
Downloaded from:

Usage Guidelines:
Please refer to usage guidelines at contact lib-eprints@bbk.ac.uk. or alternatively
Figure 1: Motion-direction detection data with completely coherent motion: the main effect of group (see also Table 3). When the data from the different conditions are combined (high and low contrast displays, 50 and 70ms presentation times, display densities of 50 and 300 dots), the control group obtained the highest proportion of correct responses, overall, and the VA group the lowest. * denotes significant differences. Error bars denote ±1 standard error.
Figure 2: Motion-direction discrimination data for partially coherent motion (see also Table 4). A. The significant interaction between Group and display contrast. B. The significant interaction between Group and display dot density. Thresholds were calculated as the proportion of dots that needed to be moving together coherently to achieve a 71% accuracy rate. See text for further details. Error bars demote ±1 standard error.
Figure 3: Relative motion-direction discrimination data (see also Table 5): the average dot motion speed (deg s$^{-1}$) needed to achieve a 71% accuracy rate for each group (\pm1 standard error). A. The main effect of Group; VA = migraine with visual aura, MO = migraine without aura. B. The main effect of type of noise. S surround = stationary surrounding noise; S Bgd = stationary background noise; D Bgd = dynamic background noise. C, D. Stationary background – dynamic background difference scores revealed differences between these two conditions for the migraine groups when combined (D), which is consistent with stochastic resonance with these displays in migraine only. * denotes significant differences. See text for further details. Error bars demote \pm1 standard error.