A realistic assessment of methods for extracting gene/protein interactions from free text
Kabiljo, R. and Clegg, A.B. and Shepherd, Adrian J. (2009) A realistic assessment of methods for extracting gene/protein interactions from free text. BMC Bioinformatics 10 , p. 233. ISSN 1471-2105.
|
Text
1091.pdf - Published Version of Record Available under License Creative Commons Attribution. Download (580kB) | Preview |
Abstract
Background: The automated extraction of gene and/or protein interactions from the literature is one of the most important targets of biomedical text mining research. In this paper we present a realistic evaluation of gene/protein interaction mining relevant to potential non-specialist users. Hence we have specifically avoided methods that are complex to install or require reimplementation, and we coupled our chosen extraction methods with a state-of-the-art biomedical named entity tagger. Results: Our results show: that performance across different evaluation corpora is extremely variable; that the use of tagged (as opposed to gold standard) gene and protein names has a significant impact on performance, with a drop in F-score of over 20 percentage points being commonplace; and that a simple keyword-based benchmark algorithm when coupled with a named entity tagger outperforms two of the tools most widely used to extract gene/protein interactions. Conclusion: In terms of availability, ease of use and performance, the potential non-specialist user community interested in automatically extracting gene and/or protein interactions from free text is poorly served by current tools and systems. The public release of extraction tools that are easy to install and use, and that achieve state-of-art levels of performance should be treated as a high priority by the biomedical text mining community.
Metadata
Item Type: | Article |
---|---|
School: | Birkbeck Faculties and Schools > Faculty of Science > School of Natural Sciences |
Research Centres and Institutes: | Bioinformatics, Bloomsbury Centre for (Closed), Structural Molecular Biology, Institute of (ISMB) |
Depositing User: | Administrator |
Date Deposited: | 04 Aug 2010 14:09 |
Last Modified: | 02 Aug 2023 16:49 |
URI: | https://eprints.bbk.ac.uk/id/eprint/1091 |
Statistics
Additional statistics are available via IRStats2.