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Abstract. Using space-filling curves to order multidimensional data has
been found to be useful in a variety of application domains. This paper
examines the space-filling curve induced ordering of multidimensional
data that has been transformed using shape preserving transformations.
It is demonstrated that, although the orderings are not invariant under
these transformations, the probability of an ordering is dependent on
the geometrical configuration of the multidimensional data. This novel
property extends the potential applicability of space-filling curves and is
demonstrated by constructing novel features for shape matching.

Keywords: space-filling curves, peano curves, shape preserving trans-
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1 Introduction

Space-filling curves can be used to map multidimensional data into one dimen-
sion that preserves to some extent the neighbourhood. In other words points
that are close, in the Euclidean sense, in the multidimensional space are likely to
be close along the space-filling curve. This property has been found to be useful
in many application domains, ranging from parallelisation to image processing
[1].

This paper examines the ordering of point sets mapped to a space-filling
curve that have been transformed using shape preserving transformations. It
is shown that the probability of an ordering is related to the geometry of the
points in the higher dimensional space. Crucial to the analysis is the definition of
betweenness and the ability to measure a corresponding in-between probability.
The motivation for this paper is to demonstrate that the spatial configuration
of multivariate data can be usefully encoded with these in-between probabilities
with a view to develop novel data analysis algorithms. To this end a practical
example based on shape matching is described which uses features derived from
in-between probabilities.

The remainder of this paper is structured as follows. The following section
space-filling curves are described in more detail and relevant literature is re-
viewed. In Section 3 betweenness and the in-between probability are defined.
Section 4 presents experiments to demonstrate the geometric underpinnings of



the in-between probability. Section 5 concludes with a discussion regarding ap-
plying the approach to other data analytic tasks. Note some figures and defini-
tions have been reproduced from [20].

2 Background and Related Work

This section briefly describes the construction of space-filling curves and dis-
cusses related work.

2.1 Space-Filling Curves

A space-filling curve is a continuous mapping of the unit interval [0,1] onto a
higher dimensional Euclidean space, where the image of the unit interval consists
of every point within a compact region. For two dimensional space this means
the image has non-zero area and the mapping is typically defined to fill the unit
square and in three dimensions the image fills the unit cube, etc.

For simplicity only mappings onto two dimensional space are considered, but
it is worth noting that the ideas in this paper generalise to higher dimensional
space.

Space-filling curves are typically defined recursively where the unit square is
subdivided into equal sized sub-tiles and ordered. The first three iterations of
the recursion for the Siérpinski curve are shown in Figure 1. The lines joining
the centres of the ordered sub-tiles are collectively referred to as the polygon
approximation to the space-filling curve. The Siérpinski curve is the limit of this
polygon approximation curve as the size of the sub-tiles tends to zero.
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Fig. 1. First three iterations for Siérpinski curve construction.

Not all recursively defined orderings have a curve as the limit, one example is
raster order shown in Figure 2 (in the limit this mapping is space-filling but not
a curve, see e.g. [13] for an detailed explanation of this issue). In the computing
literature these orderings are often referred to as discrete space-filling curves due
to the fact that the polygon approximation curve visits all the sub-tiles. In order
to allow for the use of discrete space-filling curves, the multidimensional data



will be represented in a (sufficiently finely) discretized space.
Typically space-filling curves are used to map data to the unit interval, hence
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Fig. 2. Raster scan order.

it is the inverse of the space-filling curve mapping that is required, source code
for calculating the inverse of various space-filling curves in two and higher di-
mensions can be found in e.g. 1,15, 16].

2.2 Related Work

Combinatorial problems in multidimensional Euclidean space can be approached
using the general space-filling curve heuristic [4]. This heuristic involves using
a space-filling curve to map data onto the unit interval and then solve the one
dimensional version of the problem, which is often much easier. A notable exam-
ple is the planar Travelling Salesman Problem [15] in which, given the locations
for a set of cities, the problem is to find the shortest tour. A tour begins and
ends at the same city and visits all the other cities only once. In two or more
dimensions this is a well known NP problem, however in one dimension this
problem has polynomial computational complexity. Indeed in one dimension the
shortest tour can be constructed by simply sorting the city locations into as-
cending (or descending) order. It is the neighbourhood preserving properties of
the space-filling curve mapping that ensure that the optimal one dimensional
tour, once it is projected back to the original dimension, produces a reasonable
sub-optimal solution.

An extension this heuristic is called the Fxtended Space-filling Heuristic [14]
and is designed to address the problem that points close in the higher dimensional
space may be far away when mapped onto the unit interval. This is achieved by
repeatedly transforming the dataset and solving the problem for each of these
transformed versions, then combining these solutions. The transformation of the
data is designed to make the aggregate space-filling mapping approximate more
closely the higher dimensional space.

One area where the extended space-filling heuristic and variations of this
heuristic have been explored is in the problem of finding approximate nearest
neighbours to query points, see e.g. [11, 14]. This research most closely resembles



the work proposed in this paper. Performing shape preserving shape transfor-
mations to the data (and the query point) will obviously not affect the nearest
neighbour when measured in the original high dimensional space however it will
effect the point order. The motivation for transforming the data is to increase
the probability that the ‘true’ nearest neighbour is close to query point along
the unit interval. In contrast this paper proposes measuring these probabilities,
since they carry information about the spatial configuration of the dataset.

Shape Matching In Section 4 a shape matching task is used to further demon-
strate that spatial information of a point set can be captured using probabilities
based on space-filling curve induced point orderings. In this section the use of
space-filling curves to map shapes to one-dimension is discussed.

There are not many instances in the literature where space-filling orderings
are used to represent shapes and in most cases shape normalization is performed
before the shape is mapped to one-dimension. This is done to reduce as far as
possible the effect of the change in point ordering due to affine transforms, see
e.g. [6,9,19]. In [17,18] the space of all possible rotations and translations is
searched (interestingly using another space-filling curve) to find a match.

Matching using one-dimensional representations of shapes which used cross-
correlation was proposed in [8]. Class specific regions of the representation,
known as key feature points, can be extracted by overlaying one-dimensional
representation from shapes of the same class. Intervals that have lower variance
are considered to be informative for identifying the class. A portion of the one-
dimensional representation with the lowest variance is extracted to produce a
representation of reduced length and high similarity across the class. An exten-
sion to the key feature point [7] denoted rotational key feature points involves
concatenating representations from rotated instances of the same shape and
identifying key feature points.

3 Betweenness and the In-between Probability

This section first presents a demonstration for the in-between probability using
the Siérpinski curve before presenting a more formal definition.

Consider 3 points a, b, c. The point b, is in-between a and ¢, if it is on the
shortest path on the curve between a and c¢. The darkened part of the curve
in Figure 3 shows examples of shortest paths on polygon approximation to the
Siérpinski curve.

The probability b is in-between a and c¢ is simply the proportion of shape
preserving affine transforms that map b to the region between the transformed
locations of a and c¢. For example, in Figure 4 each image shows a shape preserv-
ing transformation of a right triangle. This figure shows that the configuration
of the in-between region varies depending on the locations of a,c. Only in the
first and last image is b in-between and a, c.
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Fig. 3. Examples of shortest paths (shaded) along a polygon approximation to the
Siérpinski curve between two points.

Fig. 4. Affine transformed right triangle with region in-between a, ¢ darkened.

3.1 In-between Probability

This section presents the in-between probability more formally and for clarity
only the two dimensional case is considered.

Let (a, b, ¢) be a 3-tuple of unique points in the unit square, e.g. the vertices of
a triangle shown in Figure 4. Let the shape preserving transformations be scale,
translation, rotation and reflection (and composites of these transformations).

There are two minor technical considerations. First for simplicity the space-
filling curves used in this paper are defined over the unit square, hence no point
should be transformed outside the unit square, otherwise its location along the
curve cannot be measured. The set of allowable transformations for a tuple
(a,b,¢), i.e. those that map all three points into the unit square, is denoted
S{a,b,c}~

For s € Sfap,c}, let @’ = s(a) this is the location point a after the shape
preserving transformation s is applied. The second minor technical consideration
relates to the use of discrete space-filling curves. These mappings require the
unit square to be discretized, hence all transformed points are rounded to their
nearest tile centre.

Figure 3 shows that the Siérpinski curve wraps around to meet itself, whereas
raster order does not (Figure 2). In order to capture this difference two types of
betweenness, circular and linear, are defined.

The linear in-between probability for tuple (a,b, ¢) and space-filling curve f
is defined as, p(X; = i; (a,b,¢), f, Sap,c})
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Fig. 5. The in-between mapping.
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0 otherwise.

In words, for a particular space-filling curve mapping f,
p(Xi = 1;(a,b,¢), f,S{ap,c}) is the probability the pre-image of b is in-between
the pre-images of a and ¢ under valid shape preserving transformations. Recall
that space-filling curves are defined to map points from the unit interval onto
the higher dimensional space, hence the inverse space-filling curve mapping is
required, see Figure 5(a).

Using similar notation, the circular in-between probability is defined as,
p(Xe = i;(a,b,c),9,S{ap,c}), where i € 0,1, g is a space-filling curve mapping
and X, is a random variable which is defined as,

1 if g=1(V') is on the shortest path connecting,
. . -1 / —1/ .
X, = but not including, g~*(a’) and g~*(¢’) @)

0 otherwise.

See Figure 5(b) for a graphical representation of circular betweenness.

4 Spatial Configurations and In-between Probabilities

The previous section defined the in-between probability, in this section the re-
lationship between spatial configurations of points and their corresponding in-
between probabilities is investigated experimentally. First by empirically esti-
mating the in-between probability distribution for triangles in the plane then
by investigating how well the spatial configuration of large sets of points can
be usefully captured using betweenness probabilities in the practical setting of
shape matching.

For all the following experiments the set of shape preserving transformations
is sampled as follows:



The unit square is subdivided into 2048 x 2048 tiles and all transformed
locations are rounded to the nearest tile centre. This level of granularity was
chosen to allow shapes described in Section 4.2 to be scaled up to an order of
magnitude. First, with probability % the shape is reflected through the z-axis.
Then, the shape’s centre of gravity is translated to a location that has been
sampled uniformly at random from the unit square. The shape is then rotated
uniformly about its centre of gravity. A scale is sampled uniformly in the range
1 to a maximum scale S, where S is chosen such that a shape scaled to any
value greater than S will not fit completely within the unit square. A shape is
not scaled by a value less that 1 since this would amplify aliasing effects. Finally
the transformation is rejected if the points do not all map to positions within
the unit square.

For linear betweenness, assume 1, ...,z are identically and independently
drawn from the probability mass function p(X; = 4;(a, b, ¢), f, Sta,c})- Then
the maximum likelihood estimate is simply,

A ¢

P(X =1i;(a,b,¢),S(ap.c}) = ;Z Ty =1),
where 1(-) is the indicator function and the number of samples, 7, is set to
20,000. A similar formula can be obtained for circular betweenness.

4.1 Estimating the in-between probabilities for triangles

In this section the in-between probability for different triangular configurations
of points is investigated empirically, more precisely the relationship between
the shape of a set of 3 points (a,b,c) and the circular in-between probability
p(Xe =1;(a,b,¢), f,Sfa,p,c}), where f denotes a Siérpinski curve mapping.

A simple way to represent shape of triangles in two dimensions is to use
Bookstein shape coordinates. In these coordinates the location of points a, ¢ are
fixed to the locations a = (—%,0) and ¢ = (3,0), the location of b is the free
parameter. Note, since reflections are one of the shape preserving transforma-
tions, the location b can be restricted to the positive half plane to get the full
distribution. To obtain a larger set of triangular shapes the domain b is —3 to
3. This coordinate system is shrunk by a factor of % and translated in order to
fit into the unit square.

Figure 6 shows the circular in-between probability mass function for the
Siérpinski curve, shown in both a surface plot and a contour plot. Each loca-
tion in the plot corresponds to b a vertex of the triangle which has as a base
the segment joining (—3 0) to ( ,0). The symmetry about the z-axis is due to
introducing reflection invarlance It can be seen there is a clear dependency be-
tween the probability and shape of the triangle (a, b, ¢). The maximum occurs at
the midpoint between a and c. The contour plot demonstrates that, in general, a
particular value for the in-between probability does not correspond to a partic-
ular shape of triangle. The locus of shapes with the same in-between probability
starts approximately elliptical and becomes progressively rounder the further
away b is from the line segment joining a to c.
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Fig. 6. The Siérpinski curve circular in-between probability mass function in both a
surface plot and a contour plot. The location of points a and c are (—%, 0) and (%, 0)
respectively.

4.2 Shape Matching

The objective of the following experiments is twofold. First to demonstrate the
joint in-between distribution for data comprising of more than three points is
also related to its spatial configuration. Second to directly compare novel shape
descriptors based on this joint in-between distribution with state-of-the-art shape

descriptors.
A

Fig. 7. Example images from the MPEG-7 Core Experiment CE-Shape-1 Part B
dataset.

The MPEG-7 Core Experiment CE-Shape-1 Part B dataset is a widely used
benchmark dataset for image retrieval that contains 1400 shapes, [10]. There are
70 classes of shape, each with 20 instances, examples of shapes from this dataset
can be seen in Figure 7. Performance for this benchmark dataset is measured
using the bulls-eye score, which is calculated as follows.

For each target shape retrieve the 40 most similar shapes, count the number
of shapes that are from the same class as the target. The maximum score for
one target shape is 20 and the overall maximum score is 28,000. The bulls-eye
score is typically shown as the percentage of the maximum score.

The approach that has the current highest bulls-eye score, which is 97.4%,
is described in [3]. This approach uses two different shape descriptors; shape
contezts (SC) and inner distance shape contexts (IDSC). The main purpose of
[3] is to introduce an algorithm called co-transduction which efficiently combines
shape dissimilarities derived from these two descriptors. Combining approaches



is beyond the scope of this paper, however motivated by the success of the shape
descriptors used, the following experiments include results for SC and IDSC for
comparison. The reader is referred to [5] and [12] for detailed descriptions for
SC and IDSC respectively.

In the following experiments, shape matching is achieved using the approach
described in [12]. Briefly, each shape is represented by n = 100 points extracted at
regular intervals from the boundary and for each point a descriptor is measured.
Shape matching proceeds in the following fashion, let shape S; consist of the
points p1, ..., p, and the shape Sy the points q1,...,g,. A dissimilarity matrix
ci,j is generated where each entry is a measure of the difference between the
descriptors for point p; and for point g;. The level of dissimilarity between shapes
S1 and S5 involves finding an optimal mapping between the point sets from Sy
and S5 which is solved using dynamic programming.

Novel Descriptors The concern in this section is how to construct a dissimi-
larity matrix using betweenness probabilities. Taking any two points, p; and p;
from S, it is possible in principle, to build a distribution over the number of
the remaining points that lie in-between them along the space-filling curve. This
distribution contains information about the spatial locations of the remaining
points relative to p; and p;. However this would be unwieldy to measure and
store, instead two simple descriptors are proposed.

The mean descriptor. Let f,(p;,p;) be the expected number of points in-
between p; and p;. Then the descriptor for point p; is the set
{fu(pisp1), - fu(pispn)}-

The 10% descriptor, fio%(pi,p;) is the probability that 10% of the total
number of points or fewer are in-between p; and p;. The descriptor for point p;
is the set {fi0%(pi,p1), - - -, f10%(Pis Pn) }-

There are, of course, plenty of alternative features that could have been
constructed. The advantage of the two described above is their very obvious
relationship with the underlying in-between probabilities. Furthermore in both
cases the descriptor assigns a one dimensional vector to each point much like SC
and IDSC.

To measure the dissimilarity, c; j, between p; from shape S; and ¢; from
shape S, the descriptor sets of p; and g; are sorted into order and the absolute
difference between the entries is taken, i.e.

Cij = Z [f (Pi Py (1) = T 05> Oy, ()]
k=1

where 7, and 7, denote the values in the descriptor sets of p; and ¢; sorted
into ascending order respectively.

The dissimilarity matrix c is all the information needed to use the matching
process described above.



Results To allow for a direct comparison between IDSC, SC and the proposed
shape descriptors, shape matching for both IDSC and SC is performed such that
it is invariant to rotation and reflection.

For each descriptor, the space-filling curve mapping that yielded the highest
bulls-eye score is shown in Table 1. For the 10% descriptor this was the Siérpinski
curve and for the mean descriptor this was raster order. In both these cases the
performance was not at the same level as SC and IDSC. Note that the bulls-eye
score for IDSC is slightly higher than that reported by [12], it is also interesting
to note that both SC and IDSC have very similar performance.

Table 1. Bulls-eye scores

lMethod[Siérpinski—lO%[Raster—mean[ SC [IDSC‘
[Score [ 77.72% | 78.80% [85.22%]85.81%)]

Table 2. Bulls-eye scores using additional clustering step

|Method[Siérpinski—lO%[Raster—mean[ SC [IDSC ‘
[Score | 86.14% [ 87.15% [90.93%[91.17 %

For this particular retrieval task, plugging in an additional clustering phase
has been shown to greatly improve performance [2]. Table 2 show the results
that includes a clustering step referred to as Graph Transduction [2]. All the
approaches have been dramatically improved and with our novel descriptors
obtaining the greatest boost. The results shown in Table 2 clearly demonstrate
that our descriptors are capable of encoding in a meaningful way the spatial
configuration of a point set.

Finally it should be noted that space-filling approaches have been applied
to this image retrieval task, namely the key feature point and the rotational
key feature point, which were described in Section 3. These approaches have
have bulls-eye scores of 85.3% and 99.3% respectively. However these results
cannot easily be compared to the results shown above and indeed the majority
of methods applied to this MPEG-7 shape retrieval task since both the key
feature point and the rotational key feature point require the use of additional
information about shape classes.

5 Conclusion

It should be remarked that although the examples described in this paper have
been in two dimensions the methodology extends naturally to higher dimen-



sion. In order to perform analysis of n-dimensional data all is needed is an
n-dimensional space filling curve and the ability to affine transform points in
n-dimensional space.

This paper has shown that the in-between probability is related to the spatial
configuration of a dataset. This has been demonstrated by investigating the
in-between probability of triangles in the plane and by using features derived
from the in-between probability to successfully perform an image retrieval task.
Although these features did not achieve state-of-the-art performance, the very
fact that these features captured sufficient information about the configuration
to perform the task suggests that in-between probabilities are likely to be useful
in other data analytic tasks.

For example the median of a point set could be defined as the data point
which is most likely to be in-between all other pairs of points in the dataset.
Taking this concept further, the degree to which a point is in-between all point
pairs can be used identify outliers.

Indeed any data analysis processes that requires a concept of neighbourhood
in the Euclidean sense, such as those that use Voronoi graphs, are all candidates
for our approach to be deployed.
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