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Abstract

A predictive regression for yt and a time series representation of the pre-

dictors, xt, together imply a univariate reduced form for yt. In this paper we

work backwards, and ask: if we observe yt, what do its univariate properties

tell us about any xt in the “predictive space” consistent with those proper-

ties? We provide a mathematical characterisation of the predictive space and

certain of its derived properties. We derive both a lower and an upper bound

for the R2 for any predictive regression for yt. We also show that for some

empirically relevant univariate properties of yt, the entire predictive space can

be very tightly constrained. We illustrate using Stock and Watson’s (2007)

univariate representation of inflation.

∗Faculty of Economics, University of Cambridge, donald.robertson@econ.cam.ac.uk
†Corresponding author: Department of Economics, Maths & Statistics Birkbeck College, Uni-

versity of London, Malet Street, London W1E 7HX, UK. s.wright@bbk.ac.uk



1 Introduction

Assume we observe the history of some stationary time series process yt. If there

is some (possibly unobservable) r × 1 vector xt that predicts yt+1 up to a serially
independent error, then the properties of xt and of the predictive regression together

determine the time series properties of yt.

In this paper we work backwards, and ask what the observable univariate prop-

erties of yt tell us about the “predictive space”: the set of predictive models that

are consistent with these properties. If we let Pr be the parameter space of all pos-

sible predictive models with r predictors, then if we observe some set of univariate

properties u, the predictive space Pu is the pre-image of u in Pr.

The more univariate properties we observe, the more tightly we can identify Pu.
But even in the limiting case where we observe the vectors of true AR parameters λ

and MA parameters θ, the predictive space Pλ,θ is only set-identified. The ARMA
parameters do however allow us to identify two points within the space, that turn

out to be of particular interest. For any yt that is an ARMA(p, q) , we can always

construct one element of Pλ,θ by a straightforward rewriting of the ARMA repre-
sentation. A second element can be constructed from a “nonfundamental” (Lippi &

Reichlin, 1994) ARMA representation in which all MA roots are replaced by their

reciprocals. Although this is non-feasible as a predictive model for yt+1 if we con-

dition only on the history of yt, we can still derive its properties from those of the

observable fundamental ARMA. These two particular predictive models provide us

with important information about the characteristics of the entire predictive space.

We show that we can use them to derive both a lower and an upper bound for the

predictive R2 of any predictive regression for yt.

Previous research (Lippi & Reichlin, 1994; Fernandez-Villaverde et al, 2007,)

has shown the link between nonfundamentalness and hidden state variables. Our

R2 bounds provide a new interpretation of nonfundamentalness by showing that the

xt derived from this particular nonfundamental representation is the best amongst

all possible predictor vectors consistent with the history of yt.

While calculation of the R2 bounds requires knowledge of the true ARMA pa-

rameters, the predictive space can also be derived for a more restricted set of uni-

variate properties. We focus in particular on the predictive space for the variance

ratio V = σ2P/σ
2
y of Cochrane (1988), where σ

2
P is the innovation variance of the

unit root (or Beveridge-Nelson, 1981) component in the cumulated process Σyt. We

show that for a commonly used class of predictive models, V < 1 imposes an upper

bound both on R2 and ρ, the correlation between predictive errors and innovations

to long-horizon forecasts.
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We illustrate our analysis with two examples.

Our first (analytical) example derives the predictive space for an ARMA(1,1) yt
process, which constrains the triplet (R2, ρ, λ) , where λ is the AR(1) parameter of

the single predictor, xt. If V < 1, but λ > 0, there is a mis-match between V and

Vy the variance ratios of yt and of the predicted value byt = βxt−1, since the latter

must be above unity. For a strongly persistent predictor, this constrains R2 to lie

in a narrow range quite close to zero, and ρ to be quite close to −1. We note that
these univariate features seem to correspond fairly well with a number of observable

time series, for example, GDP growth, stock returns and changes in exchange rates.

In our second (empirical) example we use our analysis to shed light on Stock

and Watson’s (2007) conclusion that inflation has become harder to forecast. We

show that in recent data their preferred univariate representation implies that the

upper and lower bounds for R2 are very close to each other, so that there would

be very limited scope for even the best possible predictive regression to outperform

a univariate model. Furthermore, possible predictors must have low, or negative

persistence, and ρ must again be very close to −1: neither of these features is
observed in most commonly used observable predictors of inflation.

Our analysis is a reminder that time series prediction does not take place in an

informational vacuum. Even a limited amount of information about the history of

yt can impose very tight restrictions on the predictive space that contains xt. For

many observable processes it would be hard for even the best possible predictive

regression to do much better than a univariate forecast. It may also imply that any

predictive regression that does beat the ARMA will be likely to suffer from many

of the small sample problems as does ARMA estimation.1 We conjecture that the

observable univariate properties of many of the yt processes that economists wish to

forecast may help to explain why economists appear to have such limited success at

forecasting.

The paper is structured as follows. In Section 2 we define the properties of the

underlying predictive system, and show how these can be related to both fundamen-

tal and nonfundamental ARMA representations of the reduced form process yt. In

Section 3 we formally define the predictive space, and derive our key results. Sec-

tion 4 presents our illustrative examples, and in Section 5 we address some of the

implications of our analysis for empirical research. Section 6 concludes. Appendices

provide proofs and derivations, as well as extended analysis of our two examples.

1Since Stambaugh (1999) the literature on predictive regressions for financial returns has ex-
amined the inference problems that arise from a negative correlation between one-period-ahead
prediction errors and innovations to predictions. Our analysis suggests that “Stambaugh Bias”
may be a much more widespread feature of predictive models.
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2 ARMARepresentations and Predictive Systems

2.1 The Fundamental ARMA Representation

Assume that in population yt admits a finite order ARMA(p, q) representation

yt =
θ (L)

λ (L)
εt (1)

with θ (L) =
Qq

i=0 (1− θiL); λ (L) =
Qp

i=0 (1− λiL) ; θ0 = λ0 = 0, where εt is

IID.2 Additionally we assume that a) |λi| < 1, yt is stationary; b) |θi| < 1, the

representation in (1) is “fundamental” (Lippi & Reichlin, 1994) in terms of the

history of yt (the innovations, εt can be constructed from the history of yt); and

c) θi 6= 0, λj 6= 0, θi 6= λj, ∀i > 0,∀j > 0, the representation has no redundant

parameters. In principle we may have q = 0 or p = 0, or both, so that yt may a

pure AR or MA process, or may be IID.

The predictive R2 of this representation satisfies

R2F (λ,θ) = 1−
σ2ε
σ2y

(2)

where λ =(0, λ1 . . . , λp)
0 , θ =(0, θ1 . . . , θq)

0 . For an appropriate ordering, as λi → θi

∀i, R2F → 0; however, given the restrictions above, R2F can only be precisely zero for

q = p = 0.

2.2 The Minimum Variance Nonfundamental Representa-

tion.

For q > 0 it is well-known that any representation in which one or more of the

non-zero θi is replaced by its reciprocal generates identical autocorrelations to (1).

Such representations are “nonfundamental” (Lippi & Reichlin, 1994), because their

innovations cannot be recovered from the history of yt;3 they are therefore non-viable

predictive models if we condition only on the history of yt. However the properties

of nonfundamental representations can be calculated from the parameters of the

fundamental representation in (1).

2In Section 2.3 below we state the conditions under which this assumption will be valid.
3In this context (but not in general) fundamentalness corresponds to invertibility in terms of

the history of yt.
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We focus on the particular nonfundamental representation

yt =
θN (L)

λ (L)
ηt (3)

where θN (L) =
Qq

i=1

¡
1− θ−1i L

¢
: for i > 0 all the θi are replaced by their recipro-

cals, which lie outside the unit circle. It is straightforward to show (see Appendix

A.1) that ηt thus defined has the minimum innovation variance amongst all funda-

mental or nonfundamental representations of the same order, with

σ2η = σ2ε

qY
i=1

θ2i (4)

and hence has predictive R2 given by

R2N (λ,θ) = 1−
¡
1−R2F (λ,θ)

¢ qY
i=1

θ2i (5)

where R2F is as defined in (2).

2.3 A Predictive System for yt

The ARMA representation characterises the predictability of yt conditional upon an

information set that is restricted to the history of yt itself. We now consider what

the properties of yt can tell us about any predictive model consistent with those

properties, that may condition also on additional information. We first set out a

general predictive system for yt, and then show how it must relate to the ARMA

reduced form.

Write a predictive regression for yt in terms of a vector xt of r predictors (all

variables are normalised to have zero means):

yt = β0xt−1 + ut (6)

Assumption A1: xt admits a stationary first-order vector autoregressive rep-

resentation,

xt = Λxt−1 + vt (7)

The disturbances may be non-Gaussian so that (6) and (7) may represent a quite

wide range of predictive models.4

4This framework can represent, at least to an approximation, predictive frameworks as diverse
as, for example, vector autoregressions and cointegrating systems; unobserved components models;
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Assumption A2: Λ = diag (λ∗i ), i = 1, . . . , r, |λ∗i | < 1; ∀i; λ∗i 6= λ∗j , ∀i 6= j

This assumption is relatively innocuous, as long as we admit complex xit, since

we can diagonalise any underlying VAR representation of the observables (it can

also relatively easily be relaxed - see Section 3.7.1).5 In this representation each of

the r predictors is a stationary AR(1) . This may in principle represent cases where

the true number of predictors, given by s = rank (E (vtv
0
t)) is less than r, but each

of the s predictors is a higher order ARMA process. (We shall show two particular

examples below, in Section 3.1, in which s = 1)

Assumption A3: The disturbances w0
t =

h
ut v0t

i
are jointly IID, with co-

variance matrix Ω.

The specification that the system disturbanceswt are serially independent, while

standard, is crucial. It implies that the xit are sufficient state variables for yt.

Crucially, therefore, (6) is not mis-specified. It also implies that conditional upon

xt, the history of yt is redundant - thus any predictive information in the history

of yt must already be contained within xt (for example, if the xt are derived from

a diagonalisation of a vector autoregressive representation of yt and some other set

of directly observed predictors - see Appendix A.5). The assumption of a time-

invariant distribution is however not crucial (see Section 3.7.3); it merely simplifies

the exposition.

Considered in complete isolation, i.e., if we did not observe the history of yt
there would be only minimal constraints on the parameter space of equations of the

form (6) and (7). The βi could be of any sign, and of any magnitude; the λi could

lie anywhere within the unit circle, and the only restriction on Ω would be that it

be positive semi-definite. But we shall show that if we do observe the history of yt,

univariate properties constrain the entire “predictive space” consistent with those

properties.

2.4 The Predictive System and the ARMA representation

Substituting from (7) into (6) and rewriting as

det (I−ΛL) yt = β0adj (I−ΛL)vt−1 + det (I−ΛL)ut (8)

and, with sufficiently exotic errors, Markov switching models (see Hamilton, 1994, p. 679) . In
Section 3.7.3 we discuss possible extensions to cases where the parameters of (6) and (7) may vary
over time.

5Even if the predicted process yt and all underlying predictors are real processes, some elements
of xt may be complex if some pairs of eigenvalues in Λ are complex conjugates.
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the right-hand side is an MA(r) composite error process. Conditioning only on the

history of yt, (8) can be rewritten as the “structural” ARMA(r, r) ,

λ∗ (L) yt = θ∗ (L) εt (9)

where λ∗ (L) ≡
Qr

i=0 (1− λ∗iL) ≡ det (I − ΛL) is of order r given A2. Letting

θ∗ (L) ≡
Qr

i=0 (1− θ∗iL) , the θ
∗
i must satisfy r moment conditions, such that the

autocorrelations of the quasi-differenced dependent variable λ∗ (L) yt match those

implied by the underlying predictive system in (6) and (7).6 The θ∗i are functions of

the full set of parameters Ψ of the predictive system, ie we have

θ∗= θ∗ (Ψ) (10)

where θ∗=(θ∗0, · · · , θ∗r)
0 .

Consistency with the structural ARMA(r, r) representation in (9) therefore re-

quires that the lag polynomials λ (L) and θ (L) in the ARMA(p, q) representation

in (1) must satisfy
θ (L)

λ (L)
=

θ∗ (L)

λ∗ (L)
(11)

The link between the dimensions of the two ARMA representations, in (1) and

(9), is complicated by three possible cases. The AR dimension is reduced by one if

one of the λ∗i is zero;
7 both AR and MA dimensions will be reduced symmetrically

if any of the elements of λ∗ are also elements of θ∗ (so that there is cancellation of

factors of the underlying AR and MA polynomials); and the order of the observed

MA polynomial θ (L) will be reduced further if any of the θ∗i are precisely equal to

zero. Hence we have, in general,

p = r −# {λ∗i = 0}−#
©
{θ∗i 6= 0} ∩

©
λ∗j 6= 0

ªª
(12)

q = p−# {θ∗i = 0} (13)

3 The Predictive Space

Definition 1 (The parameter space of predictive systems with r predic-
tors) Let Pr be the set that (up to a scaling factor) defines all possible predictive

6For details see Appendix A.2.
7Given A2, the λ∗i are distinct, so at most one can be zero.
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systems of the form (6) and (7), for any possible yt:

Pr =
n
Ψ = (λ∗,ω,β) ⊂ C

r(r+5)
2 : |λ∗i | < 1, λ∗i 6= λ∗j , ∀i 6= j, Ω = Ω (ω) is p.s.d

o
where λ∗ is an r×1 vector such that Λ = diag (λ∗) in (7); ω contains the r (r + 1) /2

above-diagonal elements of Ω = E (wtw
0
t) , defined in A3; β is the r × 1 vector of

coefficients in (6).

Pr defines the general parameter space of all possible r-predictor systems for

which the parameters Ψ = (λ∗,ω,β) satisfy the restrictions required for the pre-

dicted process to be stationary, and the innovation covariance matrix to be positive

semi-definite. Note that we only need to consider off-diagonal elements of Ω because

the system in (6) and (7) is over-parameterised: ie., we could in principle either let

Ω be a correlation matrix, or let β be a vector of ones, without changing R2 or the

autocorrelation function of yt, which is all that concerns us.

Definition 2 (The predictive space for (λ,θ))
Let

f : Pr → Cp+q+2

f (Ψ) = (λ,θ)

where λ =(0, λ1, . . . , λp)
0 and θ =(0, θ1, . . . , θq)

0 . contain the q + p non-zero para-

meters in the ARMA representation (1), with p and q defined by (12) and (13). The

predictive space Pλ,θ is the pre-image under f of (λ,θ):

f−1 (λ,θ) = Pλ,θ ⊂ Pr

thus each element of Pλ,θ defines a predictive system consistent with the population

ARMA representation, and hence the infinite history of a particular process yt.

Given the assumption of no redundancy in the ARMA representation, λ and θ

are identified from the history of yt; however the predictive space Pλ,θ is in general
only set-identified. Note that the definition of Pλ,θ is quite general, allowing cases
in which p or q, or both, are less than r, or indeed are equal to zero.

We can also define the predictive space in terms of some other (generally re-

stricted) set of univariate properties, denoted u, as follows:

Definition 3 (The predictive space for u ∈U)
Let

g : Pr → Cm

7



g (Ψ) = u

where u is an m × 1 vector of univariate properties.The predictive space for u, Pu
is the pre-image under g of u

g−1 (u) = Pu ⊆ Pr

and if U is a set containing u,

PU =
©
g−1 (u) : u ∈ U

ª
=
S
u∈U

Pu ⊆ Pr

thus each element of PU defines a predictive system that maps to a yt process with

univariate properties u ∈ U.

In Definition 3 the predictive space is the pre-image of a vector of univariate

properties that may in principle be measured precisely, or may satisfy some set of

inequalities. In Section 3.6 we shall consider the predictive space PV for a particular
univariate property, V, the limiting variance ratio (Cochrane, 1988). In Appendix

B.2 we also consider, in relation to our empirical example, discussed in Section 4.2,

the predictive space PU for u = (V,R2F ) ∈ U where the set of feasible values captures
sampling uncertainty in finite samples.

Clearly Pλ,θ is a special case of Definition 3 and we must have

Pλ,θ ⊆ Pu ⊆ Pr (14)

The more we know about univariate properties, the more restricted is the predictive

space; except in the limiting case that u = (λ,θ) (or is some invertible function

thereof that uniquely identifies λ and θ), in which case the predictive space cannot

be reduced further.8 We initially focus on the properties of this minimal set, Pλ,θ.

3.1 ARMA Representations as Elements of the Predictive

Space

It is straightforward to show that the predictive space Pλ,θ is non-empty. Using
(1) and (3), define the r × 1 coefficient vectors βF =

¡
βF,1, . . . , βF,r

¢0
; βN =

8There might also in principle be special cases of u that do nothing to restrict Pu relative to
Pr, hence the second relationship in (14) may hold with equality: for example, if u takes the value
1 if yt is stationary, and 0 otherwise.
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¡
βN,1, . . . , βN,r

¢0
that satisfy9

1 +
rX

i=1

βF,iL

1− λiL
=

θ (L)

λ (L)
(15)

1 +
rX

i=1

βN,iL

1− λiL
=

θN (L)

λ (L)
(16)

We can then define two r × 1 vectors of “univariate predictors”

xFt = ΛxFt−1 + 1εt (17)

xNt = ΛxNt−1 + 1ηt (18)

and hence by construction we have two predictive regressions

yt = β0Fx
F
t−1 + εt (19)

yt = β0Nx
N
t−1 + ηt (20)

The predictive regressions in (19) and (20) together with the processes for the

two univariate predictor vectors in (17) and (18) are both special cases of the general

predictive system in (6) and (7), but with rank 1 covariance matrices, ΩF = σ2ε11
0,

and ΩN = σ2η11
0.10 Hence by construction both are elements of Pλ,θ. We shall

show below that the properties of the two special cases provide us with important

information about all predictive systems consistent with the history of yt.

3.2 Simplifying Assumptions

We noted above that the link between r, the number of AR(1) predictors, and

the order of the observable ARMA representation, as set out in (12) and (13), is

potentially complicated when p or q, or both, are less than r, Since this can only

occur by some measure zero combination of the structural parameters, we derive the

first of our core results under assumptions that rule such cases out.

Assumption A4: λ∗i 6= 0,∀i
Assumption A5: θ∗j (Ψ) 6= λ∗i , ∀i, ∀j.
9If p < r ,then r − p elements of βF and βN will be zero; additionally if p < q there will be

p− q restrictions on the βi such that the MA order is matched.
10Note that we could also write (19) as yt = β0bxt−1 + εt; where bxt = E

³
xt| {yi}ti=−∞

´
is the

optimal estimate of the predictor vector given the single observable yt and the state estimates
update by bxt = Λbxt−1 + kεt, where k is a vector of steady-state Kalman gain coefficients (using
the Kalman gain definition as in Harvey, 1981). The implied reduced form process for yt must be
identical to the fundamental ARMA representation (Hamilton, 1994) hence we have βF,i = βiki.

9



Assumption A6: θ∗i (Ψ) 6= 0, ∀i
Taken together with Assumption A2, that all the λ∗i in (9) are distinct, Assump-

tions A4 and A5 imply, from (12), that p = r, while, from (13) Assumption A6

implies that q = p. Assumptions A4 to A6 thus together imply that p = q = r : the

AR and MA orders are both equal to the number of AR(1) predictors, and hence

λ (L) = λ∗ (L) ; θ (L) = θ∗ (L) . Since Assumption 5 rules out cancellation of AR and

MA polynomials, it also follows that there must be at least some degree of univariate

predictability: ie, in (2), R2F > 0.

In Section 3.7.1 we discuss the impact of relaxing these assumptions, and also

discuss other generalisations to cases where p 6= q.

3.3 Univariate bounds for the predictive R2

The two predictive systems derived in Section 3.1 are not simply special cases: their

properties provide bounds that apply to any predictive system in the predictive

space Pλ,θ.

Proposition 1 (Bounds for the Predictive R2) Let

R2 (Ψ) = 1− σ2u/σ
2
y (21)

be the predictive R2 for a predictive system of the form (6) and (7), with parameters

Ψ ∈ Pλ,θ. We have
R2min ≤ R2 (Ψ) ≤ R2max

where under Assumptions A4 to A6,

R2min = R2F (λ,θ) > 0

R2max = R2N (λ,θ) < 1

where R2F and R2N , defined in (2) and (5), are the predictive R
2s from the ARMA

representations in (1) and (3).

Proof. See Appendix A.3.
To provide some intuition for this result it is helpful to relate it to the predic-

tive systems in terms of xFt and x
N
t , derived in Section 3.1, that are themselves

reparameterisations of the ARMA representations that provide the lower and upper

bounds in Proposition 1.

The fundamental univariate predictor vector, xFt , defined in (17) is the worst

predictor vector (in terms of R2) consistent with univariate properties; the non-

10



fundamental predictor vector xNt , defined in (18) is the best. While the predictive

regression (20) in terms of xNt is not a viable predictive model, since xNt cannot

be recovered from the history of yt, we know that, the better any predictor vector

predicts, the more it must resemble xNt . Conversely, the less well xt predicts, the

more it must resemble the fundamental univariate predictor vector xFt (which can

be recovered from the history of yt).

The intuitive basis for the lower bound in the inequality in Proposition 1 is quite

straightforward. The predictions generated by xFt (or equivalently, by the ARMA

representation) condition only on the history of yt, so they cannot be worsened by

increasing the information set to include the true predictor vector. Furthermore,

since Assumptions A4 to A6 imply at least some univariate predictability, the lower

bound is strictly positive.

The intuition for the upper bound arises from a key (and well-known) feature of

any nonfundamental representation: that the innovations cannot be recovered from

the history of yt. In general however they can be derived as a linear combination of

the history and the future of yt. Since future values of yt can be expressed in terms

of current and future values of the true predictor vector xt, it follows that any set

of nonfundamental innovations must also have predictive power for xt. Thus far the

intuition is relatively straightforward; but the key additional feature of the proof

of the proposition follows directly from the distinctive properties of the minimum

variance nonfundamental representation. The proof shows that under A4 to A6 the

innovations to (3), ηt, can be derived solely from future and current, but not lagged

values of yt. As a result it follows straightforwardly that there must be one-way

Granger Causality from the nonfundamental predictor vector, xNt to xt. Hence x
N
t

must always outpredict xt except in the limiting case that the two predictor vectors

are identical. Furthermore, since, under A6, none of the θ∗i is equal to zero, from

(5) and (4) the upper bound for R2 is strictly less than unity.

Proposition 1 implicitly constrains the entire predictive space Pλ,θ. While R2

maps from Pr, the set of all logically possible predictive systems, to the interval

[0, 1] , under A4 to A6 R2 maps from Pλ,θ to the interval [R2F , R2N ] which is contained
strictly within [0, 1] . Thus univariate properties not only constrain elements of Pλ,θ
to occur in particular combinations, but may also entirely exclude large parts of the

potential parameter space Pr.

3.4 Limiting Cases

Under Assumptions A4 to A6, the upper and lower bounds for R2 from Proposition

1 lie strictly within [0, 1] . We also have the following important limiting cases:

11



Corollary 1 (Limiting Cases under A4 to A6)
a) As θi → 0 for some i, R2max = R2N (θ,λ)→ 1

b) As θi → λi ∀i, R2min = R2F (θ,λ)→ 0

c) As θi and λi → 0 ∀i, R2max = R2N (θ,λ)→ 1 and R2min = R2F (θ,λ)→ 0

d) As |θi| → 1 ∀ i, R2max −R2min → 0, β → βF , Ω→ σ2ε11
0

e) As λi → θi, |θi| → 1 ∀ i, R2max → R2min → 0 β → 0, Ω→ σ2ε11
0

In cases a) to c) the predictive system is tending towards limiting cases that are

ruled out by Assumptions A4 to A6. In the neighbourhood of case b) yt is nearly

IID. In Case c), both yt and all the xit are nearly IID. Note that this is the only

limiting case in which the inequality in Proposition 1 is entirely devoid of content.

In contrast, in both cases d) and e) the space that R2 can occupy, and thus the

entire Predictive Space, is contracting towards a single point.

We illustrate the limiting cases in Corollary 1 in relation to our analytical exam-

ple in Section 4.1.

3.5 A Caveat: Imperfect Predictors

Our lower bound for R2 from Proposition 1 tells us that xt, the vector of true state

variables for yt must predict at least as well as the univariate predictor vector xFt .

This does not tell us that if we simply run a regression of the form yt = γ 0qt−1+ωt

for some vector of predictors qt= Bqt−1+ζt, that may have some predictive power

for yt, this must imply R2q > R2F . If qt 6= xt, but is some imperfect predictor,

correlated with xt, any such regression will in general be mis-specified, hence ωt and

ζt cannot be jointly IID. However, R
2
F will be a lower bound, if information from

qt is used efficiently. Consider some set of state estimates bxt = E
¡
xt| {qi, yi}ti=−∞

¢
derived by the Kalman Filter. Under A4 to A6 the resulting vector of state estimates

will have the same autoregressive form as the true state variables, with innovationsbvt that are jointly IID with the innovations to the associated predictive regression
yt = β0bxt−1 + but,11 and hence a representation with bxt is also nested within the
general predictive system. If qt has any informational content about xt independent

of the history of yt, then R2x must be strictly greater than R2F . If it is not, then qt
must be predictively redundant. It may be correlated with xt, but this correlation

must be solely due to a correlation with the history of yt, or equivalently with xFt .
12

11This is the “Innovations Representation” of Hansen & Sargent, 2007, Chapter 9.
12This is implicitly the null hypothesis of no Granger Causality from qt as originally formulated

in Granger (1969).
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3.6 The Predictive Space for the Variance Ratio

Proposition 1 implies that at points corresponding to the upper and lower bounds

for R2, the predictive space Pλ,θ collapses to two distinct points: at R2 = R2min,

β = βF ,Ω = σ2ε11
0, and at R2 = R2max, β = βN ,Ω = σ2η11

0. Thus in both limiting

cases of the predictive system, rank(Ω) = 1, so all predictors have innovations that

are perfectly correlated both with each other, and with innovations to yt. Hence

for any predictive system sufficiently close to these limiting cases Ω will be close to

being singular.

The history of yt also of course constrains Ω in general, since for all parameter

combinations Ψ within the predictive space Pλ,θ all autocorrelations of yt generated
by the predictive system must match those from the ARMA representation. The

full set of restrictions requires knowledge of the true ARMA parameters. However,

exploiting Definition 3, we can also define the predictive space Pu in terms of some
other set of univariate properties. Our second result shows that knowledge of just one

summary univariate property of yt, the limiting variance ratio of Cochrane (1988)

also puts significant constraints on the entire predictive space consistent with that

property. It also highlights the implied restrictions on the innovation covariance

matrix Ω.

For many, if not most, predictive systems, the stationary predicted variable yt
will itself be the first difference in some underlying process, ie, let

yt = ∆Yt (22)

where Yt might for example be the level of real GNP; some measure of real stock

prices or cumulative returns; the level of the real exchange rate; the nominal interest

rate or inflation rate. Since Cochrane (1988) (and many others) a commonly used

univariate statistic is the variance ratio

V R (h) =
var

³Ph
i=1 yt+i

´
hσ2y

=
var (∆hYt+h)

hσ2∆Y

(23)

where if yt is IID, V R (h) = 1 for all h, while if V R (h) is asymptotically decreasing

in h the nonstationary process Yt has a random walk (or Beveridge-Nelson (1981)

permanent) component with lower innovation variance than yt = ∆Yt itself.13 In

13For many series the issue of whether the variance ratio slopes downward has been widely
debated. Eg for GNP the debate initiated by Cochrane (1988) vs Campbell & Mankiw (1987); and
for stock returns the literature arising out of Fama & French (1988) vs Kim et al (1991). Note that
Pastor & Stambaugh’s (2011) most recent contribution to this literature focuses on the properties
of the conditional variance ratio, which may slope upwards even when (as their dataset shows) the

13



such cases Yt is often referred to as “mean-reverting”.14

Cochrane (1988) showed that, as a population property, the limiting variance

ratio V = limh→∞ V R (h) must be equal to the ratio σ2P/σ
2
y, where σ

2
P is the inno-

vation variance of the random walk component in Yt. He also showed that this ratio

must equal the innovation variance of the random walk component implied by any

predictive model, whether univariate or multivariate.

The multivariate Beveridge-Nelson(1981)/Stock-Watson (1988) decomposition

for Yt is15

Yt = Y P
t + Y T

t (24)

where

Y P
t = lim

h→∞
EtYt+h = Yt + lim

h→∞
Et∆hYt+h (25)

It is straightforward to show (see Appendix A.4) that the predictive system in

(6) and (7) implies

Y P
t =

ut + δ
0vt

1− L
(26)

where δ0= β0 [I − Λ]−1 is a vector of “long-run multipliers”. The innovation to Y P
t in

(26) can be split conceptually into two components, corresponding to the partition

of Y P
t in (25). The first is the prediction error in the predictive regression (6)

(which, given that it is IID, will in expectation persist indefinitely in Yt); the second

is the innovation to expected growth in Yt over an infinite horizon, which is a linear

combination of innovations to the xit. We shall denote the correlation between these

two components as the “Beveridge Nelson Correlation”,16 defined as

ρ = corr (ut, δ
0vt) (27)

Since the limiting variance ratio V must be identical to the ratio σ2P/σ
2
y from

any predictive system, knowing V restricts the entire predictive space, PV consistent
with a given value of V (i.e., setting u = V = g (Ψ) in Definition 3). The following

result expresses this restriction in terms of three summary features of any predictive

unconditional ratio, which we consider, slopes downwards.
14This term is actually a misnomer except in the special case where V R (h) asymptotes to

zero, implying that Yt, rather than yt is the underlying stationary process, and hence has been
over-differenced. For any yt process that has some serial correlation structure, Yt will have a
mean-reverting transitory component, whatever the slope of the variance ratio.
15We neglect constants and hence deterministic growth in Yt. For a more general definition see,

eg, Garratt, Robertson & Wright, 2006.
16With apologies to Stock &Watson (1988) who generalised the original Beveridge-Nelson (1981)

univariate decomposition to the multivariate version used here.
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system.

Proposition 2 (The Predictive Space for the Variance Ratio) Let V be the

limiting variance ratio of Cochrane(1988), defined by

V = lim
h→∞

V R (h) ≡ 1 + 2
∞X
i

corr (yt, yt−i) (28)

For any given V, using Definition 3, the parameters Ψ = (λ∗,β,ω) ∈ PV must

satisfy

g (Ψ) = V (29)

where g (Ψ) = 1 +R2 (Vy − 1) + 2ρ
q
VyR2 (1−R2)

where R2 (Ψ) is the predictive R2 from (6); ρ (Ψ) = corr (ut, δ
0vt), is the Beveridge-

Nelson Correlation, defined in (27); and Vy (Ψ) is the variance ratio of the predicted

value byt ≡ β0xt−1, calculated by replacing yt with byt in (28).
Proof. See Appendix A.4.
The definition of the limiting variance ratio V in (28) shows that if V differs from

unity the sum of all autocorrelations of yt must differ from zero. The counterpart

to this for any predictive system within PV is that this serial correlation in yt must

come from somewhere. Equation (29) in the proposition shows that this imposes a

restriction on the triplet (R2, ρ, Vy) that must be satisfied for any predictive model

consistent with a yt process with limiting variance ratio V.

One key feature of this restriction arises by inspection of (29). Trivially R2 = 1

must imply byt = yt and hence Vy, the variance ratio of the predictions, must equal V .

But as a direct implication, for any predictive model for which Vy does not equal V,

R2 must be bounded away from unity. Since V 6= 1 must also imply some univariate
predictability, it follows that for for any yt process with V 6= 1, and any predictive
system with Vy 6= V, R2 must be bounded strictly within [0, 1] .

In contrast to Proposition 1, which showed that R2 bounds can be derived di-

rectly from the parameters of the univariate representation, the more limited uni-

variate information that defines PV means that the implied R2 bounds also depend

on Vy, and hence in general on the properties of the predictive system. However, two

corollaries to Proposition 2 show that certain general features of predictive systems,

or of the reduced form process itself, put a lower bound on Vy. For the case V < 1

this in turn bounds both R2 and ρ.
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Corollary 2 Let ρij = corr
¡
βivit, βjvjt

¢
. If λi ≥ 0 for all i; ρij ≥ 0 ∀j 6= i then

Vy ≥ 1, and hence if V < 1,

ρ ≤ V − 1 < 0

R2 ≤ 1 +
p
V (2− V )

2
< 1

Corollary 2 is of particular interest given the common a priori restriction that

all λi are non-negative, and innovations to predictors are orthogonal. Any such

predictive system must generate predictions with an upward-sloping variance ratio

(Vy > 1). In such cases, by inspection of (29), there must be a negative correlation

of prediction errors with long-run forecasts (ρ < 0), and both ρ and R2 have upper

bounds that depend only on V. The proof of both bounds also shows that, the higher

is Vy, the more tightly both ρ and R2 are constrained.

Corollary 3 Let yt be an ARMA(1, 1) with AR and MA parameters λ and θ. Under
A4 to A6, r = 1, and hence Vy = (1 + λ) / (1− λ) is a strictly univariate property.

Thus in this case, for V 6= 1, Vy 6= V, observing (V, Vy) is equivalent to observing

(λ, θ) , and hence the implied R2 bounds are identical to those given by Proposition

1. Furthemore, if V < 1 and Vy (λ) > 1 then

ρ ≤ ρmax = −
s
(1− V ) (Vy − V )

Vy
< 0

Corollary 3 provides an illustration of how, as discussed in relation to Definitions

2 and 3, the more properties we observe (or assume) for the process yt, the more

tightly we can identify the predictive space. For the r = 1 case, if we only observe

V, then the restriction on the triplet (R2, ρ, Vy) in Proposition 2 is equivalent to a

restriction on R2, ρ and λ. If V < 1, and we impose the a priori restriction that λ is

positive, hence Vy > 1, then we have a special case of Corollary 2, which puts (fairly

weak) upper bounds on both ρ and R2. But if we observe both V and Vy this is

equivalent to observing the ARMA parameters (λ, θ) , and we can derive bounds for

both R2, as in Proposition 1, and ρ, as in Corollary 3, that define a strictly narrower

space than those given in Corollary 2. We discuss this special case further in Section

4.1.
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3.7 Extensions and Generalisations

3.7.1 ARMA(p, q) reduced forms with p 6= q = r

It is relatively easy to accommodate cases where p 6= q. The common feature of

these extensions to our framework is however that q, the moving average order, is

always equal to r, the number of AR(1) predictors.

It is straightforward to relax Assumptions A2 and A4, which together imply that

Λ, the autoregressive matrix of the predictors, is diagonal, with distinct non-zero

elements. If there is some set of observable underlying predictors zt= Azt−1+wt

then we can always write A = S−1ΛS, where Λ takes the Jordan Normal Form,

and define xt= Szt. Assumptions A2 and A4 are therefore just restrictions on the

eigenvalues of A. The more general form, with some zeroes on the diagonal or ones

on the super-diagonal of Λ, arises if A has zero or repeated eigenvalues. The former

case, which implies that some of the xit have no persistence, lowers the order of

det (I −ΛL) and hence p, and thus may result in p < q = r under A5 and A6. Thus

q still reveals the number of predictors. The latter case does not change p, and has

no impact on our results other than to complicate the algebra.

It is also straightforward to generalise to cases with p > q. If yt is an ARMA(p, q)

with p > q, this can be reduced to an ARMA(q, q) for some process φ (L) yt, with the

same univariate innovations, where φ (L) is a (p− q)th order polynomial. Having

done so, under A4 to A6, q reveals r, the number of AR(1) predictors in a predictive

system for φ (L) yt, but by implication also for yt itself. The definitions of R2F and

R2N for yt remain unchanged, since they apply for any p and q. However, they are now

the lower and upper bounds for R2 in a predictive regression for yt that conditions

on q predictors and p−q lags of yt.17 We provide an illustrative example in Appendix
B.1, in which yt is an ARMA(2, 1) , which implies that the predictive regression is

one of the equations in a bivariate VAR(1).

3.7.2 Relaxing Assumptions A4 to A6

While it is convenient for our analysis to maintain A5 (no cancellation of AR and

MA terms) and A4 and A6 (no AR or MA terms precisely equal to zero) in deriving

Proposition 1, not much actually hinges on this. The limiting cases of Proposition 1

described in Corollary 1 describe the nature of predictive systems that are close

to violating A4 to A6. The definitions of the Predictive Space do not rely on

these assumptions, and hold for any values of r, p and q, as does Proposition 2.

17Appendix A.5 derives a special case of particular interest, if yt is an element of a vector
autoregression,
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Furthermore, as our discussion of empirical implications (see in particular Section

5.2) makes clear, arguably the key issue is not whether predictive systems actually

violate these assumptions, but whether they are sufficiently close to doing so that

in a finite dataset it may be impossible to tell.18

3.7.3 Time-varying parameters

In general, if any of the parameters in the predictive model (including elements of

Ω) are non-constant over time, this will translate into time variation in the parame-

ters of the univariate representation for yt. However, this does not of itself detract

from the key insights that our analysis provides: it merely complicates the algebra.

The proof of the R2 bounds in Proposition 1, for example, relies on the assumption

of independence of the underlying innovations; not on their having a time-invariant

distribution, nor on the constancy of λ or β. Thus even with time-varying parame-

ters there will still be upper and lower bounds for the predictive error variance, but

these would themselves be derived from time varying ARMA representations. We

discuss this issue further in the context of our empirical application in Section 6.

4 Illustrative Examples

4.1 An Analytical Example: The Predictive Space for an

ARMA(1,1)

Assume that yt has a fundamental ARMA(1,1) representation with a white noise

innovation

yt =

µ
1− θL

1− λL

¶
εt (30)

Under Assumptions A1 to A6 this implies that there must be some underlying

predictive system with r = 1, of the general form

yt = βxt−1 + ut (31)

xt = λxt−1 + vt (32)

18Lippi & Reichlin (1994) analyse the implications of violations of A5, which lead to "nonbasic"
nonfundamental representations, for which some of the parameters cannot be recovered even in
an infinite sample. While Lippi & Reichin assert that the nonbasic property is "not likely to
occur in models based on economic theory" (Lippi & Reichlin, 1994, p 315), Baxter, Graham &
Wright (2011) show that it will arise naturally in models where agents have imperfect information.
Nonetheless, even in cases where the nonbasic property may arise, there will always be a basic
nonfundamental representation of the form in (3) the properties of which can be derived from the
history of yt.
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where xt is scalar and wt = (ut, vt)
0 is vector white noise.

This very simple framework provides a wide range of insights into more general

cases. It is also a framework that has been extensively employed in empirical pre-

diction problems, particularly in the literature on predictive return regressions in

empirical finance. One notable feature is that here the Beveridge-Nelson Correlation

ρ = corr
¡
ut,

β
1−λvt

¢
is identical to the “Stambaugh Correlation” ρS = corr (ut, βvt),

since forecasts of yt at all horizons are simply scalings of one-period-ahead forecasts.

As noted in the introduction, the Stambaugh Correlation has, since Stambaugh

(1999), been the focus of a a large literature on inference problems in predictive

regressions.

We can straightforwardly reparameterise the predictive space Pλ,θ to be the set
of all possible values of the triplet (R2, ρ, λ) that generate the reduced form (30).19

The predictive space Pλ,θ is then the pre-image in R3 of the ARMA coefficients

(λ, θ) :

Pλ,θ=
©¡
R2, ρ, λ

¢
: f
¡
R2, ρ, λ

¢
= (λ, θ)

ª
⊆ P1 (33)

The result in Propositions 1 and 2 place significant restrictions on all three

elements in Pλ,θ.
Most straightforwardly, λ, the AR parameter of the predictor in (32), must be

equal to the AR parameter in the ARMA representation (30).

In the case of R2, the lower and upper bounds in Proposition 1 are, given r =

p = q = 1,

R2min = R2F (λ, θ) =
(θ − λ)2

1− λ2 + (θ − λ)2
(34)

Rmax = R2N (λ, θ) = 1− θ2
¡
1−R2F (λ, θ)

¢
(35)

These formulae provide simple illustrations of each of the limiting cases described

by Corollary 1.

If θ is close to zero (hence yt is close to an AR(1)) then R2max is close to unity

(illustrating case a) of Corollary 1). If θ is close to λ, R2min = R2F is close to zero,

so yt is close to being white noise (illustrating case b). But only if θ and λ are

sufficiently close to zero (implying that both yt and the single predictor xt are close

to white noise), does the inequality for R2 open up to include the entire range from

zero to unity (illustrating case c).

In marked contrast, as |θ| tends to unity the space that R2 can inhabit (and
indeed the entire predictive space) collapses to a single point (illustrating case d) of

19See Appendix A.6 for full derivation.
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Corollary 1. Thus any ARMA(1, 1) process with high |θ| will have a very limited
range of values of R2 for a single predictor model: ie, there is very little scope for

any predictive model to outperform the ARMA. If, additionally, θ ≈ λ, ie, yt is close

to univariate white noise, then the upper bound for R2 will also be quite close to

zero, so that both in relative and absolute terms all predictive models must predict

badly (illustrating the final limiting case, e) of Corollary 1).

A further convenient feature of the ARMA(1,1) is that, as Corollary 3 shows,

observing λ and θ is equivalent to observing the limiting variance ratios V and

Vy =
1+λ
1−λ so that for this special case the R

2 bounds implied by Propositions 1 and

2 are identical. It is also straightforward to show that

θ > λ > 0⇐⇒ V < 1 (36)

thus under this condition we can also explicitly derive an upper bound for ρ, ρmax,

as given in Corollary 3 which is strictly negative. Since both V and Vy can be

written as functions of (λ, θ) we can also write ρmax explicitly in terms of the ARMA

parameters, giving

θ > λ > 0⇐⇒ ρ ≤ ρmax = −
Ã
2
p
(θ − λ) (1− θλ) θ

1− λ2 + (θ − λ)2

!
< 0 (37)

Thus for all ARMA(1,1) processes with θ > λ > 0, and hence a declining variance

ratio, any single predictor system for such a process must have errors in forecasting

yt that are negatively correlated with revisions to forecasts of yt+k.for k ≥ 1.20

Figure 121 illustrates the predictive space for two processes, y1t and y2t. For both

we set the AR parameter λ to be 0.8. Using A4 to A6, this must be the AR parameter

of the single predictor in (31), which is therefore strongly persistent. For y1t we set

θ = 0.9, while for y2t, we set θ = 0.7.Given this parameterisation both have identical,

and very limited, univariate predictability (from (34), both have R2F = 0.027); but,

from (36) y1t has a variance ratio that monotonically declines, while that for y2t
monotonically increases (with asymptotes of V1 = 0.24 and V2 = 2.2 respectively).

Thus the two cumulated processes Y1t = (1 − L)−1y1t and Y2t = (1 − L)−1y2t have

permanent components with relatively low, and relatively high innovation variances,

respectively.

With p = q = r the predictive space Pλ,θ is a curve in R3. Given that for both
processes we fix λ = 0.8, in Figure 1 we plot Pλ,θ for y1t and y2t, as lines in R2 that
20By implication the very common identification assumption in simple state space representations

that ρ = 0 must generate V > 1 if λ > 0.
21All tables and figures are appended to the paper.
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satisfy (33), given λ = 0.8.

The leftmost point of each line in Figure 1 pins down R2min = R2F = 0.027,

which is identical for both processes. The rightmost point pins down R2max = R2N .

The lower value of θ for y2t implies a higher upper bound for R2, with R2max =

1 − 0.72 (1− .027) = 0.52, compared to 1 − 0.92 (1− .027) = 0.21 for y1t. At both

extremes, the Beveridge-Nelson-Stambaugh correlation, ρ = ±1 : i.e., ut and vt, in

(31) and (32) are perfectly correlated. For y1t, with θ > λ, from Corollary 3, ρ

must be negative throughout, with a turning point at ρ = ρmax as given in (37). In

contrast for y2t, ρ is monotonically decreasing in R2.

Figure 1 also illustrates the feature we noted in our discussion of Proposition 2:

that a negative Beveridge-Nelson-Stambaugh Correlation is not just a property of yt
processes with V < 1. The intuition for this feature can be related straighforwardly

to the general restrictions on the predictive space implied by (29) in Proposition 2.

In this special case the predicted value byt = βxt−1 is an AR(1) with high persistence.

As a result for both processes, from Corollary 3 the variance ratio for byt is very high:
Vy =

1+λ
1−λ = 9. Since even for y2t this is much higher than the limiting variance ratio

for the process itself, from (29), for sufficiently high R2, the predictive system can

only match the lower V if ρ < 0.

Figure 1 shows that different univariate properties can have distinctly different

implications for the range of possible values each parameter can take within the

predictive space. If θ < λ (the variance ratio slope upwards), the range of possible

values of R2 is larger than if θ > λ; and (for some value of R2) ρ can lie anywhere

in [−1, 1] . In contrast if θ > λ (the variance ratio slopes downwards) all possible

values of ρ lie in a narrow range close to −1, and the gap between R2min and R2max
is quite narrow. Thus for this case the range of the inverse function f−1 (λ, θ) that,

from (33), defines Pλ,θ lies element-by-element strictly within P1: ie, λ is pinned
down directly by ARMA properties, R2 ∈ [R2F , R2N ] and ρ ∈ [−1, ρmax] .
Exploiting Definition 3 we can also use Figure 1 to illustrate the properties

of the predictive space for single predictor models that generate values of V and

R2F within a particular range. To simplify we again fix the AR parameter of the

predictor, λ = 0.8. It is straightforward to show that the predictive space satisfying

V ≤ 0.24 (the limiting variance ratio for y1t) is then simply the area below the

lower of the two lines shown in Figure 1. As V → 0 the predictive space contracts

towards a single point where ρ = −1, and R2F (λ, θ) = R2min = R2max = 0.1. Since

R2min = R2F (λ, θ) must be strictly less than 0.1 for any V ∈ (0, 24) the inequality on
V also imposes at most a very limited degree of univariate predictability.

For a given value of λ, using Definition 3, the area under the curve thus defines
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PU ⊂ P1 for U = {(V,R2F ) : V ∈ [0, 0.24] , R2F ∈ [0.027, 0.1]} . All predictive models
within this space imply low univariate predictability (R2F ≤ 0.1); upper and lower
bounds for R2 that are fairly close together (R2max−R2min ≤ 0.18); and a Beveridge-
Nelson-Stambaugh correlation very close to −1 ( ρ ≤ ρmax = −0.86). Thus the
properties of this space illustrate that for any ARMA(1,1) yt process, the lower is

the limiting variance ratio V , the more closely any single predictor model with a

persistent predictor must resemble a univariate model.

4.2 An empirical application: Stock &Watson’s (2007) model

of inflation

Stock & Watson (2007, henceforth SW) show that for a range of widely used pre-

dictors of inflation there is little evidence that it is possible to out-forecast a very

simple univariate model, particularly in recent data. This application provides a

simple and powerful illustration of our analysis, which in turn sheds light on SW’s

results.

SW’s preferred univariate representation uses unobserved components estima-

tion, but is equivalent to an IMA(1,1) model of inflation, πt. Hence, if we let

yt = ∆πt, this is a special case of the ARMA(1,1) example in Section 4.1, setting

λ = 0.22

This immediately provides a crucial piece of information about the predictive

space for inflation: that, at least in a single predictor model, any such predictor must

be (or be indistinguishable from) an IID process. This puts very strong restrictions

on candidate predictors.

The remaining two elements of the predictive space (parameterised, as in the

example of Section 4.1, as (R2, ρ, λ), depend on the estimated value of θ. The first

two columns of Table 1 show SW’s estimates of θ in two subsamples. Shown below

these estimates are the implied values of R2min and R2max using (34) and (35) as well

as of ρmax, using (37), setting λ = 0.
23

The two sub-samples show a distinct contrast. In the earlier sample, bθ is rela-
tively close to zero, with the result that the implied range of values of R2 for any

predictor is barely constrained, with R2min very close to zero, and R
2
max very close to

unity. This is close to the limiting case c) of Corollary 1. However, even in this sam-

ple, univariate properties still impose restrictions on the predictive space. The final

22The unobserved components estimation technique also constrains θ to lie in (0, 1)
23Standard errors are derived using the delta method. Note that here we treat it as known that

λ = 0, and hence only consider the impact of sampling variation in bθ. In Appendix B.2 we consider
the case where the true value of λ differs from zero; but we show that this does little to change the
conclusions presented here.
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row of Table 1 also shows that, using (37), ρmax, is around −0.5 : so any predictor
consistent with univariate properties must not only be (or be indistinguishable from)

an IID process (given λ = 0), but must also be quite strongly negatively correlated

with the prediction error for inflation.

The restriction on the predictive space for the variance ratio, PV , given in (29)
in Proposition 2 helps to provide intuition. Here, with an IID predictor, the limiting

variance ratio of the predictions, Vy is unity, while the limiting variance ratio for yt
itself is given by V (θ) = (1− θ)2 /

¡
1 + θ2

¢
< 1. Thus to generate enough negative

serial correlation in yt to match the point estimate V
³bθ´ = 0.49 in this sample, ρ

must be sufficiently negative.

In the second of the two samples, bθ is distinctly closer to unity, and hence we
are closer to the limiting case d) of Corollary 1, so that the predictive space is more

constrained. The range of possible values of R2 is considerably narrower, and the

implied value of ρmax is now much closer to −1.
This contraction of the predictive space is even more marked if, using SW’s

preferred univariate representation, we generalise our analysis to allow explicitly for

time variation in θ (which SW model indirectly by allowing the variances of the

permanent and transitory innovations to inflation to vary over time).24 The last

three columns of Table 1 show 16.5%, 50% and 83.5% quantiles of the posterior

distribution for bθt in the last observation of SW’s sample, 2004:IV. On the basis
of the median estimate of bθ = 0.85 at this point the predictive space is extremely
compressed, with R2 lying in a narrow range between 0.42 and 0.58; but, most

notably, ρmax is essentially indistinguishable from −1.25

In the light of these calculations, SW’s conclusion that inflation has become

much harder to forecast in recent data becomes readily interpretable in terms of the

univariate representation. Essentially in recent inflation data there is quite limited

scope for even the best possible predictor of inflation consistent with the properties of

inflation to out-predict the fundamental ARMA representation. Any such predictor

must be close to IID, with innovations that are nearly perfectly negatively correlated

with innovations to inflation. The predictions it generates, byt+1 = βxt, must also

very closely resemble those of the “univariate predictor” xFt defined in Section 3.1

(which here is simply εt) since corr
¡
xt, x

F
t

¢
is bounded below by

p
R2F/R

2
N ,
26 which

in this simple case is just equal to θ. Thus all possible single predictor models of

24As noted in Section 3.7.3, we can generalise our analysis fairly straightforwardly to accommo-
date time-varying parameters.
25These implied figures are themselves time-varying, and can, given SW’s representation, only

be defined locally.
26Since by the missing variables formula R2F = corr

¡
xFt , xt

¢2
R2, and, from Proposition 1,

R2 ≤ R2N .
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inflation must also closely resemble the fundamental ARMA representation. We

shall see below that this conclusion also applies, with only minor qualifications, to

multiple predictor models.

5 Discussion and implications for empirical pre-

diction problems

5.1 What can the history of yt tell us in a finite sample?

At the start of this paper we posed the question: what does the history of a process

yt tell us about the nature of any possible predictive system in terms of a vector

of predictors, xt that can have generated the univariate reduced form? The answer

depends on how much we know (or assume) about univariate properties.

Our core results have been derived in terms of population properties. If we

had an infinite history of yt we would know the true population parameters in the

ARMA(p, q) representation. Under A4 to A6, the MA parameter, q equals r, the

number of predictors in the predictive system, and the ARMA parameters define the

predictive space Pλ,θ of all possible systems consistent with the reduced form, which
is a strict subset of Pr, the parameter space of all possible r-predictor systems.

Clearly, in a finite sample things are not so straightforward. In general we cannot

know the true ARMA parameters. Diagnostic tests will be unable to distinguish

between an ARMA(p, q) and an ARMA(p+ 1, q + 1) for θq+1 and λp+1 sufficiently

close either to zero or to each other. However, finite sample properties can still

provide us with important information about the predictive space.

First, standard model selection criteria on a finite sample of data will at least

provide us with an estimated ARMA(p, q) representation that cannot be rejected

against higher order alternatives. Under our assumptions, such a representation

implies that there must be some predictive system for yt with at least q predictors.27

Our empirical application provides a simple example: Stock and Watson’s (2007)

IMA(1) representation of inflation tells us that there must be at least one predictor

of inflation, and that any single predictor must itself be close to being IID.28

Second, even a more limited set of observable univariate properties - for example,

a declining variance ratio and a given degree of univariate predictability - may also

tell us a lot about the predictive space. For many yt processes we can feel reasonably

27To be more precise, following the logic of Section 3.7.1 there must be some predictive system
for yt with at least q predictors and max (p− q, 0) additional lags of yt
28We neglect here the issue of time-varying parameters, which as we noted above does not change

the key elements of our arguments.
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confident that the univariate R2, R2F does not exceed some value. This may in

some cases be quite close to zero (for example, stock returns, GNP growth and real

exchange rate changes). For other processes with stronger univariate predictability

(for example changes in inflation, as analysed in our example) we may be able to

identify a reasonably narrow confidence interval for R2F . We may also be able derive

confidence intervals for the limiting variance ratio;29 or may at least be able to reject

V R (h) = 1 with high probability on a one-tailed test, for some large h.30 Even

this limited information tells us that yt must, at a minimum, have an ARMA(1,1)

representation, and hence must be generated by a predictive system with at least

one predictor, with a Stambaugh/Beveridge-Nelson Correlation ρ that is likely to

be close to −1.
Third, the necessary link between the ARMA representation and the predictive

system can also have important implications for the way Granger Causality tests

are carried out. For example, a conventional test of one-way Granger Causality in a

VAR(1) in terms of yt and some observable predictor zt sets the coefficient on zt−1

to zero, thus forcing yt to be an AR(1) under the null. But if the data point to, for

example, an ARMA(1,1) as a minimal representation of yt, the conventional null

is clearly mis-specified, since the ARMA representation tells us that there must be

some true predictor of yt, even if it is not the observable predictor zt.31 Robertson

& Wright (2011) propose an alternative test procedure, consistent with the original

Granger (1969) definition of causality, that avoids this pitfall, by ensuring that yt
has the same order ARMA representation under both the null and the alternative.32

Fourth, Proposition 2 and its corollaries showed that there will be a range of

yt processes for which any predictive model in the predictive space must have a

Beveridge-Nelson Correlation, ρ that is strongly negative, and hence an innovation

covariance matrix Ω that is close to singular. Since Stambaugh (1999) the literature

on predictive return regressions, in particular, has addressed the inference problems

that arise when the Stambaugh Correlation ρS = corr (β0vt, ut) (which for a single

predictor model is identical to ρ, and in many predictive models will be of a very

29Or, as we show in the case of the Stock-Watson (2007) example, some transform thereof. See
Appendix B.2.
30As another concrete example Pastor & Stambaugh’s (2011) long annual dataset shows that

the sample variance ratio for real stock returns asymptotes to a value sufficiently far below unity
that the null V ≥ 1, can be rejected with high probability.
31Equivalently, the conventional Granger causality test implies the joint null, that zt does not

predict yt, and that yt is an AR(1) in reduced form.
32In much recent literature the focus has switched from within-sample causality testing to out-

of-sample predictive testing. But very similar considerations apply : the standard univariate
benchmark employed for comparisons is usually a finite order AR representation, whereas if the
true DGP is a predictive system it should be an ARMA.
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similar magnitude) is close to −1, which implies that estimated values of β are
biased away from zero in finite samples. “Stambaugh Bias” arises because such

predictive models are "ARMA-like" (since any ARMA model has ρ = ±1). But
our results imply that for any yt process for which ρmax is close to −1 (eg, the
Stock-Watson (2007) model of inflation analysed in Section 4.2), Stambaugh Bias

must be an endemic problem for any predictive regression. For such yt processes

the presumed advantage of predictive regressions over ARMA models, due to the

well-known difficulties in ARMA estimation, are therefore largely illusory.

5.2 A puzzle: low order ARMAs vs high order predictive

models

One puzzle opened up by our analysis is an apparent disconnect between univariate

models and predictive regressions. Typically in estimated ARMA representations, q

will be small. How can we reconcile ARMA models with low q with the much larger

numbers of predictors we observe in many predictive regressions?

Clearly if we take predictive regressions seriously, as our analysis does, then

under our maintained assumptions if there are r predictors in an estimated predictive

regression as in (6), with an autoregressive matrix with r distinct eigenvalues, the

parameters of the predictive system must map to an ARMA(r, r), as in (9). The

only possible reconciliation with low q in the observable ARMA is that there must

be r − q pairs of AR and MA parameters that are sufficiently close to cancellation

that a lower order ARMA representation cannot be rejected.33 But this in itself still

provides us with important information about the the predictive space.

The Stock & Watson (2007) model of inflation analysed in Section 4.2 again

provides a simple illustration. While their MA(1) representation of yt = ∆πt is

consistent with consistent with data in each of their sub-samples, clearly another

possible representation might be, for example, an ARMA(2,2), as long as the ad-

ditional AR and MA parameters are sufficiently close to zero or cancellation. For

any such univariate representation the predictive space is the set of all 2 predictor

models with parameters Ψ that map to a yt process that is indistinguishable from

SW’s MA(1) in the given sample. This could for example contain predictive models

in which one of the predictors, say x1t, is close to IID (λ1 ≈ 0), while the second
has an AR parameter, say λ2 anywhere within [−1, 1] as long as long as θ1 (Ψ) ≈ bθ,
SW’s point estimate, and θ2 (Ψ) ≈ λ2. This might appear in principle to open up

33Adapting Lippi & Reichlin’s (1994) terminology, this means that the nonfundamental repre-
sentation (3) that determines R2max is "nearly nonbasic": i.e., its properties can barely be detected
from the history of yt.
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the predictive space considerably. However, we show in Appendix B.2 that if on a

priori grounds we assume that both predictors have positive persistence (λ1, λ2 > 0)

(Stock & Watson note that this is a feature of many commonly used candidate pre-

dictors) this expansion of the predictive space is largely illusory: the feasible range of

(R2, ρ) combinations is essentially the same as in a single predictor model, as shown

in Table 1. We show that for any multiple predictor model to predict better than

a single predictor model requires (as a necessary but not sufficient condition) that

λi < 0 for at least some i, and also puts significant constraints on Ω, the innovation

correlation matrix. Thus multiple predictor models are still very tightly constrained

by univariate properties.

An alternative explanation for large numbers of predictors in predictive regres-

sions is that they are not the true state variables, but a set of imperfect predictors

as discussed in Section 3.5 that merely provide a noisy signal of the much smaller

set of true state variables. But in such cases the predictive regression must be mis-

specified, and the appropriate estimation methodology is one of signal extraction

rather than regression (cf Stock & Watson, 2002). Furthermore, as we noted in

Section 3.5, while the true predictor vector xt must predict at least as well the

true ARMA representation, this need not be the case for a set of imperfect predic-

tors. But if a set of observable predictors does not predict as well as the ARMA,

or even if it does not predict significantly better, this tells us either that there is

mis-specification of the predictive regression, or that the apparent predictive power

is spurious.34

One argument for a relatively small number of true state variables, which is

therefore more consistent with low order ARMA models, is if different predictors

have common AR roots, and hence can be aggregated together. This property

can arise out of theoretical models that are driven by a relatively small number of

exogenous stochastic processes. The original stochastic growth model was usually

assumed to be driven by a single AR(1) technology process, and one persistent

pre-determined state variable, the capital stock, so that all elements of the model

were ARMA(2,1) processes with perfectly correlated innovations and common AR

roots.35 More recently much of the focus on estimated DSGE models has followed

the example of Smets & Wouters (2007) in assuming a relatively large number of

underlying driving stochastic processes (which would imply high r in our framework).

But it is noteworthy that Boivin and Giannoni (2006), who take a signal extraction

approach to DSGE estimation, based on a large number of indicators, conclude in

34The alternative tests of Granger Causality in Robertson & Wright (2011) discussed in the
previous sub-section provide one way to address this issue.
35See for example the exposition in Campbell, (1994).
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favour of a relatively small number of driving processes, consistent with (relatively)

low order ARMA reduced forms.

An almost diametrically opposite argument is implicit in the long memory lit-

erature. A limiting case of our predictive system arises as r, the number of AR(1)

predictors with distinct AR(1) parameters, tends to infinity. In such cases there is

no viable finite order ARMA representation; however, as Granger’s (1980) original

derivation showed, assumptions about the nature of the limiting distribution of the

λi as r →∞ may allow a univariate representation of yt as a long memory process

with a relatively small number of parameters. In such cases, therefore, finite sample

univariate representations with a small number of parameters need not necessarily

be finite order ARMAs, and hence need not of themselves imply a small number of

state variables. But if the history of yt does lead us to the conclusion that it is a long

memory process, this still has strong implications for the predictive space: either

predictors must themselves be long memory processes; or yt must have an infinite or

extremely high dimension predictor vector, with a particular limiting distribution

of the λi.

5.3 Limits to predictability?

Does our analysis help to explain why economists appear to have only rather limited

success at forecasting? The analytical and empirical examples analysed in Sections

4.1 and 4.2 illustrated cases where the predictive space is very tightly constrained,

and also illustrated that for some series, even if we observed the true state variable,

it would make a marginal contribution to improving R2 beyond the univariate lower

bound. It is notable that the yt processes in such examples capture the univariate

properties of a quite wide range of observable economic time series.

Our framework does not however justify unqualified pessimism about prediction:

• In the ARMA(1,1) example in Section 4.1 we showed that, of two ARMA(1,1)
processes that were both close to univariate white noise, the predictive space

for one was distinctly less constrained. The key feature determining the dif-

ference was whether the variance ratio sloped upwards (the predictive space

is relatively unconstrained) or downwards (the predictive space is tightly con-

strained). But the upward sloping variance ratio means that the flipside of

this greater scope for forecastability in the short run is greater uncertainty in

the long run. For example, Campbell & Viceira (1999) show that short-term

returns on cash have increasing variance ratios, and hence should be much

more forecastable than, for example, short-term returns on stocks. But their
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increasing variance ratio also means that long-term cash returns have much

higher unconditional uncertainty.

• Even when the predictive space is very tightly constrained, the nature of these
constraints can still give guidance on what kind of predictors are likely to give

predictive power for yt. Thus, our empirical example in Section 4.2 showed that

a single predictor model of inflation has a very tightly constrained predictive

space, but also pointed to necessary characteristics of both single and multiple

predictors that might in principle offer scope for improved predictions.

6 Conclusions

Prediction of time series processes is not carried out in an informational vacuum.

Our analysis has shown that what we know (or assume) about the time series prop-

erties of some process yt can tell us a lot about the properties of any predictor

vector xt and predictive regression consistent with those properties. For some (pos-

sibly many) yt processes this may well imply that it will be hard to find predictive

regressions that predict much better than an ARMA model, and that may share

many of the finite sample problems of ARMA estimation. But, to the extent that

we can find models that approach the limits of predictability, we are more likely to

do so by being aware of the constraints that the time series properties of yt put on

the predictive space containing xt.
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Appendix
The Appendix is structured as follows:

Appendix A provides proofs of propositions and corollaries, together with deriva-

tions exploited in the main text of the paper. For ease of checking by referees, we

provide considerably more detail than we would expect to be included in any pub-

lished version of the paper.

Appendix B provides extended versions of our two examples that illustrate the

properties of the predictive space in more complex models than those included in the

main text. At various points in the main paper we make reference to key features

of these additional examples, hence we felt referees would wish to be able to see

substantiation of the points made. We would assume that any published version of

the paper could make reference to a working paper that would include this additional

material.

A Proofs and Derivations

A.1 Properties of the Minimum Variance Nonfundamental

Representation

The following result summarises the key properties of the representation in (3):

Lemma 1 In the set of all possible nonfundamental ARMA(p, q) representations
consistent with (1) in which, for q > 0, θi is replaced with θ−1i for at least some i,

the moving average polynomial θN (L) in (3) in which θi is replaced with θ
−1
i for all

i, has innovations ηt with the minimum variance, with

σ2η = σ2ε

qY
i=1

θ2i (38)

and hence

R2N (λ,θ) = 1−
¡
1−R2F (λ,θ)

¢ qY
i=1

θ2i (39)

Proof. Equating (1) to (3) the non-fundamental and fundamental innovations are
related by

εt =

qY
i=1

µ
1− θ−1i L

1− θiL

¶
ηt =

∞X
i=0

ciηt−i (40)
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for some square summable ci. Therefore, since ηt is itself IID,

σ2ε = σ2η

∞X
i=0

c2i (41)

Now define

c(L) =
∞X
i=0

ciL
i =

qY
i=1

µ
1− θ−1i L

1− θiL

¶
(42)

so

c(1) =

qY
i=1

µ
1− θ−1i
1− θi

¶
=

qY
i=1

µ
−1
θi

¶
(43)

and

c(1)2 =

qY
i=1

1

θ2i
=

Ã ∞X
i=0

ci

!2
=

∞X
i=0

c2i +
X
j 6=i

cicj (44)

Sine εt is IID we have

E(εtεt+j) = 0 j = 1, . . . ,∞

implying
∞X
i=0

cici+j = 0 j = 1, . . . ,∞ (45)

Hence we have ∞X
j=1

∞X
i=0

cici+j =
X
j 6=i

cicj = 0 (46)

thus
∞X
i=0

c2i = c(1)2 =

qY
i=1

1

θ2i
(47)

Thus using (47) and (41) we have (38) and hence (39).

To show that this is the nonfundamental representation with the minimum inno-

vation variance, consider the full set of nonfundamental ARMA(p, p) representations,

in which, for each representation k, k = 1, . . . , 2q − 1, there is some ordering such
that, θi is replaced with θ−1i , i = 1, . . . , s (k) , for s ≤ q. For any such representation,

with innovations ηk,t, we have

σ2η,k = σ2ε

s(k)Y
i=1

θ2i (48)

This is minimised for s (k) = q, which is only the case for the single representation in

which θi is replaced with θ
−1
i for all i, and thus this will give the minimum variance

nonfundamental representation.
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A.2 Moment Conditions

After substitution from (7) the predictive regression (6) can be written as in (8),

restated here, as

det (I−ΛL) yt = β0adj (I−ΛL)vt−1 + det (I−ΛL)ut (49)

Given diagonality of Λ, from A1, we can rewrite this as

eyt ≡ rY
i=1

(1− λ∗iL) yt =
rX

i=1

βi
Y
j 6=i

¡
1− λ∗jL

¢
Lvit +

rY
i=1

(1− λ∗iL)ut ≡
rX

i=0

γ 0iL
iwt

(50)

where eyt is an MA(r), wt =
³
ut v0t

´0
, and the final equality implicitly defines a

set of (r + 1)× 1 vectors, γi, i = 0, . . . , r, γi = γi (β,λ
∗) .

Let Ai be the ith order autocorrelation of eyt implied by the predictive system.
We have

Ai (β,λ
∗,Ω) =

Pr−i
j=0 γ

0
jΩγj+iPr

j=0 γ
0
jΩγj

(51)

Let κi be the ith order autocorrelation of eyt implied by the ARMA(r, r) repre-
sentation in (9), given by (Hamilton, 1994, p51)

κi (θ
∗) =

ψi + ψi+1ψ1 + ψi+2ψ2 + ....+ ψrψr−i

1 + ψ21 + ψ22 + ...+ ψ2r
(52)

where the ψi (θ
∗) satisfy

rY
i=1

(1− θ∗iL) =
rX

i=1

1 + ψ1L+ ψ2L
2 + ...+ ψrL

r

Thus the θ∗i are the solutions to the moment conditions

κi (θ
∗) = Ai (β,λ

∗,Ω) , i = 1..r (53)

such that θ∗i ∈ (−1, 1) ∀i.

A.3 Proof of Proposition 1

We proceed by proving two sub-results that lead straightforwardly to the result in

the Proposition itself.

34



Lemma 2 In the population regression

yt = ν 0xxt−1 + ν
0
Fx

F
t−1 + ξt (54)

where the true process for yt is as in (6), and xFt is the vector of fundamental

univariate predictors defined in (17), all elements of the coefficient vector νF are

zero.

Proof. The result will follow automatically if we can show that the xFit−1 are all
orthogonal to ut ≡ yt − β0xt−1. Equalising (1) and (6), and substituting from (7),

we have (noting that under A1 to A3 p = q = r)

yt =

Qr
i=1(1− θiL)Qr
i=1(1− λiL)

εt =
β1v1t−1
1− λ1L

+
β2v2t−1
1− λ2L

+ . . .+
βrvrt−1
1− λrL

+ ut (55)

So we may write, using (17),

xFjt−1 =
εt−1

1− λjL

=

µ
L

1− λjL

¶ Qr
i=1(1− λiL)Qr
i=1(1− θiL)

µ
β1Lv1t−1
1− λ1L

+
β2Lv2t−1
1− λ2L

+ . . .+
βrLvrt−1
1− λrL

+ ut

¶
(56)

Given the assumption that ut and the vit are jointly IID, ut will indeed be orthogonal

to xFjt−1, for all j, since the expression on the right-hand side involves only terms

dated t− 1 and earlier, thus proving the Lemma.

Lemma 3 In the population regression

yt = φ0xxt−1 + φ
0
Nx

N
t−1 + ζt (57)

where xNt is the vector of nonfundamental univariate predictors defined in (18), all

elements of the coefficient vector φx are zero.

Proof. The result will again follow automatically if we can show that the xit−1 are
all orthogonal to ηt ≡ yt−β0Nx

N
t−1. Equating (3) and (6), and substituting from (7),

we have

yt =

Qr
i=1(1− θ−1i L)Qr
i=1(1− λiL)

ηt = β1
v1t−1
1− λ1L

+ β2
v2t−1
1− λ2L

+ . . .+ βr
vrt−1
1− λrL

+ ut (58)

Using
1

1− θ−1i L
=
−θiF
1− θiF
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where F is the forward shift operator, F = L−1, we can write

ηt = F r
rY

i=1

(−θi)
µQr

i=1(1− λiL)Qr
i=1(1− θiF )

¶µ
β1

v1t−1
1− λ1L

+ β2
v2t−1
1− λ2L

+ . . .+ βr
vrt−1
1− λrL

+ ut

¶
(59)

Now

F r

Qr
i=1(1− λiL)Qr
i=1(1− θiF )

vkt−1
(1− λkL)

= F r

µQ
i6=k(1− λiL)Qr
i=1(1− θiF )

¶
vkt−1

= vkt + c1vkt+1 + c2vkt+2+ . . .

for some c1, c2, ... since the highest order term in L in the numerator of the bracketed

expression is of order r − 1, and

F r

µQr
i=1(1− λiL)Qr
i=1(1− θiF )

¶
ut = ut + b1ut+1 + b2ut+2 . . .

for some b1, b2, . . ., since the highest order term in L in the numerator of the brack-

eted expression is of order r. Hence ηt can be expressed as a weighted average of

current and forward values of ut and vit and will thus be orthogonal to xit−1 =
vit−1
1−λiL

for all i, by the assumed joint IID properties of ut and the vit, proving the Lemma.

Now let R21 ≡ 1 − σ2ξ/σ
2
y be the predictive R

2 of the predictive regression (54)

analysed in Lemma 2. Since the predictive regressions in terms of xt in (6) and in

terms of xFt in (19) are both nested in (54) we must in general have R
2
1 ≥ R2 and

R21 ≥ R2F . But Lemma 2 implies that, given νF = 0 we must have R21 = R2, hence

R2 ≥ R2F .

By similar argument,let R22 ≡ 1 − σ2ζ/σ
2
y be the predictive R

2 of the predictive

regression (57) analysed in Lemma 3. Since the predictive regressions in terms of xt
in (6) and in terms of xNt in (20) are both nested in (57) we must in general have

R22 ≥ R2 and R22 ≥ R2N . But Lemma 3 implies that, given φx = 0 we must have

R22 = R2N , hence R
2
N ≥ R2.

Hence

R2F (θ,λ) ≤ R2 ≤ R2N (θ,λ)

thus proving the Proposition.¥
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A.4 Proof of Proposition 2 and Corollaries 2 and 3.

The predictive system in (6) and (7) implies the multivariate Beveridge Nelson(1981)/Stock

Watson (1988) decomposition"
∆Yt

xt

#
= C (L)

"
ut

vt

#

=

"
1 β0L [I −ΛL]−1

0 [I −ΛL]−1

#"
ut

vt

#
(60)

= [C (1) +C∗ (L) (1− L)]

"
ut

vt

#

=

("
1 β0 [I −Λ]−1

0 [I −Λ]−1

#
+

"
0 β0

¡
L [I −ΛL]−1 − [I −Λ]−1

¢
0 [I −ΛL]−1 − [I −Λ]−1

#)"
ut

vt

#

for which the equation for ∆Yt in the last line can be written, as in (24) and (26) in

the main text, restated here

Yt = Y P
t + Y T

t (61)

where

Y P
t =

ut + δ
0vt

1− L
(62)

where δ = β0 [I −Λ]−1 .
Cochrane (1988, equation (10)) shows that V = limh→∞ V R (h) as defined in

(23) must, letting σ2p ≡ var
¡
∆Y P

t

¢
, satisfy

V =
σ2p
σ2y

(63)

since σ2p must be equal in population whether it is derived from the univariate or

multivariate representation. Thus straightforwardly we have, from (62)

V =
var (ut + δ

0vt)

var (ut + β
0xt−1)

(64)

By setting ut to zero in (64) we can also derive the variance ratio of the predicted

value for yt, byt = β0xt−1 i.e.

Vy ≡
var (δ0vt)

var (β0xt)
≡ σ2δ0v

σ2y
(65)
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Using this definition, and the definitions of R2 and ρ in Propositions 1 and 2 we

have

V =
var (ut + δ

0vt)

σ2y
=

σ2u + σ2δ0v + 2δ
0Ωuv

σ2y

=
σ2u
σ2y
+

σ2δ0v
σ2y

σ2y
σ2y
+
2.δ0Ωuv

σδ0v.σu
.
σδ0v.σu
σ2y

= 1−R2 + VyR
2 + 2ρ

σδ0v
σy

.
σy
σy

σu
σy

= 1 +R2 (Vy − 1) + 2ρ
q
VyR2 (1−R2)

as given in (29) in the proposition.¥
To prove Corollary 2, partition Ω as

Ω =

"
σ2u Ω0uv
Ωuv Ωv

#
(66)

hence

σ2δ0v = δ0Ωvδ =
rX

i=1

rX
j=1

DijΩij; = tr (DΩv)

where Dij = Dji = δiδj =
βiβj

(1− λi) (1− λj)

σ2y = β0E (xtx
0
t)β =

rX
i=1

rX
j=1

BijΩij = tr (BΩv)

where, using A1, E (xtx0t) =

∙
Ωij

1− λiλj

¸
ij

⇒ Bij = Bji =
βiβj

1− λiλj

Manipulation of the definitions of D and B gives

Dij −Bij =
βiβj

(1− λiλj)

µ
λi

1− λi
+

λj
1− λj

¶
(67)

hence, since we can write (65) as

Vy =
tr (DΩv)

tr (DΩv)
(68)

under the conditions stated the numerator of (68) is element-by-element larger than

the denominator, hence Vy > 1.
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To derive the bounds for ρ and R2, solving (29) for ρ we obtain

ρ = h
¡
R2, V, Vy

¢
= −1

2

Ã
1− V −R2 (1− Vy)p

VyR2 (1−R2)

!
(69)

which describes a surface in three dimensions that satisfies g (Ψ) = V. Taking Vy as

given, we then have

∂h

∂R2
= −1

4

⎛⎝ 1− V + Vy − V

(R2 (1−R2))
3
2 V

1
2

y

⎞⎠µR2 − 1− V

1− V + Vy − V

¶
(70)

so ρ has at most one stationary point bρ, within [−1, 1] , which is given by
bρ =s(1− V ) (Vy − V )

Vy
sgn (V − 1 + V − Vy) (71)

For V < 1, Vy > V, by inspection of (70) and (71), this is a maximum, and is a

decreasing function of Vy, hence, giving the upper bound for ρ in Corollary 2, by

setting Vy = 1 in (71).

For given Vy, and V < 1, there are two values of R2 satisfying h (R2, V, Vy) = −1.
The upper of these two solutions (which yields the maximum possible R2 for given

V and Vy) is

bR2 (V, Vy) = 1− V + Vy (1 + V ) + 2
p
VyV (1 + Vy − V )

(1 + Vy)
2 (72)

and, by inspection, bR2 (V, 1) = 1 + 2
p
V (2− V )

2
(73)

To show that this is an upper bound under the assumptions of Corollary 2 we need

to show that bR2 (V, Vy) is a strictly decreasing function of Vy for Vy > 1. Treating V
as a fixed parameter we can write

bR2 (Vy) = f (Vy)

g (Vy)
(74)

where, by inspection of (72), we have R2 (V, Vy) = 1, hence f (V ) = g (V ) . We also

have

f 0 (Vy)− g0 (Vy) = (V − 1 + V − Vy) (1−H (Vy)) (75)
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where

H (Vy) =

s
V

Vy (1 + Vy − V )
(76)

By inspection H (V ) = 1, and hence f 0 (V ) = g0 (V ) . For V < 1, Vy > 1, H < 1, and

so f 0 < g0, hence bR2 (Vy) is indeed a strictly decreasing function, and hence (73) is
an upper bound.36¥
The upper bound for ρ in Corollary 3 follows directly from (71). Substituting

for V (λ, θ) and Vy (λ) in (69) using (84) (see Appendix A.6) the two solutions to

h (R2, V (λ, θ) , Vy (λ)) yield R2min (λ, θ) and R2max (λ, θ) as in (34) and (35), which

are special cases of the general formula in Proposition 1.¥

A.5 Derivation of the predictive regression from a vector

autoregression

Assume the underlying VAR is"
zt

y∗t

#
= A

"
zt−1

y∗t−1

#
+

"
ζt
ut

#

= SΛ∗S−1

"
zt−1

y∗t−1

#
+

"
ζt
ut

#

where y∗t is the variable of interest, and zt is a vector with r elements, hence the

system has r + 1 elements, and Λ∗=diag (λ1, . . . , λr+1). Let

x∗t =

⎡⎢⎣ x1t

..

xr+1t

⎤⎥⎦ = S−1

"
zt

y∗t

#
; v∗t = S−1

"
ζt

ut

#

then we can write, with h0 = the bottom row of S,

y∗t = h0x∗t = h0 [I − Λ∗L]−1 v∗t

where we must have

ut = h0v∗t

36Not that the other solution to h
¡
R2, V, Vy

¢
= −1, (which yields the minimum R2 for given V

and Vy) is a strictly decreasing function of Vy, hence under the assumptions of the Corollary, we
cannot derive a lower bound for R2.
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hence

y∗t = h0

⎡⎢⎢⎢⎢⎣
1

1−λ1L
1

1−λ2L
...

1
1−λr+1L

⎤⎥⎥⎥⎥⎦ v∗t

(1− λr+1L) y
∗
t = h0

⎡⎢⎢⎢⎢⎣
1−λr+1L
1−λ1L

1−λr+1L
1−λ2L

...

1

⎤⎥⎥⎥⎥⎦ v∗t

= h0

⎡⎢⎢⎢⎢⎣
(λ1−λr+1)L
1−λ1L + 1

(λ2−λr+1)L
1−λ2L + 1

...

1

⎤⎥⎥⎥⎥⎦ v∗t

= h0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
λ1−λr+1
1−λ1L

λ2−λr+1
1−λ2L

...

0

⎤⎥⎥⎥⎥⎦ v∗t−1 + v∗t

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= h0

⎡⎢⎢⎢⎢⎣
λ1 − λr+1

λ2 − λr+1

...

0

⎤⎥⎥⎥⎥⎦x∗t−1 + ut

yt = β0xt−1 + ut

where yt = (1− λr+1L) y
∗
t ; xt = (x1t, . . . , xrt)

0 .

Thus our general predictive regression with r predictors can arise from a VAR

in r+1 underlying variables, where yt is the underlying variable we wish to predict,

y∗t , in quasi-differenced form. Since ut is the innovation to both yt and y∗t it is

straightforward to amend ourR2 formulae in terms of y∗t . It is also evident that, since

yt must be ARMA(r, r) in reduced form, y∗t will be ARMA(r + 1, r), with identical

parameters and innovation, εt, as yt, but with an additional AR parameter.

Example S1 in Appendix B.1 follows by letting zt, and hence xt be scalar

processes.
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A.6 Derivations for ARMA(1,1) example

Substituting from (32) into (31) gives the equivalent of (8),

(1− λL) yt = βvt−1 + (1− λL)ut (77)

where the right-hand side is a composite MA(1) error process. Equating the first-

order autocorrelation of (1− θL) εt to that of the process on the right-hand side of

(8) gives the single moment condition

θ

1 + θ2
=

λ− ρF

1 + λ2 + F 2 − 2λρF
(78)

where F (R2, λ) =

r¡
1− λ2

¢ R2

1−R2

The MA parameter θ (R2, ρ, λ) is then the solution to (78) in (−1, 1) ), and the pre-
dictive space can thus be reparameterised in terms of the scale-independent triplet

(R2, ρ, λ) .

The moment condition is also satisfied by θ−1. The (unique) nonfundamental

ARMA(1,1) representation is

yt =

µ
1− θ−1L

1− λL

¶
ηt (79)

which has the standard property that the nonfundamental innovation ηt can only

be recovered from current and future values of yt, i.e., we have

εt =

µ
1− λL

1− θL

¶
yt =

∞X
i=0

θi [yt−i − λyt−i−1] (80)

ηt =

µ
1− λL

1− θ−1L

¶
yt = −θL−1

µ
1− λL

1− θL−1

¶
yt = −

∞X
i=1

θi [yt+i − λyt+i−1] (81)

thus as noted above, the nonfundamental representation is not a viable predictive

model. However, its properties can be derived straightforwardly from those of the

fundamental representation, with σ2η = θ2σ2ε (a special case of the general formula

in (4)).

We can write the two ARMA representations as special cases of the system in
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(32) and (31), as in Section 3.1, using

xFt =
εt

1− λL
, βF = λ− θ; (82)

xNt =
ηt

1− λL
, βN = λ− θ−1 (83)

The upper and lower bounds in (34) and (35) can then be derived straightfor-

wardly from the standard R2 formula applied to the predictors in (82) and (83).

To derive the limiting variance ratio, V, if we write the ARMA(1, 1) representa-

tion in (30) as yt = C (L) εt, then the Beveridge-Nelson permanent component has

variance σ2P = C (1)2 σ2ε, and hence

V (λ, θ) =

µ
1− θ

1− λ

¶2 ¡
1−R2F (λ, θ)

¢
substituting from (34) gives

V (λ, θ) =
(1− θ)2 (1 + λ)¡

1− λ2 + (θ − λ)2
¢
(1− λ)

(84)

The formula for Vy (λ) in Corollary 3 follows automatically by setting θ = 0, sincebyt = βxt−1 is an AR(1).

B Supplementary Material for Examples

B.1 The predictive space for an ARMA(2,1)

The analytical example of an ARMA(1,1) in Section 4.1 can be straightforwardly

extended to illustrate the case where p > q, as discussed Section 3.7.1. Assume that

yt is an ARMA(2, 1) driven by a white noise innnovation,

yt =

µ
1− θL

(1− λ1L) (1− λ2L)

¶
εt (85)

Under Assumptions A4 to A6 there is some underlying predictive system with r =

q = 1, of the general form

yt = λ1yt−1 + βxt−1 + ut (86)

xt = λ2xt−1 + vt (87)
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since, by quasi-differencing both (85) and (86)37 it is evident that (1− λ2L) yt is

an ARMA(1,1), hence, by application of Proposition 1 the predictive regression

for (1− λ2L) yt (86) must satisfy σ2u ∈
£
θ2σ2ε, σ

2
ε

¤
. Thus for (86) we have R2 =

1−σ2u/σ2y ∈ [R2F , R2N ] where the definitions of both upper and lower bounds are given
by (2) and (5), as applied to an ARMA(2,1). The only modification of our earlier

analysis is thus that these now represent bounds for any equation that conditions

on a single lag of yt as well as a single lagged predictor.

By inspection the system in (86) and (87) is a bivariate first order vector au-

toregression, with one-way Granger causality from xt−1 to yt. This might appear to

restrict the predictive space for yt to VARs with one-way causality; but this is not the

case. Any underlying bivariate VAR in yt and some scalar predictor zt, with autore-

gressive matrix A, such that a12 6= 0, a21 6= 0 (implying two-way Granger Causality)
can be expressed in the restricted form of (86) and (87), with (λ1, λ2) = eig (A),

and vt is some combination of both underlying innovations, without changing the

properties of the predictive error, ut.38 Thus for an ARMA(2,1) both Propositions

1 and 2 apply to the equation for yt in any bivariate VAR(1) .

Unsurprisingly, the predictability of yt from the VAR may be very different from

the ARMA(1,1) case, to the extent that the lagged dependent variable increases

the predictive power of the predictive regression. The lower and upper bounds,

R2min = R2F (λ1, λ2, θ) and R2max = R2N (λ1, λ2, θ) are more complicated functions of

the ARMA parameters, but are still linked by R2N = 1 − θ2 (1−R2F ) , hence the

closer |θ| is to unity, the narrower is the space that R2 can inhabit.
Figure A1 illustrates the impact of the additional AR parameter using the same

parameterisations for θ and λ1 as in Figure 1, ie we set λ1 = 0.8, with θ = 0.9 in

Panel A (as for y1t in the first example) and θ =0.7 in Panel B (as for y2t). We then

vary λ2 between zero and unity: thus the intercepts on the x-axis in the two panels

of Figure A1 are equal to those on the y-axis in Figure 1. Figure A1 shows that,

except for very low values of λ2 for y1t, the gap between the upper and lower bounds

for R2 for both processes falls monotonically as λ2 rises.39

Figure A1 illustrates, particularly in the case shown in Panel A, that the pre-

37Note that the choice of AR parameter in quasi-differencing, whilst it clearly changes the prop-
erties of the system in (86) and (87) has no impact on our results for the underlying process.
38See Appendix A.5, which derives this feature for a general VAR(1) with r predictors, with

unrestricted Granger Causality.
39For sufficiently low λ2 both upper and lower bounds for R2 for y1t illustrated in Panel A

of Figure 2 initially fall as λ2 increases. This may appear paradoxical, but this feature arises
because, by holding λ1 and θ constant, and raising λ2, we are in effect considering a range of
different histories of y, as captured by the ARMA representation. As λ2 rises above zero, yt
initially becomes closer to white noise. Straightforwardly this must push down R2min, and, since
we are holding θ constant, it must also push down R2max.
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dictive space may be very tightly constrained even when, in contrast to our first

example, a process may be strongly predictable. The key issue is the extent to

which that additional predictability arises from the history of the process itself - if

so, the marginal contribution to predictive power of observing xt, the single predic-

tor in (86) and (87), compared to simply forecasting using the fundamental ARMA

representation, may still be very limited.

B.2 Stock & Watson’s (2007) model of inflation: the pre-

dictive space with multiple predictors

As discussed in Section 5.2, in finite samples we cannot rule out the possibility that,

while a representation of the process yt = ∆πt as an MA(1) may, as SW find, match

the data in their sub-samples, this may be consistent with the true ARMA process

being higher order, as long as the additional AR and MA parameters are sufficiently

close either to zero or cancellation. To illustrate, we first consider the case that

the true univariate process for yt is an ARMA(2,2), implying, under our maintained

assumptions, a predictive model with two predictors. We also briefly consider the

implications of this analysis for r > 2 predictors

Since, by assumption, the true ARMA representation is in effect unobservable,

we need to consider the predictive space for the univariate properties that we can

actually observe, taking into account the range of variability of parameter estimates

in finite samples. We focus on two univariate properties that summarise SW’s

univariate representation.

The first is the univariate R-squared, R2F , which, from Proposition 1, is the lower

bound for R2 in any predictive model. In Table 1 we reported implied values R2F
³bθ´

and asymptotic standard errors, given SW’s estimates of the single MA parameter,bθ. Since SW found that this representation could not be rejected against higher

alternatives we assume that the true higher order ARMA representation must still

have a value of R2F within the 90% confidence interval for R2F
³bθ´.40

However, in principle simply matching univariate R-squareds could admit ARMA

representations that imply distinctly different long-run properties from SW’s repre-

sentation. As noted in Section 4.2, SW do not estimate the MA(1) representation

directly, but instead estimate an unobserved components representation for πt =

Yt = (1− L)−1 yt that fits within the general form of the Beveridge-Nelson(1981)

40Here we use true R2F (λ,θ) values. Clearly there are additional sampling issues but this exercise
is intended only for illustrative purposes.
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permanent-transitory decomposition in (24) in the main text, restated here,

Yt = Y P
t + Y T

t (88)

where SW specify as an identifying assumption that the transitory component of in-

flation Y T
t is white noise, orthogonal to the permanent innovation: this is equivalent

to an MA(1) representation of yt = ∆Yt, with θ constrained to be non-negative.41

(In SW’ time-varying representation both innovation variances are themselves mod-

elled as random walks in log terms, but we focus here for simplicity on the fixed

coefficient representations). It is straightforward to show that for this representation

the limiting variance ratio is given by

V =
ς

2 + ς

where ς = var
¡
∆Y P

t

¢
/var

¡
Y T
t

¢
> 0 is the signal to noise ratio. By construction

therefore V < 1 for any value of ς. The point estimates of θ reported in Columns 1

and 2 of Table 1 correspond to point estimates of ς of 1.9 and 0.18 respectively, and

hence implied values of V of 0.49 and 0.08.

We can thus exploit Definition 3 and consider the predictive space

PU ⊂ Pr : U =
n
V ∈

³bV ± 1.65s.e.³bV ´´ , R2F ∈ ³ bR2F ± 1.65s.e.³bR2F´´o (89)

where the range of values of V and R2F implied by the predictive model must lie

within the 90% confidence intervals implied by SW’s point estimates of θ, which

we take as bV = V
³bθ´ and bR2F = R2F

³bθ´ (in both cases, standard errors are
approximated using the delta method). To illustrate, we use the confidence intervals

for V and R2F implied by SW’s estimates in their second sub-sample, shown in

Column 2 of the Table 1, given by bθ = 0.656, s.e.³bθ´ = 0.088, since in this sample
we have a very clear rejection of the null that yt is IID.

To derive the properties of the predictive space PU we first construct a large
number of predictive models within the parameter space Pr of all possible predictive

models with r predictors, as defined in Definition 1, by sampling from independent

uniform distributions for each of the parameters in Ψ over their permissible ranges

(for precise details see Appendix B.3). If the resulting parameter vector in draw

s, Ψs satisfies (V (Ψs) , R
2
F (Ψs)) ∈ U, then Ψs ∈ PU. We can then consider the

41In contrast to the original Beveridge-Nelson (1981) derivation from an estimated ARMAmodel,
in which the identification assumption was that the two innovations are perfectly correlated. How-
ever we follow Cochrane (1988) in taking the key property of the decomposition to be that the
permanent component is a random walk.
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properties of predictive systems that do satisfy these restrictions, and hence, to

within a reasonable range of sampling variation, are consistent with SW’s estimated

univariate representation.

Figure A2 illustrates the relatively simple case with r = 1. In terms of SW’s

unobserved components representation the only modification this implies is that in

(61) we allow Y T
t to be an AR(1), rather than pure white noise, and hence yt is

now an ARMA(1,1), as analysed in Section 4.1.

A convenient feature of the r = 1 case is that the predictive space PU ⊂ P1
has positive volume in three dimensions; thus our simulation methodology is here

equivalent to Monte Carlo integration. We take 10 million draws from uniform

distributions of the 3 underlying parameters, parameterised as in Section 4.1 as

Ψ = (R2, ρ, λ) . Panel A shows a three-dimensional view of the predictive space thus

derived. Given the limitations of three-dimensional graphic displays, Panels B to D

give 2 dimensional representations that clarify certain features of the space.

It is helpful in considering the information shown in Figure A2 to define

v =
V

1 + V
∈ (0, 1) (90)

since then the set containing all logically possible (R2F , V ) combinations can be

represented by (R2F , v) which must lie within the unit square. On this transformed

basis the set U defined in (89) is a rectangle containing roughly 2.5% of the total

possible space: thus even allowing for sampling variation we would also expect to

rule out a significant proportion of the potential parameter space of single predictor

models, P1. But it turns out that the predictive space PU actually represents a
distinctly smaller fraction (only around 0.75%) of P1 (here given by P1 = (−1, 1)×
[−1, 1]× [0, 1] , the cuboid contained within the 3 axes).
Panel A shows a 3-dimensional scatter plot of the predictive space PU ⊂ P1. Each

of the simulated predictive models that satisfy the restrictions in (89) is shown as a

single point. All three parameters (R2, ρ, λ) are bounded in at least one direction.

These bounds can be best understood by first considering the permissible space of

the true ARMA(1, 1) parameters, (λ, θ) . In Stock and Watson’s representation, λ

is constrained to be precisely zero. Figure A2 shows that, given sampling variation,

this is consistent with the true value of λ differing from zero, but that all possible

values must lie roughly within [−0.5, 5] . This feature arises from the expressions

for V (λ, θ) and R2F (λ, θ) given in (84) and (34). For a given value of V < 1, the

higher is λ, the lower is R2F ; thus for sufficiently positive λ, the implied univariate

properties will be inconsistent with the degree of univariate predictability (a point
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estimate R2F

³bθ´ = 0.3) implied by SW’s estimates. Thus a strongly persistent

single predictor of inflation can be categorically ruled out.42 Equally, if λ were too

far below zero, there would be too much implied univariate predictability. As a

result any AR(1) single predictor of inflation must itself have fairly low univariate

predictability, with a maximum univariate R2 of around 0.25 (with the IID predictor

implied by SW’s restricted representation as a special case). Crucially, also, for the

full range of feasible values of λ, the MA parameter θ must be strictly positive to

satisfy the two restrictions.

Given the permissible space for (λ, θ) , the restrictions on the remaining two

parameters in the predictive space, R2 and ρ, are easy to interpret in terms of

Propositions 1 and 2 (which, as Corollary 3 showed, give identical results for the

ARMA(1,1) case). For any permissible (λ, θ) pair, R2 must lie within the upper

and lower bounds of Proposition 1, which are in turn strictly within [0, 1] given that

θ 6= λ and θ cannot be zero (i.e., a true AR(1) representation is ruled out); ρ also

has an absolute upper bound well below zero.

Panels B to D of Figure A2, give 2 dimensional views that bring out more clearly

the restrictions on each of the three parameters. While Panel B43 shows that the

range of feasible (R2, ρ) combinations within PU is wider than that implied by Table
1, Panels C and D show that this wider range arises largely due to negative values

of λ. If on a priori grounds we wished to consider only cases with λ ≥ 0, Panel C
shows that the absolute upper bounds for R2 and ρ, even given sampling variation,

would be very similar to those given in Table 1.44

Consider now the case with r = 2 predictors. We again make 10 million random

draws from the parameter space of all possible 2 predictor models, P2. Only those
predictive models with parameters Ψ that map to u =(R2F , V ) ∈ U defined in (89)
lie within the predictive space PU ⊂ P2.
While the predictive space is now in seven dimensions (see Appendix B.3 for

precise details), we can still represent it in 3 dimensions, in terms of the same combi-

nation of summary properties of predictive systems, (R2, ρ, Vy) that we showed must

be constrained by Proposition 2. Panel A of Figure A3 shows a three dimensional

42A high λ would be more consistent with, for example, data on stock returns or real exchange
rate changes, which also appear to have V < 1, but have minimal univariate predictability.
43This is directly comparable with Figure 1, which illustrated our ARMA(1,1) example in Section

4.1.
44Corollaries 2 and 3 provides a straightforward explanation of both features. SW’s restriction

that λ = 0 imposes the property that all predictors must be IID, and hence that the variance ratio
of the predicted value, Vy = 1. For λ > 0, Vy (λ) =

1+λ
1−λ > 1. By inspection of the expression for

ρmax in Corollary 3, the upper bound for ρ is a decreasing function of Vy, and hence of λ. The
upper bound for R2 in Corollary 2 also implies that, for any Vy > 1, the implied upper bound for
R2 falls.
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scatter plot of the triplet (R2 (Ψ) , ρ (Ψ) , vy (Ψ)) implied by every predictive model

with parameters Ψ that lie within the predictive space, where we define vy =
Vy
1+Vy

,

consistently with v, defined in (90) so that all three elements are bounded. Panels

B to D give alternative 2-dimensional views to clarify certain characteristics.

The comparison with Figure A2 is relatively straightforward, since for that case,

with r = 1, we have vy = 1+λ
2
, hence Panels A, C and D of Figure A2 are directly

comparable with their equivalents in Figure A3, but for a relabelling of the axes.

On the basis of this comparison there are evident similarities in the shape of the

predictive space, but also some clear differences.

A first, and crucial, similarity is that the predictive space, as summarised in

these three properties, again occupies only a very small proportion of the potential

parameter space, P2 of all predictive models, which maps to any point in the cuboid
contained within the axes of Panel A. There are also clear similarities in the pattern

of feasible (R2, ρ, vy) combinations for most values of R2 within its feasible range.

Thus, for virtually all predictive models with an R2 within the feasible range for

single predictor models, as shown in Table 1, ρ must also lie within a similar range

to the single predictor case.

However in contrast to the absolute upper bound for R2 shown in Figure A2 for

the single predictor case, Figure A3 shows that in the 2 predictor case, for some

(R2, ρ, vy) combinations, R2 can be arbitrarily close to unity, ρ can lie anywhere

in [−1, 1] , and vy can be arbitrarily close to zero. The necessary properties of

the ARMA(2, 2) representations of all the yt processes implied by Figure A3 again

provide the explanation.

The necessary link with ARMA properties arises straightforwardly from Proposi-

tions 1 and 2. All predictive models in PU ⊂ P2 must map to ARMA representations
that in turn imply (V,R2F ) combinations consistent with the properties of inflation.

This clearly restricts the permissible space of the additional ARMA parameters.

But, in contrast to the r = 1 case, it does not bound both the MA parameters away

from zero. Thus for some predictive systems within the predictive space the ARMA

representation can in principle be arbitrarily close to the limiting case a) of Corollary

1 in which θi → 0 for some i, and hence R2max → 1. From Proposition 2, this requires

Vy to approach V, which here must lie in a range close to zero. Furthermore, for

sufficiently high R2, the properties of the predictive error ut become irrelevant, and

hence ρ can live anywhere in [−1, 1] .
However, this does not remove the restrictions on the predictive space. To at-

tain (R2, ρ) combinations outside the feasible range of single predictor models puts

extremely tight restrictions on the underlying predictive model.
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Panels E and F of Figure A3 show, first, that a very large proportion of the

predictive space contains predictive models in which at least one, and in many cases

both of the predictors are AR(1) processes with λi < 0. This is particularly the

case for predictive models with relatively high R2, which Panel D shows require at

least one negative λi. Nor is this feature surprising in the light of our discussion of

Proposition 2, where we noted that for a predictive regression to achieve a high R2

requires that Vy, the limiting variance ratio of the predictive values, be close to V,

the limiting variance ratio for yt itself. This feature is evident in Panels C and D

of Figure A3, which illustrate the upper bounds for both R2 and ρ implied by any

predictive model with Vy ≥ 1 (and hence vy > 1
2
) given in Corollary 2.45 While a

predictive model with positive values of both λ1 and λ2 does not of itself rule out

Vy < 1 it does require that ρ12, the correlation between predictor innovations, be

sufficiently negative to offset the impact of positive persistence of both predictors.46

As a result the common a priori assumption that predictors have positive persistence

(as discussed by SW this is also a feature also of many observed candidate predictors)

would rule out much of the predictive space, and leave R2 and ρ constrained to lie

in a very similar range to the single predictor case.

The apparent expansion of the predictive space that allows R2 to be arbitrarily

close to unity for some parameter combinations also turns out to be largely illusory.

Panels E to G of Figure A3 show that, as R2 increases, λ1 and λ2 and ρ12 all

become increasingly constrained. Most strikingly, as R2 → 1, ρ12 → −1. Since, for
sufficiently high R2, the properties of ut become irrelevant, this feature tells us that

all such models must closely resemble ARMA models. This is again what we would

expect from Proposition 1, since for such cases we must also have R2 → R2max = R2N ,

the R2 of the nonfundamental ARMA representation. But in the particular case

where R2N → 1, because θi → 0 for some i, it is straightforward to show that, in the

limit, ηt, the nonfundamental innovation, is simply equal to εt+1, the fundamental

innovation in the next period. It is hardly surprising that, if we could observe εt+1
in period t (whether by divine intervention or by use of a a time machine) we

would be able predict yt+1 with R2 = 1; but this is of not much practical benefit

of forecasting. But Figure A3 tells us that, for inflation, at least, this would, to a

quite close approximation, be the only way to achieve an R2 approaching unity.

45The range of permissible values of V given in (89) gives a maximum possible value of around
0.17, to be consistent with SW’s representation. Using Corollary 2 this implies that, for any
predictive model with Vy ≥ 1, the absolute maximum R2 is just under 0.8, as illustrated in Panel
D of Figure 2, and the absolute maximum ρ = −0.83.
46The proof of Corollary 2 shows that a sufficient condition for Vy to be strictly greater than

unity is if just one of the inequalities on λ1, λ2 and ρ12 holds in strong form. Hence if λ1 > 0, λ2 > 0,
then Vy < 1 requires ρ12 < 0.
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It seems unlikely that the message of this exercise would change if we increased

the number of predictors further, and considered general models with r ≥ 2. The
constraints on the three summary properties (R2, ρ, vy) illustrated in Figure A3

would still apply for any r. And any additional predictors would still need to satisfy

restrictions such that additional implied MA and AR parameters would be close

to cancellation or zero. Thus Stock and Watson’s results imply that the predictive

space must be very tightly constrained for any r.

B.3 Background material for extended Stock-Watson exam-

ple

The space of all possible predictive systems for a general 2 predictor model, P2, can
be represented in terms of the seven parameters (λ1, λ2, β1, β2, ρ1u, ρ2u, ρ12) ∈ P2
that satisfy

β1, β2 ∈ [0,∞) (91)

ρ1u, ρ12 ∈ [−1, 1] (92)

ρ2u ∈
∙
ρ1u.ρ12 ±

q
(1− ρ21u) (1− ρ212)

¸
(93)

λ1, λ2 ∈ (−1, 1) (94)

These parameters jointly determine the MA parameters θ1 and θ2, which satisfy two

moment conditions derived from the general form of (53):

− (1 + θ1θ2) (θ1 + θ2)

1 + (θ1 + θ2)
2 + θ21θ

2
2

=
γ00Ωγ1 + γ01Ωγ2

γ00Ωγ0 + γ01Ωγ1 + γ02Ωγ2
(95)

θ1θ2

1 + (θ1 + θ2)
2 + θ21θ

2
2

=
γ00Ωγ2

γ00Ωγ0 + γ01Ωγ1 + γ02Ωγ2
(96)

where the γi, as defined implicitly for the general case in (50), are given by

γ0 =

⎡⎢⎣ 10
0

⎤⎥⎦ ; γ1 =

⎡⎢⎣ − (λ1 + λ2)

β1
β2

⎤⎥⎦ ; γ2 =

⎡⎢⎣ λ1λ2

−β1λ2
−β2λ1

⎤⎥⎦
We constrain the βi to be positive, since we allow correlation coefficients to be

both positive and negative (this is a pure normalisation; we could equally well leave

the βi unconstrained and constrain the correlation coefficents to be non-negative).

We can also assume σu = σ1 = σ2 = 1 without loss of generality since the units of yt
are irrelevant to our results, so that the off—diagonal elements of Ω can be correlation
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coefficients. One of the correlation coefficients must live in a restricted space, relative

to the other two, to ensure that Ω is positive semi-definite; for convenience we choose

this to be ρ2u.

Exploiting the normalisation that σ2u = σ2v = 1,the predictive R
2 and ρ are given

by

R2 = R2 (β1, β2, λ1, λ2, σ12) =
σ2y

1 + σ2y
where (97)

σ2y =
β21

1− λ21
+

β22
1− λ22

+
2β1β2ρ12
1− λ1λ2

ρ =
h
δ0 0

i
Ω

"
0

1

#Ãh
δ0 0

i
Ω

"
δ

0

#!−1
(98)

To generate Figures A2 and A3, we randomly sample all parameters from uniform

distributions, or transformations thereof, to ensure a bounded parameter space, as

follows:

1. We draw λ1 and λ2 from independent U (−1, 1) distributions;

2. Two of the correlations, ρ12 and ρ1u are drawn from independent U (−1, 1)
distribution

3. For the third correlation, ρ2u, (93) implies

ρ2u = ρ1,uρ12 + k
q¡
1− ρ21,u

¢
(1− ρ212), k ∈ [−1, 1]

thus we also draw k from a U (−1, 1) .

4. To ensure a bounded parameter space we derive the two regression coefficients

β1 and β2 as monotonically increasing transformations of “semi-R
2s”: notional

R2 values if each predictor was the sole predictor in the regression, ie, given

the normalisations we have

R2i =
β2i

1− λ2i + β2i
; i = 1, 2

and hence we draw R21 and R22 from U (0, 1) distributions, and then derive

βi =

s
(1− λ2i )

R2i
1−R2i

; i = 1, 2
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In Figure A2, we set λ2 = β2 = ρ12 = ρ2u = 0, thus restricting ourselves to

ARMA(1,1) models; in Figure A3 we draw from the full range of values in P2, as
defined above.
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Figure 1 The Predictive Space Pλ,θ for two ARMA(1,1) processes

Notes to Figure 1:
Figure 1 illustrates the predictive space Pλ,θ : combinations of predictive R2

and ρ (the Stambaugh-Beveridge-Nelson Correlation) for single predictor
models consistent with an ARMA(1,1) reduced form with AR parameter λ

and MA parameter θ (see Section 4.1 for full details)
The solid line represents the process y1t, with λ = 0.8, θ = 0.9 (hence V < 1)
The dashed line represents the process y2t, with λ = 0.8, θ = 0.7 (hence V > 1)
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Table 1. The Predictive Space for US GDP Inflation implied by Stock & 
Watson’s (2007) Univariate Representations. 
 

ARMA estimation in 
subsamples (standard errors 
in brackets) 

Time-varying estimation by unobserved 
components: quantiles of posterior 
distribution, 2004:IV 

Estimates 

60:1-83:IV 84:1-2004:IV 16.5% 50% 83.5% 
θ̂  0.275 

(0.085) 
0.656  
(0.088) 

0.70 0.85 0.94 

( )2
min

ˆR θ  0.070 
(0.040) 

0.301  
(0.042) 

0.329 0.419 0.469 

( )2
max

ˆR θ  0.930 
(0.040) 

0.699 
(0.042) 

0.671 0.581 0.531 

( )max
ˆρ θ  -0.511 

(0.136) 
-0.917 
(0.049) 

-0.940 -0.987 -0.998 

 
Notes to Table 1. Estimates in first row of Table 1 are derived from Stock & Watson 
(2007), Table 3 (columns and 2) and Figure 2 (columns 3 to 5). Remaining rows use 
formulae in equations (35), (36) and (38), setting λ=0, and θ equal to the estimated 
value in the relevant column of the first row. Standard errors for θ̂  are as reported by 
Stock and Watson; standard errors in remaining rows of columns 1 and 2 are 
approximated using the delta method. 
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Figure A1. Univariate bounds for R2 for an element of a bivariate
first-order VAR

(yt is ARMA(2,1) in reduced form)

Panel A: λ1 = 0.8, θ = 0.9 Panel B: λ1 = 0.8, θ = 0.7

Notes to Figure A1
Figure A2 illustrates the nature of the R2 bounds from Proposition 2 for a yt process

that is an ARMA(2,1) process

yt =

µ
1− θL

(1− λ1L) (1− λ2L)

¶
εt

as described in Appendix B1. We set θ and λ1 equal to the values in the example in
Section 4.1 of the main paper: Panel A corresponds to the y1t process in Figure 1;
Panel B corresponds to the y2t process. Panels A and B illustrate how the R2

bounds vary as the second AR parameter, λ2, varies between zero and 1.
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Figure A2: The predictive space PU ⊂ P1 for a single predictor
model of yt = ∆πt, consistent with Stock and Watson’s (2007) uni-
variate representation

Notes to Figure A2
Figure A2 shows alternative 3-dimensional and 2-dimensional views of the

predictive space PU as defined in (89) in Appendix B2: parameter
combinations

¡
λ, ρ,R2

¢
of single predictor models consistent with Stock &

Watson’s (2007) univariate representation of inflation. Each point in the
scatterplot represents the parameters of a predictive model within the

predictive space.
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Figure A3. The predictive space PU ⊂ P2 for a two predictor model
of yt = ∆πt, consistent with Stock and Watson’s (2007) univariate
representation

Notes to Figure A3
Figure A3 shows alternative 3-dimensional and 2-dimensional views of the predictive

space PU ⊂ P2 as defined in (89) in Appendix B2: combinations of the three
summary properties

¡
vy (Ψ) , ρ (Ψ) , R

2 (Ψ)
¢
of predictive models with two

predictors, with parameters Ψ, consistent with Stock & Watson’s (2007) univariate
representation of inflation (where vy = Vy/(1 + Vy)). Each point in the scatterplot

represents the parameters of a predictive model within the predictive space.
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