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Abstract

Actions taken immediately following a life-threatening incident are critical for the

survival of the patient. In particular, the timely arrival of ambulance crew often makes

the difference between life and death. As a consequence, ambulance services are under

persistent pressure to achieve rapid emergency response. Meeting stringent performance

requirements poses special challenges in metropolitan areas where the higher popula-

tion density results in high rates of life-threatening incident occurrence, compounded

by lower response speeds due to traffic congestion. A key ingredient of data-driven ap-

proaches to address these challenges is the effective modelling of ambulance movement

thus enabling the accurate prediction of the expected arrival time of a crew at the site

of an incident. Ambulance mobility patterns however are distinct and in particular

differ from civilian traffic: crews travelling with flashing blue lights and sirens are by

law exempt from certain traffic regulations; and moreover, ambulance journeys are trig-

gered by emergency incidents that are generated following distinct spatial and temporal

patterns.

We use a large historical dataset of incidents and ambulance location traces to

model route selection and arrival times. Working on a road routing network modified

to reflect the differences between emergency and regular vehicle traffic, we develop a

methodology for matching ambulances Global Positioning System (GPS) coordinates to

road segments, allowing the reconstruction of ambulance routes with precise speed data.

We demonstrate how a road speed model that exploits this information achieves best

predictive performance by implicitly capturing route-specific patterns in changing traffic

conditions. We then present a hybrid model that achieves a high route similarity score

while minimising journey duration error. This hybrid model outperforms alternative

mobility models. To the best of our knowledge, this study represents the first attempt

to apply data-driven methodologies to route selection and estimation of arrival times of

ambulances travelling with blue lights and sirens.

3



Contents

1 Introduction 14

1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.5 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.1 Data Load and Cleanse . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.2 Route Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5.3 Speed Model Generation . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.4 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.5 Hybrid Routing Model . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Literature Review 22

2.1 State of the Art in Ambulance Mobility Modelling . . . . . . . . . . . . 22

2.2 Travelling with Blue Lights and Sirens . . . . . . . . . . . . . . . . . . . 24

2.3 Route Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Real-Time Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Route Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.1 Geometric Map-Matching . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 Topological Map-Matching . . . . . . . . . . . . . . . . . . . . . 27

4



2.5.3 Advanced Map-Matching . . . . . . . . . . . . . . . . . . . . . . 28

2.5.4 Emission PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5.5 Transition Functions . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Travel Time Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 The London Ambulance Service 41

3.1 Emergency Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Ambulance Emergency Unit (AEU) . . . . . . . . . . . . . . . . 42

3.1.2 Fast Response Unit (FRU) . . . . . . . . . . . . . . . . . . . . . 43

3.1.3 Motorcycle Response Unit (MRU) . . . . . . . . . . . . . . . . . 43

3.1.4 Cycle Response Unit (CRU) . . . . . . . . . . . . . . . . . . . . . 45

3.1.5 Helicopters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.6 Community First Responder (CFR) . . . . . . . . . . . . . . . . 46

3.1.7 Patient Transfer Unit (PTU) . . . . . . . . . . . . . . . . . . . . 47

3.2 Standby Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Emergency Crew . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Emergency Medical Technician . . . . . . . . . . . . . . . . . . . 48

3.3.2 Paramedic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Rosters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Performance Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5.1 Determining Severity . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Ambulance Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6.1 Emergency Vehicle State Transitions . . . . . . . . . . . . . . . . 53

3.7 Measuring Response Times . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7.1 Category A - Red 1 Calls . . . . . . . . . . . . . . . . . . . . . . 54

3.7.2 Category A - Red 2 Calls . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Onboard Computing Equipment . . . . . . . . . . . . . . . . . . . . . . 56

3.9 Computer Aided Dispatch . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5



3.10 Travel Time Estimation at London Ambulance Service (LAS) . . . . . . 59

4 Data Sets 62

4.1 Ethics Approval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 The Blue Light Road Network . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Dealing with Level Grades . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 Importing the Integrated Transport Network . . . . . . . . . . . 66

4.3 LAS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Emergency Event Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Activation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 AVLS Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.1 AVLS Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.6.2 AVLS Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.3 Assessing Road Coverage . . . . . . . . . . . . . . . . . . . . . . 84

4.7 Call Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5 Route Reconstruction 97

5.1 Map Matching Parameter Estimation . . . . . . . . . . . . . . . . . . . 98

5.1.1 Emission PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.2 Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . 104

5.1.3 Road Geometry Range . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Road-Constrained Particle Filter . . . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Initialisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2.2 Move and Perturb . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.3 Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.4 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3 Map Matching with HMM/V . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3.1 Building the HMM . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6



5.3.2 The Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Map-Matching Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.5 Map-Matching Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Vehicle Speed Models 124

6.1 Routing Engine Implementation . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.1 Coordinate to Road Link . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Calculating Edge Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Metric I - Constant Speed . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Metric II - Fix Speed by Road Type . . . . . . . . . . . . . . . . . . . . 128

6.5 Metric III - Grid + Hour-of-Day + Vehicle . . . . . . . . . . . . . . . . 129

6.5.1 From Sparse to Dense . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5.2 Calculating an Edge Cost . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Metric IV - Grid + Hour-of-Week + Vehicle . . . . . . . . . . . . . . . . 130

6.6.1 Calculating an Edge Cost . . . . . . . . . . . . . . . . . . . . . . 131

6.7 Metric V - Road Link Speed Data . . . . . . . . . . . . . . . . . . . . . 131

6.7.1 Calculating an Edge Cost . . . . . . . . . . . . . . . . . . . . . . 132

6.8 Evaluating Road Speed Metrics . . . . . . . . . . . . . . . . . . . . . . . 132

6.8.1 Calculating Journey Estimate from Actual Route . . . . . . . . . 133

6.8.2 Estimating Journey Route and ETA . . . . . . . . . . . . . . . . 134

6.8.3 Actual vs Estimate Route Comparison . . . . . . . . . . . . . . . 134

6.9 Estimate Route Turn Analysis . . . . . . . . . . . . . . . . . . . . . . . 135

7 Metric Evaluation 136

7.1 Seen and Unseen routes . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2 Prediction Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.2.1 Error by Journey Time . . . . . . . . . . . . . . . . . . . . . . . 139

7.2.2 Error by Vehicle Type . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.3 Predicted Route Differs from the Actual Route . . . . . . . . . . 141

7



7.3 Comparison of Route Taken . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.4 Spatio-Temporal Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4.1 Spatial Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.4.2 Temporal Variation . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5 Correcting Estimation Error . . . . . . . . . . . . . . . . . . . . . . . . . 147

8 Hybrid Routing Model 152

8.1 Blue Light Route Choice Model . . . . . . . . . . . . . . . . . . . . . . . 153

8.2 Hybrid Routing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9 Conclusions and Future Work 157

9.1 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.1.1 Software Emulation . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.1.2 Tactical Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.1.3 Real-time Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

9.1.4 Routing and Navigation . . . . . . . . . . . . . . . . . . . . . . . 159

9.1.5 Dispatch Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 160

9.1.6 Use of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Appendices 161

Symbols 177

Abbreviations 179

Glossary 183

Bibliography 185

8



List of Figures

2.1 Viterbi algorithm, finding the best path through candidate hidden states

by using emission and transition probabilities . . . . . . . . . . . . . . . 30

2.2 General flow of a Particle Filter . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Sequential hidden and observed states of a hidden Markov Process . . . 33

3.1 LAS Ambulance Emergency Unit (AEU) . . . . . . . . . . . . . . . . . . 43

3.2 LAS Fast Response Unit (FRU) . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 LAS Motorcycle Response Unit (MRU) . . . . . . . . . . . . . . . . . . 44

3.4 LAS Cycle Response Unit (CRU) . . . . . . . . . . . . . . . . . . . . . . 45

3.5 London Air Ambulance Helicopter . . . . . . . . . . . . . . . . . . . . . 46

3.6 LAS Patient Transfer Unit (PTU) . . . . . . . . . . . . . . . . . . . . . 47

3.7 Performance of arrival times for the UK between 2011 and 2015 . . . . . 50

3.8 Workflow Diagram for an Emergency Incident . . . . . . . . . . . . . . . 53

3.9 State transition diagrams for AEU and FRU . . . . . . . . . . . . . . . 54

3.10 On-board computing equipment for Ambulance Emergency Unit (AEU)

and Fast Response Unit (FRU) vehicles . . . . . . . . . . . . . . . . . . 57

3.11 Screen shot of Geotracker coverage system at LAS . . . . . . . . . . . . 60

4.1 Sample road section showing shared nodes at different grades . . . . . . 65

4.2 Integrated Transport Network (ITN) road network schema . . . . . . . . 68

4.3 Example of a directed road network . . . . . . . . . . . . . . . . . . . . 69

4.4 BLRN network schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Incidents by LAS Category for the years 2015/6 . . . . . . . . . . . . . . 72

9



4.6 Incidents by Chief Complaint for the years 2015/6 . . . . . . . . . . . . 72

4.7 Spatial distribution of emergency incident occurrence . . . . . . . . . . . 73

4.8 Number of journeys to Category A incidents . . . . . . . . . . . . . . . . 74

4.9 Histogram of trip times for both AEU and FRU . . . . . . . . . . . . . 75

4.10 QQ Plots of log travel times for both AEU and FRU . . . . . . . . . . . 76

4.11 Activations by LAS Category for the years 2015/6 . . . . . . . . . . . . 76

4.12 GPS fixes per month . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.13 Time duration between subsequent GPS fixes . . . . . . . . . . . . . . . 80

4.14 Average road speeds throughout the day for AEU and FRU resource types 83

4.15 Average speed of en route vehicles across London . . . . . . . . . . . . . 84

4.16 Number of GPS observations of en route vehicles across London . . . . . 85

4.17 Accumulation of BLRN coverage using GPS snapping . . . . . . . . . . 86

4.18 Accumulation of BLRN coverage using GPS snapping . . . . . . . . . . 87

4.19 Sample route by road link snapping . . . . . . . . . . . . . . . . . . . . 88

4.20 Road usage density map obtained from GPS snapping . . . . . . . . . . 90

4.21 Histogram of time taken to confirm the patients’ location . . . . . . . . 92

4.22 Smoothed histogram of time taken to get the patients’ condition . . . . 93

4.23 Histogram of time taken to dispatch a vehicle relative to obtaining the

patients’ condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.24 Histogram of overall time taken to dispatch a vehicle . . . . . . . . . . . 94

4.25 Histogram of time taken to get on scene from call connect . . . . . . . . 95

4.26 Histogram of actual AEU, FRU and First Arrival Cat A journey time . 96

5.1 Satellite image of a section of London overlaid with Blue Light Road

Network (BLRN) road polylines . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Cullen and Frey graph of GPS distance to the nearest road . . . . . . . 101

5.3 Four Q-Q plots comparing distance-to-road with standard distributions:

Gamma, Gaussian, Log-normal and Exponential . . . . . . . . . . . . . 102

10



5.4 Histogram showing the density of distances, in metres, of GPS fixes to

the nearest road geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Density curves of road and position fix distances between GPS fixes . . 107

5.6 Histogram of transition distances between GPS position fix and road-route108

5.7 Probabilities of obtaining a given number of road links within 50m of a

GPS position fix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 IRLF with varying GPS precision and GPS Fix Interval . . . . . . . . . 119

5.9 Road usage density map obtained from GPS snapping . . . . . . . . . . 123

6.1 Assigning road link + offset from a coordinate . . . . . . . . . . . . . . 126

6.2 Seen route analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Unseen route analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1 Analysis of 69,487 routes showing the density of prediction error . . . . 138

7.2 Metrics I..V 95% confidence intervals for Standard Deviations of Estima-

tion Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 Prediction error density plots for a) Metric V, b) Metric I, c) Metric II

and d) Metric III methods . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.4 AEU and FRU Actual vs. Predicted journey times using Metric V . . . 141

7.5 Predicted journey time error vs Actual journey times using Metric V for

both actual and predicted routes . . . . . . . . . . . . . . . . . . . . . . 142

7.6 Similarity of Estimated vs. Actual route by estimator . . . . . . . . . . 143

7.7 Similarity of Estimated vs. Actual route, using the Metric V by each

portion of the journey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.8 Estimated journey time by distance from the centre of London . . . . . 145

7.9 Spatial Prediction Error Variation . . . . . . . . . . . . . . . . . . . . . 146

7.10 Prediction accuracy of Metric V shown by hour of day . . . . . . . . . . 147

7.11 Journey time error using metric V . . . . . . . . . . . . . . . . . . . . . 148

7.12 Comparison of journey time prediction error using Metric V . . . . . . . 149

11



7.13 Corrected journey time prediction . . . . . . . . . . . . . . . . . . . . . 151

8.1 Prediction accuracy of the HRM . . . . . . . . . . . . . . . . . . . . . . 154

8.2 Spatial variance in the Hybrid Routing Model . . . . . . . . . . . . . . . 156

1 Map-matching example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 165

2 Map-matching example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 166

3 Map-matching example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 167

4 Prediction accuracy by journey time for Metric I . . . . . . . . . . . . . 169

5 Prediction accuracy by journey time for Metric II . . . . . . . . . . . . . 170

6 Prediction accuracy by journey time for Metric III . . . . . . . . . . . . 171

7 Prediction accuracy by journey time for Metric V . . . . . . . . . . . . . 172

8 Journey time error by route distance using Metric V . . . . . . . . . . . 173

9 Journey time error by total road angle change using Metric V . . . . . . 174

10 Journey time error by number of turns using Metric V . . . . . . . . . . 175

11 Journey time error by number of roads using Metric V . . . . . . . . . . 176

12



List of Tables

2.1 Different transition functions used in recent map-matching algorithms . 38

3.1 Ambulance Response Targets . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Average and total length of road links by road type within London . . . 70

4.2 Number of data range for the source data kindly supplied by LAS . . . 71

4.3 Usable Automatic Vehicle Location System (AVLS) data . . . . . . . . . 77

4.4 Number of usable emergency journeys and events extracted from LAS

supplied data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Road type coverage by snapping GPS fixes to nearest road links . . . . 89

5.1 Different transition functions used in map-matching algorithms . . . . . 105

5.2 Particle Filter Map-Matching Parameters . . . . . . . . . . . . . . . . . 114

5.3 HMM/V Map-Matching Parameters . . . . . . . . . . . . . . . . . . . . 120

5.4 Coverage of road types by Hidden Markov Model with Viterbi (HMM/V)

and GPS snapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.1 Average road speeds by road type . . . . . . . . . . . . . . . . . . . . . 129

6.2 Road Speed Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8.1 Blue Light Route Choice Speed Model . . . . . . . . . . . . . . . . . . . 153

8.2 HRM and Corrected Metric V Delta Standard Deviations . . . . . . . . 155

13



1

Introduction

1.1 Summary

A well-established clinical outcome is that shorter ambulance arrival times play a crit-

ical role in the case of emergency patients involved in incidents of high severity [1].

For example, in the UK the National Health Service (NHS) Ambulance services treat

approximately 30,000 Out-of-Hospital Cardiac Arrest (OHCA) patients every year with

a varied resuscitation outcome of between 13%-27%. Survival is low with between 2%-

12% of patients reaching hospital discharge [2]. This trend may be changing, however,

14
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as recent research in Japan shows ever improving outcomes for OHCA patients where

Emergency Medical Services (EMS) personnel witness the arrest [3].

Across the world EMS performance targets are generally based on time-to-scene of

the first responding resource. The UK is no different and has a system performance

target to reach at least 75% of its Category A (immediately life threatening) patients

within 8 minutes [4]. This target is low in comparison to many other countries where the

target is usually 8 minutes for 90% of immediately life threatening cases [5]. Indeed, the

Ontario Pre-hospital Advanced Life Support (OPALS) study [6] calls for a maximum 5

minute arrival time to 90% of immediately life threatening cases.

The use of top-down performance targets based on time of arrival leads EMS to

employ a tactic of sending the nearest available ambulance to the patient [7]. In this

respect, ‘nearest’ can either be interpreted as a Euclidean distance or a prediction of

arrival time based on the road network and vehicle type. Different techniques could

be applied to estimating arrival time by taking into consideration of spatio-temporal

factors, vehicle type, road types, and average speeds. This is a challenging task as the

mobility characteristics of ambulances in their various forms differ from normal civilian

traffic, for example, ambulances travelling under Blue Lights and Sirens (BLS) is by law

[8] exempt from traffic regulations that would otherwise impede progress to a patient.

For example, ambulances responding to a call on BLS are permitted to treat red traffic

lights as a give way sign, are able to pass the wrong side of a keep left bollard and

disobey the speed limit.

The London Ambulance Service (LAS) recognise that efficiency of dispatch must be

improved [9] as the need to have an Emergency Medical Responder (EMR) on scene

quickly is clear. However, LAS arrival time performance for the most serious medical

emergencies has been a long way off the 75% required of it, being somewhere between

58% and 65% for the first four months of 2016 [10].

Recent trends in ambulance operational research have included event-driven sim-

ulation [11, 12, 13] to emulate the urban environment and thus provide a platform
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for researching aspects such as novel dispatch algorithms and on strategic or tactical

placement of emergency vehicles. Similar tools are in use at LAS for the same pur-

pose. However, results produced by these simulations can be significantly affected by

the quality of the ambulance mobility models [14]. Improved models could, therefore,

contribute towards the generation of more effective response strategies and tactics.

1.2 Objectives

In this thesis we address the challenge of accurate routing and journey time estimation

of an ambulance in response to a medical emergency, using London as our specific case

study. By understanding the spatio-temporal dynamics of emergency events and road

network characteristics our main goal is to model and predict ambulance mobility with a

view to enable considerable improvements to the operational efficiency of the emergency

service. To address the challenges of accurate modelling of ambulance response we set

the following objectives:

1. To explore and understand blue-light ambulance mobility, using London as our

case study.

2. To identify if any spatio-temporal relationships exist in ambulance mobility in

London.

3. To develop models that can be used to accurately predict ambulance routes and

journey times whilst travelling with blue lights and sirens.

4. To establish the challenges involved and potential benefits in modelling blue-light

ambulance mobility.
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1.3 Contributions

The following contributions from our research into modelling ambulance mobility in the

London Metropolitan area are:

1. Spatio-temporal analysis of ambulance datasets: Our analysis of ambulance

traces reveals strong temporal and spatial variations in the speed of different types

emergency vehicle. Clusters of activity are also present in larger satellite towns.

2. Creation of the Blue Light Road Network (BLRN): We create road routing

network model specifically for emergency vehicles travelling under BLS conditions

in London. The model represents the road network as perceived by the LAS crew,

who follow different road regulations under BLS conditions.

3. Accurate ambulance speed estimation from low frequency GPS data:

We use a data-driven approach to mine large datasets of emergency vehicle teleme-

try and emergency event data, constructing road speed models that predict travel

times for routes previously undertaken by LAS emergency vehicles travelling with

BLS in London. Furthermore, our best speed model can generate optimal routes

that are quicker, differing from routes currently chosen by their crew.

4. Development of Blue Light Route Choice Model (BLRCM): We produce

a road speed model, BLRCM, designed to predict routes that emergency vehicles

take whilst travelling under BLS in London.

5. Development of a data-driven predictive ambulance mobility model:

By developing a Hybrid Routing Model (HRM) that combines emergency vehi-

cle route choice and accurate speed estimation we demonstrate a routing model

capable of better estimating both route and arrival time for emergency vehicles

travelling with blue lights and sirens in London.
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1.4 Related Work

We have published two related peer-review publication as follows:

1. M. Poulton and G. Roussos, Towards Smarter Metropolitan Emergency Response

in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and

Mobile Radio Communications (PIMRC), 2013, pp. 25762580. [14]

This publication was a pre-cursor to our research work presented in this thesis,

specifically in the development of accurate speed models used in simulation. Tak-

ing the London Ambulance Service as our case study we developed a simulation

framework and introduce an enhanced routing and dispatch method that combines

concurrent assignment and redeployment of units in a single algorithm. We pro-

vide evidence that our unified proactive relocation and dispatch model produces

significant improvements in measured performance in terms of meeting citizen

needs.

2. M. Poulton, A. Noulas, D. Weston, and G. Roussos, Modeling Metropolitan-

Area Ambulance Mobility Under Blue Light Conditions IEEE Access, vol. 7, pp.

13901403, 2019. [15]

This publication provides a summary of the findings of this thesis. We summarised

the data collection, processing and analysis of GPS traces and provide descriptions

of the journey time estimation models we developed. Working on the London road

network graph modified to reflect the differences between emergency and civilian

vehicle traffic, we develop a methodology for the precise estimation of expected

ambulance speed at the individual road segment level. We demonstrate how a

model that exploits this information achieves best predictive performance by im-

plicitly capturing route-specific persistent patterns in changing traffic conditions.

We then present a predictive method that achieves a high route similarity score

while minimising journey duration error.
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1.5 Research Approach

Our main asset was the large volume of historic data kindly supplied by the LAS, so a

predominantly quantitative data-driven approach was employed. By characterising and

cleansing the data available to us, and then through experimentation, we provide the

exploratory precursor prior to formulating our models of emergency vehicle mobility.

Although most of the supplied data relates to non-emergencies, we focus specifically on

the subset of data that relates to the most serious emergencies, as these events stand to

benefit the most from shorter arrival times. Our approach was divided into five distinct

phases; data load and cleanse, route reconstruction, speed model generation, model

evaluation, and development of a new hybrid routing model.

1.5.1 Data Load and Cleanse

The digital road network is a key component in our research and forms the basis of many

of the experiments and models. With the knowledge that emergency vehicles travelling

on BLS have different rules of the road to civilian traffic we modify an industry-standard

road network to produce a BLRN more suited to our needs. This modified network

model was used extensively throughout the research.

Operational data, which included emergency vehicle telemetry, dispatch and emer-

gency event data were loaded, cleansed and initial analysis carried out to characterise

their key features. A standard baseline road speed model was formulated by snapping

historic GPS data to nearest road links. This method gave us insight into the GPS data

quality specific to the LAS and the coverage of the road network.

1.5.2 Route Reconstruction

During the data cleansing process a key discovery was that snapping of GPS observations

to their nearest road segment is insufficient to build a suitable road speed model due to

the sparse nature of the data. We overcome this limitation by reassembling emergency
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vehicle trajectories from raw GPS data in a process known as map-matching.

1.5.3 Speed Model Generation

We introduce five experimental road speed models. One of these models, Metric II,

replicates as far as possible the behaviour of the LAS routing engine which proves useful

in base-lining the predictive capabilities of the routing engine. We used a quantitative

approach to build Metrics III − V in order to capture underlying spatial-temporal

trends.

1.5.4 Model Evaluation

The evaluation of our speed models is targeted at identifying how accurately and pre-

cisely they can predict both ETA and the journey path taken by emergency vehicles

travelling under BLS conditions. Different aspects of the accuracy of routing results

such as spatial, temporal, route and ETA variance are examined.

1.5.5 Hybrid Routing Model

During speed model evaluation we discover that some models are better than others at

estimating the route that a responder will take. We employ optimisation methods to

the best candidate speed model to refine the route prediction. This approach produces

a BLRCM that can be used for accurate route prediction. The Hybrid Routing Model

is a modification to the routing engine that uses the BLRCM to predict the route

and performs a second pass through the estimated route using a different speed model

(Metric V) to calculate the ETA. This use of two speed models improves accuracy and

precision of routing calculations.
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1.6 Thesis Structure

A literature review is presented in Chapter 2 covering subjects such as route planning,

route reconstruction techniques, travel time distributions and route choice modelling

within the emergency services domain. In Chapter 3 we present a more detailed view

of operations at LAS and the performance targets they are obliged to achieve. We

also describe the different operational vehicles along with a description of the on-board

computing capabilities and routing technology in use.

The data received from LAS is reviewed in Chapter 4 with details on how it was

loaded and cleansed. The data is characterised where necessary in relation to emergency

vehicle mobility. We also explain how the BLRN is created. A baseline road speed model

is formulated by the commonly used technique of snapping historic GPS data to nearest

road links. This method gives us insight into the GPS data quality specific to the LAS

and to coverage of the road network.

Chapter 5 introduces two map-matching techniques used to assemble route trajec-

tories from historic emergency vehicle GPS data. Assembled routes provide us with

additional road speed information that can be used to develop enhanced road speed

models.

In Chapter 6 we describe our implementation of a road routing engine specifically

tailored to emergency vehicles and introduce five experimental road speed models built

using output from the map-matching process. This is followed by a description of how

the models are evaluated.

Chapter 7 presents the results of the road speed model evaluation. We explore

different aspects of the accuracy of routing results such as spatial, temporal, route

and ETA variance. As a consequence of our findings during model evaluation we also

describe in Chapter 8 a Hybrid Routing Model for accurate journey time and route

prediction.



2

Literature Review

2.1 State of the Art in Ambulance Mobility Modelling

The study of computational techniques for the effective and efficient management of

EMS resources has a relatively long history [16]. The main focus of research in this

domain has been on the development of models for the placement of EMS facilities

such as ambulance stations, and on strategies for resource relocation so that specific

performance metrics are maximised [17, 18]. These methods typically adopt a static

view of the EMS based on highly aggregate estimates of key performance indicators

22
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such as station utilisation and makes certain restrictive assumptions for example placing

significant limitations on the ability of the EMS to preform ambulance re-assignments

on-the-fly. Moreover, it pays limited attention to the influence of dynamic patterns

of incident generation and changing traffic conditions. This is justified by the main

focus in this domain on the development of resource allocation strategies rather than

on minimising ambulance response time. The following surveys [19, 20] provides a

chronological perspective on the development of research in this area.

Research into the full range of EMS systems has not been surveyed in detail [21].

However, recent research has included data-driven approaches, incorporating empirical

spatio-temporal factors into wider ambulance performance issues such as incident gen-

eration [22], road traffic [23, 24] and real-time vehicle coverage [25, 26]. The focus on

improved clinical outcomes rather than resource allocation optimization is now preferred

due to the wider availability of EMS data [27]. These data-driven approaches highlight

the limitations of historical dispatch strategies, for example, the common practice of

sending the nearest available ambulance to the incident is far from optimal [28, 29].

Indeed, recent work suggests that patient survivability performance can be achieved

through the implementation of sophisticated strategies which take into consideration

spatial and temporal factors [29].

Recent trends in ambulatory operational research have incorporated complex syn-

thetic models employed in event-driven simulation [30, 31, 32, 33] that support a degree

of adaptability to road traffic and incident generation patterns. Nevertheless, when

considering the vehicle routing problem specifically, current literature typically adopts

a traditional optimisation approach [34, 35, 36, 37, 38] such as linear programming

with constraints using tree-based search for shortest path calculations. However, re-

sults produced by these simulations can be significantly affected by the quality of the

ambulance mobility models [14].
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2.2 Travelling with Blue Lights and Sirens

Travelling with BLS can be a hazardous occupation and several studies have set out

to quantify the risks and benefits of this practice. In a North Carolina study of 50

journeys, each undertaken simultaneously by two vehicles, one under BLS conditions

and one without, Hunt [39] found that 76% of journeys were faster with BLS, and faster

by only approximately 10% overall. In a similar study the London Air Ambulance

(LAA) [40] claim vehicles on BLS are more than 50% faster from a cohort of 40 journeys

and recognises that this comes with the price of an increased risk in traffic accidents.

Significant time savings using BLS have been demonstrated in rural areas, with benefits

in urban conditions less clearly defined [41]. A Denmark study [42] including over 400

journeys found a linear correlation between GPS-estimated transport time and actual

transport time, with ambulances arrival time estimated at 0.42×GPSestimate− 0.92

minutes. However a recent contrasting review (cf. Murray and Key, 2017 [43]) suggests

that there are minimal time savings and therefore queries the potential benefits to

patients.

2.3 Route Planning

In the last decade we have seen the introduction of routing engines that can use the

road network as a basis for calculating vehicle routes, such as the Northgate XC routing

product and Geotracker [44] system in use at the LAS. Both engines are able to calculate

routes and journey time isochrones for emergency vehicles. An isochrone is a line drawn

on a map connecting points to which an ambulance can arrive after travelling for a

certain time from a specific point of departure, for example, a boundary can be drawn

around an ambulance describing how far it could travel in 8 minutes from the location

where it was first assigned to an emergency event.

Vehicle routing is a classic graph traversal problem that is typically solved using

a single-source shortest path algorithm on a directed graph consisting of edges and
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nodes. Many algorithms exist [45], such as the well-known Dijkstra’s algorithm [46]

and its subsequent variations [47]. The Floyd-Warshall algorithm [48] is also able to

compute the shortest path time but in its original form does not return the actual path.

The A* algorithm [49] is a widely used fast graph-traversal algorithm. A* performance

comes from an heuristic that expands potentially fewer nodes than Dijkstra. Its use

in real road networks has been studied in relation to ambulances [35] and found to be

faster than Dijkstra [50] as it is able to take advantage of the spatial nature of the road

network. This algorithm is not able to calculate journey time isochrones as it requires

a destination location and so cannot be used in ambulance systems that require this

functionality.

A continuing area of research is in the field of dynamic vehicle routing algorithms

that attempt to solve real-world issues that allow for changes in the road network

condition after the original path has been computed. Dynamic A*, known as D* [51],

was originated by Anthony Stentz and is an incremental real-time replanning algorithm

known to be faster that repeatedly running A*. Several optimised variants now exist

such as Focussed D* [52] and LPA* [53]. D* Lite [54] is based on LPA*, is easier to

implement than the original D* and has found many uses in robotics and automatic

vehicle navigation. In an evaluation of static and dynamic routing algorithms through

simulation Wang et al. [55] found that Dijkstra’s algorithm is the best choice for

centralised Intelligent Transportation System (ITS) and short trips, whereas static A* is

a good choice for long trips and D* where the route needs to be constantly recalculated.

2.4 Real-Time Estimation

Estimating travel times using real-time traffic data has gained considerable interest in

the last few years. Musolino et al. [56] estimates travel routes and times for emergency

vehicles leveraging real-time information gathered from ITS to continually adjust an

internal model of the network cost assignments. The system was designed primarily
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for dynamic assignment of routes in an emergency evacuation scenario. Additionally,

novel methods of traffic avoidance have been investigated, for example the use of crowd-

sourced data has attracted considerable interest[57] [58].

Several online vehicle routing engines exist, such as GraphHopper [59][60], Google

[61], Waze [62], Open Source Routing Machine [63], and TomTom [64]. Online sys-

tems are generally viewed as not suitable for live emergency services operations, mainly

due to resilience of internet connectivity, but do have a use in offline analytics. How-

ever, estimating travel times using civilian travel time data leads to overestimation of

emergency vehicle arrival times [65].

2.5 Route Reconstruction

Map-matching (MM) is the process of route reconstruction from a raw GPS trajectory

where the route is represented as a sequence of connected segments on a digital road

network [66]. Position observations captured from the GPS receiver are matched to can-

didate road segments and the route is reconstructed by inferring intermediate segments

where necessary. In an urban environment both GPS reporting frequency, position er-

rors and quality of road network digitisation contribute to MM performance [67, 68].

The MM process can be performed in real-time [69, 70, 71, 72] or offline mode by post-

processing entire trajectory, also sometimes referred to as global methods. Real-time

methods are best suited to high frequency GPS position fixes where the challenge is

to correctly identify the current road segment and then project the GPS observation

onto it. Real-time methods are a form of Local algorithm that attempt to extend the

known path whereas offline methods are often Global, acting on the entire GPS trajec-

tory to produce the most likely continuous sequence of road segments. Depending on

the frequency of GPS observation a continuously navigable set of road segments is not

guaranteed in real-time MM and so offline MM is generally more accurate [73].

There are at least three main classes of MM algorithm; geometric, topological and
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advanced.

2.5.1 Geometric Map-Matching

Geometric MM algorithms attempt to match GPS observations to the road network

geometry. According to a recent review of MM techniques [74] the earliest use related to

car navigation was a Geometric approach dating back to 1996 [75]. This commonly used

method is a simple search algorithm. In point-to-point geometric MM each observation

is matched or ‘snapped’ to the closest end point of a road segment [76]. This method has

the advantage of being fast, however, accuracy is reduced in urban environments due to

GPS error and the density of the road network [77][78]. In point-to-curve methods the

observations are instead matched to the shape of a road segment [76]. Another approach

is curve-to-curve where the direction and position of the observation is matched to the

shape of a road segment [76][79]. Additionally, distance measures such as the Frechet

Distance [73] are often employed in order to compute the most likely continuous route.

2.5.2 Topological Map-Matching

Topological MM is a natural extension to Geometric curve-to-curve methods in some

respects utilising more information about the road network such as road geometry,

road interconnection information, vehicle heading and speed to find the most plausible

navigable route from a set of candidate road segments [80, 81, 82]. Various optimisations

have been proposed such as leapfrogging GPS observations to reduce the computational

burden [78]. Information Fusion [83] has been used to improve MM results by utilising

historic speed information, adjusting transition probabilities based on the surrounding

speed and other spatial-temporal measures. Matching a GPS position fix to a candidate

road segment on the road network can be performed using just latitude and longitude,

with matching quality improved further using additional sensor information such as

heading [84], GPS precision and elevation information [69].
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2.5.3 Advanced Map-Matching

Advanced MM techniques extend topological MM by employing probabilistic methods

[74]. We give examples of three advanced map-matching algorithms relevant to our

research.

Kalman Filters

Kalman Filters (KF) are often used to estimate the state of a dynamic system based

on input from noisy sensors. Specifically, a Kalman filter is a form of Bayesian filter-

ing algorithm that maintains an estimated state of a linear dynamic system together

with the uncertainty of that state. The estimated state is continuously updated using

observations from sensors and a state transition model implemented as a covariance

matrix.

A nonlinear extension of the KF algorithm, known as the Extended Kalman Filter

(EKF) [85, 86] uses differentiable functions in place of linear functions for state transition

and observation models. Extended Kalman Filters have been used widely for real-time

map-matching, especially when integrating GPS and dead-reckoning systems that make

use of sensors such as odometers, gyroscopes and wheel sensors [87].

Despite these enhancements, KFs and EKFs only support one state belief at a

time as estimated state uncertainty is represented as a unimodal distribution. For the

urban road map-matching problem this restriction implies that observations need to be

frequent and uncertainty needs to be minimal. As a result, multiple sensors are often

employed to reduce error in dead reckoning together with a one second GPS observation

frequency [82, 88]. Successful urban offline map matching has been achieved in central

London using recorded GPS and sensor information from gyroscopes and odometer with

GPS signals recorded every second. The system was able to estimate vehicle position

using dead-reckoning for 100 seconds without GPS during the transit of a tunnel [68].

Similar approaches using map-matching and an EKF to provide sensor fusion have also
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been used for real-time map-matching [89, 90], incorporating complex sensors such as

laser range finders [91].

The Unscented Kalman Filter (UKF) attempts to overcome some of the limita-

tions of the EKF by representing distributions using (deterministic) samples of points

[92]. Nonetheless, it is thought that the use of Kalman Filters in systems that require

nonlinear state transitions are difficult to implement, tune and suffer from numerical

instability issues [93].

Our review of Kalman Filters in the map-matching domain suggests that the use

of Kalman filters in a dense urban environment with infrequent GPS reports, and an

absence of additional dead-reckoning sensor information, are unsuitable for offline map-

matching. The deficiency of sensor information implies a restricted motion model that

is limited in its ability to deal with multiple road junctions that exist in a complex

urban road network. Furthermore, it has been noted that on-line methods applied on

an offline basis generally show poor results [94].

Hidden Markov Model with Viterbi algorithm

A commonly used approach to offline map-matching is the use of a Hidden Markov

Model with Viterbi algorithm (HMM/V)[95, 66, 96, 97, 70, 98, 99, 72, 71, 100]. Given

a set of GPS observations, HMM/V attempts to determine the most likely path of

the vehicle, constrained to the network. The algorithm is divided into two stages.

In the first stage, a HMM trellis, shown in Figure 2.1, is constructed by generating

several candidate road positions, with associated emission probabilities for each GPS

observation in a track. Additionally, transition probabilities are calculated for every

link between candidate road position in the trellis. The second stage uses the Viterbi

algorithm [101] to calculate the most likely sequence of candidate road segments through

the trellis.

Emission probabilities govern the distribution of the observed variable at a particular

time given the state of the hidden variable at that time. More specifically in our context
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Figure 2.1: Viterbi algorithm, finding the best path through candidate hidden
states by using emission and transition probabilities

Several candidates, xk,i, are selected for each GPS observation, yi, and their respective
emission probabilities calculated. A transition function determines the probability of moving

from state i to state j.

the emission PDF estimates the probability density of a GPS position fix, y, occurring

a given distance from the actual location of the GPS receiver, x. The Emission PDF is

used in many map-matching applications and is discussed further in Section 2.5.4.

Transition probabilities describe the probability of transiting from a hidden state,

xt, given the previous state, xt−1. In GPS map-matching the transition probabilities

attempt to estimate the probability of a vehicle transiting between two sequential can-

didate road positions. Transition functions discussed further in Section 2.5.5.

A summary HMM/V of the algorithm is as follows:

1. Obtain observations, y1, . . . , yT in the form of GPS fixes.

2. For each observation, generate a set of candidates, xk,i, constrained by the road

network.

3. Calculate the emission probability, P
(
yi|xk,i

)
, of the GPS observation yi for each

candidate xk,i.

4. Calculate the transition probability between each candidate xk,i and xk,i+1 to
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form the trellis.

5. Use the Viterbi algorithm to determine the most likely path through the HMM.

The Viterbi Algorithm can be used to find the most likely sequence of hidden states

through the Hidden Markov Model, and in the context of map-matching, the most likely

road route that the vehicle travelled along whilst emitting observed GPS position fixes.

This if often referred to as the Viterbi Path.

Formally, the Viterbi path is the most likely state sequence x1, . . . , xT , given the

observations, y1, . . . , yT , initial probabilities πi of being in state i and transition proba-

bilities ai,j of transitioning between state i and j. The Viterbi algorithm is defined by

the recurrence relations

V1,k = P
(
y1 | k

)
· πk1

Vt,k = maxx∈S
(
P
(
yt | x

)
· ax,k · Vt−1,x

)
.

Where Vt,k is the probability of the most probable state sequence through the first

t observations, P
(
x1, . . . , xt, y1, . . . , yt

)
, that have k as its final state.

Newson and Krumm [95] employed an HMM/V algorithm known to work well with

noisy data, achieving a low 0.11% Route Mismatch Fraction for a 30 second sample

rate, which is favourable compared to the GPS transmission interval of LAS emergency

vehicles. Wei et. al. [97] achieved 97.0% at 64 second and 98.89% for 10 second sample

rate using both Newson and Lou(09) [66] HMM/V techniques, adjusting strategies

between each depending on the GPS interval. This approach attained the highest

accuracy in the GIS Cup 2012 [99] amongst all competing algorithms. The Lou(09)

implementation is very similar to Newson except for the addition of temporal weights

on the transition probabilities, derived from speed limit information on the network.

Jagadeesh et. al. [71] evaluated three similar implementations of HMM/V with an

accuracy between 90% and 95% accuracy for 60 second intervals, with lower intervals
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expected to produce better results. Finally, Lou et. al. [100] use HMM/V to achieve

between 95%-100% accuracy on 10 second intervals from GPS-equipped mobile devices

using a simple transition function based on ratios related to road segment connectivity

and an emission function derived from the road network topology.

Particle Filters

The Particle Filter (PF), a term first coined in 1996 by Del Moral [102], is a Monte

Carlo sampling method for performing inference in an evolving state-space model. In

general PFs fall under the category of incremental algorithms. Originating from the

field of robotics, the filter attempts to sequentially estimate the posterior distribution

of internal hidden states given noisy or partial observations using many particles [103].

A generic particle filter, Figure 2.2, consists of an initialisation stage followed by

two stages: a prediction stage and an update stage, that are repeated for each incoming

observation.

Initialise PF parameters

Create initial population

Predict
Resample

Move

Perturb

Measurement
Yt

Update

Figure 2.2: General flow of a Particle Filter
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Prediction Stage - The particle filter predicts the next state using the particles

from the previous step, which collectively form the posterior distribution, and a provided

motion model. The prediction stage consists of these steps:

1. Resample - Samples are drawn from the particles from the previous step such

that the weights can be normalised. This is done by drawing more samples from

heavily weighted particles. This step is only necessary when there are a small

number of highly weighted samples. This is discussed fully in section 5.2.4.

2. Move - A motion model is applied to each particle. This is a dead-reckoning

form of movement without knowledge from any sensors. The selected motion

model depends on the application of the particle filter.

3. Diffuse - The particles are then perturbed in order to maintain diversity in the

state representation.

Update Stage - The update stage takes new observation data and updates the

weights of current particles based on an emission function.

Figure 2.3 depicts how the state model evolves, {Xt : t ∈ T}, through time given

a sequence of observations {Yt : t ∈ T}. Subsequent states, xt, are derived from new

observation data, yt, and the previous state information, xt−1.

x0 x1 x2 x3

y0 y1 y2 y3

Vehicle state

GPS 

observation

...

...

p(y1 | x1)

emission

motion 

model

Figure 2.3: Sequential hidden and observed states of a hidden Markov Process

Consider a generic state space model xt at time t. As the state model is unobserved,

we model the initial state of the system at time t0 by a probability distribution p(x0)

represented by a set of particles. Each particle contains a state and probabilities of being
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in that state. Because the states are assumed to be an unobserved Markov process and

therefore conditionally independent of historic states, we can simplify the probability

of being in state xt as

p(xt|xt−1, xt−2, ..., x0) = p(xt|xt−1). (2.1)

Similarly, the probability of an observation is dependent only on the current state,

and is conditionally independent of previous states such that

p(yt|xt, xt−1, ..., x0) = p(yt|xt). (2.2)

Our aim is to determine the probability of xt, where t > 0, given the previous

observations, y1:t. This can be formulated using the recursive Bayesian equation

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
. (2.3)

Because of our Markov assumption that yt is independent of y1:t−1, the denominator

is constant relative to x. In practice this can be replaced with a constant, α, such that

the recursive Bayesian equation becomes

p(xt|y1:t) = α p(yt|xt)p(xt|y1:t−1). (2.4)

The probability of an observation given a known state, p(yt|xt), is known as the

emission probability. In our case, the distribution of emission probabilities corresponds

to the likelihood of an observed GPS position fix, yt, occurring a given distance away

from the actual GPS receiver, xt. Research has shown that this distribution is non-

Gaussian, with closer fits to Rayleigh and Gamma distributions [104].

Assuming we know the posterior distribution of states from the previous step,

p(xt−1|y1:t−1), we can derive the current prior distribution using the equation defined

by Chapman-Kolmogorov.
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p(xt|yt−1) =

∫
p(xt|xt 1) p(xt 1|y1:t 1)dxk 1. (2.5)

This equation requires the posterior distribution from the previous state and a tran-

sition probability, p(xt|xt−1), which is the probability of transitioning from the previous

state to the current state. The motion model provides a mechanism for determining

these transition probabilities.

Particle filters are useful when the distribution of unobserved states cannot easily

be represented and require non-linear methods. The computational requirements of a

large number of particles can be significantly alleviated using the parallel computing

capabilities of GPUs. Research on a system with up to 128K particles experience

speedups up to 75 times over conventional methods [105].

Several implementations of PFs have been used with some success to perform real-

time MM, and are commonly used to refine position information from GPS and other

sensors constrained to digital maps [106]. Early experiments [107] were run at 2 Hz

on a laptop using wheel sensors in the Automatic Braking System (ABS) to provide

estimated speed and yaw rates as input to a PF, delivering accurate vehicle position

constrained to a digital road map. The system proved at times to be more accurate than

GPS, especially when GPS signals were poor or when the vehicle was turning. Map-

matching performance can be affected by digitisation errors in the digital road network,

and uncertainty of the vehicle position can result from low resolution road maps that

only encode road link centreline geometry [108]. Although a large number of particles

are preferred, a small number of particles (200) were successfully used to perform MM

in a city environment using GPS and Microelectromechanical System (MEMS) input,

generating output solutions at 1 Hz [108]. Particle filter techniques can be used without

map constraints, however, Toro et al. [109] found that using a PF aligned with a digital

map improved location estimation accuracy.

The PF filter can be used for successful MM with high frequency GPS even when
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signals are lost for a short period of time, especially when heading information is still

present [84]. GPS sampling rates of longer than 20 seconds are unfavourable to most

PF implementations [110].

2.5.4 Emission PDF

The causes of GPS positional errors are well known and include items such as atmo-

spheric effects due to the ionosphere and atmospheric pressure, multipath effects (e.g.

from urban canyons, terrain), and inaccurate satellite clocks [111]. The problem of de-

termining GPS position errors and their distribution from a known point is well studied

[112]. The characterisation of the distribution of errors varies from study to study with

most pointing to either Gaussian, Log-normal, Gamma [104] or Rayleigh distributions

[113, 70, 96].

If we observe a GPS position fix, y, for the location of a GPS receiver, x, then the

conditional probability density at y is based on the distance between x and y and is

denoted by p(Y = y|X = x). With reference to the central limit theorem, Diggelen’s

[114] work on Global Navigation Satellite System (GNSS) accuracy found that GPS

errors are approximately Gaussian in nature. It is therefore unsurprising that Newson

[113], Lou [66], Jagadeesh [71] and others use a Gaussian distribution for the emission

PDF on this basis. The Euclidean distance between x and y can be represented as

||y − x||. The Gaussian conditional emission PDF is

1√
2σ2π

e−
(||y−x||)2

2σ2 (2.6)

where σ is the standard deviation. Our two assumptions for the emission PDF are

that a) the PDF is based purely on the distance between observed and actual GPS

positions, and b) the distance based PDF does not vary with the location of x.

Jagadeesh uses a more computationally expensive Great Circle distance, using spher-
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ical geometry, such that the distance between the points is measured as

distance = ||y − x||great circle (2.7)

rather than a Euclidean distance. This is unnecessary because at latitudes of

51°north the difference between Euclidean and Great Circle distance is less than 2cm

for points approximately 50m apart. Other formulations for the emission function exist,

with the normal distribution appearing to be the most popular.

2.5.5 Transition Functions

Transition functions attempt to estimate the probability of a vehicle transiting between

two sequential candidate road positions. For example, the probability would be low if

the speed required to make the transition was excessively low or high [115]. Assuming

that a driver will take the shortest path for any given route, the direction of travel will

be toward the destination [66][70]. In general this means that the vehicle will generally

be travelling in one direction and that the difference between Euclidean and road route

distance will be small.

There have been several attempts to characterise and model transition data in order

to form robust probability functions, see Table 2.1. Earlier work by Krumm [115]

assumes a Gaussian distribution based on the difference between expected route time

and time difference between GPS fixes as their transition function. This was developed

further by Jagadeesh and Srikanthan [70] and Lou et al. [66] to directly use the difference

in distance between GPS fixes and the shortest path between them. Several researchers

instead use an inverse exponential distribution function based on the difference between

the GPS position fix distance [116] and the road route distance [95][96][98][72], each

employing different techniques to solve issues with low probability values experienced

in urban environments or low sampling rates.

Each of these methods have implementation drawbacks. For example, accurate time
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Table 2.1: Different transition functions used in recent map-matching algo-
rithms

Reference Transition function, a(xi−1, xi)

Lou et al.[66], Jagadeesh and Srikanthan [70]
dy
dr

Newson et al.[95] e
− 1
β
|dr−dy |

Raymond et al.[96] e−β|dx|

Koller et al.[98] v1 e
− 1
β
|dr−dy |

Koller et al.[98] v2 e
−β dx

dy

Mohamed et al.[72] e−β|dy−dx|

Krumm et al.[115]
exp[−0.5(δt2i )]∑X
j exp[−0.5(δti,j2)

1. xi ∈ Xi is a set of candidate road positions at time i.

2. dx is the distance between candidate road positions ||xi−1 − xi||.

3. dr is shortest path distance between subsequent candidates ||xi−1, xi||route.

4. dy is the distance between subsequent GPS fixes, ||yi−1 − yi||.

5. δti is the temporal error between actual and estimated traversal between fixes.

stamps are not always available, ruling out the use of the Krumm et al.[115] method.

Distances between fixes can also be large depending on speed or frequency of reporting,

leading to very low probability values as with Raymond et al.[96].

2.6 Travel Time Distribution

Travel time of a known route can be approximated as the sum of the average transit

times for the traversed road segments [117]. In reality transit times for individual

road segments vary, each having a distinct probability density function. The nature of

these density functions varies according the literature, for example Tas et al. and others

[118, 119] assume a Gamma distribution whereas a Gaussian distribution [120, 121, 122]

and Log-normal distributions have also been found to be a good fit [123, 124]. Whilst

characterisation of travel time distributions using Gaussian, Gamma or Log-normal
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distributions might be mathematically convenient, they are not truly representative of

urban travel times. Big data techniques were used by Wang et al. [125], employing an

empirical approach to compute baseline travel time estimates between journeys with

similar origin and destinations using a large volume of historic taxi trip data.

In reality the travel time distributions experienced on the road segments of a jour-

ney will vary. Assuming that the road segment travel times are independent random

variables, Kim [126] proposed that the distribution of transit times for an entire journey

could be estimated using convolution of random variables. An interval travel time (ITT)

was also defined by Gros [127] that attempts to provide planners a best and worst-case

travel time, thus introducing route reliability aspects into travel time prediction models.

Gros proposes that detailed distributions are not required, an important consideration

when accurate empirical distribution of travel times cannot be obtained due to sparse

input data.

Increasing mobility and congestion leads to an increase in travel time variability and

a decrease in reliability. Thus, reliability becomes an important performance measure

for transportation facilities. One hypothesis is that the type of distribution of arrival

times changes depending on the current road conditions. Guessous et al. [128] spanned

theoretical and empirical methods, using point speed values obtained from loop detector

data, to match appropriate theoretical distributions to different levels of services (i.e.

normal, congestion etc.). In their work they considered six distributions; the Log-

normal, Gamma, Burr (extended by Singh-Maddala [129]), Weibull, a mixture of two

Normal distributions and two Gamma distributions. However, they admit that the

technique might not be transferable as traffic conditions change considerably from one

year to the next. This highlights that attempting to fit a distribution might only be of

use in the short term analysis of current traffic conditions.

In a study by Westgate et al. [124] ambulance data was used to predict ambulance

travel times at the trip level instead of the link level. This attempts to overcome the

assumption that estimated travel times on individual links are independent and not
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affected by previous links in a trip. Although travel time distributions calculated at the

trip level are useful, these techniques have limited use in operational environments as

are they not fully equipped to deal with scenarios involving the detail of road networks,

such as large numbers of road blocks and area exclusions due to public events.



3

The London Ambulance Service

The LAS are responsible for providing emergency medical care in London, the capital

city of the UK and the European Union’s largest city. Operationally, the LAS cover the

Greater London area, which is approximately 1,572 km2 in size. The area was home to

8.174 million in 2011, growing to 8.788 million in 2016, contributing 12.5% of the entire

UK population. London is also the most densely populated city in the United Kingdom

with 5,235 individuals per square kilometre.

For those in London who suffered an out-of-hospital cardiac arrest during the year

2014/2015, LAS attended 10,211 arrests and attempted to resuscitate 4,665 of these

41
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patients. Only 9.0% of patients survived to leave hospital, compared with 10.4% in

USA [130]. A key principle for ambulance services is that shorter response time improves

clinical outcome for patients, especially those suffering from heart attacks [130]. Current

research shows that survival rates reduce by 10% for every minute between collapse and

commencement of emergency life support, and that after 10 minutes very few patients

survive [131]. Since 2006 overall survival rates for out of hospital cardiac arrest have

been improving [130], although the exact causes of this improvement are unknown.

It is clear to see that responding quickly and appropriately to cardiac and other

life-threatening incidents is critical for patient survival [132]. However, in London as of

July 2017, it took up to 13.1 minutes to reach 95% of patients in imminent danger of

death, and only 72.4% where reached in under 8 minutes [133].

3.1 Emergency Units

The LAS use several unit types, loosely based on the class of vehicle in use. The entire

operational fleet consists of nearly 400 AEU, over 200 FRU and a smaller collection of

bicycles and motorcycles. Below are listed the main types of unit that are used in the

UK. The range and diversity of vehicle types are indicative of the different response

and treatment requirements. Response units are used and dispatched under different

circumstances, with a combination of unit types often being dispatched to a single

incident.

3.1.1 Ambulance Emergency Unit (AEU)

Ambulance vehicles, Figure 3.1, are the most common vehicle type for most emergency

services. For London, these are generally large modified trucks specially equipped to

deal with a wide variety of medical conditions. The key feature of the ambulance, as the

name suggests, is the ability to transport a patient to hospital and be able to treat them

en route if necessary. Ambulances carry a great deal of emergency medical equipment
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including sophisticated 12-lead Electrocardiogram (ECG), defibrillator, drugs, oxygen

etc. In addition to medical equipment, ambulances are equipped with on board comput-

ing and communications capabilities, providing the necessary infrastructure for digital

communications between crew and dispatch. These capabilities are described further in

Section 3.8.

Figure 3.1: LAS Ambulance Emergency Unit (AEU)
Ambulances are generally crewed by two emergency medical technicians or paramedics and

carry an array of medical equipment suitable for emergency care.

3.1.2 Fast Response Unit (FRU)

Fast Response Units, Figure 3.2, are operational cars fitted with medical equipment,

usually carrying a single paramedic. The FRU fleet rarely carry passengers so their

workflow does not include trips to hospitals. These vehicles carry a subset of equipment

to ambulances and are able to carry out resuscitation, cannulate, provide drugs and

assist in other tasks a paramedic might be called upon to undertake.

3.1.3 Motorcycle Response Unit (MRU)

Motorcycle Response Unit, Figure 3.3, are trained paramedics that are equipped with

motorcycles loaded with medical equipment. These response units are typically used in
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Figure 3.2: LAS Fast Response Unit (FRU)
The FRU is general crewed by one paramedic and carries only limited equipment. The vehicle

is not suited to carrying patients so this vehicle is usually deployed where more advanced
on-scene assistance is required.

specific areas where a motorcycle would be faster, such as city centres where traffic by

motorised vehicle is slow due to congestion. The LAS Motorcycle Response Unit (MRU)

vehicles suffer from dispatch drawbacks as GPS devices and communication computers

are not fitted. Additionally, these vehicles can only carry limited medical equipment.

Figure 3.3: LAS Motorcycle Response Unit (MRU)
These vehicles are used in limited scenarios where assistance is required quickly.
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3.1.4 Cycle Response Unit (CRU)

Cycle responders are trained paramedics that are equipped with bicycles carrying lim-

ited medical equipment. These response units are used in city centres where traffic by

motorised vehicle cannot reach or would be slow in responding, such as parks and large

pedestrian areas. These units, like motorbikes, suffer from drawbacks:

1. They can only carry limited equipment and are unable to carry heavy items such

as a 12-lead ECG.

2. Without GPS , their position is not accurately unknown and cannot be dispatched

automatically.

3. Accurate routing calculations for cycles are more challenging to perform than road

vehicles as these can travel off-road.

Figure 3.4: LAS Cycle Response Unit (CRU)
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3.1.5 Helicopters

The LAA is a charity organisation that have a fleet of two helicopters and access to

several LAS fast response vehicles. The LAA attend some of the more critical incidents

in and around London, and treated 1864 patients in the year 2016 [134]. The majority

of these events were traffic accidents (606), stabbings and shootings (500), and falls from

height (417). The aim of the helicopter unit is to deliver highly trained doctors and

paramedics to critically ill patients in the shortest time possible, and treat the patient

on site. Where necessary the helicopter can also transport a patient to hospital.

Figure 3.5: London Air Ambulance Helicopter

3.1.6 Community First Responder (CFR)

These are volunteer responders organised by many ambulance services. Although not

necessarily trained to the levels of paramedics, the community first responders are able

to deal with minor medical complaints and are able to assist paramedics if the need

arises. In general the CFR has his or her own vehicle and is trained to deliver Cardiac

Pulmonary Resuscitation (CPR), give oxygen, and use a defibrillator.
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3.1.7 Patient Transfer Unit (PTU)

Patient Transfer Unit (PTU) are designed to take non-critical patients to and from care

centres. The crew are not necessarily medically trained.

Figure 3.6: LAS Patient Transfer Unit (PTU)

3.2 Standby Points

In London there are approximately 80 Standby Points that are specific locations where

vehicles and their crew will wait for work. These locations have been selected because

they provide good coverage of London and also for practical reasons such as crew safety

and the ability for crew to obtain refreshments. Under certain conditions considerable

friction is observed between the need to meet strategic targets and positioning tactics.

3.3 Emergency Crew

There are several levels of ambulance crew depending on skill and experience. At the

entry level, the new role of Emergency Ambulance Crew (EAC) has been introduced

that can provide basic life support and support other crew members.
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At the next level, Emergency Medical Technicians and Paramedics are able to deal

with life threatening injuries and illness.

3.3.1 Emergency Medical Technician

An Emergency Medical Technician (EMT) is a healthcare provider trained to respond

quickly to out-of-hospital medical emergencies. In the UK there are four grades of EMT

depending on experience, with the most experienced being able to deliver treatments

similar to paramedics.

All EMTs are trained to high standards and are able to deliver a wide range of

treatments. Crew are able to treat patients suffering from cardiac arrest, trauma to

minor injuries. EMTs are able to deliver drugs, perform cannulation, and provide

immediate life support such as defibrillation and airway management.

3.3.2 Paramedic

Paramedics differ from EMTs in that they are also trained in invasive procedures such as

intubation and needle chest decompressions, to treat tension pneumothorax for example.

3.4 Rosters

A 12-hour shift is typical for EMT and paramedics who work at the LAS. These shifts

normally start at 07:00 and finish at 19:00, relieved by another shift that starts at 19:00

and finishes at 07:00. A single rest break is given during a ‘rest break window’ that

starts some hours after the shift has started. The length of the break varies according

to the length of the shift and is 30 minutes for a shift between 6 and less than 10 hours

and 45 minutes for a shift 10 hours or longer.
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3.5 Performance Targets

Performance targets change according to the politics of the day and vary across the

world. In April 2011 ambulance trusts in the UK were given different targets by the

Department of Health (DoH). The targets were changed such that 75% of immediately

life-threatening incidents must have a first responder arrive within 8 minutes. In addi-

tion 95% of patients must be reached within 19 minutes [4]. Other non-life threatening

incidents were to have locally agreed targets, and in general, must have an ambulance

or first responder arrive within 20 or 30 minutes depending on the severity.

As summarised in Table 3.1, life threatening incidents, known as Category A in-

cidents, are divided into two subcategories, Red 1 and Red 2. Non life threatening

incidents,known as Category C, are divided into four Green subcategories. Category B

incidents no longer exist under the UK reporting system.

Table 3.1: Ambulance Response Targets

Ambulance Response Targets from 2011 until July 2017 [4]

Category Response Notes
Red 1 Response in 8 minutes Cardiac arrest
Red 2 Response in 8 minutes Other life threatening emergencies
Green 1 Response in 20 minutes Blue lights and sirens
Green 2 Response in 30 minutes Blue lights and sirens
Green 3 Assessment within 20 minutes Response within one hour
Green 4 Assessment within 60 minutes

In the last few years the LAS have experienced ever increasing volumes of category

A calls, making up some 40% of all calls. This is a national phenomenon, causing

an increased burden for all ambulance services in the UK. A consequence, in part,

is that this has led to a decrease in the number of ambulances arriving at category

A calls within 8 minutes. Figure 3.7 produced from data supplied by QualityWatch

[10], an independent research programme, shows how the trend of ambulance arrival

times has been steadily declining since 2013. In this challenging environment, the LAS

allow Category C performance to degrade in order to maintain Category A performance
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Figure 3.7: Performance of arrival times for the UK between 2011 and 2015

targets. Evidently, the LAS cannot ignore Category C performance entirely so they are

given some weight in relation to category A calls. In reality, the two performance figures

and targets need to be handled together.

Historically the targets set out by the DoH were designed to take into consideration

the amount of data that can be practically collected by Management Information teams

in ambulance trusts. As with other work cited in the literature review, it would be

possible, although not considered in this thesis, to take into consideration alternative

performance objectives such as:

1. Minimise arrival time to category A. This is what the dispatchers attempt, rather

than just get there within 8 minutes.

2. Minimise arrival time to category C priority incidents where this does not impact

category A performance. This objective has a lesser priority than category A

arrival times as there is currently no financial penalty for not achieving local

targets.
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3. Minimise overall mileage. This increases crew welfare as well as reduce fuel and

vehicle maintenance costs.

4. Minimise number of resources. Significant cost savings can be made by reducing

the number of EMTs on the books.

5. Maximising crew welfare by balancing workloads and ensuring that rest breaks

are taken.

3.5.1 Determining Severity

As part of the initial diagnosis process the call-taker attempts to allocate a Chief Com-

plaint code, which broadly describes what is wrong, e.g. cardiac arrest, fall from height

etc. The call-taker then questions the patients’ condition to obtain a more specific deter-

minant code, using a triage protocol known as the Advanced Medical Priority Dispatch

System (AMPDS). The AMPDS code specifies the nature of the problem, for exam-

ple, the code 2E1 has the description “Allergic reaction, sting or bite with Ineffective

Breathing”. Associated with each AMPDS code is a pre-determined attendance plan

that specifies how many and which type of resources to deploy. For example, a heart

attack or stroke patient will require at least one AEU to treat the patient and transport

them to hospital, and one or more FRUs to assist the AEU crew. Other less urgent de-

terminants could require either an AEU or FRU. The Computer-Aided Dispatch (CAD)

system invokes the dispatch plan by selecting appropriate vehicles and sending dispatch

messages. When responders arrive at the scene they assess and provide any treatment

necessary. Approximately 75% of patients attended to are then transported to hospital

for further assessment and treatment. Once the patient has been handed over to the

hospital staff, the crew are then made available for further assignments. In many cases

the crew are repositioned to a location where there is a higher chance of an incident

occurring within a short distance.
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3.6 Ambulance Workflow

In the UK, callers dialling 999 or 112 are initially connected to one of the national BT

call centres. In turn, medical emergency calls are transferred to one of two call centres

operated by the LAS, each covering a different area of London.

The procedure for taking the call and determining the location and severity of the

call varies is often reviewed and amended. In general, as outlined in Figure 3.8 , the

first stage in the call-taking process is to determine the location of the patient. This

is sometimes aided by a system called Enhanced Information Service for Emergency

Calls (EISEC) [135] that is able to pass the address or location of the caller to the

ambulance control room. The next stage is to determine the condition of the patient

so that an appropriate response can be made. This is obtained in two stages. Using

a standard set of questions the call taker determines Chief Complaint code. This is

further refined to an AMPDS code to define the patient condition more precisely. At

this point the dispatch system can decide which resources (ambulances etc.), if any,

should be dispatched.

The above procedure is being revised in 2018 so that before the location is identified

the caller is asked some initial triage questions such as ‘is the patient breathing?’,

‘is the patient conscious?’. This pre-triage process attempts to identify seriously ill

patients early on in the process. The intention is that these Category A patients have

an ambulance quickly dispatched, as the Chief Complaint and Determinant are not

required to be fully assessed before dispatch is initiated.

Dispatched resources make their way to the incident, and on arrival, treat the pa-

tient. In most cases, attending paramedics and medical technicians will transport the

patient to an appropriate hospital. On arrival, the crew will liaise with hospital staff

and hand over the patient into hospital care. After a short period of time to complete

paperwork the crew will then become available for further work. If transport is not

required then the resources are made available for another event.
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Figure 3.8: Workflow Diagram for an Emergency Incident

3.6.1 Emergency Vehicle State Transitions

The vast majority of emergency dispatches involve AEU and FRU vehicles. This re-

search does not take into consideration placement of defibrillators or any type of respon-

der other than AEU or FRU, such as Cycle Response Unit (CRU), MRU or helicopters

as these are relatively few in number. AEU and FRU unit types adhere to a given state

transition model shown in Figure 3.9 and have similar state transition models. Initially

a vehicle is in a Waiting state. This is true when the vehicle first comes on shift or

when it has completed, or been cancelled from the previous job. When a vehicle is

sent a job from the central dispatch system the vehicle is automatically switched from

Waiting to the Dispatched state. Crew acknowledge receipt of a job assignment which

puts the vehicle into Enroute status. Eventually the vehicle will arrive OnScene, or be

cancelled from the job. This results in state changes to OnScene and Waiting respec-

tively. When vehicles are not busy, i.e. Waiting, they normally return to a standby

point. There is no specific state for travelling to a standby point or being on it.
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Figure 3.9: State transition diagrams for AEU and FRU

AEU have a more complex workflow as, unlike FRUs, they carry patients to hospital.

3.7 Measuring Response Times

Its worth clarifying what is meant by the response time and how it is measured. The

public perception is generally that a response time is measured from the time a call is

received by the emergency service until the time a paramedic arrives on scene. We use

this metric within our simulations. Ambulance services in the UK measure response

times differently according to the severity.

3.7.1 Category A - Red 1 Calls

For category A Red 1 incidents the time starts when the call arrives at the telephony

switch at the ambulance call handling centre. For category A incidents delivered elec-

tronically, the time starts when the call is delivered to the LAS call centre. The clock

stops when the first emergency responder arrives on scene. Specifically, the first response

unit must be either an ambulance emergency unit (AEU), a fast response unit (FRU)

or an approved responder equipped with a defibrillator accountable to that ambulance
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service.

3.7.2 Category A - Red 2 Calls

The rules are slightly different for category A Red 2 immediately life threatening inci-

dents that are not of a cardiac arrest nature. The clock starts with the earliest of:

1. the chief complaint information is obtained or;

2. the first vehicle is assigned or;

3. 240 seconds after the call has been connected to the ambulance service.

This relaxation in clock start gives the call-taker more time to correctly determine

the patients condition.

In January 2015, the UK Secretary of State for Health and Social Care informed the

Government that the Red 2 calls clock start time would be further relaxed for a trial

period in London Ambulance and South West Ambulance services [136]. This changes

the Red 2 clock start time such that the call takers have an additional 120 seconds

allowing up to 3 minutes grace period to dispatch or obtain the chief complaint before

the clock starts. This was increased to 4 minutes after a review had been conducted a

year later. The Health Secretary understood from research carried out by the Director

for Acute Care to NHS England that the tight eight minute deadlines were only being

achieved through creative practice [137]. This is a summary of Directors’ observations

of the practices that ambulance trusts followed:

1. Dispatching resources to a 999 call, under BLS conditions, before it has been

determined what the problem is, and whether an ambulance is actually re-

quired.

2. Dispatching multiple ambulance vehicles to the same patient, under BLS con-

ditions, and then standing down the vehicles least likely to arrive first.
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3. Diverting ambulance vehicles from one call to another repeatedly, so that am-

bulance clinicians are chasing time standards rather than focussing on patients

care needs.

4. Using a “fast response unit” (car, motorbike, etc.) to “stop the clock”, when

this unit may provide little clinical value to the patient (e.g. stroke victim),

who then has to wait a long time for a conveying ambulance to arrive.

5. Very long waits for lower priority (“green”) calls that nevertheless need as-

sessment and conveyance to hospital, and some of which have time dependent

problems.

Some interesting dispatch decisions are stated, such as multiple sending of units

to a single incident, whether the patient requires it or not. Dispatch protocols also

change regularly as management teams grapple with the conflicts of patient welfare,

crew welfare, increasing demand and performance requirements. As of July 2017 the

ambulance targets changed to address these issues under the Ambulance Response Pro-

gramme (ARP) [138], replacing Category A and C with Categories 1-4 where Category

1 is approximately equivalent to Red 1, Category 2 to Red 2 etc. As of 2018 the system

is still being refined.

3.8 Onboard Computing Equipment

Operational vehicles carry on-board computing capabilities that facilitate navigation

and communication between crew and the operations centres. Each vehicle carries

extensive instrumentation that monitors its location and state including equipment

temperature, handbrake position, door open, blue lights, siren, batteries, fuel level and

so forth. The on-board computer, known as the Mobile Data Terminal (MDT), has a

small touch sensitive display accessible to the crew.

This information is periodically relayed to the systems located at LAS headquarters

over multiple wireless pathways including at least two 2G mobile telephony operators
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to ensure resilience and extended coverage as well as IEEE 802.11 when an ambulance

is near a station. Approximately 95% of all data traffic is received within 1 second

of transmission. Retransmissions generally account for less than 1% of the total data

traffic.
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Figure 3.10: On-board computing equipment for AEU and FRU vehicles
The design employs two mobile network transceivers for fault tolerance and a separate GPS

navigation system that is independent of the master computer

Emergency vehicle also carry a Siemens Navigation unit with embedded GPS re-

ceivers, gyroscopes and accelerometers augmented with wheel sensors that measure

speed. The GPS system is capable of reporting accurate position data and provides

navigational assistance even when satellite signals are weak; an essential feature in

built-up environments.

Information sent from headquarters over the data network is used in conjunction

with GPS data by the on-board computer to provide the crew with map-based naviga-

tion, search facilities and details about the patient and the incident.
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All UK emergency services utilise Terrestrial Trunked Radio (TETRA) two-way

transceivers, available as hand-held devices or fitted to vehicles. The devices, capable

of carrying encrypted voice and data, are used by crew to communicate directly with

the LAS Command and Control centre. The transceivers also contain GPS receivers

and transmit location data back to headquarters.

A Siemens navigation system provides routing capabilities and geographic position-

ing information to the MDT. Positioning information is sent via serial link to the MDT

whenever the vehicle is en route to a location such as an incident, hospital, fuel stop or

standby point. The position and status payloads include motion vector and operational

status information. These are transmitted together, and comprise of a Coordinated

Universal Time (UTC) time-stamp, latitude, longitude, speed, heading and operational

status of the vehicle. The format and coding of data packets was designed many years

ago when packets sizes needed to be as small as possible. In order to reduce data vol-

umes, the speed and heading information were encoded and some precision lost. In

addition, position updates only occur when a vehicle starts to move or every 15 seconds

when moving. Speed data is encoded in a 4-bit nibble representing 5-mph increments.

Similarly, heading is also encoded and is transmitted in degrees in 15 degree increments.

Engineering messages are sent from emergency vehicles as and when the need arises

and provide vital information to support staff on the “health” of the ambulance. In

addition, software updates can be pushed to the MDT. Dispatch, status and other

command messages are also sent from HQ to ambulances. These provide the core

method by which the control room dispatch vehicles.

3.9 Computer Aided Dispatch

The LAS operate a Computer Aided Dispatch (CAD) system that facilitates coordina-

tion of emergency pre-hospital care across London. A key feature of the CAD system

is its ability to identify and dispatch suitably skilled paramedics to patients. In many
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cases this is a single ambulance, however, the proper provision of care can demand that

multiple resources be dispatched to a single patient. For example, the most serious of

emergency events, such as cardiac arrest, often require an ambulance and a fast-response

unit to attend.

When operating in automatic dispatch mode the CAD will dispatch a vehicle that

it estimates will reach the patient in the shortest period of time. It achieves this task

by passing a list of available vehicles to a routing engine which returns an ordered list

of vehicles in ascending order of arrival time. A comparison of the results returned from

the routing engine used operationally by LAS from approximately 2008 and a Euclidean

routing engine, used prior to 2008, revealed that in approximately 1 in 8 routing queries

the two systems would return a different vehicle as being the quickest. Although a

detailed analysis was not carried out it is suspected that certain features, such as the

bisection of London by the River Thames, influence the routing results.

For the majority of emergency incidents an expeditious arrival time is not clinically

significant for the patient, as the severity of the patients’ condition in not expected to

worsen over the course of a few minutes or even hours. However, the LAS deal with

several hundred emergencies a day that are serious or immediately life threatening.

These cases are expected to worsen significantly over a short period of time so fast

arrival times are important. It is no exaggeration to state that making correct dispatch

decisions can be a matter of life or death.

3.10 Travel Time Estimation at LAS

There are several systems at LAS that are used for travel time estimation. The first

to mention is the satellite navigation unit within the vehicles. Each vehicle is equipped

with a Siemens navigation unit and controlling computer that is capable of sending

estimates of journey times back to HQ whilst en route to an emergency event. The

Estimated Time of Arrival (ETA) is visible to control room staff and can be used
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to monitor progress of dispatched vehicles. Note that this mechanism is not used to

determine which vehicles are dispatched.

The second source of travel time estimation is the CAD vehicle routing engine based

at HQ. As previously mentioned, the CAD uses the routing engine to obtain estimates

of en route times between two locations using the road network. Internally the engine

employs Dijkstra’s shortest path algorithm using weighted edges based on vehicle type

and road type. The CAD system uses the services of the routing engine when it needs

to allocate or suggest a vehicle for dispatch. The routing engine has tunable weights for

particular road types and does not take into consideration spatial or temporal variables.

Figure 3.11: Screen shot of Geotracker coverage system at LAS
The system displays incident and vehicle heat-maps in real-time, giving controllers the ability
to detect areas of low AEU and FRU coverage. In this image the yellow areas are predicted to
have a high volume of emergency incidents and have no emergency vehicle coverage. Available

ambulances are shown as green circles.

A third routing engine is used operationally within a Graphical Information System

(GIS) called Geotracker (refer to Figure 3.11) that plots AEU and FRU coverage for
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London in real-time. The engine continually calculates an eight minute drive time

isochrone for each available vehicle and plots a heat-map on a map of London showing

overall coverage. This map is especially important for tactical placement of vehicles

throughout the day. In addition, Geotracker calculates vulnerable areas of London

where medical emergencies are likely to occur and have no vehicle in the vicinity. The

Geotracker routing engine is also used for various ad hoc simulations that the service

wishes to carry out from time to time.

Some simulation models use Discrete Event Simulator (DES), such as one used

at LAS, to emulate the behaviour of ambulance systems. Simulations are vital, for

example, as a strategic tool for estimating expected behaviour of new dispatch policies

and must be as accurate as possible if these models are to be relied on. To this end,

emulated vehicles within the DES should move as realistically as possible, travelling

along a similar route and speed that real ambulances would take. It is also important

that the distribution of arrival times for a given journey are as accurate as possible

as Ambulance Service performance metrics are primarily based on arrival times. In

previous research, two different routing engines were used by Poulton et. al. [14] in

ambulance simulations and found that variance in predicted Trust performance varied

depending on the routing engine in use. This is significant in that reveals that the

quality of results obtained from ambulance simulation research is directly affected by

the underlying routing methodology employed.



4

Data Sets

In this chapter we describe the data that was kindly supplied by the LAS. The data

was used throughout the research, required for reassembling journeys, speed model

generation, and in general characterisation of emergency dispatch processes.

The task of handling source data is divided into two sections, a) loading and pro-

cessing of the Blue Light Road Network, and b) loading, processing and analysis of LAS

operational data. Section 4.2 describes the loading and remodelling the road network

so that it can be used for routing emergency vehicles operating under BLS conditions.

Section 4.3 through to Section 4.6 describe how the large volume of historic LAS oper-

62
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ational data is loaded, including emergency vehicle telemetry, dispatch and emergency

event data. Specific attention is paid to the GPS location dataset cleansing and a stan-

dard baseline road speed model is formulated by snapping historic GPS data to nearest

road links. Characterisation of emergency event data is presented in Section 4.7, pro-

viding useful insights into the timing of events that lead up to the dispatch of a vehicle

and its arrival on scene.

The outcomes of the work described in this chapter are as follows a) creation of the

Blue Light Road Network and b) preparation of cleansed emergency tracks. This data

provides the basis of route reconstruction and road speed modelling described in later

chapters.

4.1 Ethics Approval

We applied for London Ambulance Trust Research and Development Approval for per-

mission to access the LAS data for this research topic. Approval was granted by the

Head of Forecasting and Planning at LAS. In addition, we were required to complete

a Confidentiality Agreement. Additional restrictions were put in place by LAS such

that patient-identifiable information was not included in the supplied data. Specifi-

cally, emergency incident data was redacted to remove patient-specific information such

as name, age. Coordinates of incidents were also rounded to the nearest 100m.

In addition to LAS approval, the project was also reviewed and accepted under the

Birkbeck College Ethics Review procedure, conducted by the Ethics Review Committee.

4.2 The Blue Light Road Network

An essential ingredient for our research is comprehensive knowledge of the physical road

network. There are several potential sources of this information such as Open Street

Map [139], Here Road Network data [140] (formerly NavTeq), Tom Tom MultiNet [141]
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and Ordnance Survey’s [142] ITN. We chose to use the ITN layer not just because of

its availability and authoritative source but also this is the dataset that the LAS CAD

system uses for routing calculations.

For our research we modify the standard ITN road network dataset so that it prop-

erly reflects the road network as it appears to the emergency vehicle driver. To this

end, the network is reduced in complexity and minor adjustments made to accommodate

specific rules of the road that apply only to them. This process ultimately optimises

the network for consumption by the emergency vehicle routing prediction models.

The ITN is a dataset available from the Ordnance Survey that provides compre-

hensive information on the UK road network. The dataset contains the road centreline

geometry of 550, 000 km of motorways, roads and urban paths, as well as providing addi-

tional information such as road name, type and nature. The dataset is supplied as a set

of directories containing 515Mb of zipped Geography Mark-up Language (GML) files.

The network information is coded as a vector model containing a set of nodes and edges.

The edges represent sections of roads whereas the nodes serve to link the edges together.

The edges are augmented with meta-data describing aspects such as road name, road

type and any driving restrictions. Road routing information is also attached to network

edges and define additional routing attributes such as: Access restrictions; Bridge Over

Road; Firing Range; Ford; Gate; Level Crossing; Mandatory and Banned Turns; One

Way; Physical Weight and Width Restrictions; Rising Bollards; Severe Turn; Steep and

Very Steep Gradients; Through Route; Toll Indicator and Traffic Calming. Every road

link also includes a geometry object, declared in Well-Known Text (WKT) format [143].

The geometry is typically a multi-line string defining the centreline of that section of

road. All coordinates used within the dataset are specified as Eastings and Northing

within the British National Grid map projection [144], which has a standard Spatial

Reference Id (SRID) of EPSG:27700. Bi-directional roads, where the two lanes are not

physically separated, are represented using a single poly-line that tracks the centreline

of that road. The path traced by the poly-line is not exact and may lie some distance
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from the actual centreline. This is also the case for multi-lane carriageways, only the

centreline of the carriageway may be defined instead of each lane. This feature of the

geometry has implications for the route reconstruction process and is fully discussed

later on in Chapter 5.

4.2.1 Dealing with Level Grades

The road network is complex in that, in the real world, the road network is three

dimensional. That is, there are sections of the road network such as bridges and flyovers,

that lie above the ground level network. The ITN road network implements some nodes

that are shared between different vertical levels of road links, even though it is not

possible to route between all links attached to a node. To overcome this, each road link

also defines a source and destination grade, or vertical level at which the link starts and

finishes. For example, a ramp to a flyover may start at level 0 and finish at level 1,

whereas, the underlying road would start at level 0 and finish at level 0. However, the

ramp and the underlying road may, for the convenience of the ITN network authors,

both terminate at the same node.

Figure 4.1: Sample road section showing shared nodes at different grades

The light green lines show road links at ground level. The lighter blue shows ascending road
links from grade 0 to grade 1. The darker blue shows descending road links from grade 1 to

grade 0. The dark red circles are shared nodes, this does not mean that it is possible to travel
between all adjacent links.
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The example in Figure 4.1 shows an area near London Bridge with an underpass.

The light green lines show roads at ground level. The lighter blue shows ascending road

links from grade 0 to 1. The darker blue shows descending road links from grade 1

to 0. The dark red circles are shared nodes, this does not mean that it is possible to

travel between all adjacent links. By way of example, it is not possible to navigate from

Montague Court to the A3 as the start and end grades are different.

4.2.2 Importing the Integrated Transport Network

The process of loading the network into our database is a fairly complex one. Initially

data files are loaded, without translation, into the database and then post-processed to

produce two database tables. These tables contain the essential information necessary

for road routing.

Loading the Integrated Transport Network Data

As previously mentioned, the road network is supplied as several directories of com-

pressed GML files, where each directory represents a specific area of the UK. The GML

files for London and surrounding areas were loaded. The GML data defines several

object types necessary for the construction of a road network. The objects have a re-

lationship to each other via the use of unique ids and are defined by the schema in

Figure 4.2. The GML files are parsed and database records created. Our database

model implements five tables that mirror the key object types relevant for building the

network. The tables, their content and record counts are as follows:

1. Road - 235,458 records each containing a unique id and road name.

2. RoadLink - 1,320,376 records containing road link information. Each link has

a unique id and references a start and end node. The shape, and therefore the

length of the road link is also encoded as a polyline.
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3. RoadNode - 1,110,591 records containing nodes on the network. Each node has

a unique id and can be referenced as a start or end node by a road link.

4. RoadNetworkMember - 1,243,596 records. These records connect road links

to road names. Many roads in the England have a name and a code, so each link

can potential have a reference to more than one road record.

5. RoadRouteInformation (RRI) - 280,683 records containing specific restric-

tions that may apply to a road link or pair of road links. These restrictions are

necessary for accurate routing. The restrictions are prioritised in the following

order:

(a) One Way - the road link is one way and the direction is indicated within the

RRI data. This restriction applies only to a single road link. This information

is used when loading the road network into memory whilst initialising the

routing engine. If this item is specified on a road link then the internal

directed graph is built with only a single directed link. If this item is absent

then two internal links are generated, one for each direction of travel.

(b) Access Limited To / Access Prohibited To - these items restrict access

in some form. These are ignored by the routing engine.

(c) No Entry - this attribute marks the road link as no entry between the times

given in the RRI. This is ignored by the routing engine.

(d) Mandatory Turn - this is ignored by the routing engine.

(e) No Turn - this is ignored by the routing engine as emergency vehicles do

not obey this road restriction.

The ITN road network for September 2014 was loaded into our research database

as five different tables, one for each entity listed above. Only GML files that covered

the LAS operational area including a 5km buffer zone were loaded as the entire UK
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Figure 4.2: ITN road network schema

dataset was not required. The five ITN network tables are then post-processed in order

to simplify the dataset and prepare it in a way that is suitable for fast loading.

Creating the Blue Light Road Network

The ITN road network is designed for civilian road users, capturing the rules that relate

to them, such as permitted turns and restrictions that are displayed on signposts. We

produce a BLRN, a modified version of the ITN road network that reflects the rules

of the road as seen through the eyes of emergency service drivers travelling under BLS

conditions. Consider a network G = (L,R) where L is a set of road links and R is a

set of routing connections. Each road link, l ∈ L, contains attributes such as a unique

edge id, the physical geometry of the road, start and ending grade and node reference.

Additionally, R is a set of routing connections consisting of ordered pairs of road link

references. Each routing connection, r ∈ R, joins to two road links, such that r = (l, l
′
).

The presence of a connection between road links indicates that it is possible to navigate

from l to l
′
. Refer to an example fragment of a road network illustrated in Figure 4.3

when reviewing the following examples.

Example 1 If drivers are permitted travel along both directions of the main road
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Figure 4.3: Example of a directed road network
Refer to the text for examples of how One Way and No Turn restrictions modify this network.

and also turn into the side road from the main road from either direction then the

following routing information exists: R = {(l1, l4), (l5, l4), (l1, l6), (l5, l2)}

Example 2 If drivers are permitted to turn from the side road to either direction

on the main road then the following routing information exist: R = {(l3, l2), (l3, l6), }

Example 3 If drivers are only permitted to turn left from the side road onto the

main road then the following routing information exist: {(l3, l6)}

The BLRN is built from the ITN road network tables. The first stage reads the

five ITN tables and flattens them into two intermediate tables: ‘StaticRoadLinks’ and

‘StaticRoadNodes’ table. The StaticRoadLinks table is similar in structure and content

to the RoadLink data and also includes a two boolean fields to indicate whether a One

Way routing restriction exists and in which direction it should be applied (i.e. To

or From the direction that the link was digitised). In the second stage the BLRN is

built from the two intermediate tables, expanding each ITN road link into one or two

directional BLRN road links, depending on whether a One Way restriction exists and

also taking into consideration the direction of digitisation. In addition, road link routing

records are also produced for each BLRN road link by finding other road links with a

start node equal to the ending node of the road link. The restrictions a) Access Limited

To b) Access Prohibited To c) No Entry d) Mandatory Turn and e) No Turn are ignored

as these do not apply to emergency vehicles.

This data import process resulted in the population of tables RoadLinkEdge and
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Figure 4.4: BLRN network schema

RoadlinkEdgeLink, with 336, 272 and 249, 959 record respectively. We characterise the

road types by average and total length in Table 4.1. The key features of these aggregates

are that a) the greatest total road length is consumed by local streets b) motorway links

are long compared to other road types c) other road types have similar average lengths.

Table 4.1: Average and total length of road links by road type within London

RoadType Average Length (m) Total Length (km)

A Road 67.7 3,103

Alley 55.9 1,300

B Road 64.0 849

Local Street 76.3 13,165

Minor Road 81.4 2,961

Motorway 436.5 504

Pedestrianised Street 75.1 15

Private - Accessible 60.0 238

Private - Restricted 82.9 3,290

4.3 LAS Data

The data from the LAS is supplied as a set of Comma-Separated Values (CSV) files

containing several datasets, namely a) emergency event data b) activation data (ve-

hicles dispatched to each incident) and c) AVLS data - GPS and status information
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transmitted from emergency vehicles. A summary of the quantities and data loaded is

shown in Table 4.2.

Table 4.2: Number of data range for the source data kindly supplied by LAS

Dataset No. Records From Date To Date

Incidents 7,078,201 2011-01-01 2016-11-01

Activations 6,199,278 2011-01-01 2016-11-01

AVLS Data 392,579,544 2014-03-01 2016-12-31

4.4 Emergency Event Data

The LAS receives thousands of calls a day, most of which become an ‘emergency event’.

Each of these events are prioritised, geo-located and recorded. The Incident CSV files

contain a single row for each emergency event. The file contains the following columns:

� The incident identifier. This is an incrementing number encoding the date and a

5-digit sequential number for that day.

� A UTC time stamp that the call was received by the control room.

� A UTC time stamp that the first resource was dispatched.

� A UTC time stamp that the address of the patient was identified (if any).

� A UTC time stamp that the severity of the patients’ condition was identified.

� A UTC time stamp that the first resource arrived on scene (if any).

� The time delay in attending to the patient

� The category of the incident defined by the NHS (see Table 3.1).

� The severity of the patients condition (see Section 3.5.1).

� The geographical coordinates of the incident.

It can be seen in Figure 4.5 that the number of R1 (imminent danger of death)

incidents is relatively small, and that the most common category is R2 (life-threatening).

We will be dealing predominant with these two categories of incident.
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Figure 4.5: Incidents by LAS Category for the years 2015/6

Category A, which consists of Red 1 and 2, make up nearly half of all incidents.

For completeness we also include a bar chart showing the top 15 chief complaints

by number of incidents, in Figure 4.6. Falls from Height top the list, with chest pain

and breathing problems in the top seven.
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Figure 4.6: Incidents by Chief Complaint for the years 2015/6

Falls account for 11% of all incidents attended to by the LAS. Falls also account for the
majority of trauma cases and death in the workplace.

Moreover, AEU and FRU travel for a specific purpose that is, in response to emer-

gency medical incidents and the temporal and spatial characteristics of such events also

follow particular patterns. These patterns follow the daily, weekly and so on routines of

urban life for example with commuters flowing from the suburbs into the City of Lon-

don in the morning and returning to their homes in the evening. In general, medical



4.5 Activation Data 73

emergencies are more likely to occur at specific times and places in London as depicted

in aggregate in Figure 4.7.
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Figure 4.7: Spatial distribution of emergency incident occurrence

Category A incident occurrence density in London from September to November 2016

4.5 Activation Data

The Activations CSV files contain information relating to dispatch instructions for each

incident. There will be one record for each emergency vehicle dispatched to an incident,

and in some cases dependent on the patients’ needs more that one emergency vehicle is

dispatched to a single incident. The table contains rows, one for each dispatch command

sent to a vehicle. Specifically, the file contains the following columns:

� The associated incident identifier, if any, that the vehicle is attending.

� A UTC time stamp that the resource was dispatched.

� A UTC time stamp that the resource arrived on scene.
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� The callsign of the vehicle. This is a code that the dispatch staff and crew use on

the radio for the purposes of identification.

� The responder type, such as AEU or FRU.

� An approximate position of the vehicle when it was dispatched.
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Figure 4.8: Number of journeys to Category A incidents

Black dots are the number of journeys by ambulances for each month from March 2014 to
November 2016. The Blue line is a fitted line using the LOESS algorithm which is a

non-parametric technique that uses local weighted regression to fit a smooth curve through
points in a plot. The grey shaded area represents the 95% confidence interval.

A basic analysis in Figure 4.8 shows that dispatches to category A incidents for AEU

and FRU has been steadily rising since 2014. A log-normal distribution of trip times

has been observed in several studies and used as a model for predicting travel times

[124, 145]. To explore how closely this holds true for emergency vehicles in London

we use data from the Activations table to plot histograms of log travel times for both

AEU and FRU vehicles, see Figure 4.9. It is apparent that FRUs performing shorter

duration trips than AEU. There are several possible causes for the shorter trip times

for FRU in addition to faster drive times, including better positioning of vehicles or
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selective dispatch. We apply diagnostics in the form of a QQ-plot in Figure 4.10 which

reveals that the log of both AEU and FRU trip times diverges strongly from normality

for shorter journeys, and are approximately normally distributed in the central region.

We also note a slight divergence from the normal for longer trips.
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Figure 4.9: Histogram of trip times for both AEU and FRU
FRUs are shown in blue and AEUs in red. The x-axis is the log-normal of the travel time in

seconds. The FRUs are clearly quicker to arrive on scene than the AEUs.

Not all calls to the LAS emergency service result in the dispatch of a vehicle. Cat-

egory A Red 2 calls were by far the most common type of incident that required an

emergency vehicle. Figure 4.11 shows the split between the different categories of in-

cident. Category A Red 1 calls made up 3% with Red 2 calls making up 84% of all

dispatch requests.

4.6 AVLS Processing

The AVLS CSV files contain data transmitted from the Automatic Vehicle Location

System on board the AEU and FRU vehicles and contains the GPS position and status
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Figure 4.10: QQ Plots of log travel times for both AEU and FRU
The QQ plots of log travel time for both AEU and FRU vehicles indicates that travel times
diverge strongly from normality for shorter journeys, and other journey times approximately

normally distributed. There is also a slight divergence from the normal for long trips.
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Figure 4.11: Activations by LAS Category for the years 2015/6

information. The data consists of timestamped rows, one for each position report sent

from a the vehicle. Specifically, the table contains the following columns:

1. The associated incident identifier, if any, that the vehicle is attending.

2. A time stamp containing the UTC time that the report was received.
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3. The callsign of the vehicle. This is a code that the dispatch staff and crew use on

the radio for the purposes of identification.

4. The fleet number of the vehicle. This identifies a specific vehicle.

5. The vehicle type, such as AEU or FRU.

6. The latitude and longitude of the vehicle as reported by the GPS unit.

7. A status code such as On Scene, En route, Available etc.

8. Vehicle speed reported by the GPS unit to the nearest 5mph.

9. The heading, in degrees from true north in 15 degrees increments.

In total 392, 579, 544 AVLS status records were collected by the LAS during the

period March 2014 to December 2016. This data contains information relating to the

position, type and status of the emergency vehicle and originates from several different

vehicle types. These vehicles transit from various operational states, such as Off Duty,

At Station, At Hospital etc. Our study is restricted to AEU and FRU vehicle types

that are en route to a life-threatening emergency incident and so the AVLS data must

be marked to identify those journeys. This AVLS dataset is augmented with a ‘process’

flag such that the flag is set to true when:

1. The vehicle type is an AEU or FRU, other resource types were ignored.

2. Vehicle status is en route to an incident, i.e. in En-route status.

3. Vehicle was attending a Category A incident.

Table 4.3: Usable AVLS data

To Process No. Records % of total

AEU/FRU en route to Cat A 71,542,467 18.22%

Others 321,037,077 81.78%

Table 4.3 shows that a significant number of records were removed, with only 18.22%

GPS observations remaining from the original dataset. The processing pipeline then

constructs a single record for each journey. This is achieved by populating the dataset
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IncidentRoutes from the AVLS data by grouping the AVLS data by callsign, incident

Id, and vehicle type. Table 4.4 shows that we have over 2.3 million journeys attending

1.3 millions Category A emergency events.

Table 4.4: Number of usable emergency journeys and events extracted from
LAS supplied data

Description No. Records

AEU/FRU journeys 2,311,661

Cat A Incidents 1,367,649

Resources per Incident 1.69

4.6.1 AVLS Data Quality

As depicted in Figure 4.12 a relatively steady flow of GPS data was received throughout

the sample period. The month of May 2014 saw more GPS traffic than usual. The LAS

archives show that weekend of 17-18th May was one of the busiest for the Service since

records began, with Sunday 18th May being the sixth busiest day ever.

Figure 4.12: GPS fixes per month
Histogram depicting the number of GPS messages from all LAS vehicles between 01 March

2014 and 01 March 2015. The number of messages remains relatively steady at around 20 M
messages per month.
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We found several issues with the raw AVLS data that needed to be addressed before

it could be used for route reconstruction. Some of these artefacts are generated by

human error, such as delayed button presses by crew, and some generated by the system

mainly originating from poor mobile data communications. We summarise the errors

and our corrective action as follows.

Incorrect States

From interviews, we assessed that changing to and from En-route status is not com-

pletely reliable. On occasion, it appears that the crew forget to press the On-scene

status for some time or that the signal was not received by HQ correctly. This impacts

the calculated journey times and is responsible for many outliers in our data.

GPS Sample Rates

It is important to determine from the raw GPS data how often position reports were

being sent. The GPS data was first grouped into individual tracks, by grouping records

by incident and callsign. The tracks are collected as an ordered set of GPS position

reports for each journey that a vehicle undertook. This data was selected from filtered

GPS data so only included AEU and FRU en route to category A incidents.

This reporting frequency analysis was generated by the MapMatcherManager mod-

ule (AnalyseTrackSpeeds method) within the software developed for this research. As

can be seen from Figure 4.13, most reports come at 15 second intervals. Other notable

frequencies are at 0, 10 and 20 second intervals. Further investigation into the cause of

these smaller peaks revealed that this is due to the transmission of status information

from the MDT to HQ. Internally, the MDT only polls the attached GPS unit once every

15 seconds. If the crew press a status change button then the MDT sends the status

request with stale position information it cached during the last poll.
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Figure 4.13: Time duration between subsequent GPS fixes

The histogram shows that most GPS fixes are spaced at 15 second intervals with other
observed peaks at 0, 10 and 20 second intervals. The cause of these minor peaks at 10 and 20

seconds is due to additional status reports other than those generated by the GPS.

Duplicate Records

In addition, there appear to be several cases where multiple reports arrive together at the

same time, either with different position information or duplicate position information.

One source of the duplicates is thought to originate from the on-board computer which

detects a network failure and transmits the same packet on the backup 2G network.

Duplicate packets are discarded such that only unique records exist for each track.

Track Cleansing

We collate GPS positions into tracks representing each journey, in preparation for con-

version into routes. On average each journey consisted of 101 GPS position fixes. Due

to the quality of the original data, several filter conditions are applied to remove sus-

pect fixes from a track. The filtering process moves sequentially through the fixes in

the track looking for the following possible error conditions.
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1. Corrupt Coordinates - from the cohort of AVLS messages 2,439 were corrupt

and could not be converted to British National Grid coordinates (EPSG:27700).

2. Too Close in Time - if the time interval between two sequential fixes is less than

tfmin seconds then the later fix is removed from the track.

3. Too Close in Distance - if the distance between two sequential fixes is less than

dfmin metres then the later fix is removed from the track.

4. Duplicate - if two sequential fixes are identical in location, heading and speed

then the later position fix is removed from the track.

5. Initial Movement - Often a vehicle will be stationary at the time the status

changes to Enroute. The heading information is unreliable at zero and low speeds

so by removing the first nfskip fixes we allow the heading information to settle. We

find that 3 is a suitable number for the nfskip parameter.

6. Excessive Estimated Speed - Incorrect/corrupt timestamps significantly affect

estimated speeds. An estimated speed is calculated between sequential fixes and

if this is found to be greater than vfmax m/s then the track is discarded.

The pseudo-code in Algorithm 1 describes how the track fixes are processed such that

all remaining fixes conform to the above filtering conditions. In total, 365,068 (15.8%)

‘bad’ routes were identified out of a total of 2,311,661 emergency routes between 2014-

03-01 and 2016-11-29. The bad routes were defined as any route with fewer than 4 fixes

or where the estimate speed between any two fixes exceeded 80 mph.

4.6.2 AVLS Analysis

Temporal Distribution of Speeds

The routing engine in use at LAS does not have the capability to alter its speed profile

based on the time of day. To test whether road speed did in fact change temporally we

average the en route road speeds for both AEU and FRU for each hour of the day. The

results are shown in Figure 4.14.
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Algorithm 1 Procedure to clean a track ready for map matching

1: procedure Cleantrack(track, nfskip, v
f
max, t

f
min, d

f
min)

2: last = NULL;
3: filteredTrack = EMPTY ;
4: for fix ∈ track do
5: if last 6= NULL then
6: if IsDuplicate(last, current) then
7: continue;
8: end if
9: if DistanceBetween(last, current) < dfmin then

10: continue;
11: end if
12: if TimeBetween(last, current) < tfmin then
13: continue;
14: end if
15: if SpeedBetween(last, current) > vfmax then
16: returnfailed;
17: end if
18: end if
19: filteredTrack.Add(current)
20: last← current
21: end for

// remove ‘skip’ records from the front of the list

22: filteredTrack = filteredTrack.Skip(nfskip);

23: end procedure
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Figure 4.14: Average road speeds throughout the day for AEU and FRU re-
source types

It can be seen from Figure 4.14 that the road speeds fluctuate throughout the day

for AEUs between approximately 24-32 mph, and FRUs between approximately 28-34

mph. In general, the pattern of fluctuation is the same for each vehicle type, with the

difference in average speed of 2 and 5 mph between AEU and FRU at any given hour.

AEU are, on average, slower than FRU for any given hour, probably due to the size and

weight of the vehicle. Two troughs in speed can clearly be seen at the London morning

(06:00-09:00) and evening (16:00-19:00) rush-hour times. A slight improvement in road

speeds through the day time period can be seen, and a significant increase throughout

the night.

We conclude from this that the speed profile of vehicles is significantly dependent

on time of day and that routing calculations must take this into account.
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Spatial Distribution of Speeds

The map showing the speed distribution in London is presented in Figure 4.15. The map

was produced by plotting the average speed of en route vehicles from GPS observation

grouped within 500x500m tiles. Speeds are clearly depressed in the centre of London,

gradually rising towards the suburbs.

Figure 4.15: Average speed of en route vehicles across London
This is a 3D plot of GPS speeds reported by vehicles en route to an incident. Speeds are
aggregated by 500x500m tiles across London. A marked dip in the 3D plot of GPS speed

observations demonstrates how the centre of London is affected by congestion.

The map shown is produced in Figure 4.16 by plotting the number of GPS points

within 500x500m tiles, demonstrating that the area around centre of London is the bus-

iest for emergency medical vehicles. There are a number of minor peaks that correspond

to large towns within London. The contrast in shape compared to speed map highlights

the difficulties the LAS face, with the lowest speeds in the busiest areas.

4.6.3 Assessing Road Coverage

Following on from the data cleansing we investigate how historic GPS and telemetry

data can be used to build a basic road speed model for emergency vehicles in the

London area. The first question to answer is whether we have sufficient data covering

the geographic boundaries of London as this will inform as to whether certain areas or
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Figure 4.16: Number of GPS observations of en route vehicles across London
This is a count of GPS observations aggregated by 500x500m tiles across London. The peaks

represent busy areas of mobility, occurring mainly in the centre of London.

different road types will have lower or higher quality data associated with them.

GPS Snapping

In order to assess the BLRN coverage, i.e. the percentage of roads within London that

can be associated with a GPS position fix, we take every AVLS record from the 2.3

million remaining cleansed records and identify its nearest road. To achieve this we

use a two-step process. First we use a primary filter to determine nearby road links.

Second, we calculate which of those road links is the nearest to the GPS fix. Note that

each GPS fix is taken in isolation and has no knowledge of previous fixes from the same

vehicle.

The detail of the process is as follows. The road link geometries for London are

first indexed using a Quad tree [146]. Each rectangular quad tree cell within the index

contains references to road links that are contained within or cross its bounds. We use

the quad tree index as a primary filter to identify candidate roads within 100 metres of

a given GPS position fix. Note that we are locating these roads using the road shape

rather than their start or end nodes as this allows us to find long roads that may be

several hundred metres and long whose end-points are not necessarily within 100 metres
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of the GPS position fix.

The nearest candidate road to the GPS position fix is determined by calculating

shortest distance to each road poly-line using a distance operator. The distance oper-

ator is capable of determining the minimum distance between our input GPS position

fix and a road shape. We used the NetTopologySuite library Distance operator in our

implementation, which uses straightforward O(n2) comparisons for distance calcula-

tions. Figure 4.17 shows how the accumulation of unique road links over time increases

coverage of the BLRN with gradually decreasing increments. Using this method we

calculate that approximately 63% of the road network in London has one or more GPS

fixes associated with it.
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Figure 4.17: Accumulation of BLRN coverage using GPS snapping
Approximate accumulation of roads traversed by AEU and FRU over time.

To gain insight into the accumulation of unique road links over time we use the R

stats::lm method [147] to fit a linear model of unique road links to the log transformed

month number. This model can be used to predict the number of unique road links

that could be accumulated over time. In figure 4.18 we again plot the number of

unique road links and additionally overlay the predictive model for a period of up to 60
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months. There are approximately 336, 000 road links in London, so the model offers a

coarse prediction that it could take approximately 3 years data to achieve 72% coverage

(242, 000 road links) and 4 years for 75% coverage (251, 000 road links) of the London

road network.
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Figure 4.18: Accumulation of BLRN coverage using GPS snapping
Extrapolation of accumulated unique roads traversed by AEU and FRU over time. The

extrapolation was calculated by fitting linear model of unique road links to the log of the
month number. The model indicates that at least 3 years worth of data is necessary to cover

approximately 72% the BLRN, increasing to 75% after 4 years.

Road Selection Errors

The causes of GPS positional errors are well known and include items such as atmo-

spheric effects due to the ionosphere and atmospheric pressure, terrain, and inaccurate

satellite clocks [111]. London’s tall buildings and relatively narrow streets (known as

urban canyons) play a large role in reducing GPS accuracy by obscuring satellite sig-

nals, causing a lack of visibility to an adequate number of satellites. Tall buildings with
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reflective surfaces, such as those constructed of steel and glass, also create multipath

effects which disrupt GPS accuracy.

Figure 4.19 illustrates how road snapping can sometimes select an incorrect road,

especially where a GPS position fix happens to occur near a road junction. Any jour-

ney undertaken by an emergency vehicle will only have GPS position reports every 15

seconds. Travelling at a speed of 30mph will result in position reports approximately

every 200m. From Table 4.1 we can see that the average length of each road link, except

for motorways, is considerably less than 200m. We infer then that several road links

will be missed and this is also clear from Figure 4.19. London has a dense road network

which inevitably means that simple road snapping cannot be used reliably for accurate

selection of the correct road link.

Figure 4.19: Sample route by road link snapping

Sparsity

We assess the sparsity of the AVLS data using simple GPS snapping to determine

the proportion of London’s road network that was covered during the sample period.

Table 4.5 lists for each road type the number of road links and the percentage of that

road type in the network. The last two columns show the number of GPS position fixes

that were snapped, and what percentage of coverage this gives us for that road type.

It can be seen in Table 4.5 that 86.49% of A roads have a GPS hit, however this only
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corresponds to 13.62% of the total number of road links on the network. Similarly,

local streets account for 51.33% of the overall network with only 67.79% having an

associated GPS position fix. In total, only 65% of the BLRN is covered when using the

GPS snapping method.

Table 4.5: Road type coverage by snapping GPS fixes to nearest road links

Road type Total Links % roads Fixes GPS %

A Road 45,788 13.62 39,601 86.49

Alley 23,249 6.91 6,410 27.57

B Road 13,259 3.94 9,753 73.56

Local Street 172,615 51.33 117,021 67.79

Minor Road 36,352 10.81 25,990 71.5

Motorway 1,154 0.34 897 77.73

Pedestrianised Street 204 0.06 161 78.92

Private - Accessible 3,968 1.18 2,120 53.43

Private - Restricted 39,683 11.8 16,669 42.01

Total 336272 218622 65.01

By plotting the GPS fixes, shown in Figure 4.20, we can also visually inspect the

density pattern across London. The plot shows how frequently roads in London are

travelled, indicated by the darkness of the roads. Arterial routes are clearly marked,

and are used over and above other types of road as a key means of transport.

4.7 Call Flow

This section analyses some of the timing characteristics of the various stages in handling

an emergency event. As previously described, the general process in handling emergency

calls during the period 2015-2016 is to first determine the location of the caller, then

determine the patients’ condition prior to sending a vehicle if required. In practice, the

dispatch of a vehicle can actually occur early on during the process of determining the

patients condition. These key timing marks are present for each emergency event in

the supplied incident data. This research is focused on category A emergency vehicle
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Figure 4.20: Road usage density map obtained from GPS snapping

journey time so we analyse only those incidents in this section. Remember that category

A performance is measured from call start to arriving on scene so it is important to

understand the timing of the steps that lead up to dispatch of a vehicle. In reality

the amount of time a vehicle has to reach the patient is less than 8 minutes as several

minutes may have already been elapsed in assessing the patients location and condition.

Timing information was present for each incident record in the form of a date and

time stamp that the call arrived, and several integer columns within the original dataset

that are offsets in seconds that a particular event occurs. These timing marks are as

follows:

1. T0 - Call Connect - Date and time that the call was received at the call centre.
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2. T1 - Call Start - Number of seconds to answer the call.

3. T2 - Time the patients’ location was confirmed. For the period covered by our

dataset this is the first step in the process and is completed by the call-taker.

4. T3 - Time the patients’ Chief Complaint was determined. This again is completed

by the call-taker.

5. T4 - Time the patients’ Determinant (Patients condition or AMPDS code) was

determined.

6. First Dispatch - The time that the first vehicle was dispatched. This normally

occurs after both the location and the Determinant have been obtained.

7. First Arrival - The time that the first vehicle arrived on scene (which may be

different from the first vehicle dispatched).

The first step in the call flow is to obtain the patients’ location, the time taken to

achieve this captured as T2− T1. The histogram shown in Figure 4.21 shows how long

it takes to do this. We estimate the parameters for a Log-normal curve using Maximum

Likelihood Estimation (MLE) via the R package fitdistrplus. This package estimates

that determining the patients’ location has an approximately Log-normal distribution

with the mean log of 3.81 and a log standard deviation of 0.83. The quantiles reveal

that it takes over a minute (72s) to obtain the location for 75% of the calls and over 3

minutes (204s) to obtain the location for 95% of calls.

Once the patients’ location has been identified, the call-taker’s next step is to de-

termine the patients condition so that appropriate treatment can be deployed. As

previously described in Section 3.6 this stage consists of two steps. The first step is

to identify the general condition of the patient (Chief Complaint). In the second step

questioning continues until the call-taker establishes the dispatch determinant. The

time taken to obtain the Chief Complaint and Determinant (AMPDS code) are plotted
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Time taken to confirm the callers location
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Figure 4.21: Histogram of time taken to confirm the patients’ location

The duration is measured as the timespan between call start (T1) and location confirmation
(T2). The eight minute target is also drawn (vertical red bar) as a frame of reference.

in Figure 4.22. The times are measured from Call Start and so also includes time taken

to determine the patients’ location, illustrating that obtaining the patients’ condition

and location can take several minutes to complete.

The action of dispatching one or more vehicles to a patient can be triggered at any

time during the process of obtaining the patients’ condition. The AMPDS protocol is

designed to quickly assess the severity of the patients’ condition such that dispatch can

occur, if required, before a specific AMPDS code is determined.

Figure 4.23 shows the density plot of time taken to dispatch a vehicle relative to

completing the AMPDS assessment. The data reveals that this is possibly bimodal in

nature. Negative values on the left of the curve indicate that first dispatch time is often

before the determinant is obtained. This because the Service can dispatch a vehicle as
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Figure 4.22: Smoothed histogram of time taken to get the patients’ condition

Two plots show the time taken to obtain the Chief Complaint and Determinant. Times are
measured from Call Start. The initial delay is taken up by first identifying the patients’

location.

soon as the patient is known to be critically ill, which is often known well in advance

of obtaining a full AMPDS code. The right hand side of the curve represent delays in

dispatch after the full AMPDS code has been determined. Delays are most likely due

to unavailability of vehicles. The density is approximately symmetric from which we

can draw the conclusion that the benefits of early identification of a serious condition

are balanced by unavailability of a resource to attend scene.

The pre-dispatch delays are summarised in Figure 4.24 and show that, when you

take into consideration the delays in identifying the patients’ location, condition and

other operational situations, that the overall delay in dispatching a vehicle to the most

critically ill patients can be up to 175 seconds for 75% of cases. This significantly

impacts on the total time available for a vehicle to arrive on scene if attempting to hit
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Figure 4.23: Histogram of time taken to dispatch a vehicle relative to obtaining
the patients’ condition

Time taken to dispatch a vehicle for Category A
 events measured from call start
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Figure 4.24: Histogram of overall time taken to dispatch a vehicle
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a target of 75% vehicle arrival within 8 minutes from call connect.

Time taken to arrive on scene from call start
for Category A events for Year 2016
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Figure 4.25: Histogram of time taken to get on scene from call connect

Figure 4.25 shows the distribution of arrival times for category A calls. Hospital

transfers which were also included in the data are excluded from this analysis as these

events occur outside of the standard 999 call workflow. Recall that performance targets

for Category A incidents for the year 2016 were set to 8 minutes for 75% of incidents

and 19 minutes for 95% of incidents. Only 61.43% of incidents were attended to within

8 minutes. For a different perspective, the 75% of arrivals took up to 10 minutes. The

19 minute target was met as 95% of incidents were attended to within 18.27 minutes.

Figure 4.26 shows a breakdown of journey time, i.e. from dispatch to arrival, for

both AEU and FRU vehicles. FRUs are more that three minutes faster when measured

against the 75% quantile. In many cases multiple vehicles are sent to a single incident

for both for clinical and performance reasons. Multiple crew are often dispatched where

more that two technicians are required to treat the patient. Additionally a vehicle can be

diverted from lower priority work, at the discretion of the dispatcher if they feel that this

vehicle will arrive sooner than any other vehicles dispatched. These performance metrics
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Figure 4.26: Histogram of actual AEU, FRU and First Arrival Cat A journey
time

Histogram of journey time for individual journeys in AEU and FRU vehicles. Additionally,
First Arrival is also plotted which is from the incident perspective, i.e. how long from the first
dispatched vehicle to the first vehicle to arrive. It must be noted that the first vehicle to arrive

might differ from the first vehicle dispatched.

show that a large proportion, roughly a third, of the allocated eight minute target is

consumed by verifying the patients’ location and condition, with the remaining time

consumed with travelling to the patient. Significant reduction in travel time is achieved

by allocating multiple vehicles to a single incident.
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Route Reconstruction

We use the technique of map-matching to re-assemble the entire route taken by an

emergency vehicle from GPS observations, from which we estimate vehicle speeds along

road links not captured from GPS road link snapping.

From cleansed GPS and BLRN information we estimate the initial parameters nec-

essary to run our two candidate map-matching techniques. Evaluation of reconstructed

routes is performed on synthetic routes, and parameters subsequently refined using those

routes. Finally, we map-match our entire historic GPS data to produce a database of

reconstructed journeys carried out by emergency vehicles on BLS. Our results show that

97
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the HMM/V algorithm was most suited to the task of map matching with urban low

frequency GPS position fixes.

5.1 Map Matching Parameter Estimation

Two candidate map-matching algorithms are considered for route reconstruction: a)

Particle Filter and, b) Hidden Markov Model with Viterbi. Refer to Section 2.5.3 for a

description of these algorithms. Both require several tuning parameters and selection

of appropriate Probability Density Functions (PDF) that govern their behaviour and

accuracy of matching. We describe briefly the parameters used by the two algorithms:

1. Emission PDF, p(y|x) - Estimates the probability density of a GPS position fix,

y, occurring a given distance from the actual location of the GPS receiver, x.

2. Transition Probability, a(xi−1, xi) - Estimates the probability of transitioning

from one state, xi−1, to the next, xi. In map-matching a ‘state’ refers to the

location and discrete motion vector of a vehicle.

3. Road Geometry Range, dgeom - Used when locating roads nearby to a GPS

position fix. This parameter determines the maximum distance, in metres, that a

candidate road can be from a GPS fix.

4. Maximum Routes, nrmax - Determines the maximum number of candidate

routes to be considered between sequential GPS fixes. Only used in HMM/V.

5. Number of Particles, np - Determines the number of particles to generate. Only

used in the PF algorithm.

6. Re-sample Cutoff, ncutoff - This is a threshold parameter that triggers regen-

eration of particles. Only used in the PF algorithm.

7. Max Candidates, ncmax - The number of nearby road positions to consider for

each observation.
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5.1.1 Emission PDF

The Emission PDF estimates the probability density of a GPS position fix, y, occurring

a given distance from the actual location of the GPS receiver, x. From the candidate

emission functions described previously in Section 2.5.4 none take into consideration

that we are attempting find an emission probability for a vehicle constrained to a digi-

tal representation of the road network. The GPS receiver antenna on most emergency

vehicles is located centrally along the longitudinal axis of the vehicle. The polylines

defined in the BLRN describe only the approximate layout of the road, and not the

physical geometry. For example, a single bi-directional carriageway, known as an S2

road, is represented by a single polyline that tracks the centre-line of that carriage-

way. Central reservations, median lines, bollards and other obstacles are dealt with by

splitting the polyline into two directions of travel as shown in Figure 5.1, item A.

Figure 5.1: Satellite image of a section of London overlaid with BLRN road
polylines

Label A) shows how islands, central reservations (or median strips) are represented with a
polyline dividing into two sections around the island and then merging back into a single

polyline. B) It can be seen in this section that the polyline is not always accurately positioned
over the road centreline.
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The lines are annotated with metadata indicating whether it allows one-way or

bidirectional travel. Although there are no standard road widths in the UK, a typical

S2 road can vary between 4.5 and 7.5 metres in width, with traffic flowing on two

opposing lanes. As the vehicle will be generally on the left or right lane depending on

the direction of travel, we can expect the physical location of the GPS receiver antenna

to be offset from the centreline of the physical road by several metres. Additionally,

the accuracy and quantity of coordinates captured by the digitisation process will add

further differences between the physical and digital representations of the network, as

shown in Figure 5.1 item B where the digital centreline is some distance from the physical

centreline. Because of the differences between the physical road network and its digital

representation in the BLRN we expect to find a non-Gaussian emission distribution of

observations.

We can easily compare our existing large dataset of GPS fixes to the geometries

contained within the BLRN to get a general insight into how close GPS fixes are to the

digitised road centrelines. The distance from a fix to the nearest road segment in the

BLRN can be calculated by extracting all lines for each road segment in the BLRN and

then finding the line that has the minimum distance to the fix. The distance from a

point to a line can be calculated by rearranging the formula for the area of a triangle

to yield the height, h, as follows:

h =
2A

b
, (5.1)

where A is the area of triangle calculated using the coordinates of the point and line

endpoints, and b is the length of the line. The height, h, is the shortest distance from

the point to the line.

One million GPS fixes were extracted from the AVLS dataset and associated dis-

tances to the nearest road calculated. A Cullen and Frey graph [148] can be used to

visually compare the skewness and kurtosis of several univariate parametric distribu-

tions against our data. Figure 5.2 is a bootstrapped Cullen and Frey graph using the
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Figure 5.2: Cullen and Frey graph of GPS distance to the nearest road
The position of the large black dot (Observation) relative to the distribution lines visually

represents how well the DistanceToRoad data fits these theoretical distributions.

GPS Distance-to-Road data. It gives insight into whether our approximation of the

distribution P (Y |X) is similar to one or more standard unimodal distributions. The

black dot (observation) lies outside the range of possible distributions which indicates

that none perfectly fit the data we obtained.

Further exploration can be achieved by using Q-Q plots for common probability

distribution comparisons. Figure 5.3 compares the Gamma, Gaussian, Log-normal and

Exponential distributions with our distance-to-road data. The Q-Q plot is constructed

by plotting empirical quantiles (black dots) on the Y-axis against their theoretical coun-

terparts on the X-axis. The red line on each graph is fitted through the 1st and 3rd
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Figure 5.3: Four Q-Q plots comparing distance-to-road with standard distribu-
tions: Gamma, Gaussian, Log-normal and Exponential

All except the exponential distribution fit reasonably well in some sections of the quantile.
Gamma and Log-normal appear to fit well at close range with the Gaussian distribution fitting

well from distances further than 2 metres.

quartiles. The 95% confidence envelope is based on the standard error of the order

statistics of an independent random sample from the comparison distribution.

The Gaussian distribution seems to fit well between 2 and 7 metres. The Log-normal

and Gamma distributions fit reasonably well up to approximately 5 metres and then

diverge rapidly. This series of plots suggests that none of these standard distributions

fits our data.

Figure 5.4 shows a histogram of GPS distances to the nearest position fix, in 0.5

metre increments. For illustration we fit a Gaussian curve (dash magenta line, σ = 0.22)

over this histogram. Rather than the expected Gaussian distribution cited in previous

works the histogram appears to be possibly bimodal with two peaks at ranges 0.0-0.5

and 5.5-6.0 metres. This could be caused by an artefact of the digital representation of
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Figure 5.4: Histogram showing the density of distances, in metres, of GPS fixes
to the nearest road geometry

The histogram appears bimodal with two possible peaks at ranges 0.0-0.5 and 5.5-6.0 metres.
The dashed-magenta line is a half-normal distribution with σ = 0.22. A non-linear model

(NLM-Sum, in green), is the sum of a normal (NLM-1 in red) and a half-normal distribution
(NLM-2 in blue), fitted using the R nls method.

the BLRN due to the fact that a single polyline is used to represent the two lanes of a

single carriageway S2 road. To investigate the bimodal nature of the data we also fit a

non-linear model composed of a normal and half-normal distribution using the following

equation:

P (x) = s1.N(µ, σ) + s2.H(θ), (5.2)

where N is a normal PDF and H is a half-normal PDF, each scaled by S1 and S2

respectively. Figure 5.4 also shows the resultant non-linear model (NLM-Sum in green)

together with the normal (NLM-1 in red) and half-normal (NLM-2 in blue) distributions.

This appears to provide a closer fit to the observed empirical data. The R function nls

was used to estimate the parameters which provided the values s1 = 0.718, µ = 6.198,

σ = 1.671, s2 = 0.277, and θ = 0.302.
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We conclude that no single standard distribution fit well enough for our purposes

and reduce complexity in our algorithm we resort to a custom distribution using the

data at hand. We use the density of GPS distances to the nearest road positions, shown

in Figure 5.4, to implement the empirical emission function within the map matching

software.

5.1.2 Transition Probability

Transition Probabilities in Hidden Markov Models are used to determine the probability

of transitioning from one state to another. In our use case, this relates to the probability

of a vehicle moving from a candidate position on the BLRN to the next position along

the road network whilst abiding by the road regulations for emergency vehicles.

There are several models for determining the transition probability in our context

of a map matching problem. These models rely on different data such as sensor data

or aspects of the road network. Sensor data can include, but not be limited to, data

received from the GPS unit such as speed, heading, linear and angular acceleration, and

signal quality data in the form of Horizontal Dilution of Precision (HDoP) and Vertical

Dilution of Precision (VDoP). Data supplied by the LAS contains location, speed and

heading information which we make use of within our HMM/V model. Quality indica-

tors such as HDoP and VDoP were not available in the source data and so could not

be used for the transition function.

Transition Function Evaluation

Through the data available to us and iterative testing we explore the suitability of

several transition probability formulae. Recall from Table 2.1 that there have been

many attempts at deriving suitable transition functions, each with varying degrees of

success. From our experience in PFs we exclude the use of δti as the duration between

fixes is relatively long at 15 seconds, resulting in large errors. Of the remaining metrics

there are four main transition function candidates summarised in Table 5.1.
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Table 5.1: Different transition functions used in map-matching algorithms

Reference Transition function, a(xi−1, xi)

Lou et al.[66], Jagadeesh and Srikanthan [70]
dy
dr

Newson et al.[95], Koller et al.[98] e
− 1
β
|dr−dy |

Raymond et al.[96] e−β|dx|

Mohamed et al.[72] e−β|dy−dx|

1. xi ∈ Xi is a set of candidate road positions at time i,

2. dx is the Euclidean distance, in metres, between candidates, ||xi−1 − xi||,
3. dr is shortest path distance, in metres, between candidates ||xi−1, xi||route,
4. dy is the distance, in metres, between subsequent GPS fixes, ||yi−1 − yi||,

To evaluate the effects of different transition functions and their ability to effectively

map match a route, a test set of tracks were selected from the database by loading all

cleansed tracks for January 2016 and extracting journeys comprised of at least 100 fixes.

This provided a test set of 459 journeys, each approximately 25 minutes in duration

and representative of the most complex journeys that the HMM/V algorithm would be

tasked to map match. The test tracks were processed by the HMM/V algorithm to

generate estimated routes from the fixes for each transition function listed in Table 5.1.

By plotting each route, together with fixes, we found that visual inspection could be used

effectively to determine successful map-matching as failed routes were easily identifiable.

Map-matching with the inverse exponential of ||dr−dy|| [95, 98] transition function was

the most robust, successfully producing routes from the fixes in approximately 80% of

cases from a visually inspected sampled set of routes. Other transition functions listed

in Table 5.1 had a high failure rate, either producing an erroneous route or failing to

produce a route altogether. Successful outcomes were only produced in approximately

25%-50% of the routes we sampled. The reasons behind these failures were generally

either a) inappropriate road selection or, b) failure of the HMM/V algorithm to generate

a route due to very low transition probability values.

To determine the β parameter of the Newson transition function we use the HMM/V
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implementation to quantify the difference between GPS position fix distance and road

route distances using our test set of tracks. This was achieved by selecting several β

values until a range of working values was established through visual inspection. The

test set of 459 tracks were then processed through HMM/V. For each track the HMM/V

algorithm generates a sequential set of successful candidate states for each GPS position

fix, i.e. candidate road positions that correctly represent the route that the vehicle took.

The HMM/V also determines the most likely route taken between those states. For each

GPS position fix, yi, the software calculates the candidate road position, xi, and the

road travel distance in metres, dr, from the previous candidate, xi−1. Additionally, the

Euclidean distance, dx, in metres between xi−1 and xi is calculated by first converting

the latitude and longitude to British National Grid Easting and Northing coordinates

(European Petroleum Survey Group (EPSG):27700) and then using Pythagoras theorem

to determine the approximate distance in metres. Similarly, the distance between GPS

fixes is calculated, dy. The process generates 19, 659 records, one row for each transition.

The graph in Figure 5.5 is a plot of two histograms converted to density curves, one of

Euclidean distances between two sequential fixes and the other of road route distances.

The first thing to note is that Euclidean and road route profiles are very similar with

road route and Euclidean distances peaking between 150-200 metres, which, with a 15

second interval between reports gives a speed in the of 29.8mph. Most transitions are

under 500 metres, with longer transitions occurring where the time interval between

GPS fixes is longer. These longer gaps are due to missed or delayed AVLS data. We

expect the road route distances to be slightly longer than their equivalent Euclidean

distances, and this difference is visible on the curves. For subsequent analysis, outliers

were removed by deleting records where the position fix distance, dy, or road distance,

dx were zero or greater than 600 metres.



5.1 Map Matching Parameter Estimation 107

Use of Exponential PDF

To explore previous findings [95, 98, 72] that the difference between the GPS position

fix and road route distances is exponential we plot a histogram using the data gener-

ated from the test set, Figure 5.6, of the difference in metres between the fix distance

and road-route distances such that d = |dr − dy|. For illustration, the histogram is

also overlaid with an exponential probability density function with the rate parameter,

λ, estimated using the R package fitdistr (the fitdistr method performs Maximum-

likelihood Fitting of Univariate Distributions [149]). The figure shows that the empirical

distribution is close to exponential with λ = 0.2085 metres.

The HMM/V was then trialled by taking a further set of 10 unseen routes, using

the transition function
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Figure 5.5: Density curves of road and position fix distances between GPS fixes

The peaks correspond to a speed of ≈ 30mph when the time between fixes is 15 seconds.
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distance = | Road distance − fix distance | (metres)
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Figure 5.6: Histogram of transition distances between GPS position fix and
road-route

Histogram of 19500 samples where each sample is the difference between GPS position fix and
road-route distances between two sequential observations, xt and xt+1. The figure is overlaid
with an inverse exponential PDF, where λ = 0.2085 metres. Also shown are several quantiles.

The 99% percentile (not shown) is less than or equal to 221 meters.

P (x) = λe−λ|dr−dy |, (5.3)

where dr is the road route distance, and dy is the GPS fix distance. Starting with

λ = 0.2085 metres we alter this rate parameter to gauge its effect on route matching

accuracy. A large range of values for the parameter λ were used with the HMM/V

algorithm (between 0.01 and 10) and the results visually inspected. The HMM/V

algorithm appeared to be mainly insensitive to changes in λ, insofar as the route selected

for each track did not alter significantly between trials. The main artefacts were that

incorrect direction of road were selected. This occasionally occurred on tracks that have

a) dual carriageways and b) a direction parameter that is set to 0 (i.e. ignore the GPS
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direction value) or c) the GPS position fix is on the wrong carriage way. This causes

long loops where the routing engine attempts to route from the incorrect carriageway

back to the next GPS position.

Although the transition function does not appear to be a perfect fit for the historic

data we trialled, it is sufficiently reliable and better reflects the requirements for our

research. This is mainly because this type of transition function is fast to process,

has been previously used successfully, gives good results, and is easy to implement.

We conclude that the conditional transition probability can be represented using an

exponential distribution in Equation 5.3 such that λ = 0.0168 metres.

5.1.3 Road Geometry Range

The road geometry range parameter, dgeom, defines the maximum distance between

a GPS position fix and a candidate particle. It is used in the PF when generating

candidate particles/states that are constrained to the BLRN and within the HMM/V

to select candidate roads. This parameter ensures that candidate particles or road links

are within a reasonable distance from the position fix. As shown in Figure 5.4, most

fixes lie up to 15m of the nearest road link. In order to generate sufficient candidates,

we increase the distance limit such that we obtain a suitable number of candidates such

that the algorithms can perform adequately. We set dgeom to 50 metres as there is a

very small probability (0.0002) that a GPS observation would be more then 50 metres

from a road link.

5.2 Road-Constrained Particle Filter

The role of the Road-constrained PF is to estimate the vehicle state using a large set

of particles which are updated for each GPS observation. A complete description of

the algorithm details can be found in previous research [150, 107, 84, 108] and in our

literature review in Section 2.5.3. Our implementation of the PF constrains particles
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(vehicle vector estimates) to remain on the known road network. Although this is not

true all of the time, as emergency vehicles sometimes attend incidents in opens spaces

or other locations that are not recorded in the BLRN. We will ignore this in our study

as we are generally only interested in finding road speeds for the journey to scene.

Our implementation of the PF takes a track of GPS fixes and generates an estimate

route with associated motion vectors. The filter works sequentially through the list of

GPS fixes, processing each position fix in time order. For each GPS position fix at time t

the filter maintains i particles, pit, that represent candidate vehicle positions and vector

information. Each particle holds a importance weight, wit, and a motion vector, vit, such

that each particle state is represented as pit
.
= (vit, w

i
t). The motion vector comprises of

the following elements:

1. A coordinate containing an integer Easting and Northing in EPSG:27700 (British

National Grid).

2. A velocity vector containing a speed in miles per hour, and a heading in degrees

relative to true north.

3. A reference to the current road link and an offset along it.

A parameter np determines the number of particles that the algorithm should use

at each step. The algorithm requires that a large number of particles are generated in

order for it to run successfully. We set this parameter to np = 2000 as a compromise

between performance and precision.

5.2.1 Initialisation

Particles collectively form the posterior distribution of a hidden state, which is the

position and motion vector of a vehicle. During initialisation the posterior distribution

is unknown, so a random particle cloud constrained to the road network is generated that

surrounds the first GPS position fix. At the start of the process each particle is randomly
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positioned on a road near the initial observation, y0. With no prior information this is

reasonable approximation of a density field around the hidden estimated position, x0.

To calculate the initial position of each particle, a set of candidate road links, C0, are

drawn from the BLRN that lie in close proximity to the observation y0. The candidate

road links are obtained in a standard two-step method by first using a Quad tree index

[146] to extract all road link geometries within dgeom metres of y0, and then drawing

up to ncmax nearest road links to the position fix by calculating the distance from y0 to

the nearest point on the geometry of the road link. This two-step approach is used as

an optimisation method such that the number of computationally expensive distance

calculations is significantly reduced. The final number of suitable candidate road links

for observation y0 is nc which may be less than ncmax. For clarification, y0 is the initial

observation, ncmax is the number of nearby candidate road links to find, and nc is the

number of road links that were found in the BLRN.

The process of positioning each particle, p, on the BLRN around the observation, y0,

is as follows. A random number is generated between [0, nc] and the road link is drawn

from C0. The nearest position on the selected road link geometry from the observation

is determined. The nearest position along the geometry is then perturbed by a random

amount, along the geometry of the road link, set by a simulation parameter. The speed

and heading of the particle are likewise perturbed by an amount set by simulation

parameters.

For each position fix, the initial position and next position fix, x1, are used to

produce each particles’ heading and speed motion vector. Finally, the weight of all

particles are normalised by assigning a probability of 1/np to each particle.

5.2.2 Move and Perturb

The Move and Perturb step are part of the prediction phase outlined in Section 2.5.3.

These steps apply a state transition to the each particle using the particles’ motion

model. The step is carried out whenever a new position fix is received. We implement
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and evaluate two different motion models.

1. Motion Model 1 - A standard PF moves particles according to their motion

vector and motion model rules. A subsequent Prediction stage then calculates the

emission probability of each particle based on its distance from the new observa-

tion. Our first Move algorithm embodies this principle.

Particles move along the road network according to their motion vector, taking

into consideration road traffic rules that apply to emergency vehicles encoded in

the BLRN. Using the time difference from the previous GPS fix and the particle

speed we can calculate the distance travelled, dpt , which is then perturbed using

a uniform random distribution up to dm metres to produce a final distance to

move, df . This perturbation, or roughening, is necessary to reduce sample impov-

erishment [151, 152]. The particle is then moved along the road network from its

starting position by df metres. The algorithm chooses a random road link using

a uniform random distribution if a junction is encountered.

2. Motion Model 2 - An alternative method was developed that, instead of using

the motion vector speed to determine the distance travelled, we instead estimate

the speed from the distance between the two fixes. We calculate the Euclidean

distance and time difference between the two fixes yt−1 and yt the time period

between yt−1 and yt to estimate the distance, d, that the particle would travel.

Although this method does not take into account road curvature it produced fewer

failures that Motion Model 1 algorithm. The particle then travels along the road

network from its starting position by d metres, choosing a random road link using

a uniform random distribution if a junction is encountered.

5.2.3 Update

When a new observation is processed, the PF updates the importance weight of each

particle based on new sensor information. The importance weight is calculated using
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the empirical emission function (Section 5.1.1 ) using the distance between the observed

GPS position fix and the particle.

5.2.4 Resampling

In practical terms the update step can still lead to sample degeneracy where only a

few particles have a significant weight and others a low weight. The effect is that the

number of effective particles is reduced [151]. This condition can be detected when

the estimate of effective samples drops below a given threshold, ncutoff . The effective

sample size can be calculated using the equation [153, 84]

ˆNeff =
1∑np

i=1(w
i
t)
2

(5.4)

When the effective number of samples drops below a given threshold the algorithm

draws the nsampl percent highest probability samples to create a new set of particles.

Particles weights are then normalised by assigning each new particle a weight of 1/np.

Unfortunately this procedure can lead to another problem called sample impoverish-

ment. During re-sampling it is likely that particles with a high importance weight will

be re-sampled many times. In severe cases this could lead to all particles being identical

having the same position and weight [109]. This can be avoided in a number of ways

including the use of roughening and kernel density functions to estimate the probability

distribution [151].

Our implementation of re-sampling, see Listing 1 in the Appendix A, first creates a

numeric array that represents a Cumulative Distribution Function (CDF) using the top

nsampl % of particles by ordered by weight. A set of np particles are then generated as

follows. For each new particle, a weight drawn randomly from the CDF. If a particle

with the same weight already exists then the new particles’ vector is perturbed slightly.

This perturbation prevents the algorithm from adding duplicate particles and maintains

population diversity.
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5.2.5 Results

The particle filter was trialled extensively with many variations in the parameters.

Table 5.2 lists the final parameters chosen to test the filter. For Motion Model 1 we

found through iterative adjustment that a value of 20 for the tuning parameter, dm,

worked well in most cases but on occasion found particles that were often dispersed

quite a distance away from the new observation. This resulted in a rapid decline in the

number of effective particles (as they are eliminated from the pool if their importance

value decreases below a given threshold) and eventual failure of the PF.

Table 5.2: Particle Filter Map-Matching Parameters

Parameter Symbol Value

Particle perturbation in metres dm 20
Number of particles np 2000
Maximum number of candidates ncmax 100
Re-sample cutoff ncutoff 0.9
Re-sample percent nsampl 80%
Road Geometry Range dgeom 50

In practice, the filter using Motion Model 2 appears to work for GPS intervals

up to about 15 seconds. However, if time periods are longer or the road network is

particularly complex then the particles diverge across the network to the point where

there are no particles at or near the later position fix. This is in line with previous

research [110, 108] that found that a PF at low sampling rates (about 15 seconds)

performed poorly, explained by the fact that low sample rates largely increase the

number of possible paths that a vehicle can take. The performance of the PF is also

affected by uncertainty of the vehicle position on the road affected by a) GPS position

accuracy which can be poor in urban environments and b) the road link is described

by the centreline of the road rather than the physical location of the carriageway [108].

We conclude that the PF in its current state is unsuitable for determining routes due to

the dense urban environment, long GPS fix intervals greater than 15 seconds and the
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fidelity of the centreline-encoded digital road network.

5.3 Map Matching with HMM/V

Recall from the literature review in Section 2.5.3 that the HMM/V algorithm is a sta-

tistical approach to both real-time and offline map matching [95]. We use the HMM/V

to determine the most likely route on the BLRN, using GPS fixes as our observations.

Estimate travel speeds along the route can then be extracted.

The algorithm is split into two stages. In the first stage a trellis HMM is generated,

refer to Figure 2.1. For each GPS observation a number of candidate road positions

are selected and emission values calculated. The transition probabilities for each com-

bination of candidate road positions are also calculated. The second stage uses the

Viterbi algorithm [101] to determine the most likely sequence of road segments from

the transition and emission probabilities.

5.3.1 Building the HMM

To build the HMM a number of candidates road positions, x0,t, . . . , xk,t, selected for each

GPS position fix, yt. To find suitable candidates we employ the same technique used

in the particle filter initialisation step, i.e. a set of candidate road links are drawn from

the BLRN that lie approximately dgeom metres of the observation using a Quad tree

index. Road links are removed from the set whose relative direction of travel compared

to the candidate fix is greater than bfmax. The nearest ncmax road links are then drawn

from this set. Finally the closest point on each candidate road link geometry is used as

a candidate position. In some circumstances no suitable candidates could be found for

a given observation. Whilst our data suggests that this is an infrequent event with an

occurrence of approximately 0.1%, the entire route is discarded as a path through the

HMM is not possible.

As can be seen in Figure 5.4, the distance between GPS position fix and the nearest
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road link is almost always less than 15 metres, so the algorithm should always have

at least one candidate. The histogram in Figure 5.7 shows the frequency of road link

geometries within 50 metres for a sample set of 1000 GPS fixes.
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Figure 5.7: Probabilities of obtaining a given number of road links within 50m
of a GPS position fix
Generated from a random sample of 1000 GPS fixes and counting the number of road link

geometries within a 50 metre radius.

The state information for each candidate road position contains the road link details,

the offset along the road link that is nearest to the fix, and an emission probability. We

assign an emission probability based on a lookup function, described in Section 5.1.1,

using the straight-line distance from the candidate position to the GPS fix. Transi-

tion probabilities are also calculated between candidates using the transition function

detailed in Equation (5.3).
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5.3.2 The Viterbi Algorithm

Once the model has been constructed with candidate road positions with associated

transition and emission values the Viterbi algorithm [101] is used to find the most likely

sequence of hidden states through the HMM, and in our case, the most likely road

route that the vehicle travelled along. With reference to Section 2.5.3, the Viterbi

path is the most likely state sequence x0, . . . , xT , given the observations, y0, . . . , yT ,

initial probabilities πi of being in state i and transition probabilities ai,j of transitioning

between state i and j.

Viterbi values are calculated for each candidate xk,t as the product of its transi-

tion and emission values and the previous candidate,xk,t−1 , whose Viterbi value was the

greatest at that time step. When all fixes have been processed the most likely com-

plete route is extracted by concatenating routes between candidates with the maximum

Viterbi value. Our implementation of HMM/V also generates inferred speeds for each

road link traversed using the timestamps of the GPS fixes. For each record we store the

speed, the road link and time of day in the database for later analysis.

5.4 Map-Matching Validation

Validation of the map-matching process without a known ground truth to compare the

results with is a problem often overcome with the use of synthetic routes where the

production of these routes can be achieved using a routing engine or other simulation

methods. The process is as follows: a synthetic route is produced between two locations,

GPS fixes are then sampled along the route and passed as input into the map-matching

algorithm. The estimated route generated by the map-matcher is then compared with

the original synthetic route, resulting in the production of a similarity metric.

The value of validation through the use of synthetic routes is often contentious as the

synthetic routes are generally approximations to their real counterpart. Nonetheless,

comparison of the map-match output with synthetic routes can be used as an indicator
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of robustness of the implementation. Additionally, the algorithms sensitivity to different

GPS sample rates can also be quantified.

We use our routing engine to generate synthetic routes using the start and end

locations of 1, 000 historic emergency vehicle journeys. The routes were calculated using

the road speed model Metric II described later in Section 6.8 (this model represents

the current routing engine in use at LAS). To validate the HMM/V map-matching

algorithm we generate sets of test GPS fixes of varying intervals and precision along

these routes. This is achieved in a two-step process. Sets of ground truth fixes were

created for each synthetic route by sampling along the route at journey time intervals

of 10, 15 and 20 seconds. Then, sets of test fixes were obtained from the ground truth

fixes by selecting a random location within a set distance of the original. We varied

the error between 0 (no error) and 30 metres in increments of 5 metres. The test fixes

were then processed through the map-matcher and estimate routes compared with their

corresponding synthetic route.

The error between synthetic and estimate routes is often measured using the differ-

ence in coincident route length [95, 96, 98]. This is a measure of geometric accuracy of

the route known as the Incorrect Road Length Fraction (IRLF) and is defined as:

dmiss + derr
droute

(5.5)

where droute is the length of the synthetic route, dmiss is the length of all road links

which were missed during map matching and derr is the length of all road links which

were erroneously found during map matching.

Figure 5.8 shows the IRLF for the 1, 000 synthetic routes showing 95% confident

intervals (bars) and 10/90th percentile (whiskers). The HMM/V algorithm performs

well, demonstrating approximately 7% mismatches for 15s intervals and up to 10m GPS

inaccuracy. As previously observed [95], where GPS accuracy is poor MM accuracy

appears to improve when GPS observation frequency is decreased. We assume this is
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Figure 5.8: IRLF with varying GPS precision and GPS Fix Interval

The fraction is calculated as dmiss+derr
droute

where droute is the length of the synthetic route, dmiss
is the length of all road links which were missed during map matching and derr is the length of

all road links which were erroneously found during map matching. The HMM/V algorithm
performs well, demonstrating approximately 7% mismatched route length for 15s intervals and

up to 10m GPS inaccuracy.

due to the fact that a higher number of inaccurate fixes for any given trip (due to the

increase GPS reporting frequency) leads to greater instability of route prediction; for

example a long route will have half the number of inaccurate 20s-gap fixes than 10s-gap

fixes and therefore a greater probability of selecting an matched route.

The expected GPS error in our urban environment is likely to be within 10m (Fig-

ure 5.4) and at this level of perturbation there is little difference in the accuracy of

map-matching for position fix intervals ranging between 10 and 20 seconds. Finally,

for synthetic routes where the GPS interval is 15 seconds and GPS perturbation is 10
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metres the median percentage of mismatched road links is 1.93% and the median of the

incorrectly identified roads is 4.16%.

5.5 Map-Matching Results

A total of 1,910,941 journeys from a total of 2,311,661 (82.7%) were successfully pro-

cessed by the HMM-Viterbi algorithm using parameters in Table 5.3. As expected, some

routes could not be matched correctly because of corrupt or inaccurate GPS data. Many

routes were also unprocessed because of insufficient fixes to form a track. This typically

happens when an emergency vehicle is dispatched to an incident and then quickly stood

down for operational reasons. The map-matching process produced 177,975,172 road

speed records. Each record consists of the road link id, time, date and estimated speed.

The process took approximately 2 days to run on a 6-core i7 processor.

Table 5.3: HMM/V Map-Matching Parameters

Final parameter values used for map-matching approximately 2 million ambulance journeys.

Parameter Symbol Value
Maximum relative angle bfmax 120
Maximum number of candidates ncmax 100
Transition function parameter λa 0.0168
Road Geometry Range dgeom 50

Minimum time between fixes tfmin 10

Number of fixes to skip nfskip 2

Number of fixes to process nftake 9999

Minimum distance between fixes dfmin 25
Maximum speed between fixes vfmax 80

Analysis

For the purposes of our research we intend to build speed models that can be used to

predict journey times across the whole of London. An emergency journey can start and

stop in almost any location and any road type within London. It is therefore important

that there is sufficient spatial coverage of speed data across on all road types within
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the road network such that robust speed models that can be developed that cover the

entire London Area.

The initial analysis of road coverage was by visual inspection. The urban area in

the south-east of London which includes Croydon and Orpington is on the limits of the

LAS operational area. Its road network is shown in Figure 5.9. Green lines are road

links, overlaid by purple tracks indicating an emergency vehicle has used this route.

There are some minor roads that are not covered by the matching process, however the

vast majority of the road network is covered.

Table 5.4: Coverage of road types by HMM/V and GPS snapping

For each road type the table lists a) the number of road links in the road network , b) the
number of road links found by map-matched, c) the percentage of the BLRN covered, and d)

the percentage covered using GPS snapping. The percentage coverage between GPS and
HMM/V are not directly comparable as GPS fixes are snapped to a road without regard to

direction of travel, whereas HMM/V road links are split into two for each direction of travel.

Road type Links Used HMM/V % GPS %
A Road 65857 62124 94% 78%
Alley 46473 15579 32% 34%

B Road 21747 18257 84% 64%
Local Street 327827 234624 69% 50%
Minor Road 62052 48853 78% 59%
Motorway 1131 689 61% 90%

Pedestrianised Street 363 317 87% 70%
Private Road- Publicly 6735 3945 56% 55%

Private Road- Restricted 75360 34151 7% 45%
Total 607545 418539 69% 65%

Further analysis of coverage by road types is shown in Table 5.4. This shows for each

road type the number and percentage of road links covered using HMM/V compared

with näıve road snapping using only the uncorrected GPS position fix. The percentage

coverages between GPS and HMM/V are not directly comparable as GPS fixes are

snapped only to a single road link, whereas HMM/V these road links are split into two,

one for each direction of travel. Most of the main road types see a good coverage. The

major A roads are very well covered, at 94%, whereas some local roads and especially

private roads are not covered particularly well. Three screen-shots are included in
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Appendix B that display a map of the map-matching results.
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6

Vehicle Speed Models

This chapter begins with a description of our implementation of the BLRN routing

engine that can be used as a platform for estimating routes and travel time for AEU

and FRU vehicles in London. The engine is dependent on speed models and, as we will

see in the next chapter, significantly influences the route and predicted arrival times. For

our investigation into routing accuracy and journey time estimation we devise several

experimental road speed models of varying complexity.

124
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6.1 Routing Engine Implementation

Our objective is to create a BLRN routing engine that can accurately calculate the

quickest route given the start and end location of the journey, the time of day and

vehicle type.

Each routing algorithm has its own merits and limitations, in our research we will

only use Dijkstra’s algorithm as we do not require features such as being able to handle

negative weights or heuristic speed optimisations that others provide. Regardless of

which algorithm is selected, all require weighted edges that represent the cost of trav-

elling along that egde. The very nature of the physical road network also dictates that

we use a directed network.

The purpose of the routing engine is to calculate the set of navigable, i.e. linked,

edges that represent the shortest path from one node to another on the network. In

Vehicle Routing Problems (VRP) [154] the shortest path can be taken to mean the

shortest distance or quickest time. For our problem of emergency vehicle routing we

are interested only in the quickest time. To this end, the edge weights associated with

the BLRN are representative of transit time, rather than distance.

We use Dijkstra’s shortest path algorithm to compute journey times using the

BLRN. In the standard implementation of this algorithm the estimated travel time

for a given journey is calculated as the minimum time taken to travel from one point on

the network to another point on the network, using the sum of transit time estimates

for each road link edge traversed.

In our implementation of the algorithm we can specify an edge cost function which

is responsible for determining the likely duration of a specific road link, given the hour

of week, the vehicle type and the road link. An abbreviated pseudo code listing for our

implementation of Dijkstra’s algorithm is shown in Algorithm 2 in Appendix C.

There are two main complexities in the routing engine that are not detailed in the

pseudo code. These are to do with a) changes in elevation such as bridge and flyovers
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and, b) dealing with the start and end locations which lie part way down a road link.

The routing engine ensures that adjacent outgoing links from a candidate edge must

have a starting grade equal to the end grade of the candidate edge.

section on level grades moved to Datasets chapter

6.1.1 Coordinate to Road Link

The first step in calculating a route, given the start and end geographic coordinates, is

to determine the road links that these relate to. With reference to the start location in

Figure 6.1, indicated by the green star, the nearest road link can be readily identified

by the shortest distance between the coordinate and nearby road geometries. In this

case a candidate road link A→B has been identified. Similarly, for the end coordinate,

the road link C→D has been identified.

D

A

B C

Unused part of link

Start location

End location

Figure 6.1: Assigning road link + offset from a coordinate

It can be clearly seen that the distance travelled along the road links is shorter than

the sum of the road links used. For accurate travel time estimates, the truncated start

and end road links must be taken into consideration. We estimate the travel time to be

directly proportional to the amount of start and end road link used.
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6.2 Calculating Edge Costs

In the context of a routing engine, edge costs relate to vehicle transit times along road

segments and the optimal route is the quickest route from A to B within the network.

In reality the actual transit time along any particular road network is dependent on

prevailing conditions such as road layout, traffic, road and weather conditions, as well

as the vehicle in use and driver skill. The total time through the network is also

potentially influenced by other factors such as delays in navigating junctions.

Dijkstra’s algorithm requires that all edges have a positive edge cost associated with

them. As we are attempting to find the quickest time for any given route it follows

that edge costs represent the transit time for each edge. We initially develop five edge

cost models (hereafter, Metric I..V). We employ a ‘plug-in’ mechanism such that the

routing engine can be configured to use any one of our Metric models when calculating a

route. To this end, each Metric must implement an CalculateEdgeCost function that,

given several parameters regarding the current road being traversed, returns a road

vector containing road length, estimated duration and speed. Every implementation of

a Metric must take the form,

RoadVector CalculateEdgeCost(string vehicletype , int hourOfWeek ,

RoadLinkEdge edge).

Specifically, the CalculateEdgeCost method is passed a road link, the vehicle type

(AEU or FRU), and the hour-of-week in which the route is being estimated.

We devise and compare several edge cost functions of varying complexity for use

with Dijkstra’s shortest path algorithm to compute journey times. The first, Metric

I, is based on a simple fixed speed for all road types. The second, Metric II, is based

on the standard speed profile used by the LAS which uses a different fixed speed for

each road type. Metric III & IV also take into consideration spatio-temporal factors at

different resolutions, with Metric V using the road link speed information directly. In

all cases below, no route speed data produced by the map matching process was used
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for the month of November 2016 so that routes in that month could be used for unseen

route analysis.

6.3 Metric I - Constant Speed

This näıve edge cost calculator assumes a constant speed regardless of the area, road

link, vehicle type or time of day. A constant speed of 22.8mph (13.2m/s) is selected

as this is the average speed across all road links. This is obtained as an average of all

road speed records mined from HMM/V map matching. The advantage of this edge

cost calculator is that it requires very little processing time, resulting in fast route

calculations.

6.4 Metric II - Fix Speed by Road Type

The implementation of the LAS routing engine uses a relatively simple speed profile

based on a constant road speeds for different road types. No account is taken for the

time of day. In addition, the road speed model adds a ‘junction’ delay of 2.5 seconds

each time a BLRN road link is traversed. Unfortunately this is not always indicative of

a real junction on the road network as, for example, nodes are inserted into the network

to split up long sections of road, and at every intersection for each side road joining the

main carriageway. So a vehicle travelling down a single road passing many side roads

would accumulate many additional 2.5 second delays.

Table 6.1 contains the road speeds used by LAS for routing purposes. We also

compare this with the average speeds obtained from the GPS and from HMM/V. As

with the Constant Speed function, this Metric requires little processing time.
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Table 6.1: Average road speeds by road type

Road speeds by road type a) average speeds from map-matching b) average speeds from GPS
data c) values used by LAS in their routing engine. All speeds are in mph.

Road type HMM/V Speed GPS Speed LAS Speed
A Road 31.21 20.74 29
Alley 22.51 14.61 3

B Road 28.01 18.01 24
Local Street 18.79 10.89 14
Minor Road 26.80 16.69 19
Motorway 42.65 38.79 35

Pedestrianised Street 16.29 8.12 2
Private Road- Publicly 16.58 8.14 5

Private Road- Restricted 18.50 10.55 5

6.5 Metric III - Grid + Hour-of-Day + Vehicle

To calculate edge costs for each road link, a road speed model based on a multidimen-

sional array of real numbers, M ∈ Rx,y,v,r,hd , representing average speeds is constructed.

The matrix is populated with the harmonic mean road speeds by hour of day, hd, a grid

cell in which the road link lies, x, y, vehicle type, v, and road type, r. Each grid cell is

defined as an area 500m× 500m, of which there are 6,636 covering the London area.

The matrix is populated by reducing speed data drawn from the road link speed

records from Table 5.4. This reduction is obtained by calculating the harmonic mean of

all the road speed records created during the map-matching process and then grouping

by hour of day, vehicle type, road type and grid cell. This process produces 703,886

items in the 5-dimensional array. A dense matrix would have 2,866,752 records, resulting

in a sparse matrix density of 24.55%.

6.5.1 From Sparse to Dense

The matrix must be converted from a sparse matrix to a dense matrix for it to be usable

by the routing engine. Missing values must therefore be predicted. We devise a method

to populate missing values in the matrix by looping through v, r, h, x, y, and calculating

the mean speed by locating nearest non-zero neighbours spatially across x, y.
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During routing engine start-up, the matrix is loaded into an in-memory multidimen-

sional array. The array is scanned, looking for cells with no assigned speed value. When

a missing speed value is detected, nearby speed values are used to estimate a value for

this cell. The estimate is calculated by calculating the harmonic mean from neighbour-

ing cells. The algorithm starts with the nearest neighbouring cells and progressively

moves out until a non-zero speed is found.

Estimates and pre-existing values are merged into a new 5-dimensional array. This

ensures that estimates are not inadvertently used to calculate other estimates. When

complete, the 5-dimensional array is dense and contains a usable speed value for every

combination of hour, road type, vehicle type and geographic grid cell.

6.5.2 Calculating an Edge Cost

Edge costs are computed by indexing into the array of average speeds, Mx,y,v,r,hd . This

is performed using these steps:

1. Calculate the grid cell, x, y using the supplied coordinate.

2. Calculate the hour-of-day, hd, by taking the modulus 24 of the hourOfWeek

parameter.

3. Look up the speed in the matrix using x, y, hd, r and v.

A vector is then calculated using the estimated speed and road length to calculate

the link duration. The vector is then returned to the routing engine.

6.6 Metric IV - Grid + Hour-of-Week + Vehicle

This is almost identical to Algorithm III except that we use hour-of-week instead of hour-

of-day, such that a 5-dimensional matrix, Mx,y,v,r,hw containing average road speeds is

constructed such that hw is the hour of the week. In this case, because there are 164
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hours instead of 24, a dense matrix would require 20,067,264 values. From our data we

produce 3,247,386 records reducing the matrix density to 16.18%.

The Metric follows the same process of scanning the matrix for empty cells and

estimating new values in order to make the matrix dense.

6.6.1 Calculating an Edge Cost

Edge costs are computed by indexing into the array of average speeds, Mx,y,v,r,hw . This

is performed using these steps:

1. Calculate the grid cell, x, y using the supplied coordinate.

2. Look up the speed in the matrix using x, y, hw, r and v.

A vector is then calculated and returned to the routing engine.

6.7 Metric V - Road Link Speed Data

It is possible to augment the speed information from historic GPS fixes by utilizing the

HMM/V map-matching output. This is because the map-matching algorithm infers a

complete route with estimated speeds using sparse GPS location fixes and knowledge

of the BLRN.

Metric V estimates the road speeds for a given road link by computing the harmonic

mean of historic road speeds for that link for any given hour of the week. The historic

road speeds are sourced from the HMM/V map-matching algorithm previously described

in Section 5.3. To prepare the data, map-matched road speed records are grouped

by road link, vehicle type and hour-of-week and the harmonic mean speed calculated

for each group. From this, a 3-dimensional matrix of real numbers, M ∈ Rl,v,hw ,

representing harmonic average speeds is constructed where l is the road link identifier,

hw is the hour-of-week, and v is the vehicle type.
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6.7.1 Calculating an Edge Cost

This Metric attempts to find a speed for the road link, l, at time hw and vehicle type,

v. If no records can be found then the algorithm reverts to the 5-dimensional matrix

look-up defined in 6.6. If records can be found for the same hour and vehicle type then

the harmonic mean of the road speed records is returned.

6.8 Evaluating Road Speed Metrics

For each prospective Metric, summarised in Table 6.2, we wish to gain insight into

its accuracy and precision to predict emergency vehicle journey times when used in

conjunction with the routing engine. We also investigate how routes taken by emergency

vehicles differ from routes produced by the routing engine.

Table 6.2: Road Speed Metrics

Metric Description

Metric I Constant Speed, regardless of road type, hour of day etc.
Metric II Fix Speed by Road Type.
Metric III Spatial matrix + Hour-of-Day + Vehicle type.
Metric IV Spatial matrix + Hour-of-Week + Vehicle type.
Metric V Road Link Speed Data mined from map-matching.

To evaluate our five Metrics we devise several experiments that test the temporal

and spatial accuracy of the road speed models and routing engine. By utilising historic

journeys we can compare actual vs. predicted routes and journey times, quantifying

the accuracy and precision of each Metric. For the test data in our experiments we

use a trial set of 69,487 routes from the month of November 2016, extracted from the

entire incident route set of 2,311,661. Note that these routes were not used to build

the edge cost models and were therefore unseen. The experiment is repeated for all the

Metrics described in Section 6.2. For each route in our test cohort we perform several

experiments as follows:
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1. Estimate journey time using an estimate of the actual route that the emergency

vehicle took.

2. Use the routing engine to predict the journey time of historic emergency vehicle

journeys using only start and end locations.

3. Calculate route similarity for each estimated route and each Metric.

4. Calculate additional route metrics that guide how corrections might be applied to

the estimated route.

6.8.1 Calculating Journey Estimate from Actual Route

This experiment produces an estimated journey time for a known (seen) route. The

method is independent of the routing engine and tests a Metrics’ accuracy of prediction

for a given route.

We use output from the map matching process to obtain a list of actual road links

traversed for each journey, effectively the map matching process provides us with es-

timated ground truth for the journey undertaken. This method allows us to examine

differences between the estimated time and the actual time, ensuring the routes used

are identical. For a given historic route we are able to calculate an estimated duration,

tmβ , using Metric, m, as the sum duration of each road link traversed in the route plus

any junction delay. The journey time tmβ (X) is defined by

tmβ =
∑
x∈X

fm(x, h, v), (6.1)

where x ∈ X are road links in the route X, and fm(x, h, v) returns the expected duration

along road link x at hour h for vehicle type v. The prediction error for a seen route

is defined as δtmβ = tmβ − t, where t is the duration of the historic journey. In this

case, positive values represent over-estimation and negative values under-estimation of

journey time. The process is repeated for each Metric and historic route in the test
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cohort and results captured. An outline of the process is depicted in Figure 6.2.

Figure 6.2: Seen route analysis
Historic routes are evaluated by each speed model using estimated route.

6.8.2 Estimating Journey Route and ETA

This experiment uses our routing engine and a given road speed Metric to estimate

a quickest route and duration, given only the time of day, start and end locations.

This method directly reflects how the routing engine might be used within a simulator

or operational environment, where the path that the emergency vehicle will take is

unknown. Consequently the route selected from the routing engine may differ from the

actual route taken.

In the case of an unseen route we calculate an estimated duration, tmα , using the

routing engine with each Metric using only source and destination locations of the

historic route. The prediction error for the unseen route is defined as δtmα = tmα − t.

Different aspects of the routing accuracy such as spatial, temporal, route and ETA

variance are also examined. An outline of the process is depicted in Figure 6.3. The

process is repeated for each Metric and historic route in the test cohort and results

captured.

6.8.3 Actual vs Estimate Route Comparison

In addition to the above methods we also compare the spatial similarity of the original

trip route to the route generated by the routing engine. We also calculate route similar-
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Figure 6.3: Unseen route analysis
Historic routes are evaluated by each speed model using start and end locations.

ity for portions of the journey by dividing the estimated route into four equal portions

by length and determining the percentage of coincident distance on the original route

determined using map-matching.

6.9 Estimate Route Turn Analysis

Finally, we calculate additional route metrics that guide how corrections might be ap-

plied to the estimated route (discussed further in Chapter 7.5 ). These metrics include

the number of roads traversed, the number of large angle changes and the number of

road links traversed.



7

Metric Evaluation

The evaluation of Metrics I - V is designed to characterise how these models predict ETA

and the journey path taken by AEU and FRU vehicles travelling under BLS conditions.

The evaluation is divided into two categories, seen and unseen routes. Journey time

estimation errors are calculated for each category and Metric. We also compare route

paths between the two categories and describe route spatio-temporal characteristics.

Finally, we offer corrective factors to improve ETA accuracy.

136
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7.1 Seen and Unseen routes

Recall from our previous map-matching experiments that we have generated a large

dataset of historic ambulance journeys. We conduct several seen route experiments

that estimate travel times using the paths from those historic journeys.

For unseen route experiments, we estimate both the path and duration, given only

the start and end locations. This scenario is the one that faces the control room at

LAS where the location of ambulance and patient are known but the route to be taken

by the ambulance is unknown. Our experiments with unseen routes are designed to

estimate both the duration and route that would be taken using the routing engine and

a selected road speed model (see Section 6.8.2).

7.2 Prediction Results

In total 69, 487 historic journeys during November 2016 were analysed. With reference

to the density plots in Figure 7.1, we calculate the Unseen route prediction error, δtmα

for all journeys and each Metric (top figure), and the Actual route prediction error

(bottom figure) that assumes the route is known, δtmβ .

In both charts, Metric III, IV & V have prediction error modes between 0 and +25

seconds. The accuracy of predictions can be quantified by calculating the bias for each

metric. Specifically, we observe good accuracy for unseen routes using Metric IV, Metric

V and Metric III with a bias of just 0.4, 8.2 and −14.5 seconds respectively. Metric I

has a bias nearly a minute off centre at 58.5 seconds. Metric II has the greatest bias

and performs poorly compared with all other Metrics with a value of over 3 minutes

(181.1 seconds).

For routing engine prediction error, Metrics III and IV that take into account speed

variations due to consideration for hour of day/week and area of London, have similar

standard deviations of 118.1 and 119.5 seconds respectively. Metric V provides the best

precision with an estimated standard deviation of 97.5 seconds. To test the robustness of
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Figure 7.1: Analysis of 69,487 routes showing the density of prediction error

Analysis of routes showing the density of prediction errors for both the (a) Unseen route using
a route predicted by the routing engine, tmα , and (b) Seen journey, tmβ , using the actual path
taken by an ambulance, across all Metrics, m. The curves show that the error obtained when
predicting journey times from an unseen route is similar to that obtained when the route is

known. Metric II significantly overestimates journey time in most cases.

these calculations we also calculate the 95% confidence intervals of the estimate standard

deviations. As the distributions of the predictions errors cannot be guaranteed to be

normally distributed we use a non-parametric bootstrap resampling method, using R’s

boot::boot method with sample size set to 1000, to calculate the confidence intervals.

The results of standard deviation confidence intervals are plotted in Figure 7.2. Metric

V confidence intervals do not overlap any others and are clearly lower than them. This

leads us to conclude that Metric V’s precision is demonstrably better than other Metrics

presented here.
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Figure 7.2: Metrics I..V 95% confidence intervals for Standard Deviations of
Estimation Errors.

Metric V confidence intervals do not overlap any others and are clearly lower than them.

Our data suggests that using historic speeds captured from reconstructed routes

can play a significant role in ETA prediction and can be further exploited to improve

navigation planning. We investigate the causes and implications relating to the per-

formance of this approach in the next section. The similarity of actual and estimated

density plots suggests that the predictions generated by the routing engine are generally

comparable regardless of the actual route taken, and that possibly the predicted route

is similar to the actual route.

7.2.1 Error by Journey Time

To further characterise the error for unseen routes, i.e. those routes generated by the

routing engine, we divide the trips by their journey time. Specifically, we split journeys

by unseen route predicted journey time into six groups by 120 second intervals up to
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720 seconds and plot the error distribution.
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−600 −400 −200 0 200 400 600

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Route prediction duration difference (s)

D
en

si
ty

Journey time (sec)

0 .. 120
120 .. 240
240 .. 360
360 .. 480
480 .. 600
600 .. 720

(b) Metric I
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(c) Metric II
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(d) Metric III

Figure 7.3: Prediction error density plots for a) Metric V, b) Metric I, c) Metric
II and d) Metric III methods

Figure 4 through Figure 7 in Appendix D are shown together here in thumbnail form

in Figure 7.3. These are plots for Metric V (a), Metric I (b), Metric II (c) and (d) Metric

III respectively. This series of charts shows clearly that, for all Metrics, the amount of

error increases with the trip length. The rate of change of error is more pronounced

in the Metric II chart. It is also clear that in all cases, the Metric II significantly

overestimates journey time for long trips.
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7.2.2 Error by Vehicle Type

Again, using estimates produced by the routing engine for unseen routes, Figure 7.4 plots

estimated (a) AEU and (b) FRU journey duration, using Metric V, against the actual

duration in minutes. AEU estimated journey time is nearing a linear relationship up to

approximately 14 minutes and thereafter the actual journey times appear to be longer

that the estimate. The FRU plot (b) shows a similar stability to the AEU estimates,

appearing stable up to approximately 8-10 minutes. The bar thickness indicates the

number of sample journeys and this highlights that durations longer than 15 minutes

are infrequent.
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Figure 7.4: AEU and FRU Actual vs. Predicted journey times using Metric V

The estimated journey time is close to a linear relationship with actual journey time up to
approximately 14 minutes for AEU and 8-10 minutes for FRU.

7.2.3 Predicted Route Differs from the Actual Route

At the time of determining an estimate journey time the route taken by the crew is

unseen. With the benefit of historic route data we can calculate route estimates using

the actual path taken by the crew as well as route estimates based on the estimated
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route. A comparison between the two would highlight issues with the route prediction

process.

Figure 7.5 is a plot of journey time prediction error using Metric V for two scenarios:

a) with knowledge of the actual original taken (in green) and b) without knowledge of

the route taken (in blue) i.e. predicting the route using the routing engine. When

determining a route the shortest path algorithm will always find the quickest route

according to the speed information provided. We can see that the difference between

estimated route time and actual route time are similar, at least up to approximately 8

minutes.
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Figure 7.5: Predicted journey time error vs Actual journey times using Metric
V for both actual and predicted routes

The mean estimated journey times using the actual route are accurate up to 20

minutes, with lost of precision due to the increasing variance. This leads us to conclude

that the mined speeds for the road links are reliable. We conclude that that the sum of

the road links used in any particular journey can indeed be used to obtain a reasonable

estimate of the journey time.
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7.3 Comparison of Route Taken

With reference to Figure 7.5 there are prediction benefits if one could estimate the

route that a crew would take. This is especially true beyond an eight minute journey

where, for an unseen route, the deviation between actual and predicted journey times

becomes significant. To gain insight into how the estimated and actual routes differed

we compute the average Incorrect Road Length Fraction (see Equation (5.5) on page

118) of the estimated routes, by Metric, for all journeys in our sample set. The results

are shown in Figure 7.6.
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Figure 7.6: Similarity of Estimated vs. Actual route by estimator

Average IRLF for estimated routes by Metric. Confidence intervals are shown as red lines.

The lowest IRLF with a mean of 0.4153 was achieved with Metric II, producing the

best overall similarity to the actual routes taken. Metrics V does not score well for

route similarity, so we look more closely at the individual portions of the journey. First

we divide each route into four equal portions by length. Figure 7.7 reveals that the

characteristics of each portion are quite different. The figure contains four plots, once

for each portion of the journeys we analysed. The individual plots show a histogram of
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the number of journeys by percentage similarity, measured as the number of coincident

road segments. With all four portions there are a number of journeys whose similarity

ranges from 5% to 95% similarity. These journeys make up a significant portion of the

total journeys. Portion Q1 and Q4, the first and last quarters of the journey, show a high

peak for 100% similarity, indicating a large percentage of routes have identical estimated

and actual routes. Portions Q2 and Q3 show a similar high peak for a complete match

in the route and also a peak for no similarity at all. This suggests that most deviation

from the route is occurring in the middle part of the journey. This pattern is repeated

for all Metrics.
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Figure 7.7: Similarity of Estimated vs. Actual route, using the Metric V by
each portion of the journey.

7.4 Spatio-Temporal Effects

London is a densely populated area with a complex, roughly circular, road network.

What is known from the raw GPS data is that traffic density is higher, and road

journeys for comparable distance are slower in the centre of London at certain times of

day. Here we explorer Metric V’s accuracy in predicting journey times under changing
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spatio-temporal dimensions.

7.4.1 Spatial Variation

There are no specific measures for traffic density in London as such, however, a starting

point is to measure journey time estimate versus distance in kilometres from the centre

of London. In this case we choose the commonly used location of Charing Cross as the

centre point of London. For the distance we calculate the straight-line distance between

the centre of London and the geographic mid-point between start and end locations of

each journey.
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Figure 7.8: Estimated journey time by distance from the centre of London
Boxplot of average journey times, in minutes, predicted by Metric V aggregated by distance

from Charing Cross. Whiskers are 10 and 90 percentiles, light blue boxes are 25 and 75
percentiles and red horizontal marks denote the 95% confidence intervals around the mean.

The histogram in Figure 7.8 shows estimated journey time against distance from

Charing Cross. The histogram reveals that journey times are roughly consistent across

London, at between 4-6 minutes for the average journey, with a peak at approximately

15km from the centre. These figures are, at least in part, indicative of how close a

resource might be to an incident, rather than speed of the vehicle, and are likely also to

be dependent on the number of resources available at any one time. The figure shows,

therefore, that response times are better in the centre of London.

In Figure 7.9 we instead look at a) the journey time prediction error and b) estimated

vs actual route similarity as a function of distance from the centre of London, using the
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Figure 7.9: Spatial Prediction Error Variation
(a) Prediction error variation by distance from the centre of London and, (b) Route similarity

by distance from the centre of London using Metric V. Whiskers are 10 and 90 percentiles,
light blue boxes are 25 and 75 percentiles and red horizontal marks denote the 95% confidence

intervals around the mean.

Metric V. The mean prediction error and variance is greatest in the centre of London,

gradually improving with increased distance from the centre. This pattern is repeated

for the route similarity, again, measured as the percentage of coincident route length of

estimated and actual routes. We conclude that the greatest variance and instability of

route journey time estimates and route prediction is focused in the centre of London.

7.4.2 Temporal Variation

In a similar vein to the spatial analysis, in Figure 7.10 we show prediction error through-

out the day for Metric V. It appears to perform well in terms of temporal stability with

a mean error (accuracy) close to zero minutes throughout the day. There is a slight
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fluctuation at around 07:00 and 18:00. This could be due to rush-hour traffic. Also note

that at 07:00 and 19:00 there is a crew shift change which may be a contributory factor.

The precision in prediction error is also stable except where there is a slight increase at

around 18:00.
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Figure 7.10: Prediction accuracy of Metric V shown by hour of day
Boxplot of prediction error variation throughout the day using Metric V. There is little

variation in prediction accuracy except for some slight variation around 07:00 and 19:00.
Whiskers are 10 and 90 percentiles, light blue boxes are 25 and 75 percentiles and red

horizontal marks denote the 95% confidence intervals around the mean.

7.5 Correcting Estimation Error

We know from our previous analysis in Section 7.2.1 that there is a possible under-

estimation in travel time when using Metric V. For a perspective on the uncorrected

journey estimation we look at the journey time estimation error against our actual

journey time for both vehicle types, see Figure 7.11.

This plot shows more succinctly the under-estimation as journey time increases. The

rate of change of variance and bias are similar for both AEU and FRU. The descending

(under-estimation) shape of the error in Figure 7.11 is close to linear for journeys up to

approximately 10 minutes, thereafter the rate of error increases.
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Figure 7.11: Journey time error using metric V
this plot shows the difference between estimated and actual journey times (journey time error)

using the routing engine and Metric V to predict route duration for both AEU and FRU,
showing 95% mean confidence intervals.

In Figure 7.12 we plot journey time error (estimated − actual) against several ad-

ditional explanatory variables (full size plots are in the Appendix D from Figure 8 to

11). These plots are, from top right to bottom left:

1. Delta vs route distance. Journey time error is compared with the estimated route

distance.

2. Delta vs the number of roads. The value is calculated as the number of road name

changes on the journey.

3. Delta vs the total road angle change. The angle change is measured as the sum

of change of direction between each road link.

4. Delta vs the number of turns. This is a count of angle changes between road links

greater that 45o.
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Figure 7.12: Comparison of journey time prediction error using Metric V
These charts compare the journey time prediction error in minutes (estimate− actual) with a)
route distance, b) the number of road name changes c) total road angle change (i.e the total

change in direction in degrees), and d) number of turns.

There is little or no observed correlation with the journey time prediction error

to any of the metrics listed above and we conclude that no corrective coefficient can

reasonably be derived. This leaves only the estimated journey time as we can see from

the summary statistics in Figure 7.5 that actual journey time error is, at least in the

first few minutes, proportional to the estimated journey time.

To address the problem of underestimation we adjust travel time predictions through

the removal of the expected error by fitting a single order linear bias function to the

curve Figure 7.11, namely:

tχ = tβ × 1.166− 46.2287, (7.1)

where tβ is the original estimated journey time and tχ is the corrected time in



7.5 Correcting Estimation Error 150

seconds.

The first order linear model in Equation 7.1 is generated directly using linear re-

gression to estimate actual journey durations. This approach is simplistic as the curve

in Figure 7.11 does not follow a linear change (although close to linear for the first

ten minutes), suggesting that alternative corrective methods could be applied, such as

polynomial regression. Whilst this approach would produce a more accurate estimate of

journey time it would not influence the precision of prediction. In any case, we perform

this first order regression for illustration of the process in applying a bias function to

reduce inaccuracies in prediction.

Figure 7.13 shows the original estimated journey time with the correction bias func-

tion applied and reports a significant improvement in accuracy with a mean error of

less than one minute for journeys lasting up to 14 minutes. Note that this implies less

than a minute mean error for 90% of all journeys completed by LAS in response to a

Category A incident.



7.5 Correcting Estimation Error 151

0 5 10 15

−
4

−
2

0
2

4

Actual Journey Time (mins)

Jo
ur

ne
y 

T
im

e 
E

rr
or

 (
m

in
s) ov
er

−
es

tim
at

e 
−

−
>

<
−

 u
nd

er
−

es
tim

at
e

Estimated (corrected) Route

Figure 7.13: Corrected journey time prediction
Corrected Metric V journey time prediction with the application of a bias function:

tχ = tβ × 1.166− 46.2287.
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Hybrid Routing Model

Current practice in EMS is to calculate the expected arrival time of vehicles nearby to

an emergency event to determine which of those vehicles to dispatch. In Chapter 7,

our data suggests that estimation of arrival times at LAS could be overestimated and

consequently leading to sub-optimal dispatch decisions. The ability to produce an ex-

pected route based on an emergency drivers’ route choice model is therefore preferred

for both accurate simulation and in live operations to predict realistic arrival times and

to aid selection of the most appropriate vehicle.

152
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8.1 Blue Light Route Choice Model

An observation of the Incorrect Route Length Fraction depicted in Figure 7.6 is that

Metric II produces the best average route similarity to that taken by crew. We propose

a new speed model, the BLRCM, designed to further improve route similarity.

Using Metric II road speeds as a starting point, we use the Nelder-Mead algorithm

(NM) [155] to minimise the average IRLF of 1000 historic journeys. We design an

objective function for use with NM that accepts a set of road speed parameters and

returns the average IRLF between historic and routes generated using those parameters.

The NM iteratively perturbs parameters until a convergence threshold is met.

A test set of 1000 historic journeys where chosen at random of a least 20 road links

long to allow for sufficient complexity in the routes. We found that initial perturbation

of 15 mph for the road speeds, and 5 seconds for the junction delay was sufficient scope

for NM to fully explore the variable dimensions. Convergence was set to 0.0001 as

accuracy beyond this was not required. Results of the optimisation process are listed in

Table 8.1. The optimisation process improved the IRLF of the test cohort from 0.4153

to 0.3544. The junction delay is significantly reduced and all road speeds were increased

except for local streets.

Table 8.1: Blue Light Route Choice Speed Model

Optimised speeds improve IRLF from 0.4153 to 0.3544.

Road type Original Speed Optimised Speed
Junction delay 2.5 0.45

A Road 29 31.30
Alley 3 5.42

B Road 24 26.62
Local Street 14 12.26
Minor Road 19 20.04
Motorway 35 38.87

Pedestrianised Street 2 5.03
Private Road- Publicly 5 7.84

Private Road- Restricted 5 7.65
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8.2 Hybrid Routing Model

The Hybrid Routing Model is an extension of the Dijkstra routing engine used in this

research, modified to include an additional post-processing step. Initially the HRM

estimates a shortest-path route using the BLRN and BLRCM using speeds listed in

Table 8.1. A post-processing step discards the journey time estimate produced by

BLRCM for the route and recalculates the total estimated journey time by summing

estimated journey time for each road link using Metric V.

In Chapter 7 we put forward a corrected Metric V model described in Section 7.5.

To test the performance of HRM we calculate journey time estimates of 10,000 unseen

routes using both the HRM and corrected Metric V. For each test route we calculate

the delta between the predicted ETA and the actual journey time for both models and

plot the results in Figure 8.1.
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Figure 8.1: Prediction accuracy of the HRM
Box-plot of the HRM accuracy (green) and corrected Metric V (blue) for all journeys up to 15

minutes. Boxes are 25th/75th percentiles, whiskers are 10th/90th percentiles.

The Figure shows HRM improves on the precision of corrected Metric V journey time
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estimation for journeys up to 15 minutes duration. We also know that there is a higher

probability that the calculated route will be similar to a route actually undertaken by

emergency vehicle crew due to the low IRLF. The estimations appear to be accurate to

±1 minute up to 8 minutes for 50% of the journeys. Table 8.2 lists the prediction error

standard deviations as an indicator of precision, for both HRM and Corrected Metric V

for different journey durations. In all cases the HRM outperforms the Corrected Metric

V in precision.

Table 8.2: HRM and Corrected Metric V Delta Standard Deviations

Standard deviations, in minutes, of the prediction error for both HRM and Corrected Metric V
by actual journey time.

Actual Journey Time Hybrid Routing Model Corrected Metric V
≤ 4 mins 0.769784 0.920372
≤ 8 mins 1.105841 1.178487
≤ 12 mins 1.329786 1.433538
≤ 16 mins 1.501034 1.584625

Finally, Figure 8.2 shows the spatial variation of the prediction error per London

Borough. The error is lower in the outer boroughs, and underestimates journey duration

in the centre. A potential reason for this variation is that in central highly populated

areas, due to population density and more variable traffic conditions, an emergency

vehicle may be more likely to be randomly obstructed resulting in a delay to the planned

journey.
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Figure 8.2: Spatial variance in the Hybrid Routing Model

Mean prediction error by London Borough, using the Hybrid Routing Model to predict
emergency vehicle journeys.
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Conclusions and Future Work

In this thesis we show how data-driven methodology can be used for the accurate predic-

tion of journey times and routes for ambulances and fast response vehicles responding

to emergency medical incidents whilst travelling on BLS.

The key phases of our approach include the exploration and characterisation of

LAS ambulance data and identified key spatio-temporal features; a large-scale recon-

struction of emergency vehicle journeys from coarse location tracking data using the

HMM/V map-matching algorithm; extrapolation of comprehensive speed information

from the estimated ground truth journeys; creation of a navigation road network graph

157
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specifically tailored for emergency vehicles; development of several alternative edge-cost

estimator metrics and the assessment of their performance characteristics; and, the use

of a combination of metrics for the development of a hybrid model that achieves the

highest route similarity whilst minimising the journey duration uncertainty.

Our analysis of the LAS dataset reveals that incident generation is rising steadily

and occurs in clusters coincident with London’s urban nuclei. Vehicle movement is

significantly affected by the ebb and flow of traffic due peak times, with fast response

vehicles outperforming ambulance in terms of arrival time. Analysis of routes taken

by emergency vehicles shows that there are differences to those generated by standard

shortest path algorithms. The hybrid model counters the route differences, offering

stable performance across both spatial and temporal dimensions and can be used to

accurately determine both journey times and routes for ambulances and fast response

vehicles travelling on blue lights and sirens in London.

The hybrid model has considerable implications for ambulance services aiming to

improve the accuracy and fidelity of their emergency response as routing technology

underpins many of the strategic and tactical processes within an ambulance ecosystem.

9.1 Future Direction

9.1.1 Software Emulation

The use of sophisticated emulations are a key instrument employed for the investigation

of more effective and efficient operational policy. Specifically, the ability to trace closely

the true movements of emergency vehicles and to estimate their expected arrival time,

through increased fidelity, enables detailed exploration of the many facets of ambulance-

related operational research through the emulation of realistic scenarios.

Data-driven decision making can offer significant improvements in the planning of

key service requirements such as forecasting required ambulance staffing levels and re-

source placement, enabling services to balance strategy and tactics through the accurate
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assessment, for example, of the effects of particular dispatch tactics on meeting their

strategic objectives.

9.1.2 Tactical Displays

Moreover, our methodology can be applied in real-time at emergency service operating

centres for tactical purposes such as determining the ability of the service to adequately

cover its area of responsibility. Additionally, accurate routing engines provide the foun-

dation for such tactical displays and can provide answers to ‘what-if’ questions such as

estimating the effects on system performance and quantifying the effects on its ability

to maintain a high level of response resulting from specific vehicle dispatch or reloca-

tion decisions or as a result of permitting crews to go on a break. To achieve this aim,

systems such as Geotracker at LAS require updating to provide greater accuracy and

presentation of routing information.

9.1.3 Real-time Traffic

One feature of this work is that our methodology considers only historical data collected

internally by the emergency ambulance service. In future work, we aim to explore po-

tential improvements that can be achieved using real-time data feeds such as traffic,

weather and other related context information retrieved from external systems. Al-

though extending the methodology to cater for such data sources appears relatively

straightforward, a major challenge relates to assessing the quality of such third-party

data sources and validating their accuracy, especially considering the possibility of loss

of life that erroneous or intentionally misleading information may have.

9.1.4 Routing and Navigation

Our analysis suggests that a bespoke in-vehicle navigation engine tailored specifically

to emergency vehicles travelling on BLS, rather than one developed for general civilian

traffic as it is currently the case, could lead to significant reductions in crew arrival times
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at the site of an incident. Specifically, the use of Metric V introduced in this thesis has a

tendency to select emergency vehicle routes that provide faster arrival times. However,

we recognise that extensive work would be required to establish whether this approach

would reveal concrete benefits.

9.1.5 Dispatch Algorithms

Deciding which emergency vehicle is dispatched to a critically ill patient relies heavily on

routing technology to estimate predicted journey times, and is a core decision-making

process for both patient welfare and general service performance. We demonstrate that

accurate prediction is not a simple shortest path problem and is better served in a two-

step methodology by first estimating the most likely route that crew might take, and

then estimating journey time based on that route.

Research shows that the tactic of sending the nearest vehicle is not always in the best

interests of the patient. Novel dispatch algorithms using data-driven techniques that

fuse high fidelity vehicle coverage, incident generation and vehicle routing information

could benefit EMS considerably, however, research in this area is immature.

9.1.6 Use of Data

There are many opportunities to unlock the vast potential of data and technology in-

novations in EMS. However, policy-makers must make this possible. The NHS, for

example, tends to deal with large suppliers using strict procurement routes, and have a

reduced exposure and willingness to work with SMEs or academia. That being said, in-

novation is vital for the long term success of large health organisations. Data techniques

can be utilised not only for advanced dispatch, but also delivering tactical information

to responders, such as detailed real-time patient records, analysis of hospital availability

and queuing times, and projection of video and patient sensor data directly to trauma

rooms. Technology in this area is by no means mature and offer many opportunities for

innovation.
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Appendix A

Listing 1: Coding listing for re-sampling particles

protected List <MotionParticle > Resample(List <MotionParticle > particles ,

int sampleCount , MapMatcherRequest request)

{

// take the top (80)n% best particles

particles = particles.OrderByDescending(x => x.Weight)

.ToList ()

.Take((int) (particles.Count*request.ResampleCutoff))

.ToList ();

// create CDF of weights and sample from the CDF so that higher

weighted

// particles are selected more often. This results in possible

duplicates

// of higher weighted particles and possible removal of lower

weighted particles.

var cumulativeWeights = new double[particles.Count];

var cumSumIdx = 0;

double cumSum = 0;

foreach (var p in particles)

{

cumSum += p.Weight;

cumulativeWeights[cumSumIdx ++] = cumSum;

}

var maxCumWeight = cumulativeWeights[particles.Count - 1];

var filteredParticles = new List <MotionParticle >();

// make sampleCount particles
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for (var i = 0; i < sampleCount; i++)

{

var randWeight = RandomProportional.NextDouble (1)*

maxCumWeight;

// find index of particle template

var particleIdx = 0;

while (cumulativeWeights[particleIdx] < randWeight)

particleIdx ++;

// add particle to the new list with a uniform weight

var p = particles[particleIdx ];

if (filteredParticles.Contains(p))

{

// if the particle list already has this particle

then copy it

// and make it slightly different

var clone = p.Clone();

p = (MotionParticle) clone;

Perturb(request , p);

}

filteredParticles.Add(p);

}

return filteredParticles;

}
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Appendix C

Algorithm 2 Dijkstra’s shortest path algorithm

1: procedure DijkstraShortestPath(start, ends, durationMax, edgeCoster)
2: startLocation← GetLinkFromCoordinate(start)
3: thisEdgeData.RouteDuration← 0
4: endLocations← GetLinksFromCoordinates(ends)
5: candidates← FibonacciHeap() . create a new fibonacci heap [156]
6: candidates.Add(startLocation) . add the start location to fibonacci heap
7: visited← minEdge← NULL
8: while true do . keep looping until we find a result
9: minEdge← candidates.GetTop()

10: if endLocations.Contains(minEdge) then
11: route← CreateRoute(candidates)
12: Return(route)
13: end if
14: candidates← candidates.Remove(minEdge)
15: minEdgeData.Processed← true
16: for edge ∈ minEdge.OuterEdges do
17: visited.Add(edge)
18: if edge.Processed 6= true then . this is a new edge
19: edge.Duration← edgeCoster(edge)
20: thisDuration← minEdge+ edge.Duration
21: if thisDuration > thisEdgeData.RouteDuration then
22: thisEdge.RouteDuration← thisDuration
23: candidates.Add(edge)
24: end if
25: end if
26: end for
27: end while
28: end procedure
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Figure 4: Prediction accuracy by journey time for Metric I
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Figure 5: Prediction accuracy by journey time for Metric II
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Figure 6: Prediction accuracy by journey time for Metric III
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Figure 7: Prediction accuracy by journey time for Metric V
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Figure 8: Journey time error by route distance using Metric V

The chart compares estimation error in minutes (estimate− actual) against route
distance.
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Figure 9: Journey time error by total road angle change using Metric V

The chart compares estimation error in minutes (estimate− actual) against total road
angle change (i.e the total change in direction in degrees).
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Figure 10: Journey time error by number of turns using Metric V

The chart compares estimation error in minutes (estimate− actual) against number of
turns.
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Figure 11: Journey time error by number of roads using Metric V

The chart compares estimation error in minutes (estimate− actual) against number of
roads.



Symbols

a(xi−1, xi) Transition function returns the probability of transitioning from hid-

den state xi−1 to xi

βa Transition function inverse exponential β parameter

C0 Initial set of candidate road links

bfmax Maximum relative angle between motion vector and road geometry

df Final distance for a particle to move

dgeom Road Geometry Range

dm Maximum distance perturbation to apply to a particle in metres

dfmin Track cleansing; minimum distance between fixes in metres

dr Shortest path distance in metres between subsequent candidates

||xi−1, xi||route

droute Length of original route

derr Length of map-matched route not matched to original route

dmiss Length of a original route not matched to map-matched route

dpt Distance a particle travels between fixes using existing motion vector

and time gap

dx Distance in metres between candidate road positions ||xi−1 − xi||

dy Distance in metres between subsequent GPS fixes, ||yi−1 − yi||

δti Temporal error between actual and estimated traversal between GPS

fixes

177
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δtmα Prediction error in seconds between actual and estimated journey

time for an unseen route

δtmβ Prediction error in seconds between actual and estimated journey

time for a given route

nfskip Track cleansing; number of GPS fixes to skip before map-matching

nftake Track cleansing; maximum number of GPS fixes to process during

map-matching

nc The number of suitable candidates found near an observation

ncmax Maximum number of candidates to consider for each observation

ncutoff Re-sample cutoff used to detect low numbers of effective particles

neff Number of effective particles

np Number of particles to use in a particle filter

nsmpl Re-sample percentage when discaring low-probability particles

nrmax Maximum number of transition routes to consider between candi-

dates

p(y|x) Emission function

pit Particle i at time t

tmα Estimated journey time using edge cost estimator m

tfmin Track cleansing; minimum time between fixes

vfmax Track cleansing; maximum speed between fixes

vit Motion vector of particle i at time t

wit Weight of particle i at time t

yi Observation at step i

xi Hidden state at step i



Abbreviations

ABS Automatic Braking System. 37

AEU Ambulance Emergency Unit. 6, 11–13, 43, 44, 52, 54, 58, 74, 76–80, 83, 84, 95,

96, 127, 136, 141, 148

AMPDS Advanced Medical Priority Dispatch System. 52, 53, 91, 93

AVLS Automatic Vehicle Location System. 15, 71, 72, 76, 78, 79, 81, 85, 88

BLRCM Blue Light Route Choice Model. 19, 22, 153, 154

BLRN Blue Light Road Network. 12, 19, 21, 23, 63, 64, 69–71, 85–88, 97, 100, 101,

103, 105, 110–112, 115, 116, 122, 124, 125, 128, 131, 154, 165

BLS Blue Lights and Sirens. 17, 19, 21, 22, 26, 56, 63, 69, 97, 136, 157, 159

CAD Computer-Aided Dispatch. 52, 59–61, 64

CDF Cumulative Distribution Function. 114

CFR Community First Responder. 6, 47

CRU Cycle Response Unit. 6, 11, 46, 54

CSV Comma-Separated Values. 71, 72, 74, 76

DES Discrete Event Simulator. 62
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Abbreviations 180

DoH Department of Health. 50, 51

EAC Emergency Ambulance Crew. 48

ECG Electrocardiogram. 44, 46

EMR An Emergency Medical Responder is a person specially trained to provide out-of-

hospital care in medical emergencies, such as a paramedics and emergency medical

technicians.. 17

EMS Emergency Medical Services. 17, 24, 152

EMT Emergency Medical Technician. 49, 52

EPSG European Petroleum Survey Group. 65, 81, 107, 111

ERU A vehicle that responds to medical emergencies and can include modes such as

bicycles, motorbikes, cars, vans, trucks and helicopters.. 182

FRU Fast Response Unit. 6, 11–13, 43–45, 52, 54, 55, 58, 74, 76–80, 83, 84, 95, 96,

127, 136, 141, 148

GML Geography Mark-up Language. 65, 67, 68

GNSS Global Navigation Satellite System. 99

GPS Global Positioning System. 4, 12, 13, 15, 21–23, 26, 28–32, 37–39, 45, 46, 58, 59,

64, 97–110, 113, 115–122, 128, 129, 131, 145, 177, 182

HDoP Horizontal Dilution of Precision. 105

HMM/V Hidden Markov Model with Viterbi. 15, 98, 105–108, 110, 115, 118–122,

128, 129, 131

HRM Hybrid Routing Model. 19, 154
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IRLF Incorrect Road Length Fraction. 119, 143, 153

isochrone A line drawn on a map connecting points at which something occurs or

arrives at the same time. An example would be a boundary drawn around an

ambulance describing how far it could travel in 8 minutes.. 26

ITN Integrated Transport Network. 11, 64–66, 68–70

ITS Intelligent Transportation System. 27

LAA London Air Ambulance. 26, 47

LAS London Ambulance Service. 7, 11, 12, 15, 17, 19, 21–23, 26, 31, 42–50, 53, 55,

57, 59–64, 68, 71–73, 75, 77–79, 83, 85, 105, 118, 127–129, 150, 152

LOESS Loess regression is a nonparametric technique that uses local weighted regres-

sion to fit a smooth curve through points in a plot.. 75

MDT Mobile Data Terminal. 57, 59, 80

MEMS Microelectromechanical System. 38

MLE Maximum Likelihood Estimation. 92

MRU Motorcycle Response Unit. 6, 11, 44, 45, 54

NHS National Health Service. 16, 72

OHCA Out-of-Hospital Cardiac Arrest. 16, 17

OPALS Ontario Pre-hospital Advanced Life Support. 17

PF Particle Filter. 34, 37, 38, 98, 105, 110, 112–115

PTU Patient Transfer Unit. 6, 11, 48
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SME Small Medium Enterprise. 160

TETRA Terrestrial Trunked Radio. 59

UTC Coordinated Universal Time. 59, 72, 76

VDoP Vertical Dilution of Precision. 105

WKT Well-Known Text. 65



Glossary

Ambulance A type of Emergency Response Unit (ERU), usually a truck, that conveys

patients.. 16

Central Limit Theorem When independant random variables are added, their nor-

malise sum tends toward a normal distribution. This hold true even if the random

variables are not normally distributed.. 99

Great Circle A great circle is the largest circle that can be drawn on any given sphere.

The length of the minor arc of a great circle between two points on a sphere is

the shortest path between them.. 99

Heading Most GPS units report the track angle in degrees, which is the direction of

travel relative to true north.. 29, 38, 59, 78, 82, 105, 111, 112

NM The Nelder-Mead algorithm is an n-dimensional gradient descent optimiser that

attempts to minimise the result of a given objective function by iteratively varying

its input parameters. The function typically accepts multiple parameters, one for

each dimension.. 153

Position Fix A position estimate. GPS devices report position estimates as latitude

and longitude coordinates based on the World Geodetic System (WGS84) ref-

erence system. Additional information is often associated with the position fix

183
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including heading, speed, accuracy etc.. 13, 29, 38, 82, 85, 86, 88, 98, 99, 103,

106–112, 115–117, 119, 121, 166, 182

Road Link the Integrated Transport Network (ITN) digital road network provided by

Ordnance Survey, used in this thesis, digitises segments of roads as road links.

Road links contain attributes that describe notable features, for example whether

the section of road is a single carriageway or whether it is bi-directional. The road

link also defines the physical geometry of the road. Road links and road segments

are conceptually the same.. 21, 23, 66, 97, 110–113, 116, 117, 120, 122, 125, 126,

133

Road Segment it is often useful to break up a road geometry into a sequence of one

or more smaller road segments. Road segments typically start and end at road

junctions or other notable features of convenience to the road network digitising

agency.. 21, 28, 29, 32, 40

Standby Point A location at which an Emergency Response Unit waits before being

dispatched to an emergency event.. 48

Track A track is a sequence of position fixes.. 30, 81, 82, 120

Urban Canyons Tall buildings that flank either side of a street, often in dense urban

environments, cause a ‘canyon effect’ that blocks the line-of-sight signals from

GPS satellites resulting in poor positioning accuracy.. 86, 99
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