
BIROn - Birkbeck Institutional Research Online

Kuffer, M. and Barros, Joana and Sliuzas, R.V. (2014) The development of a
morphological unplanned settlement index using very-high-resolution (VHR)
imagery. Computers, Environment and Urban Systems 48 , pp. 138-152.
ISSN 0198-9715.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/10450/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/10450/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


1 
 

The development of a morphological unplanned settlement index using very-

high-resolution (VHR) imagery 

 

Kuffer, Monika 

Barros, Joana 

Sliuzas, Richard 

 

Abstract 

Information about unplanned settlements in cities in developing countries is often unavailable or incomplete, 

mainly due to a combination of their informal development and capacity constraints of planning authorities. 

Despite the extent of unplanned areas in many countries, which at times can dominate residential land-use, very 

few tools exist for their identification and monitoring. Therefore, there is a clear need for such tools to support 

timely updating of spatial databases. The present research aims to contribute to the development of such tools, 

by using spatial metrics to characterise the morphology of unplanned urban settlements in VHR images. The 

methodology was tested in two case study areas: Dar es Salaam (Tanzania) and New Delhi (India). The research 

methodology is built on using image segmentation and on the assumption that segments representing 

homogenous urban patches are different in planned and unplanned areas. Homogenous urban patches were 

extracted using multi-resolution image segmentation. The morphological aspects (size, density and layout 

pattern) of planned and unplanned patches were then analysed using spatial metrics. A set of metrics that 

reflected morphological characteristics of unplanned settlements was identified. This final set was used to build 

an 'unplanned settlement index' (USI) using spatial multi-criteria evaluation methods. Comparison between 

results and available land use data showed that the index can assist in the identification of unplanned settlements, 

with an accuracy of 73% for five selected parts of New Delhi and 75% for Dar es Salaam%. 

 
Keywords: Unplanned settlement index; urban morphology, VHR imagery, image segmentation; spatial metrics  

1. Introduction 

 

The morphology of planned and unplanned built-up areas in cities of developing countries often shows distinct 

differences. An unplanned area is usually developed without planning provision and is often associated with 

informality, overcrowding, insufficient infrastructure provision, and poor housing quality and haphazard layout 

(UN-Habitat, 2008). Information on the extent and nature of such areas is commonly unavailable and frequently 

of poor temporal accuracy and consistency (M.  Herold, Goldstein, & Clarke, 2003). Thus mapping such areas, 

as well as understanding their heterogeneity and development dynamics, is not only a concern but also a 

challenge for local authorities. The amount of unplanned areas differs between cities and (developing) countries. 

However, they are an issue for the majority of large cities in developing countries, where the extent of 

unplanned areas commonly ranges between 30 and 60% of total areas (Busgeeth, Brits, & Whisken, 2008). In 

fact, in some Sub-Saharan African cities the amount of unplanned urban land can dramatically exceed the 

amount of planned (Kombe, 2005). Estimates show that this is likely to increase in future (UN-Habitat, 2003).  

The need to map and monitor unplanned settlements requires the development of methods and tools that are 

both low cost and effective. As such, good and reliable data and derived information that is easily accessible and 

timely is important to better manage unplanned urban development (Turkstra & Raithelhuber, 2004). When 

aiming at detecting and/or analysing unplanned settlements, it is important to understand clearly what spatial 

characteristics make these areas differ from the planned ones. In VHR images (such as the one shown in Figure 

1), unplanned settlements can be easily visually identified because of their organic layout and densely clustered 

buildings, while transition areas or areas that underwent regularisation or new unplanned developments in the 

outskirt will display more complex and ambiguous spatial characteristics.  
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Figure 1: Example of false colour VHR image (Delhi), unplanned settlement (right), (Ikonos 2001) 

 

For this research the terms unplanned area was selected as it captures best its development process, where 

development happens without zoning, site planning and service provision, resulting commonly in more irregular 

layout patterns without obeying planning standards.  Other related terms such as informal, spontaneous, illegal, 

slum and squatter settlements have different connotations that relate e.g. to the tenure status (which is very 

difficult to capture from remotely sensed images). The morphology of unplanned areas presents an organic 

pattern, meaning the areas are more irregular, complex, diverse and often denser built than the planned ones (Kit, 

Lüdeke, & Reckien, 2012; Kostof, 1991; Weeks, Hill, Stow, Getis, & Fugate, 2007). In addition, such 

settlements tend to be irregular shaped and contain significantly smaller size of dwellings than planned areas 

(Kohli, Sliuzas, Kerle, & Stein, 2012). Planned areas, by contrast, normally have regular street layouts, larger 

buildings and planned open spaces (Kostof, 1991). In the present study, three of these inherent morphological 

characteristics were used for the identification of unplanned settlements on VHR. They are: 

 

a) Lack of road infrastructure which causes a more organic pattern: the lack of space for urban infrastructure 

left by the development of individual dwellings results in an unclear or non-existent road infrastructure (Lemma, 

Sliuzas, & Kuffer, 2006), clearly differentiating these areas from planned ones.  

b) Noncompliance with planning standards causes high built-up densities: e.g. non-compliance with set-back 

rules leads to insufficient space between the individual buildings (see example Figure 2-left). Yet, high densities 

can be also found in low-moderate income (formal) areas (Amato, 1970). However, Taubenböck and Kraff 

(2013) found in slums (using the case of Mumbai) significantly higher densities than in formal settlements 

(besides density also size, height of buildings, distance between buildings and an heterogeneity index allowed 

separating slum from non-slum areas). Also Rakodi and Lloyd-Jones (2002) found a relation between high 

density settlements and lack of physical capitals of households in such areas. As well as planned public open 

spaces, in particular green areas (e.g. parks) are absent (Weeks, et al., 2007).  

c) The rather small building sizes are commonly found in unplanned areas. The role of buildings size as 

indicator for delineating slum areas was confirmed by expert interview conducted by Kohli et al. (2012) (size 

was one of eleven basic slum indicators – other indicators listed where roof material, absent or irregular roads, 

lack of vegetation and open spaces, density, irregular shape of settlement, association with neighbouring areas, 

texture and locality). 
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Figure 2: Unplanned areas in Dar es Salaam, setback between adjacent buildings (left) and street view of area 

(right) 

 

The presence of these three morphological features (Baud, Kuffer, Pfeffer, Sliuzas, & Karuppannan, 2010) was 

used as a criteria for the identification of unplanned areas in remotely sensed imagery, as demonstrated in Table 

1. The role of these three basic features to detect unplanned areas has been confirmed by several previous 

studies  (Baud, et al., 2010; Kohli, et al., 2012; Lemma, et al., 2006; Stewart & Kuffer, 2007) with cases of 

Asian and African cities. These three indicators have been appearing as the most comprehensive while others 

are more locations specific, such as building height (in some Asian cities unplanned areas can have several 

stories while in many African cities single story buildings are more common). The main limitations of these 

three selected morphological features are that they focus on developed areas while areas in the outskirt of the 

city which are just starting to growth would not be detected by the combination of the three features (having e.g. 

commonly lower densities).  However, as pointed out by Rüther, Martine, & Mtalo (2002), these same features 

cause limitations to the use of remote sensing methods as the lower accuracies often obtained when extracting 

buildings in unplanned areas is caused by their unstructured characteristics. As a consequence, very high spatial 

resolution is needed (at times below ½ m) to allow the identification of small and densely clustered buildings 

(Sliuzas, Kerle, & Kuffer, 2008).  

 

 

Table 1 Common morphological features of unplanned areas 

Morphological features  Unplanned areas Planned areas 

Size   Small (substandard) building sizes  Generally larger building sizes 

Density  High densities (roof coverage densities at 

least 80% and more) 

 Lack of public (green) spaces within or in 

the vicinity of residential areas 

 Low – moderate density areas 

 

 Provision of public (green spaces) within or 

in vicinity of residential areas 

Pattern  Organic layout structure (no orderly road 

arrangement and noncompliance with 

set-back standards) 

 Regular layout pattern (showing planned 

regular roads and compliance with set-back 

rules) 

 

 

In the past decades remote sensing has become an increasingly important data source to support urban planning 

and management, especially since the availability of very-high resolution (VHR) images with resolution of 1m 

and below. This new generation of VHR imagery “has created spatiotemporally continuous and politically less 

biased sources of data” (Kit, et al., 2012, p. 661).  

Similarly, the use of spatial metrics for urban applications has also grown in importance. Spatial metrics 

originate from the discipline of landscape ecology where they are used to analyse environmental patterns of 
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ecological processes. Analysis of patterns plays an important role for urban applications, where homogenous 

patches of land use types, for an example, can be analysed through the “physical arrangement and interaction of 

the patches” (Chin, 2006, p. 217), providing a “global summary descriptor of the pattern of the landscape” (Chin, 

2006, p.218). Herold, Couclelis, & Clarke, (2005, p. 371) stressed that spatial metrics used in combination with 

remote sensing “can provide more spatially consistent and detailed information on urban structure and change 

than either of these approaches”. 

In the past years a large number of publications used spatial metrics to quantify patterns of urban land-cover/use 

(e.g. Frohn 2006, Herold et al. 2005, Chin, 2006, Taubenböck, 2009, Schwarz, 2010, Peng et al. 2010). Many 

studies have been analysing spatiotemporal dynamics on metropolitan scale  (e.g.M.  Herold, Goldstein, et al., 

2003; Pham, Yamaguchi, & Bui, 2011; Taubenböck, Wegmann, Roth, Mehl, & Dech, 2009). While only few 

studies used spatial metrics to differentiate between urban spatial categories e.g. extracting areas of different 

population densities (Liu, Clarke, & Herold, 2006), areas of different urban land use categories (M.  Herold, Liu, 

& Clarke, 2003) or focus on the use of spatial metrics to indicate physically deprived areas (at a settlement scale) 

(Baud, et al., 2010; Kit, et al., 2012). Despite spatial metrics being one of the most growing applications of 

remotely sensed data (Saura & Castro, 2007), they have been not much used in the image classification phase, as 

it was believed that only classified images (categorical maps) can be analysed by spatial metrics (Frohn, 2006). 

Frohn has also suggested that the only prerequisite for the use of spatial metrics is the presence of homogeneous 

regions (patches). For this purpose, Herold, Liu, & Clarke (2003) established ‘land-use-regions’ which are 

‘homogenous urban patches’ of a specific land-use type having similar texture, sufficient sizes and being 

bounded by streets. Yet, there seems to be no consensus on the set of spatial metrics most suitable for urban 

applications (M.  Herold, et al., 2005).  

This paper demonstrates how to analyse the morphological character of unplanned areas by capturing their main 

spatial characteristics through a set of spatial metrics derived from VHR remotely sensed images. Therefore it 

explores the use of spatial metrics to produce comprehensive information on settlement scale with the specific 

focus on unplanned areas to add to the larger body on literature on metropolitan scale. The paper is structured as 

follows. Section 2 highlights the two case study areas used for developing and testing the methodology. Section 

3 describes the data and methodology to extract homogenous patches, the selection of a set of spatial metrics 

and the aggregation to an unplanned settlement index. Section 4 presents and discusses the respective results. 

Section 5 provides the final conclusion, limitations and future research directions. 

2. Case Studies 

 

Two case study areas were selected to contrast to two different urban environments: an Asian example, New 

Delhi, India and an African example, Dar es Salaam Tanzania. New Delhi is a very densely built-up urban 

environment that presents many different types of unplanned settlements, ranging from the very small squatter 

pockets to large unplanned settlements (e.g. unauthorized colonies). Dar es Salaam (Tanzania) was selected as 

example of a sub-Saharan African city with large areas of unplanned settlements dominating the planned areas. 

By comparison, around 38% of New Delhi’s population lives in such unplanned areas (Risbud, 2002) and 70% 

of the residential land in Dar es Salaam is unplanned (Kombe, 2005). VHR imageries were available for both 

cities (presented in Table 2). For Delhi, Ikonos scenes (multi-spectral and panchromatic bands) of the years 

2001 and 2002 were pan-sharpened to 1 m spatial resolution. In the case of Dar es Salaam the multi-spectral 

QuickBird image mosaic of 2007 was also pan-sharpened resulting in 0.6 m spatial resolution. 

 

Table 2: Overview of data sets for both case study areas 

Dataset Dar Year Description 

QuickBird mosaic  2007 Covering most part of the city 

Land use data (location of unplanned areas) 2002 Polygons (boundaries) of unplanned areas 

Dataset Delhi Year Description 

Ikonos mosaic  2001/2 Covering the entire city 

Land use data of 12 wards (location unplanned areas) 2001/2 Polygons (boundaries) of unplanned areas 

 

For each city, ten different areas were selected: five test areas (Figure 3) for evaluating the spatial metrics, and 

five assessment areas (Figure 9) for testing the performance of the unplanned settlement index. The areas 

selected in Dar es Salaam cover different types of planned and unplanned settlements, including older and 

consolidated settlements and unplanned areas which show lower densities (having still some development 



5 
 

scope).    Areas selected in Delhi included small pockets of squatter settlements and large areas of unauthorized 

colonies.   

 

 

 

Dar Test 1 

 

Dar Test 2 

 

Dar Test 3 

 

Dar Test 4 

 

Dar Test 5 

 

Delhi Test 1 

 

Delhi Test 2 

 

Delhi Test 3 

 

Delhi Test 4 

 

Delhi Test 5 

 

 

 

 

Figure 3: On the top, the location of test and assessment areas in Dar es Salaam – QuickBird image 2007 (left) 

and Delhi – Ikonos image 2001-2 (right). Below, an overview of the individual test areas 

 

The selection of the test and assessment areas was bound to the available reference data.. For the city of New 

Delhi the result of a visual image interpretation validated by ground truth data was available from a previous 

research (Baud et al. 2010). The ground validation done in  2008 covered  12 wards (covering a range from 

highly deprived to low deprived wards). To reduce problems of temporal consistency (between the image and 
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ground truth data) the data collection was only including areas of stable land use.   From the 12 wards available 

in the reference data set of Delhi 10 were selected, one ward of Delhi was excluded because of its manly 

institutional characteristics as well as a second ward because it did not have a significant unplanned area.. The 

10 available wards were spit into five test and five assessment areas. For the city of Dar es Salaam land use 

information of the year 2002 was available for this research. The data was generated by manual digitising of 

VHR images, this data set was also used in previous researches and showed good accuracy (Sliuzas, 2004).  The 

data set of Dar es Salaam is covering the entire urban area, while the data set available for Delhi includes only 

10 wards. In order to have a comparative data base for both cities the a selection of areas was spilt into five test 

and five assessment areas. .  

 

 

 

 

3. Methodology 

 

The proposed methodology consists of three steps, as shown in Figure 4. First, homogenous urban patches 

(HUPs) at object (building) level were extracted using image segmentation. Second, a set of spatial metrics was 

selected that has potential for analysing the morphology of the selected test areas. Third, the unplanned-

settlement-index was calculated using significant spatial metrics and aggregated for HUPs (at area level). The 

final index is then assessed using reference data.  

 

 

Figure 4: Overview of the analysis procedure  

 

2.1. Step 1: Extraction of homogenous urban patches (HUPs) using image segmentation from VHR imagery  

 

The first step consists of segmenting the VHR imageries in order to extract HUPs at object level (see Figure 4). 

Image segmentation is used for partitioning the image into non-intersecting regions, thus each region is 

homogenous while neighbouring regions are kept heterogeneous (Wang, Jensen, & Im, 2010). The result of the 

image segmentation process can be either a complete or partial segmentation. While the first extracts real-world 

objects, the latter is commonly used as input into further remote sensing techniques to ultimately extract real-

world objects (Wang, et al., 2010). The advantage of image segmentation is that various information levels can 

be extracted from an image depending upon scale. The most basic level in an image are individual pixels 

containing spectral information while homogenous neighbouring pixels form segments using e.g. spectral and 

spatial threshold values (see Figure 5). Homogenous patches representing building objects (HUPs at object level) 

can be extracted depending on the object characteristics and the spectral and spatial resolution. Larger areas with 

homogenous physical characteristics, e.g. street blocks or homogenous settlements (HUPs at area level) can be 

extracted using spatial characteristics like density or texture. Figure 4 shows the increase of complexity from 

pixel to HUPs at area level for extracting different information levels from an image.  
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Figure 5: Scale dependent information levels of image using segmentation (from pixels to higher level objects) 

 

Image segmentation and the selection of a suitable segmentation algorithm for an application are important as 

well as difficult steps in image analysis (Cheng, Jiang, Sung, & Wang, 2001). Zhang, Fritts & Goldman (2008) 

differentiate between 3 main classes a) pixel-based, e.g. histogram thresholding, b) region based, e.g. region-

growing methods and c) boundary based methods e.g. edge-detection. A large number of commercial as well as 

public domain segmentation algorithm are available, which have been implementing the different algorithms. 

For this research three different segmentation algorithm where considered. The selection included the multi-

resolution algorithm of Definiens (Ecognition) a very popular image segmentation algorithm (Wan et. al 2010) 

which  is a bottom-up, region-merging algorithm based on Fractal Net Evolution Approach (Baatz et al. 2004) 

which is a combination of a histogram-based method and the homogeneity measurement. The second 

segmentation algorithm used in Prabat was a region growing segmentation. And the third algorithm was Erdas 

Imagine segmentation which is an edge detect algorithm. Thus the selected algorithm covered different types 

classes of segmentation algorithms. All algorithm required optimising the parameters. Wuest and Zhang (2009) 

stated that it is useful to experiment with segmentation parameters as no standard rules exists for selecting good 

segmentation parameters. 

 

Extracting individual buildings using image segmentation of VHR images in an urban area is a complex process. 

In order to successfully extract individual buildings, it is necessary to have a minimum number of pixels per 

building (according to Welch (1982) these were usually four in moderate resolution images – while in VHR 

images more than four pixel will be required to identify a building object) as well as a clear set-back between 

buildings. However, in unplanned settlements, individual buildings often cannot be easily extracted because 

there are not enough pixels per building but also the organic layout with high densities does not present enough 

spacing between buildings. As the complete segmentation of buildings was not always possible as anticipated, 

the aim for this procedure was reformulated to extract segments that reflect the morphological structure 

(approximately at building object level) for the case study areas. In order to achieve this objective, three 

different segmentation algorithm (Erdas edge detection, Definiens multi-resolution and Prabat region growing) 

representing different classes of segmentation algorithm were compared after optimizing the segmentation 

parameters to best fit the objects on ground.  

 

Once the segments were extracted, the result of image segmentation was assessed. According to Wang et al. 

(2010), there is no standard approach available to quantify the accuracy of image segmentation. The criteria to 

define a good segmentation is very much application dependent and often requires a comparison between the 

results of several segmentation algorithms (Zhang, et al., 2008). The performance of the three segmentation 

algorithms was compared using the area fit index (AFI) suggested by Lucieer (2004), which compares the area 

of a reference object (here selected building objects which were manually digitised in the test areas) with the 

area of the largest segment.  

 

𝐴𝐹𝐼 =
𝐴 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑏𝑗𝑒𝑐𝑡 − 𝐴 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡

𝐴 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑏𝑗𝑒𝑐𝑡
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(Where A is the area in pixels, the result of a perfect match is 0, if AFI is greater than 0 over-segmentation 

occurred when AFI is less than 0 under-segmentation happened.) 

 

2.2 Step 2: Selection of a set spatial metrics  

 

In the next step a set of spatial metrics were selected with the potential to analyse the morphology of urban areas, 

in respect to size/density and pattern. Based on the review of existing research (Barros Filho & Sobreira, 2005; 

Barros, 2004; Chin, 2006; M.  Herold, et al., 2005; M.  Herold, Goldstein, et al., 2003; M.  Herold, Liu, et al., 

2003; Peng, et al., 2010; Schwarz, 2010; Taubenböck, et al., 2009; Yu & Ng, 2007), all listed metrics (presented 

in Table 2) were analysed for their potential to differentiate planned and unplanned areas. A common problem 

for selecting metrics is their high correlation (Huang et al. 2007).  In a first step all metrics in Table 2 were 

analysed  on their potential to show clear separation between planned and unplanned areas. For this purpose the 

five test areas were used and all metrics were calculated for the unplanned as well as for the planned areas. 

Metrics that did not show a clear separation between planned and unplanned areas were excluded. In a second 

step metrics  that were highly correlating within one dimension were excluded. All spatial metrics were 

calculated using the software FRAGSTATS (McGarigal, Cushman, Neel, & Ene, 2002).  

 

Table 3: Considered spatial metrics for the different dimension of ‘unplannedness’  

Main spatial 

characteristics 

Spatial metrics with the 

potential of measuring 

spatial characteristics 

Formula Definitions  

Size 

The mean patch 
size is expected to 

be higher in 

unplanned areas 
when groups of 

buildings are 

clustered into one 
patches because of  

little space between 

building objects. 

 Mean patch 

size 
 

𝑀𝑁 =

∑ xij

𝑛

𝑗=1

𝑛𝑖
 

xij = patch size, ni = total number of 

patches 

 

 Area 

standard 
deviation 

 

𝑆𝐷 =
√

∑ [𝑥𝑖𝑗 − (
∑ 𝑥𝑖𝑗

𝑛
𝑗=1

𝑛𝑖
)]

2

𝑛
𝑗=1

𝑛𝑖
 

 Effective 
mesh size 

 

𝑀𝐸𝑆𝐻 =  
∑ 𝑎𝑖𝑗

2𝑛
𝑗=1

𝐴
× (

1

10000
) 

aij = area (m2) of patch ij, 

A = total landscape area (m2). 

 

 Splitting 
index 

 

𝑆𝑃𝐿𝐼𝑇 =  
𝐴2

∑ 𝑎𝑖𝑗
2𝑛

𝑗=1

 

 Landscape 
division 

index 
 

𝐷𝐼𝑉𝐼𝑆𝐼𝑂𝑁 = [1 − ∑(
𝑎𝑖𝑗

𝐴
)
2

𝑛

𝑗=1

] 

Density  

In unplanned areas 
densities of patches 

will be different 

compared to 
planned 

 Patch 

density  
 

𝑃𝐷 =
𝑛𝑖

𝐴
(10000)(100) 

 Edge density 
 

𝐸𝐷 =
∑ 𝑒𝑖𝑘

𝑚
𝑘=1

𝐴
(10000) 

eik = total length (m) of edge in 

landscape involving patch type (class) 

i; A = total landscape area (m2). 

 Patch 

richness 
density 

 

𝑃𝑅𝐷 =
𝑚

𝐴
(10000)(100) 

m = number of patch types (classes) 

present in the landscape, A = total 

landscape area (m2). 

Layout structure 
(pattern/shape) 
Unplanned areas 

are commonly more 

aggregated with 
complex patterns 

and less diverse.  

 Aggregation 
index 

 

𝐴𝐼 = (
𝑔𝑖

𝑚𝑎𝑥 → 𝑔𝑖𝑗
) (100) 

gii = number of like adjacencies (joins) 

between pixels of patch type i based on 

the single-count method, max->gii = 

maximum number of like adjacencies 

(joins)  

 Fractal 

dimension 
 

𝐹𝑅𝐴𝐶 = 
2 ln  (. 25𝑝)

ln 𝑎𝑖𝑗
 

pij = perimeter (m) of patch ij, aij = area 

(m2) of patch ij. 

 Shape index 
 

𝑆𝐻𝐴𝑃𝐸 =
𝑝𝑖𝑗

min 𝑝𝑖𝑗
 

pij = perimeter of patch ij in terms of 

number of cell surfaces, min pij = 

minimum perimeter of patch ij  

 Perimeter 

area ration 
 

𝑃𝐴𝑅𝐴 = 
𝑝𝑖𝑗

𝑎𝑖𝑗

 
pij =    perimeter (m) of patch ij,  

aij =   area (m2) of patch ij. 

 Shannons 

diversity 

index 

𝑆𝐻𝐷𝐼 = ∑𝑃𝑖 ∗

𝑚

𝑖=1

𝑙𝑛𝑃𝑖 

Pi = proportion of the landscape 

occupied by patch type (class) i. 

 

 Simpson 

diversity 𝑆𝐼𝐷𝐼 = 1 − ∑𝑃𝑖
2

𝑚

𝑖=1
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index 

 

 Shannons 
evenness 

index 

𝑆𝐻𝐸𝐼 =  
− ∑ (𝑃𝑖 ∗ 𝑙𝑛𝑃𝑖)

𝑚
𝑖=1

𝑙𝑛𝑚
 

Pi = proportion of the landscape 

occupied by patch type (class) i. 

m = number of patch types (classes) 

present in the landscape  

 Simpson 
evenness 

index  

𝑆𝐼𝐸𝐼 =  
1 − ∑ 𝑃𝑖

2𝑚
𝑖=1

1 − (
1
𝑚

)
 

 Contagion 
index 

𝐶𝑂𝑁𝑇𝐴𝐺 =

[
 
 
 
 
 
 

1 +

∑ ∑ [𝑃𝑖] (
𝑔𝑖𝑘

∑ 𝑔𝑖𝑘
𝑚
𝑘=1

) ∗ (𝑙𝑛𝑃
𝑖(

𝑔𝑖𝑘
∑ 𝑔𝑖𝑘

𝑚
𝑘=1

)
)𝑚

𝑘=1
𝑚
𝑖=1

2𝑙𝑛(𝑚)

]
 
 
 
 
 
 

∗ (100) 

Pi =proportion of the landscape 

occupied by patch type (class) I,  

gik =number of adjacencies (joins) 

between pixels of patch types (classes) 

i and k based on the double-count 

method. 

m =number of patch types (classes) 

present in the landscape t 

 

 

2.3 Step 3: Calculation of an unplanned-settlement-index (USI) 

 

An unplanned-settlement-index (USI) was designed by aggregating morphological aspects of unplanned areas, 

following the slum-index developed by Weeks et al. (2007) the concept of operationalizing several dimensions 

of deprived areas into a combined index. For the index selected those spatial metrics that best characterize the 

morphological differences between planned and unplanned areas were selected. and  The spatial metrics that 

showed high correlating within one dimension were excluded. The selected metrics were combined into a spatial 

multi-criteria evaluation (SMCE) approach using Ilwis SMCE (ILWIS3.08-Open, 2012), an open source 

software tool, to build a composite index of several standardized, weighted indicator maps. Equal weights were 

assigned to the different dimensions (i.e. 1/3 size, 1/3 density and 1/3 pattern) as well as to the metrics within 

each dimension.  

 

The index was the result of a weighted summation of all standardized maps of the 3 dimensions (size-density-

pattern). The values of the USI maps ranged from 0 to 1, where values closer to 1 indicated higher likelihood of 

‘unplannedness’ and lower values higher likelihood of ‘plannedness’. The final USI showed the value range of 

‘unplannedness’ similar to the slum-index of Weeks et al. (2007). However, unlike the index developed by 

Weeks et al. (2007) which also used census data, the USI was built using only physical data from imagery. Once 

the final map was produced, the USI was aggregated by a second segmentation process extracting larger 

segments (HUPs at area level). In this step the segmentation parameters were optimized to extract larger areas of 

similar morphology. The final result was evaluated using available land use data as reference as detailed in the 

section above (case studies). This second aggregation level was needed to classify homogenous urban patches 

(neighbourhoods – area level) using the USI values as likely to planned or unplanned. 

 

 

 

4. Results and Discussion 

 

In the following sections the results for the three methodological steps as well as for both case studies are 

presented and discussed.   

 

4.1 Results of image segmentation – extracting homogenous urban patches (HUPs)  

 

Three different segmentation algorithm (Erdas edge detection, Definiens multi-resolution and Prabat region 

growing) were compared and the extracted segments were compared with a random selection of digitized 

building footprints. After optimization the best fitted scale parameter for the image segmentation at objected 

level resulted in a scale factor 15 (Figure 6), which also shows the AFI index output. Lower scale factors (e.g. 

10) led to more over-segmentation while higher scale factors (e.g. 20) led to more under-segmentation (showing 

weaker performance to capture the object level).  

 

As shown in Figure 6, results indicated that Definiens segmentation had a better performance in all cases but for 

the case of Delhi where Erdas edge detection had a similar good performance. Under-segmentation happened in 

all cases but the Definiens multi-resolution segmentation case for Delhi, meaning that segments were larger than 

the digitized roof areas. Thus, as segments of the test area tended to be larger than the average roof areas 

(average roof area of test sample was for Dar es Salaam 103 m
2
 and Delhi 85 m

2
), a complete segmentation was 

not achieved. This was attributed to the strong clustering of small buildings particularly in unplanned areas. 
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Only for the case of Delhi (multi-resolution segmentation) the average segments size was smaller than the 

average building size. This occurred in particular in planned areas with larger buildings and spectrally 

heterogeneous roof surfaces (roofs are frequently used to store objects). Unplanned areas in Delhi were also 

under-segmented.  
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Figure 6: Selection of a suitable segmentation algorithm using Area Fit Index (AFI) values 

 

An issue preventing the achievement of a complete segmentation is illustrated in Figure 7; which shows the 

comparison of the average roof-coverage density in the test areas for the two cities. The roof-coverage density 

was extracted by using a maximum-likelihood classifier (achieving for the image of Delhi a classification 

accuracy of 77% and for Dar es Salaam 83%). The reason for using such a standard classification approach was 

to illustrate difference in the overall urban morphology of unplanned areas in the two cities. Unplanned areas in 

Delhi had a roof coverage density of more than 80% while the values in Dar es Salaam were lower, ranging 

between 50 and 75%. Thus buildings in unplanned areas of Delhi are more clustered which results in grouping 

of several buildings into one segment. This results in larger patches sizes and lower patch densities for the city 

of Delhi. While in Dar es Salaam individual buildings are captured better by the segmentation which results in 

smaller patches sizes of unplanned areas and higher patch densities (compared to planned areas).  
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Figure 7: Roof cover percentages, Delhi (left) and Dar es Salaam (right) 

 

Although image segmentation was employed to extract HUPs at object (building) level, this was showing 

limitations in very dense unplanned areas where extracted segments were frequently an aggregate of several 

building objects. This issue was more apparent for the case of Delhi due to its lower image resolution, smaller 

object (building) sizes, and higher density of buildings in unplanned areas. Also, Delhi presents a more 

heterogeneous urban morphology than Dar es Salaam, making the result of the image segmentation more 

complex. As a consequence, large multi-family houses (in planned areas) were over-segmented while buildings 

in unplanned areas were under-segmented. Although a similar problem occurred in Dar es Salaam, the impact 

was minimized because most planned areas (within the test areas) consisted of relatively large, detached, single 

family houses, the so-called Swahili house which is predominant in Dar es Salaam’s residential areas. The 

decision was made to keep the scale parameter constant (within a city and between the cities) to ensure the 

spatial metrics calculated based on the segments produced comparable results.  

 

As a result, Definiens multi-resolution segmentation was selected due to its better performance for the AFI. 

Despite the problems of extracting building object HUPs, spatial metrics were then used to analyse whether the 

HUPs of planned and unplanned areas show a quantifiable differences.  

 

 

4.2 Results of spatial metrics – analysing the building HUP morphology  

 

The final set of spatial metrics after excluding the insignificant and/or highly correlating metrics (from the initial 

list is Table 2) is presented in Figure 8. As a consequence of the different urban morphologies and data sources 

used, a different set of metrics was found suitable for each city. It was not possible to select the same spatial 

metrics for both cities as the metrics suitable for Dar es Salaam did not differentiate well unplanned from 

planned areas in Delhi. This limits the comparability of the individual metrics values, while the final value of 

the USI  can be compared as it uses a standardisation procedure for calculating the three dimensions (size, 

density and pattern) within the spatial multi-criteria framework.  

 

For the case of Dar es Salaam, the most significant metrics were: mean area (size related), patch density (density 

related), aggregation index (AI) and the Shannon diversity index (SDI) – the latter two both indicating pattern. 

Tests with AI showed close, but clearly distinguishable, values for planned and unplanned areas. Tests with SDI 

were controversial as results for test area 5 were not compatible with results for all other areas. In general, 

planned areas have higher SDI values except for test area 5, which is a rather small planned area with less 

regular arrangement patterns and where the mean area of building footprints is smaller than other planned areas 

and rather similar to unplanned areas. However, overall it can be concluded that values indicated that unplanned 

areas (all 5 test areas) in Dar es Salaam tended to have smaller patches, higher (segment) densities and were 

more aggregated and less diverse than planned areas.  

 

For the case of Delhi, several of the metrics were highly correlated. As a result, all highly correlated metrics 

were excluded in order to allow modelling of the three different spatial dimensions (size/density/pattern). All 

remaining significant metrics were selected, with the final list including landscape division index and effective 

mesh size (size), patch density (density) and aggregation index, Shannon diversity index and contagion index 

(pattern). Mesh metric results indicated unplanned areas in Delhi tend to present smaller mesh size. Patch 

density results suggest density in unplanned areas was smaller than in planned ones, which can be explained by 

the under-segmentation that occur in unplanned areas (many clustered houses are contained in single patches). 

In terms of patterns, planned areas were in general more aggregated, even and orderly arranged. Only test areas 

4 and 5 have unplanned areas values close to planned ones. Both areas comprise of high density planned and 

unplanned areas thus it makes sense the arrangement patterns have similarities.  
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Dar es Salam result of selected metrics  Dehli result of selected metrics 

Dimension Selected metrics Overal result of test areas Dar es Salaam Selected metrics Overal result of test areas Delhi 
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Figure 8: Selected spatial metrics for Dar es Salaam (left) and Delhi (right) 
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4.3. Unplanned Settlement Index 

 

For calculating the unplanned settlement index, homogenous patches were generated by image segmentation 

using lager scale values to create HUPs at settlement area level (not building objects), using an approach similar 

to the ‘land-use-regions’  (M.  Herold, Liu, et al., 2003) and ‘homogenous urban patches’ (M. Herold, Scepan, 

& Clarke, 2002). The scale parameter that gave the best results was 80 for Delhi and 160 for Dar es Salaam.  

This second segmentation step was necessary to generate HUPs at area level (Figure 4) extracting larger areas of 

homogenous morphology. The scale parameter was selected by using an optimization process to compare 

segments with ground reference data. The difference in scale between the two case study areas can be explained 

by the fact unplanned areas in Delhi tend to be small pockets (average HUP is 0.2 ha) while in Dar es Salaam 

they tend to be larger settlements (average HUP is 1.1 ha). This decision deviates from the decision made at 

object level where the scale parameter was kept the same (for Delhi and Dar es Salaam). Buildings in both cities 

are of relatively similar dimension, which is different to the HUPs at area level. The extracted segments were 

used to aggregate the composite maps of the USI using the mean of the metrics values. The rational for 

aggregation is that the concept of ‘unplannedness’ is normally captured on the level of an areas, e.g. 

neighbourhood not on an individual building object (an ‘unplanned building’ would refer to an illegal structure 

without permit which is difficult to capture with remote sensing) or smaller groups of buildings. The results 

were compared with existing land use data for the in total 10 assessment areas (five for each city), the results of 

four assessment areas are presented in Figure 9.  

 

For a visual inspection the results of the USI were classified in 5 different classes (very high, high, moderate, 

low and very low) using equal frequency (Figure 9 displays  four example assessment areas). In general, ‘very 

high’ and ‘high’ USI values indicate areas that showed characteristics of unplanned areas. As shown in Figure 9, 

‘high’ or ‘very high’ USI values visually matched the areas of unplanned settlements in the reference data 

reasonably well. For assessment area 1 in Dar es Salaam, the main unplanned area fell into the category ‘very 

high’. In this case, some small areas along the edges of unplanned areas were not detected by the USI. Also the 

planned area in the East fell into the category ‘high’ because of the presence of high density settlement. The 

assessment area 2 of Dar es Salaam showed a similar result in which the large unplanned area fell mainly into 

the category ‘high’ while other parts were within the category ‘very high’ and ‘moderate’. Smaller unplanned 

areas along the edge of the settlement fell into various categories. Some small areas within planned settlements 

had ‘high’ values mainly due to high built-up densities.  

 

Similarly, the USI values in Delhi also indicate unplanned areas. Yet, the results for some specific areas are 

rather complex, such as assessment area 1 for Delhi. In this area, two unplanned areas in the Centre and South 

(mainly slum areas) were classified as ‘high’, while the large unplanned area in the North-East fell into various 

categories (ranging from low to very high). This area is a typical example of unplanned development 

(unauthorized colony) but not a slum, meaning that the built-up structure has larger roof areas and lower density. 

Thus such areas are morphologically rather similar to high-density planned areas. Another issue in assessment 

area 1 is some small segments in planned areas have ‘(very) high’ USI values. This showed that the smaller 

scale used for the segmentation of the Delhi image (which was necessary extracting small slum pockets) caused 

problems (outliers). The results for the assessment area 2 of Delhi showed the location of the unplanned areas 

more clearly within the category ‘very high’, with the exception of the two smaller slum pockets (of 900 and 

1800 m
2
) that were within the class ‘low’ and ‘moderate’. This is due to scale issues in the extraction phase 

(segmentation). A smaller scale parameter would be necessary to extract such small settlements.  
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Figure 9: Unplanned settlement index for homogenous patches 

 

For a quantitative comparison of the extracted USI values with the reference data 300 samples within the 5 

assessment were selected for each city. With the help of boxplots (Figure 10 and 11) the mean and deviation of 

the samples were plotted for the planned and unplanned areas (extracted from the reference data). For both cities 

the samples showed higher values for the unplanned areas as compared to the planned areas. Interestingly in Dar 

es Salaam a number of outliers which are in the reference unplanned had low USI values (Figure 10). These are 

example of relatively low density developments (typical for the outskirts of Dar es Salaam). While in Delhi the 

outliers are found within the group of planned areas showing high USI values (Figure 11). These areas are of 

high built-up density and show very similar morphological characteristics than unplanned areas.  

 

In order to assess the utility of the USI values to indicated unplanned areas a threshold was set to classify the 

HUPs into a binary map of planned versus unplanned. USI values of more than 0.5 were classified as unplanned 

and 0.5 and below as planned. When comparing the cross tables for the 300 samples of both locations it can be 

stated that the agreement of reference and classified sampled locations was 73% for Delhi and 75% for Dar es 

Salaam. Analysing the results in more detail, in Dar es Salaam out of 151 planned areas 58 have been classified 

as unplanned, mostly rather high density planned areas.  While only 16 out of 149 unplanned areas went into the 

class planned (several of them are displayed as outliers in Figure 10). A similar trend can be observed in Delhi 

75 planned areas have been classified as unplanned. Most of these areas are again highly densely built-up.  Also 

in Delhi the majority of unplanned areas have been classified correctly (only 6 have been classified as planned).  
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Figure 10: Comparison of reference data with USI values for Dar es Salaam 

 

Table 4: Comparison of reference data with USI values for Dar es Salaam (overall accuracy 75%)  

 

  

Reference 

Planned Unplanned 

Count Count 

Classified Data Planned 93 16 

Unplanned 58 133 
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Figure 11: Comparison of reference data with USI values for Delhi  

 

Table 5: Comparison of reference data with USI values for Delhi (overall accuracy 73%)  

 

  

Reference 

Planned Unplanned 

Count Count 

Classified Data Planned 149 6 

Unplanned 
75 70 

 

General issues found with USI were: smaller clusters were often not detected; high density planned settlement 

produced erroneous high USI values; unplanned areas with lower densities and larger buildings sizes had often 

low  USI values and were not detected. These limitations are a consequence of employing morphological only 

criteria. Still, the USI could distinguish between planned and unplanned areas with an accuracy of more than 70% 

in both cities.  

 
 

 

5. Conclusions 

 

The presented research focused on quantifying differences on morphological features of unplanned areas in 

terms of size, density and pattern. The methodology used a rather simple image processing technique, namely 

segmentation, to generate input data for performing an analysis with spatial metrics. Unlike object based feature 

extraction, image segmentation is a processing technique which does not require customizing rules and allows 

processing of larger image data sets relatively quickly. This research has demonstrated that segmented images 

can be analysed by spatial metrics producing meaningful information about the urban morphology of cities in 

developing countries. Yet, the application of this methodology can be hindered by the fact that planned areas 

presenting similar morphological characteristics may fall within the same class as unplanned areas. This 

research also showed that the two rather different cities have differences in their morphological features. The 



17 
 

city of Dar es Salaam shows in general lower built-up densities in unplanned areas than unplanned areas in 

Delhi. In Delhi buildings of unplanned areas are commonly very clustered that even a visual delineation is 

difficult using images of 1 m spatial resolution, while building outlines in Dar es Salaam can be in general better 

identified. The high clustering of buildings in Delhi caused limitations to extract object level information using 

image segmentation.  

 

Although the segmentation did not achieve a complete segmentation (extracting accurately building objects), the 

obtained results provide enough quantifiable differences between planned and unplanned areas. These 

differences were analysed by a set of spatial metrics and combined into an unplanned settlement index 

composed by all three dimensions of morphological aspects of ‘unplannedness’ (size, density and pattern). This 

composite index was aggregated to settlement level HUPs using image segmentation to extract ‘homogenous 

neighbourhoods’, thereby avoiding a manual delineation as done by M. Herold, Scepan, & Clarke (M. Herold, et 

al., 2002) also used in Herold and Liu et al. (2003). The case studies demonstrate context is important and 

parameter settings cannot be used universally, as the set of spatial metrics required adjustment for different 

cities and types of VHR imagery in order to best extract the morphology. Ultimately, for both case studies the 

set of metrics that indicated best planned versus unplanned were quite different, even presenting opposite values. 

The main limitation of the approach is segmentation in unplanned areas did not succeed in extracting single roof 

objects well. Thus, a possible next step would be to repeat the analysis with even higher resolution imagery 

(below 0.5 meter) in an attempt to achieve a more complete segmentation. 

 

This study also demonstrated that spatial metrics can successfully support the detection of unplanned areas, and 

that a set of local meaningful metrics has the potential to identify the areas with unplanned morphological 

characteristics. Spatial metrics were able to quantify differences between planned and unplanned areas in 

segmented images using size, density and pattern, which were identified as the three key spatial dimensions of 

‘unplannedness’. The presented unplanned settlement index, which combined the three dimensions into an index 

coupled with a spatial multi-criteria framework, identifies areas with morphological characteristics of 

‘unplannedness’ with relative success (of more than 70% for both cities). Thus, the proposed methodology 

provides a step towards a low cost and effective method for mapping unplanned areas. 
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