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Abstract  

Down syndrome, caused by an extra copy of chromosome 21, is associated with a greatly 

increased risk of early onset Alzheimer disease. It is thought that this risk is conferred by the 

presence of three copies of the gene encoding amyloid precursor protein (APP), an Alzheimer risk 

factor, although the possession of extra copies of other chromosome 21 genes may also play a 

role. Further study of the mechanisms underlying the development of Alzheimer disease in Down 

syndrome could provide insights into the mechanisms that cause dementia in the general 

population. 

 

 

Down syndrome (DS) is a complex, highly variable disorder that arises from trisomy of chromosome 

21.   It was one of the first chromosomal disorders to be identified1 and occurs with an incidence of  

approximately 1 in 800 births2. Its prevalence within a given population is also influenced by infant 

mortality rates, access to healthcare, termination rates, average maternal age3 and life expectancy. 
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Indeed, despite the increased availability of pre-natal diagnosis and access to the option of 

termination, the global prevalence of DS is rising because of improvements in life expectancy: the 

number of adults with DS aged >40 years has doubled in Northern Europe since 1990 and, in the UK, 

one third of the estimated 40,000 people with DS are thought to be over 40 years of age4. 

 

DS is the most common form of intellectual disability. In addition to the features that are found in 

everyone with the disorder, such as the characteristic facial dysmorphology, there are many DS-

associated phenotypes that have variable penetrance and severity. For example, around 40% of 

individuals with DS have heart malformations (usually atrioventricular septal defects)5.  A key feature 

of DS is a striking propensity to develop early onset Alzheimer disease (AD).  Complete trisomy 21 

universally causes the development of both amyloid plaques and neurofibrillary tangles (NFT), 

typical characteristics of AD brain pathology, by age 40 and approximately two-thirds of individuals 

with DS develop dementia by age 606, 7. However, rates of dementia do not reach 100% even in older 

individuals, suggesting that despite having an additional copy of APP throughout their lives some 

individuals who have DS are protected from the onset of AD (Figure 1). 

 

All the features of DS arise due to aberrant dosages of coding and/or non-coding sequences present 

on chromosome 21. Among these sequences, the amyloid precursor protein gene (APP) is thought to 

have a key role in the pathology of AD. The additional copy of APP may drive the development of AD 

in DS (AD-DS) by increasing levels of amyloid-beta (Aβ), a cleavage product of APP that misfolds and 

accumulates in the brain in AD.  Consistent with this hypothesis, rare families with small internal 

chromosome 21 duplications that result in three copies of APP (known as duplication APP, or ‘Dup-

APP’) also succumb to early onset AD (EOAD) 8-15.  Conversely, partial trisomy of chromosome 21 that 

does not result in extra APP does not lead to AD16, 17.  Several additional genes on chromosome 21 

are proposed to modulate the course of AD-DS, but further work is required to determine their role 

and relative importance.  

 

The aim of this Perspective is to present an overview of clinical and pathological features of AD-DS 

and, by comparing these with other forms of AD (particularly Dup-APP), to highlight shared genetic, 

pathogenic and protective mechanisms and to discuss key future research areas.  Similarities in the 

etiology of AD-DS and other forms of AD may highlight common mechanisms, and differences in 

these diseases may help identify novel genes and pathways important to AD.    Recent advances in 

genetic, cellular and neuroimaging technologies have provided the means to comprehensively 

explore the link between AD and DS, and recent improvements in the life-expectancy of people who 
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have DS mean that more individuals than ever before are developing AD-DS. The growing interest in 

AD-DS is long overdue, given the high AD burden in the DS population, and it is likely that research 

into AD-DS may also lead to a better understanding of AD in the general population.  

  

Prevalence of AD in Down syndrome 

 

A loss of cognitive function in middle-aged adults [Au: could you be more specific here about the 

ages concerned, as ‘middle-aged’ might be open to different interpretations?] with DS  was 

described soon after the identification of the syndrome18 and it was later shown that this resulted 

from the onset of AD dementia.  As indicated above, today AD is common in adults with DS over the 

age of 45  and, like other genetic forms of EOAD, develops two to three decades earlier in individuals 

with DS than in the general population. Data describing the prevalence of AD-DS vary between 

studies because of diagnostic issues such as the presence of variable premorbid deficits and survey 

methodology19. However, AD prevalence in people who have DS is <5% under age 4020 and then 

roughly doubles with each 5-year interval up to the age of 60.  Hence ~5-15% of those aged 40-49 

and >30% of 50-59 year olds experience significant cognitive decline indicating dementia (Figure 1). 

Thus, as with AD in the general population, age is a strong independent risk factor for AD-DS21. By 

age 65, 68% - 80% of individuals with DS have been shown to develop dementia6, 7 (Figure 1 and 

Supplementary Table 1), and some studies from institutionalized people with DS suggest even 

higher rates6, 20, 22. However,  not all older individuals with DS develop dementia, with some reaching 

their 70s without significant symptoms of AD despite having full trisomy 2123.  After age 60 

prevalence rates decrease, likely due to the high mortality associated with dementia21.  

 

The average age of menopause in women with DS correlates with age of onset of dementia24-26; 

however, unlike AD in euploid individuals, gender does not affect the incidence of AD-DS20, 21. The 

reasons for this difference are unknown; however, it is possible that trisomy may cause changes in 

hormonal or cardiovascular biology that alter AD risk. The influence of gender on dementia is 

complex in both the DS and euploid populations and warrants more extensive longitudinal 

population-based study.  

 

Although, elevated levels of triglycerides and total body fat and low rates of exercise are reported in 

adults with DS27 and cholesterol levels have been associated with risk of developing dementia in this 

group28.  Individuals with DS have lower rates of other cardiovascular risk factors, including 

hypertension, atherosclerosis and smoking29, 30 that are thought to contribute to the development of 
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dementia in the general population31.  Further studies are required to understand how trisomy alters 

the biology of the cardiovascular system and what impact this has on neurodegeneration in people 

who have DS. 

 

The brain reserve hypothesis was based upon the observation in the general population that 

individuals with higher levels of education and/or more active social and intellectual lifestyles had a 

lower risk of developing dementia32.  The hypothesis predicts that those with more severe 

premorbid cognitive impairment will have an increased risk of developing dementia. However, no 

convincing relationship between severity of intellectual disability (or IQ) and risk of AD has been 

found in DS33, possibly because of diagnostic difficulties in those with severe impairments.  Survival 

time in AD-DS does not differ much from late onset AD (LOAD), with estimates varying between 3.5 

years (SD 2.2)34 and 6.24 years (SD 4.1)6.  However, those with severe intellectual disability and 

dementia were found to have a longer survival time after diagnoses than those with milder 

intellectual disability6, further suggesting that reduced brain reserve does not accelerate disease 

progression in AD-DS.   

 

People who have DS are a greatly increased risk of developing dementia, with around 70% of 

individuals developing the condition by the age of 65, interestingly gender and cognitive-reserve do 

not appear to influence AD-DS onset, unlike in LOAD. 

 

Clinical features of AD-DS  

The early symptoms of AD-DS include features that are typical of other forms of AD, such as a 

decline in memory and language skills that may be present several years before dementia is 

diagnosed35-37. However, changes in personality and behavior are more common in the early stages 

of AD-DS than they are in other forms of AD : individuals typically display either apathy, lack of 

motivation and stubbornness, or increasing behavioral excesses and impulsivity. These “non-

cognitive” changes (also referred to as the behavioral and psychological symptoms of dementia, 

BPSD)38-42 are associated with deficits in executive functioning and frontal atrophy on MRI scans that 

may indicate frontal lobe dysfunction40, 43. These changes may be  related to pre-existing deficits in 

the integrity of  the frontal tracts that have been observed in individuals with DS44 and that may be 

worsened by Aβ deposition in the frontal lobes45. Although BPSD symptoms is very prominent in 

early AD-DS, this presentation is not unique – it also occurs albeit at lower rates during the early 

stages of LOAD46 and EOAD, particularly in cases arising from mutations in the AD risk gene PSEN147 

(which maps to chromosome 14).  Further studies are required to determine the earliest changes 
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associated with development of dementia in people who have DS, and to delineate other clinical 

differences between AD-DS, LOAD and familial forms of EOAD, such as the frequencies of 

comorbidities (e.g. cardiovascular disease or systemic infections) that may affect the onset and 

progression of dementia.  

 

Another feature of AD-DS is the more frequent and earlier appearance of neurological symptoms 

such as gait disturbance and seizures19 when compared to LOAD. Although heterogeneous, seizures 

associated with AD-DS often present initially with myoclonic jerks before progressing to tonic-clonic 

seizures and later to non-epileptic myoclonus with cerebellar signs; electro-encephalograms show 

diffuse slowing and spike-wave patterns48-50.   In LOAD both complex-partial and tonic-clonic seizures 

have been reported to be the predominant type51, 52. Although seizures are reported to occur in 

between 0.5%- 64 % LOAD of cases51 more recent population studies have suggested seizure 

incidence in LOAD is relatively low, occurring in <5% of cases53.  In contrast, most people with AD-DS 

eventually develop seizures, and a sudden onset of seizures in older adults with DS is highly 

suggestive of AD. Co-morbid seizures are associated with a more aggressive course of AD-DS54 and 

greater dementia-associated mortality6.  The mechanism underlying this striking clinical feature of 

AD-DS is not understood, and the study of this may provide significant insight into 

neurodegeneration, in particular how changes in neuronal structure and organization affect disease 

progression.   

 

Similarly to other forms of AD, the decline through middle stage AD-DS dementia involves 

progressively more areas of cognitive function and results in symptoms such as dyspraxia55, 56, 

increasing incontinence,  pathological grasping and sucking reflexes, and  Parkinsonian symptoms57.  

In summary, BPSD features may be an important early feature of AD-DS and seizures are commonly 

associated with disease but further comparative and mechanistic studies are required to unravel the 

importance of these clinical observations.     

 

AD-DS neuropathological changes   

The similarity between the neuropathological changes that occur in AD-DS and those that 

characterize AD was first noted in 192958, and was important for the widespread recognition of 

dementia in people who have DS. This discovery also had a key role in the identification of Aβ as the 

major constituent of amyloid plaques59, identification of the first AD gene, APP60, and the 

subsequent development of the amyloid cascade hypothesis61. 
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The overall distribution and biochemical composition of plaques (largely Aβ) and neurofibrillary 

tangles (NFT, largely composed of tau protein) in people who have DS, EOAD and LOAD is similar59, 62-

64. However, a greater deposition of plaques and tangles occurs in the hippocampus in AD-DS 

compared with EOAD 65 and, consistent with this, histological studies suggest that Aβ deposition in 

the hippocampus occurs early in AD-DS66, whereas in LOAD earliest deposition is within the basal 

cortex67. Furthermore,  a lower density of Aβ plaques has been reported in the cortex in AD-DS than 

LOAD 68, 69. These differences may relate to amyloid plaques in AD-DS having a more amorphous 

morphology and a larger average size than those present in LOAD 70, 71, resulting in a lower density 

caused by the presence of fewer but larger plaques. In addition, the aggregation kinetics of Aβ may 

differ in DS because higher concentration of the peptide resulting from the additional copy of APP. 

Alternatively, differences in plaque load may result from the neurodevelopmental differences that 

occur in people who have DS, resulting in changes in  synaptic activity, which is known to regulate Aβ 

production72.   

 

In AD-DS, intracellular accumulation of Aβ precedes extracellular plaque accumulation73-76 but 

becomes less prominent in older individuals with extensive pathology as also observed in LOAD77.  In 

AD-DS diffuse plaques formed of non-fibrillary deposits of Aβ develop prior to those with dense-

cores that are composed of amyloid (Supplementary Table 234, 65, 66, 74, 75, 78-89).   Diffuse plaques are 

typically not associated with other forms of neuropathology such as activated glia cells or synaptic 

loss, whereas dense-cored plaques are often associated with dystrophic neurites and activated 

astroglia and microglia90 Also, Aβ42 – a form of Aβ that has a high tendency to aggregate - 

accumulates before deposition of Aβ40 in AD-DS 74, 75, 81, consistent with the higher abundance of 

Aβ42 reported in plaques in other forms of AD90.     Cerebral amyloid angiopathy (CAA) -- deposition 

of Aβ within cerebral blood vessels -- is also observed in older individuals with DS75, 81, 88, 91. However 

in contrast to LOAD, infarcts65 and vascular dementia appear rare in AD-DS92, although cases of CAA-

associated cerebral haemorrhage have been described93-96.   

 

In contrast to the findings of histological studies described above, in vivo amyloid-imaging by 

positron emission tomography (PET) indicates that the earliest site of Aβ accumulation in AD-DS, as 

in EOAD, could be the striatum97, and that enhanced deposition may occur in the frontal and parietal 

cortex98.   This discrepancy may reflect the fact that amyloid-imaging only recognises a subset of Aβ 

aggregates; thus not all deposition may be detected99. Nonetheless, most individuals with DS have 

amyloid positive PET scans by the age of 5045, 97, 100, 101.  Amyloid load as measured by PET does not 

correlate well with cognitive function in adults who have DS in cross-sectional studies45, 100, high-
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lighting the importance of factors other than amyloid in the development of dementia. However, 

longitudinal imaging studies in this population have yet to be undertaken and may be highly 

informative 45, 100.   

 

No NFT have been reported in AD-DS in the absence of dense-core plaque pathology, which is 

consistent with the predictions of the amyloid cascade hypothesis. The density of NFTs triples 

between the 4th and 5th decade of life in AD-DS78, mirroring the onset of dementia and NFT 

formation, rather than amyloid deposition34, consistent with similar findings in LOAD.  Thus, changes 

in tau may result in neuronal dysfunction in both AD-DS and LOAD.  Interestingly, smaller relative 

changes in nucleoar volume and a trend for reduced cell loss have been reported in the cortex and 

locus coeruleus in AD-DS compared with LOAD, despite comparable NFT loads, although similar cell 

loss was observed in other brain areas69. This may reflect a differential response of the trisomic CNS 

to accumulation of aggregated tau – suggesting, intriguingly, that chromosome 21 could encode 

gene(s) that are neuroprotective when triplicated.  Further study is required to determine whether 

trisomy 21 may provide protection from neurodegeneration. 

 

As in the euploid population, people who have DS may have extensive amyloid deposition, yet do 

not show clinical signs of dementia (Figure 1). Understanding how AD pathological changes relate to 

cognitive dysfunction is therefore a key research challenge.  Identifying the processes that cause an 

amyloid laden brain to convert from cognitively intact to demented is crucial to understanding and 

successfully treating AD. As people who have DS develop amyloid deposition and NFTs by the age of 

40, study of this group of individuals is likely to provide significant insight into the factors that cause 

dementia. Indeed, observations of AD-DS neuropathology already underpin our mechanistic 

understanding of AD, providing a detailed sequence of pathological changes and how these may 

relate to changes in cognition.  

  

Pathological features other than plaques and NFT also develop in both AD-DS and LOAD.   Neuronal 

accumulation of ubiquitinated and aggregated transactive response DNA binding protein-43 (TDP43) 

in cytoplasm and neurites is similar in AD-DS (7-14 % cases) and familial AD (10-14%), whereas 

TDP43 neuropathology occurs more frequently in LOAD (29-79%), perhaps because of the later 

disease onset102, 103.  Lewy bodies, particularly in the amygdala, occur in AD-DS at a similar frequency 

to LOAD104, but dementia with Lewy bodies (DLB), characterised by cognitive decline with 

hallucinations and Parkinsonism features, is rare in DS105.  Granulovacuolar degeneration, the 

formation of  double membrane-bound electron-dense granules cytoplasmic vacuoles, associated 
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with plaque and NFT pathology occurs in DS-AD with a similar frequency to AD65.  How this 

pathology relates to the very early endosomal abnormalities reported to occur prior to birth in 

individuals with DS106 is unclear and warrants further investigation. Recent AD-genome wide 

association studies (GWAS) have highlighted the importance of the endosomal system to LOAD107 

indicating that this system may be of particular importance to disease.   

  

Comparing AD-DS and Dup-APP   

Dup-APP is a rare cause of familial EOAD, and comparison to AD-DS yields pathogenetic insights, as 

in both diseases, an additional copy of APP is present. They therefore differ from other forms of 

familial AD that are the result of mutations in the APP, PSEN1 or PSEN2 genes that modulate 

processing of APP and generation of Aβ. In Dup-APP, regions of chromosome 21 triplication vary in 

size8-15, 47, 108, 109 (Figure 2)  and the smallest known duplication contains only an additional copy of 

APP and no other coding genes8. By contrast, in AD-DS triplication of any chromosome 21 gene in 

addition to APP may modulate the development of dementia. Studying these genes may therefore 

provide novel insight into AD mechanisms. 

 

The age of onset of dementia in Dup-APP ranges from 39 to 64 years (mean age ~52) and shows 

virtually complete penetrance by age 65.  By contrast, AD-DS appears to have a broad variation in 

age of onset, and many individuals only present with significant cognitive decline after age 55, or 

even escape it altogether. This is remarkable given the DS co-morbid health issues and relative lack 

of brain reserve. Thus, a possible protective mechanism(s) from triplication of unknown gene(s) on 

chromosome 21 may be important for resistance to dementia in DS.  Moreover, intracerebral 

haemorrhage is common in APP-Dup (20-50% of cases)9-14, 47, 109, whereas individuals with DS are 

generally protected from this pathology with only occasional reports. Thus, triplication of a 

chromosome 21 gene(s) may protect against some AD-comorbidity, and further comparative study 

of AD-DS and APP-Dup is required to understand the mechanisms underpinning this observation. 

 

The few histopathological Dup-APP studies that have been carried out report diffuse atrophy with 

associated neuronal loss, deposition of plaques, CAA, intraneuronal Aβ40 accumulation and NFT11, 110 

and appear similar to AD-DS pathology (Supplementary Table 3).  However, further studies are 

needed76, 110. Clinical DLB and cortical Lewy bodies have been observed in a few cases11, 13, 110 , but 

currently there are insufficient data on these phenotypes to compare Dup-APP with AD-DS or LOAD. 

As in AD-DS, a greatly elevated risk of dementia associated seizures occurs in Dup-APP10-13, 47, in 

contrast to LOAD in which seizures are relatively rare.  This suggests that duplication of APP, and 
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possibly other gene(s) located nearby, could be epileptogenic; however, as late onset seizures often 

follow onset of dementia, they may also relate to synaptic deterioration, resulting in abnormal 

synchronisation of neuronal networks and hyperexcitability111.  

 

Genes and mechanisms in AD-DS   

The presence of three copies of a dosage-sensitive gene or genes on chromosome 21 results in 

greatly enhanced risk of AD.  Chromosome 21 carries 233 coding genes, 299 long non-coding genes 

(Ensembl release 78) and 29 microRNAs (MirBase Release 21)112; thus, one or more of these must 

have a key role in AD.  The phenotype resulting from a dosage sensitive gene depends upon the 

number of copies of the gene in the genome.  However, not all genes are dosage sensitive, as 

homeostasis often prevents a gene from being over-expressed, and the regulation of expression is 

often dependent upon environmental context113.  Furthermore, trisomy 21 causes wide-spread 

transcriptional dysregulation113, 114 which may be the result of aneuploidy rather than triplication of a 

specific gene.  The importance of this to AD-DS remains unclear.  Finally, acceleration of the 

epigenetic changes associated with aging occur in the DS brain115 -- whether this alters gene 

expression or modulates the development of AD is an important area for future study.   

 

Development of neuropathology and dementia varies significantly between individuals with DS, and 

understanding the factors (genetic or environmental) that cause this variation is likely to provide key 

insights into disease mechanisms.  Below we describe the genes currently implicated in the 

development of AD-DS and highlight the importance of further study of the genetics of AD-DS to 

understand how variation in the whole genome influences the development of disease.  

 

Triplication of APP    

The key dosage-sensitive gene for AD-DS is likely to be APP, as an additional normal copy of this 

gene is sufficient to cause EOAD in the absence of trisomy of the rest of chromosome 218-15, 47, 108.  

The additional copy of APP in DS does not typically cause substantial Aβ accumulation until the 2nd or 

3rd decade of life, although amyloid pathology has been demonstrated in a few childhood post-

mortem cases (Figure 1, Box 1).  This lack of early Aβ accumulation may be because APP does not 

become dosage sensitive until adulthood, as suggested by both mouse and human studies116-118. 

However, increased levels of soluble Aβ42 are found in ~50% of trisomy 21 fetal brains119, suggesting 

that APP may be dosage sensitive during DS fetal development but that this change may not be 

sufficient to cause extensive Aβ deposition in the developing brain – perhaps because of efficient 

clearance.  Consistent with this, over-expression of APP and/or increased levels of Aβ have been 
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reported in trisomy 21 human cell models, including in induced pluripotent stem cells (iPSCs) derived 

from infants or young adults with DS120-123. Although triplication of APP does not necessarily lead to 

enhanced expression of APP protein and subsequent elevation of Aβ accumulation in all contexts, 

overexpression of APP is strongly linked with Aβ deposition in adult life.  Thus, elucidating the factors 

that control the regulation of APP expression will significantly aid our understanding of AD.  

 

Interaction of other chromosome 21 genes with APP    

A number of the proteins encoded by other chromosome 21 genes have been suggested to 

modulate APP processing and Aβ generation (Box 2, Figure 3). For example, the transcription factor 

ETS2 is thought to transactivate the APP promoter, leading to over-expression124.  The chromosome 

21 encoded proteins SUMO3 and DYRK1A modify APP post-translationally, which may alter Aβ 

generation125-127.  Additionally, the chromosome 21 microRNA, Mir155, has been suggested to 

modulate γ-secretase activity and hence the processing of APP, via its effect on the expression of 

sorting nexin 27128.  Moreover, the β-secretase responsible for processing APP, BACE1, has a 

homologue BACE2 encoded on chromosome 21, which may influence the onset of dementia in 

people with DS129.  BACE2 does not possess β-secretase activity, and in fact cleaves APP C-terminal of 

the β-secretase cut site within the Aβ region preventing generation of the peptide. Thus, enhancing 

BACE2 expression may be protective against accumulation of Aβ130.  However, BACE2 over-

expression does not alter Aβ accumulation in a mouse model131, and the protein does not appear to 

have enhanced expression in the adult DS brain116, 132. Whether triplication of any chromosome 21 

gene alters APP biology sufficiently to modulate the development of AD remains to be determined.   

 

Genes involved in LOAD     

Polymorphisms in genes with important functions in LOAD play similar roles in the development of 

AD-DS; for example, the APOE ε4 allele is associated with greater Aβ deposition, earlier onset and 

increased risk of AD-DS, whereas the APOE ε2 allele leads to reduced Aβ deposition and a lower risk 

of disease133-139.   Similarly, variants in PICALM and SORL1 influence age of onset in AD-DS, as they do 

in LOAD133, 140, 141, further supporting the theory that common mechanisms underlie both diseases.  

Whether variation in other genes with a role in LOAD is also important for AD-DS, remains to be 

determined and is an important area for future study.  Large-scale study of the genetic variants that 

contribute to the onset of dementia in AD-DS will provide an opportunity to gain novel insight into 

the mechanisms that underpin variation in the onset of dementia. 

 

Disruption to secretory and endosomal systems  
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The earliest site of Aβ accumulation in AD-DS is within the neuron73-75, indicating that secretory and 

endosomal systems are central to Aβ generation.  Moreover, an extra copy of APP is sufficient to 

cause endosomal enlargement and intracellular trafficking defects142, 143, via an Aβ independent 

mechanism144. Enlargement of endosomes in trisomic neurons may cause axonal trafficking defects 

that contribute to neuronal degeneration142.   

 

Triplication of chromosome 21 genes, other than APP, may also affect the secretory-endosome 

system, thereby impacting synaptic function, Aβ production and Aβ clearance.  Small segmental 

duplications of the chromosome 21 endosome to Golgi trafficking gene, DOPEY2145, has been 

associated with LOAD and mild cognitive impairment14, 146, although this was not replicated in an 

independent study147.  A reduction in gene dose of the chromosome 21 gene, CSTB, an endogenous 

inhibitor of lysosomal cathepsins, decreases the accumulation of Aβ and associated cognitive 

deficits148. Over-expression of another chromosome 21 gene, SYNJ1,a phosphoinositide phosphatase 

that regulates levels of membrane phosphatidylinositol-4,5-bisphosphate, has been associated with 

endosomal enlargement149, whereas reduced expression of SYNJ1 lowers Aβ accumulation, as well as 

neuronal dysfunction and cognitive deficits150, 151.  How endosomal enlargement, caused by trisomy, 

contributes to neuronal dysfunction and degeneration is another important area for future research.  

 

Mitochondria and reactive oxygen species    

Mitochondrial dysfunction and enhanced production of reactive oxygen species (ROS) occurs in 

people with DS and in trisomy 21 models152-155, and may contribute to the accelerated aging 

reported in people who have DS156.  Mitochondrial impairment may directly affect energy-hungry 

synapses, contributing to cognitive deficits157.   Moreover, elevated levels of ROS make trisomic 

neurons more prone to undergo apoptosis, potentially making them more likely to degenerate152.   

Trisomy 21 elevated ROS may alter APP processing, promoting intracellular accumulation of Aβ120, 

152.  Thus, protecting the trisomic brain from ROS may be of therapeutic value, although anti-oxidant 

supplementation has failed to show efficacy in preventing dementia in this population158.  

Interestingly, superoxide dismutase 1 (SOD1), which has a key role in processing ROS, lies on 

chromosome 21, and up-regulation of SOD1 appears to protect against APP/Aβ neurotoxicity159, 

perhaps by modulating Aβ oligomerisation160.  Consistent with this, SOD1 enzymatic activity 

correlates with better memory in adults with DS161.  However, increased SOD1 has also been 

suggested to cause accelerated cell senescence by elevating H2O2, a form of ROS162. 

  

Neuronal development and function      
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A number of processes are likely to contribute to the intellectual disability associated with DS.  These 

include a reduction in the numbers of neurons and dendritic spines, dendritic arborisation, an 

alteration in the excitatory-inhibitory balance and a global impairment in network connectivity69, 163-

167. These perturbations in the structure, function and organisation of the CNS may profoundly affect 

its degeneration in AD-DS (Box 1).  Triplication of several chromosome 21 genes contributes to 

changes in neurodevelopment and/or neuronal function.   For example, USP16 or DYRK1A up-

regulation alters stem cell fate168-170 which may in turn alter neuronal differentiation.   Additionally, 

over-expression of several chromosome 21 genes, for example, microRNA Mir155, and the protein 

coding genes SYNJ1, RCAN1, ITSN1 and DSCAM, has been implicated in deficits in synaptic structure 

and function149, 171, 172.  These genes may also play a role in AD-DS, perhaps via an impact on APP 

processing or on cognitive reserve. APP over-expression may also affect CNS function, independent 

of the production and accumulation of Aβ, because the expression level of full-length APP influences 

neurogenesis, neuronal migration, axonal growth, and the maintenance of the excitatory-inhibitory 

balance173, 174.  How the changes in CNS function caused by trisomy of chromosome 21 affect AD-DS 

neurodegeneration is little understood, and is a crucial area of future research.    

 

Intracellular signalling and tau      

Perturbations in intracellular signalling associated with trisomy 21175 may affect the response of the 

CNS to pathological changes.  For example, over-expression of the chromosome 21 genes regulator 

of calcineurin 1 (RCAN1) and the kinase encoded by DYRK1A, promotes aberrant phosphorylation of 

tau153, 176-178.  DYRK1A is dosage sensitive in the adult brain179, and  overexpression of this gene 

modulates tau splicing, alternating the relative abundance of tau with 3 or 4 microtubule binding 

domains (3R/4R tau), which may affect the formation of NFTs180, 181.  Consistent with this, an increase 

in the ratio of 3R/4R Tau has been reported to occur in AD-DS, as compared with LOAD or aged-

matched non-demented euploid individuals180, 181.  Additionally, an increase in the total amount of 

Tau has been reported in AD-DS cortex as compared with aged-matched non-demented euploid 

individuals, and in DS IPSC derived neurons123, 180; this up-regulation may be the result of increased 

APP182.  DYRK1A also down-regulates the levels of neural restrictive silencing factor (NRSF/REST), a 

neuro-protective protein169, 170, which has reduced expression in AD183.   Variants in DYRK1A have 

been associated with risk of LOAD184, further indicating a possible role in disease pathogenesis, 

although this association was not replicated in an independent study185.  

 

Cholesterol metabolism     
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Alteration in cholesterol metabolism may contribute to the development of dementia31.  Total 

cholesterol levels have been suggested to predict the onset of dementia in people with DS, 

particularly in those individuals who have an APOE ε4 allele28.  Clinical trials are therefore under way 

to determine whether statins can prevent decline in older adults with DS, which may provide both 

clinical and mechanistic insight186. The chromosome 21 lipid transporter ABCG1 has been suggested 

to regulate cholesterol efflux, and may alter cholesterol metabolism in DS187.  Whether trisomy of 

this gene is related to the development of AD-DS remains unclear, as ABCG1 over-expression has 

been reported to both increase and decrease Aβ generation in vitro188, 189, and does not change Aβ 

accumulation in vivo190, suggesting that this gene may not be associated with the development of 

AD-DS.  Further study is required to understand the mechanisms that underlie the link between 

elevated cholesterol and the onset of dementia in DS.   

 

Immune system dysfunction    

Growing evidence shows that the immune system plays an important role in the development of 

AD107, 191.  Individuals with DS are at increased risk of immune system dysfunction, having a higher 

incidence of both autoimmune and infectious disease192 and an up-regulation of pro-inflammatory 

makers, including IL-1 in the brain193, 194.  This dysregulation may contribute to AD-DS through  

alterations in microglial activation191.  Microglia in AD-DS have been reported to be associated with 

both mature Aβ plaques195 and NFT196, although the contribution of the immune response to AD-DS 

has yet to be fully explored. The chromosome 21 gene, S100B, is expressed in astrocytes and is 

upregulated in both AD197 and AD-DS193, and may contribute to neurodegeneration by promoting Aβ 

deposition198, tau phosphorylation199 and creating a neuro-toxic environment via the release of 

extracellular signals200.  

 

Translational research 

The lifespan of people with DS is increasing because of better healthcare and improved social 

inclusion.  However, as with the euploid population, ageing brings new issues and, in people with DS, 

this is a vastly increased risk of EOAD.  People who have DS develop amyloid plaques and NFTs by 

the age of 40 and many individuals subsequently go on to develop dementia.  Despite genetic and 

Aβ differences between the various forms of EOAD and LOAD, many similarities in disease process 

are observed such that AD appears to converge on common mechanisms of pathology.  Thus, in the 

AD-DS patient population, it is feasible to both determine the factors (genetic or environmental) that 

cause conversion from pathological disease to cognitive decline and to undertake intervention trials 

to halt the development of dementia.   
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As APP gene dosage is the major determinant of AD in DS, it follows that therapies aimed at reducing 

Aβ (such as BACE inhibition or Aβ immunisation) might have a beneficial effect in the DS population. 

Such approaches are being trialled for people with familial AD arising from APP or PSEN1 

mutations201, and similar clinical trials in AD-DS could provide valuable additional insight, given the 

predictable conversion to AD neuropathology and subsequent dementia in this population.  Other 

treatment options that require further development include DYRK1A inhibitors and ROS modulators.  

Notably, treatment safety is of particular importance because many individuals with DS are unable 

to consent to their own participation in clinical trials and because treatment will likely need to be 

taken for many years.   

 

SUMMARY   

 

Many questions remain to be answered in AD-DS including, most importantly, the mechanisms 

underlying the later onset of dementia as compared with APP-dup, how neurodevelopmental 

perturbations impact neurodegeneration and the identity of chromosome 21 gene(s) that may 

protect against dementia.  We now have a remarkable set of tools for studying AD-DS, ranging from 

new model systems to genomics studies.  While there are undoubtedly specific problems in both 

analysing and treating people who have DS for AD, such as issues of informed consent, trisomy 21 is 

an extremely important disorder for learning about the development of neurodegeneration, and for 

testing potential therapeutic strategies to the benefit of everyone at risk of AD.   
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Box 1. Identifying risk and protective factors for AD in young children  

It may seem counter-intuitive to study infants and young children to understand a disease that only 

presents in adulthood.  However, AD does not have an abrupt onset but emerges from a lengthy 

developmental trajectory in which precursors (for example, prodromal changes) surface well before 

overt dementia symptoms.  Several genes involved in neurodevelopment have been suggested to 

have an important role in AD (including, for example, components of the Wnt and Reelin signalling 

pathway202, 203).  Additionally, cultures of cells derived from infants with DS show clear over-

expression of amyloid precursor protein (APP)120-123, and Aβ plaques have been found in the brains of 

children with DS that are as young as 8 years of age66.  Thus, the syndrome offers a longitudinal 

perspective on the multi-level impact of Aβ and tau pathology over development.  

 

DS is diagnosed prenatally or at birth, and all infants with DS are at significantly increased risk of 

subsequently developing AD, although not all will present with dementia even as ageing adults.  It is 
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possible that patterns of individual differences in adults with DS, with or without AD, are already 

rooted in individual differences in infants with DS, at the genetic, cellular, neural, cognitive, 

behavioural, sleep, and/or environmental levels. The challenge is to identify individual differences in 

childhood that pinpoint risk and protective factors for subsequent AD outcome in adulthood.  We 

can then identify biomarkers and devise early intervention strategies, initially for individuals with DS, 

and subsequently for the euploid population, revolutionising our understanding of the pathways to 

AD.  Thus, a developmental approach is essential, especially as it has already been shown that 

differences that can be observed in infancy in those with DS (for example, in the simple planning of 

saccadic eye movements) have cascading effects on cognitive outcomes in childhood and adulthood  

(for example, numerical processing, language, face processing)204. Therefore, to fully comprehend 

AD in adults, it is crucial to study its full developmental trajectory, and understanding DS makes this 

possible. 

 

 

Box 2. Modelling AD-DS in mice and human iPS cells  

Amyloid precursor protein (APP) over-expression in mouse models causes dysfunction of basal 

forebrain cholinergic neurons (BFCNs) and synaptic and behavioural changes142, 205-207.  However, 

increased expression of wildtype APP, even at levels in excess of those present in DS, is insufficient 

to cause extensive AD neuropathology208.  Only mice expressing mutant APP and/or other AD-

associated genes recapitulate aspects of AD neuropathology and/ or cognitive change208.  Similarly, 

although altered expression of many chromosome 21 genes modifies mouse models of familial AD, 

whether a single extra copy of these genes is sufficient to affect pathology and behaviour remains 

unclear.  However, chromosome engineering, which enables the generation of mouse models with 

large genomic duplications, may help elucidate the effects of trisomy on neurodegeneration209.   

 

Reprogramming human somatic cells into hiPSCs (human induced pluripotential cells, an ES cell-like 

state) is revolutionising AD modelling, and advances in 3-D differentiation now permit development 

of extensive Aβ and tau pathology in vitro. Comparisons have been made between euploid and 

trisomy 21 hiPSCs derived from multiple sources including: from different individuals (non-

isogenic)123, 210; from isogenic lines generated in cell culture, spontaneously or by selection155, 211;  

from lines in which one of the three chromosomes 21 has been silenced212; from monozygotic twins 

that were discordant for trisomy 21170; from non-integration-reprogrammed isogenic lines from an 

adult with mosaic DS122. Neurons derived from hiPSCs show cellular phenotypes underpinning AD 

pathology, for example, increased Aβ production, abnormal sub-cellular distribution of phospho-tau, 
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mitochondrial abnormalities and accelerated cellular aging122, 123, 155, 213. DS hiPSC models can be used 

to dissect the effect of trisomy of individual chromosome 21 genes, for example, by genome editing 

using CRISPRCas9 technology, to develop high-throughput screening assays for phenotype-

correcting compounds, and to investigate cellular phenotypes in hiPSCs generated from individuals 

with DS with very early versus very late ages-of-onset of dementia. 

 

  

 

Figure 1. Development of pathology and dementia in AD-DS and Dup-APP  

The graphs show the cumulative risk of amyloid plaque deposition (measured using histological 

methods and positron emission tomography (PET) using Pittsburgh compound B, a radioactive 

analogue of Thioflavin that binds to amyloid), neurofibrillary tangles (NFT, measured using 

histological methods) and the cumulative frequency of dementia in people with trisomy 21 (AD-DS)6, 

33 compared with those in individuals with APP-duplication familial AD (AD-DupAPP). As shown, 

people who have DS can live for many years with substantial amyloid deposition prior to the 

development of dementia.  Solid lines are based on data in Supplementary Tables 1-3. Dotted lines 

indicate hypothesised development of pathology for which there is currently no data available.  

Further pathological and clinical studies directly comparing these two patient populations are 

required to verify the apparent differences in clinical onset and to determine if the development of 

pathology differs from that proposed here.    

 

 

Figure 2. Regions of chromosome 21 duplicated in Dup-APP EOAD 

Schematic illustrating APP-duplication EOAD cases, showing minimal duplicated region (green).  

These data indicate that the only gene duplicated in all cases is APP. Data from references 8-15, 109  

 

 

Figure 3. Schematic of suggested mechanisms important in AD-DS and related genes 

A number of genes may modulate processes relevant to the development of AD-DS; these include 

non-chromosome 21 genes such as APOE (which could alter disease via cholesterol metabolism and 

possibly many other pathways), PICALM and SORL1 (which may influence disease via the endocytosis 

system and APP processing) and MAPT (the genes that encodes tau, which aggregates to form 

neurofibrillary tangles (NFT)).  A number of chromosome 21 genes have also been suggested to 

influence the development of AD-DS, including genes which may influence APP processing and 
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synaptic function via their role in the secretory-endosome system (CSTB, DOPEY2, SYNJ1, ITSN1, 

Mir155), APP processing (SUMO3, ETS2, BACE2), cholesterol metabolism (ABCG1), cellular signalling 

and tau phosphorylation (DYRK1A, RCAN1), inflammation (Mir155, S100B), synaptic function 

(DOPEY2, SYNJ1, ITSN1, RCAN1, Mir155), neurodevelopment (USP16, DYRK1A,DSCAM),  and 

oxidative stress (SOD1).  The relative importance of these processes to the development of dementia 

in AD-DS remains unclear and constitutes an area for future study. Chromosome 21 genes and gene 

products are shown in orange, non-chromosome 21 genes and gene products are shown in red. 

 

Glossary Box 

Dyspraxia. Disrupted fine or gross motor coordination 

Early onset Alzheimer’s disease (EOAD). Occurrence of Alzheimer’s disease before the age of 65  

Euploid. Having a normal chromosome number (46 chromosomes in 23 pairs in humans) 

Executive functioning.  Executive function skills are mental processes involving frontal cortex, for 

planning, focusing attention, working memory, mental flexibility, and self-control 

Incidence. The rate of new occurences of a disorder within a specified period of time  

Lewy bodies. Protein aggregates typically containing alpha-synuclein 

Myoclonic jerks. A medical sign; brief involuntary muscle twitches 

Parkinsonism/ Parkinsonian symptoms. Clinical syndrome including bradykinesia (slow movements) 

muscle rigidity and tremor, often due to the neurodegenerative condition Parkinson’s disease, but 

also associated with other  neurological conditions, toxins or medications  

Prevalence. The number of cases of a disorder at one time within a population 

Tonic-clonic seizures.  A common type of epileptic seizure with a tonic phase (stiffening of muscles 

and loss of consciousness) followed by a clonic phase (rapid, rhythmic jerking of arms and legs)   

 

 

. 
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