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Abstract: Neogene alkaline intraplate volcanic deposits
in the Pannonian Basin (Hungary) contain many lower
crustal granulite-facies xenoliths. U-Pb ages have been de-
termined for zircons separated from a metasedimentary
xenolith, using LA-ICPMS and SHRIMP techniques. The
zircons show typical metamorphic characteristics and are
not related to the host magmatism. The oldest age recorded
is late Devonian, probably related to Variscan basement
lithologies. Several grains yield Mesozoic dates for their
cores, which may correspond to periods of orogenic activ-
ity. Most of the zircons show young ages, with some be-
ing Palaeocene-Eocene, but the majority being younger
than 30Ma. The youngest zircons are Pliocene (5.1-4.2 Ma)
and coincide with the age of eruptions of the host alkali
basalts. Such young zircons, so close to the eruption age,
are unusual in lower crustal xenoliths, and imply that the
heat flow in the base of the Pannonian Basin was suffi-
ciently high to keep many of them close to their blocking
temperature. This suggests that metamorphism is contin-
uing in the lower crust of the region at the present day.
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1 Introduction

Zircons from within granulite xenoliths can be used to date
events within the lower crust [1]. Lower crustal zircon ages
often show a correspondence with overlying crustal ages,
e.g. the oldest zircon ages are 2.5-3.5 Ga in granulite xeno-
liths from beneath the Archaean Fennoscandian shield
[2, 3], and those in granulite xenoliths from the Siberian
craton yield ages of 1.8-1.9 Ga consistent with the ages of
metamorphism in the region [4]. Younger lower crustal zir-
con ages showing a peak at 280 Ma are found in granulite
xenoliths from beneath the late- Palaeozoic Variscan oro-
genic belt of western Europe [5], but nevertheless they are
still far older than the age of the Neogene eruption that
brought them to the surface. Here we present new U- Pb
determinations on zircons separated from a lower crustal
metasedimentary granulitic xenolith from the Pannonian
Basin of Hungary, and demonstrate that some yield ex-
tremely young dates (ca.4-9 Ma), indicating that the lower
crust was still experiencing high temperature metamor-
phism when the xenolith was entrained in the Neogene
host alkali basalt magma.

2 Geological background

The Pannonian Basin (Figure 1) is an extensional back-arc
basin within the Alpine-Carpathian-Dinaride orogenic belt
of central-eastern Europe [6]. Plate tectonic reconstruc-
tions [7] show a complex interplay of microcontinents and
oceans during the late Mesozoic, followed by final dock-
ing in the Cenozoic. Rapid tectonic collapse and basin for-
mation occurred in Neogene times and was controlled by
a combination of gravitational collapse of a former over-
thickened orogenic belt [8], subduction roll-back along the
Carpathian arc [9] and asthenosphere updoming. The area
is characterized by thin crust, 25-30 km thick [10, 11] and
thinned lithosphere (Figure 1) with the base of the litho-
sphere at a depth of only ca. 60 km [10]. The Pannonian
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Figure 1: Sketch map of the Pannonian Basin (inset shows geographical location), with contours of the base of the lithosphere. The area
shown in the lower figure is the Neogene volcanic region of the Balaton Highlands, indicating where the sample was collected.
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Basin is a region of very high heat-flow with a mean value
of 100 mW/m? [12] and Moho temperatures of ca. 900°C
[13]. Hence the present-day conditions within the lower
crust of this region are appropriate for high-temperature,
low-pressure metamorphism.

Neogene intraplate alkaline volcanism in the Pannon-
ian Basin has entrained numerous xenoliths of mantle
and lower crustal origin [14, 15]. The sample analysed in
this study was found in basaltic tuffs near the village of
Mindszentkalla (Figure 1) in the Balaton Highlands [16].
Although the absolute age of the host pyroclastic deposit
has not been determined, many nearby phreatomagmatic
eruptions occurred during a volcanic phase from 4.2 to
4.8 Ma [17], so the host tuff is probably of similar age.

The petrology and geochemistry of lower crustal gran-
ulite xenoliths from the Pannonian Basin have been previ-
ous studied [15, 16, 18-22]. Most of the xenoliths are gar-
netiferous mafic meta-igneous rocks, but in contrast to the
lower continental crust worldwide, they show some un-
usual chemical features such as LREE-depletion and pos-
itive eNd isotope compositions that have been interpreted
as indicating that their protolith was of MORB compo-
sition. This suggests that they originated as ocean crust
that accreted to the lithosphere during subduction [19].
The garnet-rich nature of the granulite suite is surprising,
given the present-day thin crust. Pressure estimates for the
xenoliths are 8-15 kbar [16, 23], which suggests a crustal
thickness of 40-50 km instead of the present-day value of
<30 km. Thus their pressure estimates refer to conditions
that existed prior to the Neogene tectonic collapse of the
Pannonian Basin.

The studied sample M3044 is a relatively fresh
metasedimentary garnet granulite xenolith, consisting
largely of plagioclase (48%), garnet (34%) and biotite
(15%), with 2-3% graphite, zircon and traces of spinel (Fig-
ure 2). Its associated mafic granulite xenoliths yield tem-
peratures of 800-950°C [16]. Similar high temperatures
(850-1050°C) in lower crustal xenoliths from the same re-
gion have been inferred by [22].

The xenolith location is situated on the Alcapa terrane
[7], part of the Apulian indenter that moved northwards
during Cretaceous-Palaeogene continental collision and
was locked into its present-day position in Late Miocene
times [24]. Although rocks of Ordovician and Silurian age
occur in the upper crust of this unit, the main crystalline
upper crustal lithologies are Variscan granites, gneisses
and amphibolites [25]. Many of these lithologies are also
present as xenoliths, together with Permian sandstones,
and Mesozoic and Cenozoic sedimentary rocks.
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Figure 2: Thin-section photomicrograph of sample M3044 in plane
polarized light. Field of view 26 mm.

3 Geochronology methods

Small interior pieces of sample M3044 were crushed in a
shatter box and then sieved through a disposable cloth;
the heavy mineral fractions were extracted using heavy
liquids. Particular care was taken to avoid contamination
at all stages. Zircons were hand-picked from the concen-
trate and mounted in epoxy. The analysed zircons tend
to be rounded; they range in size from 100 to 250 um.
Cathodoluminescence (CL) images show complex zoning
(Figure 3); some zircons have dark rounded cores and
lighter rims. SHRIMP UPb analyses were made of areas
that appeared homogeneous in CL, whereas the LA-ICPMS
analyses took no account of zoning.

An initial survey of 49 zircons was undertaken for U-
Pb dating by LA-ICPMS at UCL/Birkbeck using a New Wave
213 aperture imaged frequency quintupled laser ablation
system (213 nm) coupled to an Agilent 750 quadrupole-
based ICP-MS. The laser spot size was 50 ym. Real-time
data were processed using GLITTER. Repeated measure-
ments of external zircon standard PLESOVIC (TIMS refer-
ence age 337.1+0.7 Ma [26]) and NIST 612 silicate glass [27]
were used to correct for instrumental mass bias and depth-
dependent inter-element fractionation of Pb, Th and U.
Data were filtered using standard discordance tests with
a10% cutoff and common Pb was determined by the 2°®Pb
method assuming a common Pb composition from the age-
dependent Pb model of [28]. Data were processed using
Isoplot [29]. Results are given in Table 1 and shown on a
concordia diagram in Figure 4.

Additional U-Pb analyses of 9 zircons were subse-
quently made using the SHRIMP II at the Research School
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Figure 3: CL images of zircons separated from metasedimentary granulite xenolith M3044 highlighting those analysed by SHRIMP (Table 1).
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Figure 4: Concordia plot for U-Pb data from zircons from xenolith
M3044 by LA-ICPMS (data from Table 1).

of Earth Sciences, The Australian National University, us-
ing the standard analytical protocols described by [30]. A
mass-filtered primary O2-beam was focused onto the zir-
cons producing a spot size of approximately 20um in di-
ameter. The surface was rastered for 2.5 minutes before
analysis. Data acquisition was done by repeatedly step-
ping through the masses *°Zr160 ("reference mass 196"),
204ph, background at mass 204.04, 2°°Pb, 207Ph, 208pPh,
2387y, 232Th and 238U'°0 (mass 254), for 6 scans.

The data were reduced in a manner similar to that de-
scribed by [30], using the SQUID I Excel Macro [31]. The
reference zircon Temora II (416.8 + 1.3 Ma [32]) was the
primary U-Pb calibration standard, with standard zircon
SL13 (U concentration of 238 ppm [33]) used to calibrate
the U, Pb and Th concentrations. Decay constants given in
[34] were used in the age calculations. Uncertainties given
for individual U-Pb analyses (ratios and ages) are at the
1o level, however uncertainties in the calculated weighted
mean ages are reported as 95% confidence limits and in-
clude the uncertainties in the standard calibrations where
appropriate. For the age calculations, corrections for com-
mon Pb were made using the measured 2°*Pb and the rel-
evant common Pb compositions from the [35] model. Con-
cordia plots, regressions and any weighted mean age cal-
culations were carried out using Isoplot/Ex 3.0 [29] and
where relevant include the error in the standard calibra-
tion. SHRIMP results are presented in Table 2 and plotted
on Tera-Wasserburg type concordia plot uncorrected for
common Pb (Figure 5).

4 Results

Zircons analysed by LA-ICPMS show a wide range of ages
from 4.2 Ma to 363 Ma (Table 1), although most are Ceno-

Neogene metamorphism beneath the Pannonian Basin =—— 229

data-point emor elipses are 63.3% conf

#3044

uCd ks

018 Data are plOITed LNCOTRCIEd for COmMon PD

. w
400 800

0.08

©7pp/=eph

60
1200 1600 2000
238 206Ph

0
0.0

0
0
Figure 5: Tera-Wasserburg diagram for zircons from xenolith M3044
analysed by SHRIMP (data from Table 2).

zoic. Their ages are mostly concordant (Figure 4), although
some younger zircons (<60 Ma) are discordant. A relative
probability plot of the LA-ICPMS results is shown in Fig-
ure 6. Over half of the analysed zircon grains (26 out of 49)
yielded ages younger than 30 Ma, with the youngest dates
being Pliocene (4.2 - 5.1 Ma). Ten further grains yielded a
variety of Palaeocene or Eocene ages (63.2-42.8 Ma). Nine
grains are Jurassic and Cretaceous (173-92 Ma) and two
grains have identical late Triassic ages (207 Ma). One zir-
con yielded an early Triassic date (245 Ma) and the oldest
grain is Late Devonian (363 Ma).

In general, the age data obtained from the SHRIMP
analysis agree with those obtained by LA-ICPMS, even
though the volume of zircon analysed by the two meth-
ods differs greatly. One zircon (spot 16.1) yielded a late
Devonian age (372.8 + 38 Ma), similar to the oldest date
determined by LA-ICPMS. Three zircons yielded Jurassic-
Cretaceous dates (125-106 Ma), and the remaining zircons
gave young dates from 15.9 + 5 Ma to 3.7 + 0.1 Ma. Clearly the
analyses are scattered and some also have high uncertain-
ties. The reasons for this are (a) these zircons are young
and have low radiogenic Pb contents and (b) they show
complex micro-zoning of Pb isotopes which deserves fur-
ther investigation in future studies.

5 Discussion

Zircons from M3044 are generally rounded, typical of
metamorphic zircons [36]. Igneous zoning was not ob-
served, and the zircons are clearly not related to the host
alkali basaltic magmatism. Given the high equilibration
temperature of the Hungarian xenoliths (800-950°C) and
the high Moho temperature (900°C), we suggest that meta-
morphism was still on-going at the time when the xeno-
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Figure 6: Relative probability plot of ages for zircons from xenolith
M3044 by LA-ICPMS (data from Table 1).

liths were exhumed. The only other region of Europe in
which lower crustal xenoliths yield such high tempera-
tures (900°C) is the Neogene volcanic zone of SE Spain
[37].

The oldest dates (Late Devonian) recorded in the zir-
cons must be inherited and are probably derived from
the Palaeozoic crystalline basement lithologies. The late
Mesozoic (90-100 Ma) and Palaeogene ages (40-65 Ma)
may be associated with Alpine orogenic cycles and colli-
sion [7]. The large group of dates between 32 and 15 Ma may
relate to tectonic episodes within the Pannonian Basin.
The younger ages (15-16 Ma) coincide with the first phase
of extension in the Pannonian Basin. However, the most
abundant zircon ages are Mio-Pliocene (Figure 6). The
youngest dates must be close to the age of eruption of
the host basaltic tuff. This is confirmed by the youngest
SHRIMP age of 3.7 + 0.1 Ma.

It is rare for zircons in granulite xenoliths to record an
age so close to that of their magmatic host. Granulite xeno-
liths in Cenozoic basalts from China yield ages as young as
90 Ma, recording the peak of zircon growth related to as-
thenospheric uprise beneath eastern China [38]. Metasedi-
mentary granulite xenoliths from the Variscan belt of cen-
tral France [5] show a wide variation in zircon ages (630-
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150 Ma) but nevertheless the youngest dates are more than
140 Ma older than the age of the host eruption. Zircons in
a felsic granulite xenolith from central Spain [39] range
from 590 to 250 Ma, the latter age being coeval with the
magmatic host and recorded only in rims. However, no
metamorphic zircons as young as 3.7 Ma have previously
been recorded from the continental lower crust. This sug-
gests that many of the zircon crystals in M3044 were still
above their blocking temperature when the xenolith was
entrained in the host eruption. Although it has been sug-
gested that zircon ages may post-date peak metamorphic
conditions [40], nevertheless the young ages seen in zir-
cons from M3044 imply that the lower crust was experi-
encing very high temperature conditions in late-Miocene
times. These metamorphic conditions were probably a re-
sult of the Neogene tectonic collapse of the region, crustal
thinning, and asthenospheric upwelling.

6 Conclusions

Zircons separated from a metasedimentary lower crustal
granulite xenolith from the Pannonian Basin region (Hun-
gary) vield young ages (4-9 Ma), the youngest of which
are coeval with the probable eruption age of the magmatic
host. The ages are interpreted as indicating that high tem-
perature metamorphism was continuing in the lower crust
of the region at the time of entrainment of the xenolith,
such that the zircons were above their blocking tempera-
ture. This is in agreement with the geological setting of the
Pannonian Basin, which is a region of recently- thinned
continental lithosphere and high heat-flow.
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