this method is that the
models do not necessarily bear a hierarchical relationship to one another (i.e., they
do not need to be nested)(Stephan et al., 2009).

5.6.5 Behavioral Results

To link eye tracking data with behavioral data, further analyses were conducted.
Some adults, and very few infants, reproduced the observed Effect and Non-effect
pairs when acting themselves. However, adults were more likely to produce the
Effect pair rather the non effect pair, as shown in fig. 5.15.

The original data-set consisted of 44 adults and 66 infant participants. Due to
missing data from several individuals (e.g., the eye-tracker captured zero fixations)
only participants with more than 70% of non-zero data from the eye-tracking phase
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θ Adults Infants p
α 0.22 0.11 10−2

β 3.72 3.41 10−1

φ 3.37 1.94 10−11

Table 5.1: Parameter estimates of the TD model with “biased” choice parame-
ter φ. Infants appear to have a slower learning rate α than adults in the specific
experiment. There was not any significant difference observed between the explo-
ration/exploitation parameter β between the two groups. Finally, adults seem to
pay more attention to the actor’s actions than the infants, as they have a signifi-
cantly higher value of the φ parameter. The p values were calculated after a t-test
for testing the assumption (null hypothesis) that the parameter values for the two
groups do not defer. This model performed best according to the Bayesian Model
Selection method described in the main text.

were included in this analysis. Our final sample consisted of 37 adults and 22
infants.

The fits of the best model (eq. 5.14, 5.16) are given in table 5.1. As expected,
infants appear to be slower learners than adults. This means that they adjust their
value functions more slowely than the adults. In terms of exploration/exploitation
there was no significant different. From the mean value of the φ parameter, we
can conclude that adults, compared to infants, are more attentive towards what is
happening on the screen, which is also reflected by their faster learning rate.

The type of models used here allow us to question the specific nature of the
updating process described above in sections 5.6.3.2, 5.6.3.3; in particular, whether
evidence for learning (i.e., updating) during the observation phase reflects extrac-
tion of causal relationship between the Effect pair and the effect, as evidenced by
participants’ ability to reproduce the light effect themselves.

Next, we examined how the model correlates with the behavioral data. We
found that there is a significant correlation (r = 0.33, p = 0.05) between the max-
imum value of the value function for Action 2 with the conditional probability of
performing Action 2 following Action 1 (for the Effect pair). This means that an
observer with a higher value for Action 2 was also more likely to produce the entire
effect pair during the behavioral phase.

The above statement does not imply that in all cases a person that has high
probability of producing the effect pair is aware of the fact that only Action 1 and
Action 2 are producing the effect. For example, a participant might produce a
longer sequence of actions before producing the Effect pair and thus think that
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this particular sequence produces the effect. This was verified by a question re-
garding participant’s explicit knowledge on the combination that switches on the
light at the end of the whole experiment. More specifically, each adult participant
was asked if they knew how to switch on the light. Most of adults knew how to
switch on the light, although, they were not aware of the exact action combination.
For example, if the Effect pair consisted of actions bend and open, a participant
might answer that the correct combination was push, bend, bend, open. As we
mentioned before, the participant did not have explicit instructions to discover the
actual sequence that produced the light. This means that they did not explore
enough while interacting with the toy-box, rather they preferred, once they found
a sequence that worked, to stop engaging with the toy.

5.7 General Discussion

In this study we examined in detail the learning process that takes place during
observation of sequential human actions. We used a novel task to test aspects of
learning and transfer of knowledge between a phase demonstrating the task and a
phase in which a participant was interacting with the task. Although the data were
initially collected without a possible computational approach in mind, we success-
fully applied our modeling techniques to these experimental data sets and extracted
some insightful results. We attempted to give computational explanations of pat-
terns observed in the behavior of the participants in light of eye movement patterns
observed in the demonstration phase of the task.

As we described in the introduction of this chapter, causal inference is a funda-
mental component of human reasoning and learning abilities. During development,
imitating others’ behavior is one important way in which infants can identify im-
portant sequential actions that cause desired effects in the world. This reflects
a developmental process through which infants can infer structure within their
environment.

We implemented a RL framework for modeling which, to the extent of our
knowledge, provides a novel approach that differs from that implemented by pre-
vious researchers (e.g., Baldwin et al. (2008); Buchsbaum et al. (2015); Meyer
et al. (2011, 2010)). First, we examined an online Bayesian learner to test if par-
ticipants maintain beliefs about actor’s action transitions. The simple Bayesian
model managed to predict the probability of future eye-fixations on various AOIs.
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This, indicated that participants did use statistical inference, according to their
beliefs, in order to predict events. The fact that according to our model, only
the transitions of the Effect pair and partially of the Non-effect pair were learned,
supports our hypothesis on the important role of salient effects or causal effects in
learning.

Then, we tested the assumption that the duration of an eye fixation could reveal
a participant’s preference for a particular AOI. We applied a simple RL approach
to the eye-tracking data, interpreting duration of eye fixations as a participant’s
preferences for particular AOIs, and thus, as values of a value function that was
updated by a model-free RL model. The action selection method used this value
function in order to predict the most probable eye-fixation location. With such
an approach, we managed to build a model that not only predicts the duration
of an eye-fixation but also the location of it, in contrast with the Bayesian model
which just predicted how probable it was for a participant to look at each one of
the toy-box AOIs.

We examined behavioral and eye movement patterns from a different perspec-
tive. Assuming that a participant would find it rewarding to predict the actor’s
next action we proposed that a (internal) reward was received in such cases. Then,
we fitted various model-free models to the eye-tracking data. We concluded that
the model fits combined with the behavioral patterns (probabilities of turning on
the light, section 5.6.5) showed that the model’s value function for a particular AOI
was correlated with action performance (i.e., how many times a person successfully
activated the light) during the toy-box task. In accordance with our main hypoth-
esis, that a salient effect can speed up learning, we found that participants with
the maximum value of their value function, for the second action of the effect pair,
higher than any other’s AOI value function, had higher probability of producing
the effect pair and turning on the light than those with lesser values of their value
function.

The BAMDP framework provided an integrative theoretical framework for learn-
ing via observations. It combines learning in an entirely unknown environment with
subsequent planning, by capitalizing on the knowledge acquired during the learn-
ing phase. Our aim was to test if prior knowledge about transition probabilities
acquired during action observation could be immediately transferred during the
action execution phase. However, as discussed the model remains to be tested un-
der more constrained experimental conditions than the ones of our paradigm. A
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POMDP framework in which we consider a subject’s belief of fixating at a loca-
tion, similar to the evolving distribution of eye fixations (fig. 5.11), might be more
insightful (e.g., Butko and Movellan (2010)). It remains also for future work to
evaluate how the information gained by the subject by scanning a particular region
could guide learning.

Finally, we concluded that a salient action-effect increased the value of the
action preceding the effect. This implies faster learning for the Effect pair. During
the phase of real interaction with the toy-box, adults who engaged with the toy-
box, without any instruction, successfully activated the light. Infants could not
be included into this category as their own action sequences were too sparse to be
captured by our models.

Further work could be focused possibly on modifying the experimental pro-
cedure by enforcing timing constraints and establishing a goal. This would help
participants to focus on turning on the light as many times as possible. Thus the
evidence of learning (or not) from the previous phase would be enhanced. Another
issue that needs further examination is the learning rate. In our case, we used a
common learning rate for all AOIs during the whole experimental phase. It is thus
impossible to distinguish inter-subject or group differences regarding the learning
rates, which, in the case of developmental research, are particularly interesting as
they could reveal the differences between learning rate function among different
age-groups. Extensions and further research could include varying step-by-step the
learning rate such as in a Kalman filter, which could reveal differences in trial-
by-trial learning rates of adults and infants. Another potential direction would
be to implement a polynomial or exponential function for the learning rate, and
potentially examine the form of this function and the differences among age groups.

5.8 Highlights

In this case study we were interested in developing computational approaches that
could explain learning of causal relationships between actions and effects demon-
strated in a video. For this, we used behavioral and eye tracking data collected
from humans (adults and infants) while engaged in a two-phase experimental
procedure. In the first phase, the demonstration phase, participants watched a
video of an actor interacting with a toy-box which was consisted of different but-
tons and their gaze fixations were recorded. A specific combination of the buttons
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(actions) was responsible for a light to turn on (effect). In the second phase, the
interaction phase, participants were allowed to physically play with the toy-box
and attempt to turn on the light.

There were three computational approaches followed here to fit the models
to the data, and one theoretical computational framework was suggested. In the
first case we assumed that participants maintained–and updated at each time step–
a belief over which action the actor will choose next. The Multinomial-Dirchlet
model proposed, a Bayesian model, successfully predicted the participants’ gaze
location–prediction in the sense of predicting gaze location at time step t based on
history up to t−1.

In the second case, we assumed that participants learned associations between
actions and effect by spending more time fixating at a particular location which was
of greater importance for them. That importance for each location was reflected
in the value function of each location, which was learned in a Model-free RL way,
and was an estimate of the expected duration of an eye fixation for that particular
location. The action selection process used assigned a probability distribution over
locations which closely matched the empirical probabilities derived from partici-
pants’ data. The model fitting was implemented by using a maximum likelihood
approach. The model revealed the development of strong preferences on choices
that led to a rewarding effect.

In the third case we assumed that participants were finding it rewarding if they
could predict the actor’s next action. According to this scenario we fitted three
Model-free RL models: A simple R-W and a TD model with two different action
selection processes. Furthermore we attempted to find correlations between the
demonstration phase and interaction phase, and explain this computationally. The
model parameters were inferred by using maximum a posteriori and from this we
extracted the following results:

• Model-free RL methods can:

– effectively explain the learning mechanism of causal relationships among
actions and effect in a stream of sensory information.

– describe the mechanism with which participants learn from the actor’s
movements.
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• Value functions of the action-effect pair are highly correlated with the likeli-
hood of a participant learning by demonstration and reproducing that effect
later on when interacting with the task.

• Infants adjust their predictions much slower than adults.

• Adults show a higher level of attention towards the actor’s actions on the
screen compared to infants.

Apart from the work that was related to model-fitting we provided a theoretical
framework based on Bayes-adaptive planning that can describe how knowledge is
transferred from the demonstration phase to a hands-on interaction phase with the
task.



Chapter 6

Uncertainty-driven Exploration

ABSTRACT

The dilemma between exploration and exploitation is crucial during action selection.
The cost of exploration sometimes might be prohibitive whereas in other scenarios
exploration might lead to suboptimal results and interruption of development. In
this chapter we investigate the way that adolescents to balance exploration and ex-
ploitation during their decision making. We argue that their exploration is triggered
by the most uncertain choices presented to them and the more uncertain they are for
a specific option the more likely it is to select that option. The mechanism behind
this process is mathematically explained by a drift diffusion model which consists
of different components, each one accounting for different contributors of the action
selection mechanism.

6.1 Background

When observing animals in the wild, they are frequently to be found foraging for
food. If successful, they will be rewarded by getting fed, which eventually leads
to their sustainability and ultimately survival. Their survival often depends on
their foraging strategies. For example, it might be the case that they have to
decide between exploiting the resources (reduced at the specific given time) of a
well-known area, or exploring a completely new territory. This dilemma, between
exploitation and exploration, should be balanced for the survival of the animal. Too
much exploitation might lead to the exhaustion of the available area’s resources,
whereas too much exploration might lead to risks of starvation, or facing other
predators, which might lead to the death of the animal.
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Similarly, an RL agent, which might represent a simplistic version of an or-
ganism (as described in previous chapters) selects an action at every time step
t according to a policy, and receives feedback from the environment in the form
of reward/punishment. However, to act optimally in an environment the agent
has to balance how often it explores (i.e., trying different options) and exploits
(i.e., using its knowledge to select an option). The balance between exploration
and exploitation is a very critical component of the RL methods. Thus, an agent
should attempt to balance the utilization of acquired knowledge with the often
risky decision to examine uncertain options.

Evidence from studies suggests that individuals may explore options whose
contingencies they are more uncertain of (Dayan and Jyu, 2003). In order to
examine the exploration/exploitation trade-off, Moustafa et al. (2008) introduced
a dynamic reward-learning task, the clock task, and an associated mathematical
model to characterize and predict response times of individuals. The clock task
(fig. 6.1), in brief, consists of a clock face and an arm that does a full circle in
5 seconds. Participants need to stop the clock, before the end of its course, in
order to gain points that vary according to the latency of their response time
(RT). In general participants are faced with choices that lead either to a small
immediate reward or that would produce large delayed reward. In other words,
the probabilities of reward and the magnitude of reward vary. Therefore, subjects
must learn the statistics of reward probability, magnitude, and their integration,
as a result of experience across multiple trials within a given context, and adjust
their response time (RT) accordingly.

Initially, the clock task was used by Moustafa et al. (2008) to test whether
striatal dopamine (DA) increases enhance “Go-learning”1 to pursue actions with
rewarding outcomes, and DA decreases enhance “NoGo-learning” to avoid non-
rewarding actions. This hypothesis was tested with Parkinson disease patients.
The main idea was that accumulated positive reward prediction errors drive basal
ganglia-dependent Go learning to speed up responses, whereas negative prediction
errors have the opposite effect.

In their analysis, a neural network model of the basal ganglia (Frank and Claus,
2006) was used, which simulates the experiment. Specifically, it simulates systems-
level interactive neural dynamics among corticostriatal circuits and their roles in

1A very good explanation of the basal ganglia pathways and Go and NoGo learning can be
found in Frank (2007).
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action selection and reinforcement leaning. The model also accounts for various
effects of dopaminergic manipulation on action selection and reinforcement learn-
ing. In their simulations, they used parameters already estimated from previous
experiments. Thus their results can be considered as predictions rather than model
fits to new data.

It was found that although participants were not optimal, they nevertheless
learned to adapt RTs in the direction expected. Their tendency to adapt response
times to maximize expected reward was found to be dependent on dopaminergic
medication status. While they were off dopaminergic medication, patients showed
slower responses to avoid early low expected values, but were less able to speed
up when their early responses were rewarded. The opposite was observed when
patients were on medication. Their speeded response was better whereas their
response slowing became worse. The same patterns were also observed by their
model of basal ganglia. They concluded that, according to their experimental
and computational data, the striatal dopamine effects on decision making and
probabilistic selection paradigms tap into common mechanisms.

Frank et al. (2009) used the same task and mathematical model to study
the neurogenetic contribution to the exploration/exploitation trade-off. Specifi-
cally, they showed that genes controlling striatal dopamine function (DARP-32
and DRD2) are associated with exploitative learning to gradually adjust partic-
ipant’s response times as a function of positive and negative decision outcomes.
On the other hand, a gene responsible for mainly controlling prefrontal dopamine
function (COMT) was found to be associated with exploratory decision making,
in which decisions are made in proportion to relative uncertainty about whether
other alternatives might yield outcomes that are better than a given status quo.

In a similar study, Cavanagh et al. (2011) used EEG data to investigate the
interaction of middle and lateral frontal areas during top-down strategic control
involved in exploratory choices. It was found that theta-band activities reflect
prefrontal-directed strategic control during exploratory choices. In particular, mid-
frontal and right lateral/frontopolar areas seemed to “track” the degree of relative
uncertainty of the chosen option (as compared to unchosen option) up to 500ms
prior to response commission. The model parameters disambiguate the likely roles
of the EEG patterns observed, especially EEG in the theta band range, for which
there was a correlation with various features of reinforcement learning such as
unexpectedness updating and decision uncertainty.
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Badre et al. (2012) used the clock task and the same modeling approach in a
fMRI study. Results indicated that rostrolateral prefrontal cortex tracks trial-by-
trial changes in relative uncertainty (e.g., uncertainty about which response, fast
or slow, yields a positive reward prediction error), and this pattern distinguished
individuals who relied on this uncertainty for their exploratory decisions versus
those who did not.

The above observations have also been verified in the developmental literature.
For example, Schulz and Bonawitz (2007) suggested that preschooler’s exploratory
play was sensitive to stimulus features such as novelty and perceptual salience.
Bonawitz et al. (2012) reported evidence in support of the claim that children’s
learning is conservative and flexible, and that they integrate evidence, prior beliefs
and causal hypotheses into their exploration. Thus, children seemed more likely to
explore when they observed evidence that conflicted with their prior beliefs than
when they were presented with belief-consistent evidence.

The adolescent/pre-adolescent period is considered as a time when there is an
increase in novelty-seeking and exploration behavior. Our concern in this chapter is
to investigate if children also balance exploration and exploitation. In other words,
do children select their actions based on outcome expectations or do they prefer
to explore new alternatives that might result in more rewarding contingencies?
To examine this, we use the analysis of Badre et al. (2012) and the experimental
paradigm of Moustafa et al. (2008), in which subjects stop a rotating clock in order
to win points, to examine if the behavior of pre-adolescent children is also con-
sistent with the uncertainty-driven exploration strategy reported by Badre et al.
(2012). Specifically, we use data collected from 45 (10-year-old) pre-adolescents
tested under the same conditions as in the original study. All experimental pro-
cedures were carried out by Ezgi Kayhan at the Donders Institute of Radboud
University in Nijmegen (Netherlands).

6.2 Task - Experimental Procedure

We used a task that has previously been used to investigate trial-specific reinforce-
ment learning and exploration in genetic, patient, and pharmacological studies
(Badre et al., 2012; Cavanagh et al., 2011; Frank et al., 2009; Moustafa et al.,
2008). Participants were presented with a clock face (fig. 6.1) whose arm made a
full turn in 5 seconds per trial. They were informed of the amount of time the arm
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Figure 6.1: The Clock task and the reward function conditions. A. The clock face
task in which participants have to stop its arm within 5s, else the trial is ended and
considered unsuccessful. B. The probability of reward as a function of response
time in seconds, for all four conditions. C. The magnitude of reward across time
for the four conditions. D. The expected value of reward (reward magnitude ×
probability of reward) as a function of response time. Both CEV and CEVR
conditions have constant expected value but in the CEVR the reward magnitude
decreases over time whereas the reward frequency increases. (Figure adapted from
Badre et al. (2012))
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needed to make one full circle, and were asked to press the ‘spacebar’ button before
the arm finished its turn in order to win points. If they did not respond within the
5 seconds, they did not win any points.

The duration of the experiment was fixed, no matter how fast the participant
responded. The points earned in each trial were determined by when the partic-
ipant responded and the current condition of the clock. There were in total four
conditions, comprising 50 trials each, in which the probabilities and magnitudes
of rewards varied as a function of time elapsed on the clock until the participant
responded. Before each new condition, participants were informed that a new clock
would appear and, in general, they were encouraged to try different response times
in order to learn how to gain the most points.

The four conditions were defined according to the expected value of the reward,
EV = E[r] = ∑

pr ·r, which is equal to the probability of the reward occurred mul-
tiplied by its magnitude. The three main conditions, dependent on the EV, were:
i) CEV (constant EV), (ii) IEV (increasing EV) and (iii) DEV (decreasing EV).
Within each trial in the three conditions, the number of points (reward magnitude)
was increased, whereas the probability of receiving the reward was decreased over
time. In the fourth condition, (iv) CEVR = CEV Reverse, the expected value was
constant but the reward magnitude decreased and reward probability increased as
time elapsed. This condition was included for multiple reasons.

First, as both CEV and CEVR conditions have equal expected values across
time, any difference in subjects’ response time (RT) might reflect potential bias to
learn more about the reward magnitude than the reward probability or vice versa.
For example, waiting longer in CEVR than in CEV might indicate risk aversion
because the participant values more frequent rewards than higher magnitude re-
wards sparsely received. Another reason for introducing the CEVR condition is
the possibility of disentangling whether trial-by-trial RT adjustment effects reflect
a tendency to change RTs in the same direction after gains, or whether RTs might
change in the opposite direction.

The order of conditions (CEV, DEV, IEV, CEVR) was counterbalanced across
participants. After every 50 trials a small rest break was given. Although partici-
pants were instructed to win the most points, at the beginning of each condition,
they were not aware of the different conditions. However, the color of the clock
face was changed depending on the current condition. To avoid memorization of
associations between clock face color and timing-reward, a small amount of random
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uniform noise was added to the reward magnitudes at each trial.

6.3 Computational Model

To model the trial-by-trial response times, Frank et al. (2009) and Badre et al.
(2012) used a RL-based model with several of different components. In this section
we describe step-by-step the assumptions of the main equation, with which the RTs
for each participant for each trial was estimated, was based:

R̂T t = K +λRTt−1−V Go
t +V NoGo

t +ρ(µslow
t −µfast

t )+ν(RTbest−RTavg)+Exploret

(6.1)
where K is a baseline response speed, λ autocorrelation with the last’s trial RT.
This is the equation that was used to estimate the response time of a participant.
It is composed by several quantities that we will analyze in detail in the following
paragraphs.

As we mentioned, the core of the eq. 6.1 is a simple RL model. Therefore, the
central assumption was that participants maintain and update in every trial an
expected value for the reward that they expect to gain in trial t:

Vt+1 = Vt +α · δt (6.2)

where α denotes the learning rate, or in other words, the amount by which the
difference δt = rt−Vt (reward prediction error or RPE) between actual rt and ex-
pected reward Vt affects the prediction of the value in the next trial t + 1. This
is the standard R-W rule described in previous chapters. According to this, the
expected reward is updated at every trial according to sampling experience from
each experimental trial. The expected value in eq. 6.2 encodes two separate mech-
anisms for approach-related speedy responses (“Go-learning”), presumably caused
by accumulated positive prediction errors, and slowed responses (“NoGo-learning”),
presumably caused by negative prediction errors, according to eq. 6.2:

V Go
t+1(s,a) = V Go

t (s,a)+αG · δ+
t

V NoGo
t+1 (s,a) = V NoGo

t (s,a)+αN · δ−
t

where a denotes the action taken (slow or fast response in comparison with an
average response) and s is the state of the clock face. In accordance with Moustafa
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et al. (2008), where they used a Neural Network model representing the function
of the Basal Ganglia, there is an explicit separation between Go Learning (learning
to reproduce behaviors that yield positive outcomes) and NoGo Learning (learning
to reproduce behaviors that yield positive outcomes). In particular, Go learning is
facilitated by the action of (excitatory) D1 receptors in the striatonigral pathway
whereas the NoGo learning is facilitated by the action of (inhibitory) D2 receptors
in the striatopallidal pathaway. Thus, the agent might learn different informa-
tion from positive prediction errors (PPEs) than negative prediction errors (NPEs)
(Frank et al., 2009).

The first assumption is that subjects maintain a belief over how fast or slow
they should respond on the next trial in order to have a positive prediction error
(obtaining a better than average outcome). Thus, participants simply adjust their
RTs in proportion to the difference between their expected and achieved reward
values. The beliefs over fast/slow responses are updated online according to Bayes
rule:

P (θ|δ1, . . . , δT )∝ P (δ1, . . . , δT |θ)P (θ) (6.3)

where θ is the parameter of the belief distribution about the reward prediction er-
rors δ1:T observed from trial 1 till trial T . In our case, considering that participants
track positive RPEs, we can assume a Binomial likelihood, Bin(n|N,θ), represent-
ing the distribution over how many times n a positive RPE was encountered in N

trials. As it is common in Bayesian approaches, we assign a Beta(θ|η,β) distribu-
tion as prior over the Binomial’s distribution parameter θ. Eq. 6.3 describes how
the posterior distribution over θ (which because of the conjugacy between likeli-
hood and prior will be also a Beta distribution) updates over time, according to the
encountered RPEs. It is important to clarify that this framework is an assumption
on how a participant might change his or her beliefs about obtaining a better than
average outcome and it is illustrated in fig. 6.2.

The learned expected values of fast/slow responses (as the means of two Beta
distributions modeling positive RPEs for fast/slow responses) that contribute to
the estimation of the RT is the following term:

ρ(µslow
t −µfast

t ) (6.4)

where ρ is a scaling factor of the difference of the reward statistics. Similarly,
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Figure 6.2: Evolution of a participant’s belief updates over fast or slow responses,
during the course of the experiment, under DEV condition. The x-axis represents
the probability that a particular action, slower or faster response, will result in a
positive prediction error. The y-axis represents the level of belief that a partici-
pant has about each probability for responding faster or slower (compared to an
average response). Exploitative responses will move to the direction of the highest
perceived value of a particular option. In the DEV case, the expected value is
decreasing therefore the subject’s beliefs are evolving favoring the faster responses,
starting with equal beliefs, as these responses are more likely to yield a positive
reward prediction error. The standard deviation of each distribution represents the
participant’s level of uncertainty, regarding the value of the corresponding option.
Thus, early in learning the uncertainty is larger and later smaller. The difference
between the fast and slow standard deviations, at any given trial, reflects relative
uncertainty.
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Figure 6.3: Subjects data patterns and model generated data.

another term that was presumed important is:

Exploret = ϵ(σslow
t −σfast

t ) (6.5)

where σslow and σfast are the uncertainties of the Beta distributions. The scaling
factor ϵ was constrained from below by 0. This component was named “Explore”
as it drives exploration towards responses for which reward statistics are most
uncertain.

To summarize, model fits provide subject-specific, trial-by-trial estimates of
reward prediction error (δ+, δ-), the means of the Beta distributions (µslow, µfast)
and their corresponding standard deviations (σslow, σfast), which represent the
uncertainty over positive RPEs. Another estimate provided by the model is the
participant’s reliance on relative uncertainty to explore ϵ.

6.4 Results

We tested 44 10 year old children. In fig. 6.3 we present the average response time
over all participants per trial per condition. Participants seem to adjust their incre-
mental RTs in a way that is consistent with learning. For example, a subject being
tested under the IEV condition (increasing expected value of reward) responds on
average more slowly whereas under the DEV condition tends to respond faster.

In the constant EV conditions, the 10-year-olds seem to weigh the frequency of
the reward more than its amount. This can been seen from their response times,
as they respond faster in the CEV case rather than the CEVR case. It might be



6.4 Results 154

the case that they prefer frequent reward as it is distributed across trials, under
CEV and CEVR conditions.

In general, we can observe that participants learn to adjust their response times
according to the amount of reward they receive (e.g., in the DEV condition RTs are
faster because the amount of reward received decreases with respect to time). The
fitted model parameters can be used to simulate the response time of an artificial
agent performing in the clock task. From each condition we can plot the RT
adjustments as in fig. 6.3. The model manages to capture the average patterns of
the data but fails to capture the RT adjustments in IEV and CEVR case especially
at the last trials.

We also present data from an individual in fig. 6.5 across 50 trials for each
condition. Again, it can be seen that the subject adjusts his or her RTs, indicating
learning. For example, for the Subject no. 3, he or she begins with fluctuations
during an exploration phase and then adjusts his/her reaction time faster as the
EV decreases over time.

It is important to note that under all conditions, there is an exploratory phase
(usually some initial trials) where the subject tries different options. In the CEV
condition for example, Subject no. 3 attempts slow responses at the beginning,
which in this specific condition are not rewarding, then he or she tries faster re-
sponses and finally adjusts to slower responses (fig. 6.4). However, in both CEV/R
conditions, there are lots of fluctuations as the EV is constant per trial, which is
hard for the participants to distinguish.

In fig. 6.5, we present the exploration parameter ϵ (restricted in this study to
take only positive values) and how it behaves compared to the RT swings (RTt−
RTt−1), which indicates how a participant might adjust his or her RT according to
the amount of exploration he or she uses. Usually, the larger swings are observed
when the exploration parameter has a high value.

We found that the correlation between RT swings and relative uncertainty (dif-
ference in deviations of fast/slow responses) of explorers was significantly different
than zero (mean r=0.28 p≪ 0.001, t(19)=14). This is similar to Badre et al. (2012)
results (r=0.36, p < 0.0001) for adults. This leads to our conclusion that 10-year-
olds decision making patterns are consistent with the hypothesis of uncertainty-
driven exploration. From the scatter plot fig. 6.6, it can be seen that the more
uncertain about a choice, if it yields a positive RPE, a subject is, the higher the
adjustment of the response will be.
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Figure 6.4: Single subject’s response times in four conditions. Each figure presents
a subject’s time responses along with the model’s predictions for each one of the
four conditions (CEV/R, IEV, DEV).
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Figure 6.5: A single Subject’s RT change and estimated Exploration parameter ϵ
in the four conditions. The RT swings denote the difference between current RT
with the previous trial’s RT. Exploration parameter seems to capture paritally the
trial-by-trial RT differences.
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6.5 General Discussion

We adopted the modeling and experimental methods of Badre et al. (2012) to
replicate their analysis with data from 10 year old children. Our main goal was to
test whether their hypothesis (exploration is driven by choices that participants are
most uncertain of) applies also to different age groups. We found out that indeed
there is a correlation between children’s response times and the relative uncertainty.
This is in accordance with the main hypothesis. Badre et al. (2012) reports that, in
their experiment, non-explorers had a correlation between the relative uncertainty
and their response times that was not significantly different from zero. It is left
for future work, to investigate the behavior of the non-explorers. In addition, a
comparison of the amount of exploration used by children and adults might provide
useful insights on how uncertainty might affect exploration.

The task seems also appropriate for younger children as there are no planning
mechanisms involved. This is because the whole learning process is an online
process which is updated by sampling experience (i.e., trying different timings for
stopping the clock arm). In addition, there is no need for any training sessions
prior to the experimental phase as is necessary in planning tasks (i.e., learning
transition probabilities and reward probabilities). We believe that such a task
could therefore be useful for examining model-free RL approaches in young children
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without the involvement of planning procedures. Furthermore, the digital nature
of the task helps the exact replication of the experimental procedure, which helps
the examination of different age groups for developmental studies.

In terms of improving the model, after personal communication with the second
author of Badre et al. (2012), (Michael J. Frank), there are not many things to
be done. Eq. 6.1 was built gradually, adding one component at a time, and every
time the performance of the model was evaluated. The model was also compared
with a Kalman filter. In addition, the model has been tested also with Gaussian
beliefs instead of the Beta beliefs we used here. In all cases the current model
outperformed all other versions of it. However, as we mentioned the task and
model provide a good framework for testing different age groups and the analysis
can also integrate additional data from EEG or fMRI. We note that Michael J.
Frank reported that his team was working on that direction.

6.6 Highlights

In this case study we were interested in examining the hypothesis that humans
explore choices that are more uncertain of, in 10-year old population. The whole
process follows Badre et al. (2012) with similar results verifying our main hypoth-
esis. The model used to estimate the response time was a mathematical model
that consisted of many different components. These components were updated at
every time step. The model fitting was implemented with a built-in function of
MATLAB for unconstrained optimization.

The main contribution of this chapter could be summarized below:

• Using a compositional mathematical model we verified that adolescents choose
the actions that are less certain for the outcome while exploring different op-
tions in a given task.



Chapter 7

General Conclusions

ABSTRACT

In this chapter we conclude the whole thesis. We refer to the main contributions
and review the effectiveness of the general computational approach used throughout
each project. Furthermore, we stress the limitations of the methods used, possible
solutions, and discuss future research directions.

7.1 Contributions

The work presented here was carried out with the aim of demonstrating the advan-
tages of Machine Learning approaches, specifically Reinforcement Learning meth-
ods, for explaining behavioral patterns. The aim of the thesis was to illustrate that
RL methods can serve as a theoretical and computational framework for various
aspects of decision making in the context of human action selection, and specifically
with respect to data from cognitive development. It is hoped that these methods
could be useful for understanding existing experimental data and also analyzing
future experiments.

The core of this thesis lies in the fact that many decision making problems
can be formulated into MDPs which can be solved by the algorithms described in
Chapter 2. The solutions are categorized as model-based or model-free, depending
on the availability of a model of the environment, which consists of a reward distri-
bution and a distribution over the transitional dynamics. This categorization has
behavioral realizations, and provides a good theoretical framework for goal-directed
and habitual types of behavior.

It is well known (Daw, 2012; Daw et al., 2011) that animals and humans em-
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ploy heuristics to provide a cheap approximation to the amount of exploration-
exploitation they need, in order to make a decision. This mechanism is related to
mental planning or cognitive search. Pfeiffer and Foster (2013) showed that before
goal-directed navigation in an open arena, spatial representations of neuronal fir-
ing patterns, in the area of hippocampus encode future spatial trajectories strongly
biased to progress from the subject’s current location to a known goal location.

Whereas goal-directed behavior is regulated by the action’s outcome, it is also
common for human or animal responses to turn into habits (not sensitive to out-
come devaluation), after long exposure to the same stimulus. This kind of behavior
is considered reflexive and elicited by stimuli rather than their consequences. An
action is selected mostly based on its reward history rather than its consequences.
We showed how each of these behaviors can be explained by the RL framework,
which variations of RL algorithms are appropriate, and why.

In Chapters 2 and 3 we illustrated how behavior and learning could be formu-
lated as an MDP and solved by RL algorithms. We demonstrated how RL models
can fit behavioral data from a simple decision making experiment. Finally, we pre-
sented a Bayesian scheme for model parameter inference and we applied the above
methods in a simple spatial-navigation domain.

In Chapter 4, our concern was whether intrinsic motivation might play a role in
the cognitive processes underlying planning. Intrinsic motivation reflects the drive
of cognitive search from the initial state to the goal state, in cases where there is
reward only at the goal state. We assumed that this motivation emerged in the
form of an additional reward shaping function (Ng et al., 1999), and behaviorally
as a perceptual strategy, which guides the subject towards moves that bring the
current configuration of the task “closer” to the goal configuration, no matter if
these moves lead to a non-optimal longer solution path. For example, in the ToL
task configured as in fig. 4.4, a seemingly “natural” move (moving the red ball to
the shortest peg) might not be optimal for the overall goal of the task. Comparing
the goal state with the start state, moving the red ball to the shortest peg, brings
the start state to a state more similar to the goal state (red ball will be at the same
position as in the goal state, and green and blue balls will be at the same peg as
in the goal state, but with reverse order). This observation indicates that there
might be a separate component that affects the mental planning mechanism.

We fitted three modified model-based RL models to the data collected from
children (3-to-4-year-olds and 5-to-6-year-olds) playing the ToL task. The modi-
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fied reward function enabled the models to capture how much children are affected
by the state similarity towards their attempt to solve the tasks. We showed the
developmental role of the reward weighting parameter and how this changes across
age, revealing that younger children had a tendency to use the perceptual strat-
egy more often. Finally, we concluded that the planning process is affected by a
perceptual system that biases the choices of a person to particular branches of the
decision tree and that this was observed mostly in young children.

This perceptual strategy might emerge because of the particular features of the
task. There are many examples in board games that demand great use of the
mental planning system, like chess. In such games it is often observed that player
A attempts to force the other player B into particular moves that seem initially
beneficial for player B, but ultimately benefit player A. These types of strategies
attempt to bias the opponent’s decision.

In the computerized version of ToL we used examples of such stimuli, the goal
state, that seemingly provoke the player to make the ‘wrong’ moves. Because of
the nature of the task, in which a player usually chooses sequential subgoals (i.e.,
to put a ball exactly at the position of the goal state), particular combinations of
start and goal states lead the participant to choose the non-optimal subgoal first.
Surprisingly, in the computerized version of ToL, tested with adults, the pruning
models with our reward modification accounting for the perceptual strategy, did not
perform better than simple pruning models. However, as discussed, participants
were explicitly asked to plan before acting, a process that probably inhibits the
online perceptual strategy. Perhaps, allowing the participants to attempt to solve
the task freely might result in the similarity strategy being engaged more.

Finally, we introduced the Planet Task which would enable us to examine in
detail how the pruning process might work. The task was designed such as to
provide a reward for every single action which a participant might choose. Initially,
every participant was trained to learn the state transition map of the task and the
reward distribution. Unfortunately, the experiment was not successful for reasons
that have to do with the suitability of the task for the specific age group that was
tested, along with the experimental phase (i.e., the child did not want to continue
playing, thus he or she did not manage to complete enough trials to fit the model
to the data). However, we extracted useful insights about the experimental design
especially for developmental research that involves young children and RL modeling
methods.
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In Chapter 5, we used a novel task to investigate how humans might learn
from an initial video demonstration of the task, and if there was any transfer of
knowledge to a subsequent actual interaction task. The task consists of a toy-box
with different types of buttons, where only a specific pair of buttons, pushed in
the right sequence, turned on a light that lay in the middle of the box. When
participants were presented with the video (observation phase), they observed an
actor carrying out various actions (including the ones that turned on the light).
Afterwards, they had the chance to interact with the toy-box and attempt to switch
on the light by themselves (interaction phase).

First, we modeled the eye tracking data from humans during learning from the
video phase with model-free approaches. Specifically, we used a model-free RL al-
gorithm to model the learning of the actor’s movement transition probabilities that
takes place during the observation phase. After presenting the participant’s tran-
sition probabilities matrices in comparison with the actor’s matrix, we discussed
theoretical/algorithmic approaches to how these learned probabilities can be used
as prior knowledge in the interaction phase. We introduced the BAMDP frame-
work and analyzed in detail possible solutions in order to integrate the planning
and learning processes in the observation and interaction phase. We argued that
this framework is suitable for the particular task as it describes planning in an
environment in which there is uncertainty about the state transition probabilities.

Then, we proposed a model-free RL model to track duration of participant’s
eye-fixations. That model uses a simple Q-learning algorithm to estimate expected
duration of eye-fixation for a particular area of interest (AOI), and used this es-
timation in order to calculate the probability of fixating on an AOI. The whole
process emulates the function of an eye-gaze controller. Our main assumption was
that the amount of time spent fixating on a specific area, along with the selec-
tion of the area, might indicate a decision making process. Our model predicted
probabilities of locations of eye-fixations that are consistent with the real patterns
observed, supporting the hypothesis that infants can learn from a stream of actions
presented to them.

We further, our investigation by formulating the reinforcement learning problem
differently: we assumed that every time a participant predicts the actor’s next
action, he or she receives a reward. In this context, we fitted different TD models,
with parameters that can give us insights into the subject’s behavior. First, we
found that participants learn the transitions that preceded the effect (i.e. switching
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on the light) better than other transitions. Second, we found that infants had a
slower learning rate than adults in the observation phase. This indicates that
infants were adjusting their predictions on actor’s movements more slowly than
adults. Furthermore, we reported that adults seem to pay more attention to what
the actor is doing than infants, according to the values of the corresponding model
parameter.

Finally, we linked the eye-patterns with the behavioral patterns, extracted from
the data from the observation and interaction phases of the task respectively, by
examining the correlation of the value function of the TD model (that models
the eye-fixations) with the conditional probability of producing the effect in the
interaction phase. It was revealed that with the RL framework we could predict if
a participant could switch on the light according to his or her eye-patterns.

In Chapter 6 we examined if 10-year-olds exploration strategies were driven by
uncertainty about their choices. We used a task in which a participant had to
stop the arm of a clock in order to win points. The participant’s response time
defined the reward. This enables one to capture characteristics of an online learning
process. Using an RL based mathematical model we found significant correlation
between the response times and the relative uncertainty they had on how fast or
slow they should act.

In general, attempting to model functions which correspond to cognitive mech-
anisms with computational methods, eventually might lead to two options: models
for which the interest focuses on simulating or reproducing observed behavior – in
other words, attempting to find the best approximation of the function being mod-
eled – and models which, although they attempt to simulate the observed behavior,
the focus is on the cognitive interpretations of their parameters (Luce, 1995).

The modeling framework adopted and used throughout the whole thesis belongs
to the second category. The particular parametrization we utilized is inspired by
cognitive neuroscience and knowledge from psychological behavioral patterns. Such
a parametrization is not only plausible but defines explicit structural constraints on
the mechanisms underlying decision making, thereby providing a quantitative ex-
planation of them. Eventually, the greatest contribution of a computational theory
is the ability to quantitatively predict outcomes, which can aid to mechanistically
explain and predict behavior.
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7.2 Limitations

There are important aspects of behavior, such as hierarchical structure, which we
have so far neglected. In the ToL task, a specific problem can also be solved by
decomposing it into smaller problems, and then solving each one separately. Under
that approach, the subject initially would select a subgoal, then would attempt
to bring the ToL into that subgoal state, assign then a new subgoal and repeat.
For example, in the problem in fig. 4.4, the subject is faced with two subgoals: i)
place the red ball at the shortest peg or ii) place the green ball at the goal state’s
location. These kind of solutions involve planning over sequences of actions rather
than individual actions. In our methods we did not use any hierarchical approaches.
However, the amount of hierarchical structure (if any) that young children might
use is a question for future research.

A limitation of the child ToL data is that many children broke the task rules
by using both hands or placing balls on the table. The computerized version of the
experiment provides additional constraints on the participant’s choices, which cre-
ates better conditions for modeling. Furthermore, the data collected are in digital
format which further helps the processing and analysis of them and sharing them
between scientific communities. However, phenomena observed in real situations
(such as the tendency of picking up the balls in ToL) cannot be observed in such
a constrained digital environment. This is simply because the participants do not
face exactly the same experimental conditions in the digital version of an experi-
ment. In the non-digital version of the ToL, there are many questions that need to
be answered and cannot be addressed in the physical version of it.

In the digital version, young participants are ‘forced’ to plan whereas in the
digital version they use different strategies, attempt to break the rules, etc. For
example, the rule violation might indicate poor planning but also a tendency to
solve the problem backwards (from goal state to start state). In general, if we want
to examine the mechanisms that are involved or affect the planning process, we
should also relax relevant constraints. In our opinion, apart from carefully selecting
a task to capture a particular behavior, all aspects of the natural behavior a subject
might have, in the physical version of a task, should be considered and taken into
account in the digital adaptation of the experiment.

Furthermore, instructions for each experiment are equally important as the
experimental design, and affect the behavior that a participant might adopt. In-
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structing the participants in the ToL task to plan their moves before acting might
led them to force a planning strategy, even when this was not their default strat-
egy. This brings difficulties when the purpose of the experiment is to capture the
general strategy that each participant employs (and not the planning mechanism
per se), such as a mixture of planning and model-free approaches.

Another important issue that rises in the experimental design is the suitability
of a task for a particular age. When we use adult subjects for an experiment,
the range of tasks, and the difficulty of each one, can vary a lot. However, when
dealing with children, we need to pay attention to the suitability of the task for
the particular age of the children. Even when a task and the subsequent collection
of data in digital data form that favors the modeling procedures seems appealing,
it is very hard sometimes to predict if the child can carry out all block of trials.
Thus, the the Planet Task ultimately proved to be unsuitable for young children,
although it is a very useful task to test the pruning process in adults.

Although the model-free algorithm for estimating expected duration of eye-
fixations on particular AOI performed well compared to the behavioral patterns,
according to our intuition, we believe that state space models (e.g., Kimura et al.
2010) would perform better (e.g., a Kalman filter or a particle filter algorithm).
The reason for this is that RL models are not usually used for tracking. It is more
common to use a reward of 1 or 0 (or a punishment of -1) if an agent completes
successfully a task or not. In our case, we used as reward the duration of an
eye-fixation. Actually, we oversimplified the problem as we did not consider any
kind of elements that affect the process of tracking of each eye-fixation’s duration
and the uncertainty of the estimation. A dynamical model, such as the one used
in Chapter 5, modified appropriately, might outperform ours and also give more
insights into the control of eye-movements. Furthermore, instead of using discrete
locations (AOIs) we could use eye-fixation coordinates, along with state space or
dynamical models which estimate continuous quantities. Other approaches that
have been successfully applied into the field of control of eye-movements, and that
we neglected, are the approaches of Butko and Movellan (2010) and Najemnik and
Geisler (2005) (POMDP model and Bayesian model respectively).

The toy-box task is not suitable for testing algorithms such as the BAMCP
and MCTS as it is very difficult to extract features from the task. In addition, the
parameters of such models do not provide any cognitive links. Furthermore, as we
discussed, the experimental procedure could be designed with better constraints
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to create better conditions for modeling. For example, at the interaction phase,
participants did not have a clear instruction about what to do with the toy-box,
nor did they have a time limit. This massively affects the quality of the behavioral
results. As we mentioned before, Monroy et. al (2015a; 2015b) did not have any
intentions concerning modeling at the time that the toy-box was created and tested.

Despite the model’s limitations and sometimes the problematic experimental
design, our main goal was to attempt to approximate different types of decision
making processes in human brain. The oversimplifications made in many circum-
stances help to create the necessary conditions in order to describe a problem using
mathematical formulas. This enables us to run our computational experiments and
test our models and hypotheses. Furthermore, it aids replication of the experiment
by the scientific community. Finally, it will be very important in the future to at-
tempt to design experiments so that computational modeling is feasible, and also
to attempt to store the data collected in digital format.

7.3 Questions for Future Research

We discussed in detail model-based methods to model human behavior in a plan-
ning task. As discussed, there is evidence from behavioral data of various experi-
ments (e.g. Goel and Grafman (1995); Goel et al. (2001); Newman et al. (2003);
Simon (1975)) that apart from a planning process, decision making is affected by
a perceptual strategy that drives moves. It might be in the form of a complete
separate computational component with its own mechanisms. It might be the case
of a perceptual bias affecting the decision tree. Either way, this element is formed
because of the current environmental state. This type of a system has many im-
plications for the decision making system. Thus, our treatment of this was novel.
Eventually, this might lead to a perceptual model embedded in the decision making
mechanism. Further questions concern how these systems interact, which features
are critical, etc.

If we think of the problem in the ToL task, configured as in fig. 4.4, in terms of
subgoals, the options that a participant faces are to either make the appropriate
moves to place the green ball at the same location as in the goal state or to place
the red ball at the shortest peg as in the goal state. However, young children are
more prone to choose the second subgoal rather than the first. This, apparently,
indicates that the mental planning process, if represented as a decision tree, is
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affected by the characteristics of the task in the form of a strong bias towards
specific branches of the tree.

This kind of bias might originate from a different system. It seems also that it
is affected mainly by some perceptual characteristics of the task. However, these
are questions for future work and investigation. Gershman et al. (2010) worked in
that direction, by using a model-free RL model that takes account of the features of
the task (such as colors and shapes presented as stimuli). However, that work used
model-free RL. Guez et al. (2014b) used task features integrated in the BAMCP
algorithm that uses planning. To our knowledge, there are no studies linked to
Cognitive Neuroscience that incorporate task features into the planning process
using model-based RL methods.

As we discussed in Chapter 4, intrinsic motivation was described by the mod-
ified reward function, which incorporates task features. However, there is another
framework describing intrinsic motivation and linked to RL methods, specifically,
the framework of Chentanez et al. (2005), who developed a different approach of
intrinsic motivation using Hierarchical RL. Recently, Kulkarni et al. (2016) used
the same concept in Hierarchical Deep RL, and Bellemare et al. (2016) (Google
Deepmind) managed to link intrinsic motivation with automatic subgoal discov-
ery. They reported enhanced performance of their agents in the Montezuma Atari
game, a game which the previous simple Deep Q-learning agent could not solve.
In this game, the agent has to find a key in order to open a door that leads to the
next stage. Thus, finding the key should be considered as a subgoal and discovered
before reaching the door. It remains for future work to draw inspiration for the
available algorithms and test similar approaches in order to investigate more the
role of intrinsic motivation and how it develops.

Planning, or cognitive search, is a very complex process. One of the drawbacks
in such a process is that there is no behavioral evidence of the planning activity.
While model-free processes seem to resemble an online composite process (acting
and learning), model-based processes contain an offline phase in which the simula-
tion of a decision tree takes place. This phase is not linked directly to behavior and
only implicitly can be linked as in our case. The planning process is a simulation
process and it is very difficult to identify behavioral patterns of planning activity,
and incorporate this information into the modeling process. One possibility is that
there might be a lot of information about the actual planning process contained
in eye-movement behavior. It is very likely that modeling eye movement control
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could directly link the simulated activity that takes place during planning with
behavioral evidence.

To conclude, we would like to close with a comment on a future direction that
machine learning methods, applied in Cognitive Neuroscience, can take: to use the
model parameters to cluster participants (or even patients). Computerized version
of experiments can provide us with the ability to test a large number of people, and
not be restrained by the limited number of people in a school or invited to a lab.
Smartphone applications such as the Great Brain Experiment (Brown et al., 2014),
and Amazon’s Mechanical Turk (Buhrmester et al., 2011) can provide a form of
crowdsourcing, which can allow researchers to test a large population of subjects.
With such information, we would be in a position in which we could use the inferred
model parameters as a criterion for clustering subjects according to their behavior.
We suggest that these approaches might help also to identify underlying medical
conditions such as schizophrenia, ADHD, autism, etc.

7.4 Final Words

The planning mechanism(s) underlying the brain’s decision making processes has
been of major concern for decades and still remains elusive. Model-based RL pro-
vides a theoretically elegant framework to explain human behavior. Although a
problem can be translated into an MDP and then solved by a model-based algo-
rithm, the human planning system seems to be affected by perceptual features of
that problem. For example, in the ToL problem, we saw that a participant is af-
fected by a similarity measure of his or her current state with the goal state. One
possible direction is to integrate Bayesian models with model-based tree search
methods, in order to understand how characteristics of the task and perception
affects planning. Achieving this might help to understand how the perceptual sys-
tem affects the planning process of neurologically impaired patients and suggest
solutions to improve their lives. We showed how to address challenges in decision
making which involve eye-tracking by utilizing RL techniques. Perhaps one of the
most exciting directions to develop further within our framework is to integrate the
information taken from eye-tracking data with behavioral models. We hope that
the computational approaches and ideas described here will be utilized within the
developmental community and extended to mathematical psychology theories.
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