BIROn - Birkbeck Institutional Research Online

    Structure and allostery of the Chaperonin GroEL

    Saibil, Helen R. and Fenton, W. and Clare, Daniel K. and Horwich, A.L. (2013) Structure and allostery of the Chaperonin GroEL. Journal of Molecular Biology 425 (9), pp. 1476-1487. ISSN 0022-2836.

    Full text not available from this repository.

    Abstract

    Chaperonins are intricate allosteric machines formed of two back-to-back, stacked rings of subunits presenting end cavities lined with hydrophobic binding sites for nonnative polypeptides. Once bound, substrates are subjected to forceful, concerted movements that result in their ejection from the binding surface and simultaneous encapsulation inside a hydrophilic chamber that favors their folding. Here, we review the allosteric machine movements that are choreographed by ATP binding, which triggers concerted tilting and twisting of subunit domains. These movements distort the ring of hydrophobic binding sites and split it apart, potentially unfolding the multiply bound substrate. Then, GroES binding is accompanied by a 100° twist of the binding domains that removes the hydrophobic sites from the cavity lining and forms the folding chamber. ATP hydrolysis is not needed for a single round of binding and encapsulation but is necessary to allow the next round of ATP binding in the opposite ring. It is this remote ATP binding that triggers dismantling of the folding chamber and release of the encapsulated substrate, whether folded or not. The basis for these ordered actions is an elegant system of nested cooperativity of the ATPase machinery. ATP binds to a ring with positive cooperativity, and movements of the interlinked subunit domains are concerted. In contrast, there is negative cooperativity between the rings, so that they act in alternation. It is remarkable that a process as specific as protein folding can be guided by the chaperonin machine in a way largely independent of substrate protein structure or sequence.

    Metadata

    Item Type: Article
    Keyword(s) / Subject(s): molecular chaperone, allostery
    School: Birkbeck Schools and Departments > School of Science > Biological Sciences
    Research Centre: Structural Molecular Biology, Institute of (ISMB)
    Depositing User: Administrator
    Date Deposited: 19 Dec 2012 15:04
    Last Modified: 06 Dec 2016 11:14
    URI: http://eprints.bbk.ac.uk/id/eprint/5907

    Statistics

    Downloads
    Activity Overview
    0Downloads
    255Hits

    Additional statistics are available via IRStats2.

    Archive Staff Only (login required)

    Edit/View Item Edit/View Item