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Abstract The increased demand for autonomous con-

trol in enterprise information systems has generated in-

terest on efficient global search methods for multivari-

ate datasets in order to search for original elements in

time–series patterns, and build causal models of sys-

tems interactions, utilization dependencies, and perfor-

mance characteristics. In this context, activity signals

deconvolution is a necessary step to achieve effective

adaptive control in Application Service Management.

The paper investigates the potential of population–based

metaheuristic algorithms, particularly variants of par-

ticle swarm, genetic algorithms and differential evolu-

tion methods, for activity signals deconvolution when

the application performance model is unknown a–priori.

In our approach, the Application Service Management

System is treated as a black– or grey– box, and the
activity signals deconvolution is formulated as a search

problem, decomposing time–series that outline relations

between action signals and utilization–execution time

of resources. Experiments are conducted using a queue–

based computing system model as a test–bed under dif-

ferent load conditions and search configurations. Spe-

cial attention was put on high–dimensional scenarios,

testing effectiveness for large–scale multivariate data
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analyses that can obtain a near–optimal signal decom-

position solution in a short time. The experimental re-

sults reveal benefits, qualities and drawbacks of the var-

ious metaheuristic strategies selected for a given sig-

nal deconvolution problem, and confirm the potential

of evolutionary–type search to effectively explore the

search space even in high–dimensional cases. The ap-

proach and the algorithms investigated can be useful in

support of human administrators, or in enhancing the

effectiveness of feature extraction schemes that feed de-

cision blocks of autonomous controllers.

Keywords Application Performance Management,

Application Service Management, Autonomous Con-

trol, Data Analysis, Data Modeling, Metaheuristics,

Multidimensional Deconvolution, Optimization, Signal

Extraction, Service Level Agreement.

1 Introduction

The complex nature of enterprise information systems

requires processes and tools for monitoring and manag-

ing application services and their performance levels in

order to meet end–users requirements. Services form an

important type of technology in today’s business envi-

ronment and their availability, performance and usage

is defined by service–level agreements that IT organi-

zations should comply with. The field of Application

Service Management provides sets of well–defined pro-

cesses, related technologies and tools that aim to detect

poor performance levels, identify the cause of service

failures, perform appropriate control actions, and rec-

tify performance degradation in enterprise systems.

Despite advances in this area, the operating environ-

ment constantly introduces new challenges, as data and

information are delivered to end–users’ through various
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platforms, combining different types of applications, op-

erating systems, and networks. Moreover, enterprise in-

frastructure services normally deal with large number

of complex business requests, or queries, and volumes

of data generated by the organization’s business pro-

cesses. Lastly, new business needs emerge that require

constant adaptation of the software infrastructure and

as a result changes to runtime characteristics.

Resources, system and services activity monitoring

tools provide an outlook of the enterprise system op-

eration but gathering measurements and making in-

ferences from the data remain challenging in Applica-

tion Performance and Service Management (APM and

ASM) fields, where usage and performance metrics are

acquired from all significant elements of the enterprise

systems and from all tiers of its architecture (Haines,

2006; Sydor, 2010; Grinshpan, 2012). Thus, despite the

fact that performance profiling and services monitor-

ing are widely used in the enterprise, SaaS and Cloud

based businesses, most of the control actions are taken

either by humans, or in a semi–automatic way. Typi-

cally, these are, for example, semi–automated routines,

which are implemented using scripts or rules defined

in ASM, and infrastructure formation tools that allow

dynamic resources provisioning based on current and

historical allocations but need to be maintained by ad-

ministrators.

In this context, human decision makers need to react

constantly to changing system conditions, or require-

ments, in order to optimize the performance against

a set of objective functions, such as those defined in

Service Level Agreements (SLAs), or, more generally,

specified by Quality of Service (QoS) related metrics.

Indeed, human operators or administrators are able to

identify which actions are responsible for a particular

resource utilization by observing actions, a, and re-

sources, r, signals, and comparing the shapes and sig-

nals characteristics, exploiting their understanding of

the relation between action type and resources con-

sumption. For example when it is found that a control-

lable action ac, or an action dependent on some tuning

activities, utilizes a resource close to saturation level,

an action termination, or an execution redirection, can

be applied to limit the excessive computation. Finding

and understanding these relations is a key skill for any

administrator controlling such a process.

However, in practice, actions use many resources

and the underlying relation is often hidden, even from

the expert. Uncovering the nature of the correspon-

dence between systems interactions, utilization depen-

dencies and performance characteristics requires longer

monitoring, while at the same time any time–series of

metrics gathered should be processed in a high–dimensional

space in order to make decision about particular ac-

tions. This is related to various kinds of effects present

in the complex environment enterprise systems oper-

ate, which are difficult to be anticipated fully before

deployment. All these factors make the situation more

challenging for human operators and administrators, es-

pecially when the problem dimensionality increases and

the end–user requirements evolve.

In this paper we focus on a particular stage of the

ASM process, modeling of the run–time dependencies

between systems (Keller and Kar, 2000), with the aim

to support analytics and decision support tools. To this

end, we propose a method for decomposing ASM time–

series signals, searching for hidden relations between

users or systems activity and resources utilizations, con-

trolling the impact of unexpected workloads – this is an

area significantly underexplored.

In previous work we focused on the control prob-

lem, when no model of the enterprise system is avail-

able (Sikora and Magoulas, 2013). In (Sikora and Magoulas,

2014a), we reported on the use of methods that exploit

signals similarity in order to establish causal dependen-

cies. To this end, the so–called SCIC/SDCIC method

was proposed (Sikora and Magoulas, 2014a). However,

this approach proved to be sensitive to highly utilized

resources– these are normally responsible for serving

many actions executions requests.

The method proposed in this paper, named ASM-

SD (Application Service Management Signals Decon-

volution), alleviates this situation when decomposing

mixed signals, so that more precise signals dependency
and analysis of causal chains of events can be provided.

The approach is based on decomposing ASM metrics

time–series, outlining interdependencies between actions

and utilized resources, and can be used to support hu-

man operators and administrators, or incorporated into

decision blocks of autonomous controllers. In our method-

ology, ASM signals decomposition is formulated as a

search problem that is tackled using evolutionary algo-

rithms.

The paper is organized as follows. Section 2 de-

scribes the fundamentals of the problem area. Section 3

presents signals decomposition and details of the method

proposed for the stated problem. Section 4 illustrates

aspects of the performance of the approach under a few

scenarios. Section 5 presents an outline of the signals de-

composition optimization methods. Section 6 discusses

details related to the validation of the global search

methods tested. Section 7 completes the paper by out-

lining future work and providing concluding remarks.
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2 Problem Description and Relevance

In an ASM system states can be defined by activity of

services triggered by users or exposed interfaces, called

actions, a, and corresponding resources, r, affected. Pas-

sive monitoring of API elements, threads, and sources of

calls (e.g. other APIs, user actions or triggered events,

authorization tokens etc.) allows identifying actions.

Typically resources utilization is established through

active monitoring (Sikora and Magoulas, 2013). Re-

sources are most often related to elements of the hard-

ware and software infrastructure (e.g. processors, mem-

ory, network or discs utilizations) but they can also de-

fine more abstract elements requiring synthetic calcula-

tions, e.g. SLAs operating as a quality measure for con-

tracted services being provisioned, energy consumed,

currently utilized infrastructure prices (present in SaaS

or Cloud computing) and other performance indica-

tors (Neugebauer and McAuley, 2001; Beloglazov and

Buyya, 2010; Beloglazov et al, 2012), including revenue

level or other business–oriented metrics.

2.1 ASM Systems Defined by Time–series of Metrics

Measurements define system responses and identify run–

time characteristics effectively creating a model of the

system performance characteristics. Considering the high–

dimensionality of enterprise systems (Grinshpan, 2012)

and the large size of the time–series databases, such

a model is difficult to use. Moreover, there are many

complex execution interdependencies in an enterprise

system (Sydor, 2010; Sikora and Magoulas, 2013) that

are effectively recognized while running to operate re-

quested services.

Although a number of concurrently executing ac-

tions may have different resources usage characteristics

(more details on this issue are provided in Section 4),

effectively every action execution time is a result of re-

sources, r, consumption and of time spent on each of

the elements of the infrastructure. Thus the i–th ac-

tion execution signal1 is a function of resources utilized

ai(t) = α(r, a), ai(t) ∈ {0, 1} that depends on available

system resources r and on other incoming or present

actions executions a, forming a non-linear system.

Assuming that signals received from resources are

convoluted with many action signals2, then metrics rep-

1 A signal as a time-series defines continuing flow of infor-
mation, measured metrics or any other quantity that changes
in time.
2 Threads sleeps and resources waits form interesting sit-

uations. Although both sleeps and waits impact directly ac-
tion execution times (an action does nothing as defined in
the code) and active thread count, their relation to other re-

resenting actions execution, a, can be collated with time

spent by the system on using resources, r, monitored

(cf. with Equation 3 below). In other words, in this

paper we search weights of strength (coefficients) of ob-

served mixtures of actions, executed as resources are

utilized, that allow the decomposition or deconvolution

of observed signals. In contrast to approaches like stan-

dard Blind Signal Separation (BSS) and Semi-BSS (Bell

and Sejnowski, 1995; Cichocki et al, 2002) in the ASM

problem we know precisely, most of the time, shapes

of the source signals that are formed from actions exe-

cution metrics; this is discussed further in Section 3.1.

When a given resource is highly or fully utilized, actions

using it are queued by the system. During saturation

the signals are distorted/deformed. In such situations

resources signals are flattened and extended in time,

while actions execution time signals form much higher

peaks. Thus the main assumption of most BSS methods

is not met in the ASM context.

Actions, a, and resources, r, time–series define the

system load–functional performance characteristics, de-

lineating the input and outputs changes, and forming a

(a + r)–dimensional curve that is a trace of all system

states.

In order to address the core problem that is to iden-

tify which software elements were responsible for spe-

cific resources utilization, in this paper, we propose

a deconvolution technique to recover the original in-

put signals. The method enables unmixing actions time

taken from many monitored areas of a system and es-

tablishing coefficients m indicating how executing ac-

tions impacts resources usage.

2.2 Industry Practice

ASM typical practice is to calculate a time–series of ac-

tion execution times to “action execution load”. Such

a transformation shows the count of actions running

concurrently in time. This pre–processing approach of-

ten gives much better correlation, see Fig. 1. In pro-

cess monitoring, this is a common way of aggregat-

ing changing runtime characteristics for better visibility

and lower storage footprint of a number of parts of the

system under control.

A critical operating region of system performance

is reached when a resource is close to saturation (the

whole scope of the resource is consumed). When this

state is reached, the resource begins acting as a bot-

tleneck for the rest of the system. Often though, this

sources utilization is very different. Whilst waits for resources
are included in the resources utilization and queue lengths
metrics, sleeps have minimal effect on CPU, Disk or other
physical resources utilization.
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Fig. 1: Comparison of a sample time–series of CPU-bound action count and execution time in 1 second aggregates.

Actions time–series are shown in red whilst resources utilized (CPU) time-series are in blue. The left column shows

the time-series of the raw data- no smoothing was used. The middle column contains data processed with Simple

Moving Average (SMA) that used a 15 secs wide aggregation window. The right column shows a SMA that used a

30 secs wide window. Rows starting from the top show: action counts (light red), action execution time (dark red),

“action execution load” as transformed from execution time (dark red), and finally CPU utilization. It is worth

noting the similarity between “action execution load” and CPU; this situation is further discussed in Section 3.1.

These time-series data have been collected during a real– not model–based –experiment.

is actually the point when energy and amortized hard-

ware are used optimally. There are of course concerns

about stability and many other key system operations

that have an impact on SLAs (Beloglazov and Buyya,

2010; Beloglazov et al, 2012), as well as concerns about

the level of QoS and performance related issues, such

as those related to queuing and batches processing.

Our approach treats the system as a black– or grey–

box searching for relations between actions performance

and observed use of resources. Although in most operat-

ing systems it is possible to track CPU or IO consump-

tion time per process, or even thread, nevertheless, OS

schedulers do not control the operation of applications

internals. Hence, building such a model of relations at

the application–level can greatly improve application

and service–level controllers.

This is an area of particular relevance for other

computation models as well, such as Cloud comput-

ing (Emeakaroha et al, 2011; Sironi et al, 2012; Yoo and

Kim, 2013; Feng et al, 2012), Virtualization (Weng et al,

2011), and Map Reduce (Ibrahim et al, 2011), (Polo

et al, 2011), where advanced resource and activity aware

adaptive schedulers can be equipped with services ac-

tivity and resources decomposition methods for better

SLA and revenue awareness. An application level con-

trol and management is a widely adopted approach (Katch-

abaw et al, 1999; Chen et al, 2002), where control can be

also done on a service level directly, with use of deeper
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instrumentation of the application running in ASM en-

vironment.

In that respect, embedding the proposed ASM-SD

method can potentially enhance the performance of adap-

tive schedulers, especially those working on the appli-

cation level (Bartolini et al, 2012), or the scheduling

policy, extending the predictive modeling of available

green energy (Aksanli et al, 2012).

As it will be shown in Section 6, experiments pro-

vide evidence that the proposed ASM-SD method can

be successfully implemented with use of global search

algorithmic techniques.

3 Signals Decomposition as a Search Problem

and the ASM-SD Methodology

The proposed Application Service Management Signals

Deconvolution (ASM-SD) method tackles the problem

from an optimization perspective. The approach was

built on the assumption that the resource utilization at

time point t is a result of actions metrics at this point:

rk(t) =
∑
i

mik(rk)ai(t) + nk , (1)

where rk is the k-th resource, ai is the i-th action, mik

is an unknown coefficient of a component, or service,

which causes changes in rk after ai calls, and nk is

noise that can be considered as an error. The presence

of the error vector nk is related to many factors, e.g.

noise present in the system that may consist of unwel-

come and often hidden components such as software

sleeps, waits for unmeasured resources, other OS level

or software level framework operations, or unmonitored

system activity that utilizes system resources. It is nor-

mally advised to assume that this vector consists of

non-negative values, as the above mentioned situations

normally introduce additional execution times against

the resources utilized, i.e. resources are used more often

than monitored action times suggest.

Equations of this form are common in the BSS class

of problems (Bell and Sejnowski, 1995; Cichocki et al,

2002) mentioned earlier in Section 2.1, and can be refor-

mulated as a system of linear equations of the following

form:

R = MA+ U (2)

where R,A are vectors of resources and action time–

series respectively, R = [r1(t), ...]T , A = [a1(t), ...]T ,

matrix M contains mixing coefficients, and U is the

residual vector.

That formulation would suggest applying Linear Mod-

els Fitting (LMF) (Chambers, 1992; Wilkinson and

Rogers, 1973; web, 2014c) to solve this problem, but

the LMF approach tackles the optimization problem in

a symmetric way, where the equation may be equally

under– or over– determined, and it is difficult to ad-

just it considering all additional calculations that are

specific to the ASM area, e.g. boundary limits that are

asymmetric due to causality direction, and penalties

for rare execution or low total execution time, see Sec-

tion 3.1. Thus, more details on the optimization func-

tion implementation are needed and, effectively, more

flexible optimization methods have to be tested.

As mentioned above, in the proposed approach the

unmixing process is formed as a search problem that

minimizes a single-objective. Considering that there are

many nonlinearities, which have an impact on action

execution times a and resources utilized r, as outlined

in Section 2, the optimization of f(x) : Rn → R can be

considered as a general Non-linear Optimization Prob-

lem (NLP) (Ruszczyński, 2006), defined as follows:

arg min

(
rk(t)−

∑
i

(
mik(rk)ai(t)

))
= nk , (3)

where mik denotes unknown entries of the mixing ma-

trix M of size r × a, for which the equation in brackets

attains its minimal value. M is transformed to a solu-

tion point s in the search space S ⊂ Ra·r
+ .

There are, however, several constraints involved: (i)

signals are by definition non-negative a ≥ 0, r ≥ 0 and

normalized, and (ii) potential negative values of nk are

subject to additional penalty in the optimization func-

tion implementation (discussed further in Section 3.1),

based on the assumption that actions form the inputs

and resources are the system outputs, which are im-

pacted by the results of the actions. Thus, a possible

effect cannot be prior to the activity that generated it.

Assuming that there is an adequately rich set of

activity measurements A gathered to explain the re-

sources utilized R, nk as a residual, or fitting error, of

unobservable signals is minimal. However, if the solu-

tion point s, as a vector of specific values mik of the

mixing matrix M , results in a substantially large resid-

ual error, then the k-th resource signal is not match-

ing the observed activity, and therefore either : (i) the

monitored activity does not adequately explain the re-

sources usage (many important actions have not been

monitored), or (ii) the resource usage does not reflect

the activity signals gathered (e.g. this is often present

in memory consumption cases).

Eq. 4, below, is an extension of Eq. 3 that factors

in information about actions execution times span and
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match against a resource, considering the time spent on

the execution up to the current time instance t1 when

the rest of the collected samples are aggregated:

arg min

(
rk(t)−

∑
i

(
mik(rk)

∫ t1

0

ai(t)dt
))

= nk . (4)

Thus the approach of Eq. 3 can be used mainly for

very short executions times, or where sampling time

or aggregation is wider than most of actions execu-

tions, that is quite common in ASM databases. The ap-

proach of Eq. 4 can be used for much longer actions (e.g.

batch jobs) that often have significant impact on sys-

tems performance and consist of different phases, with

different resources usage footprint. Very long executing

actions could be organized in sequences of monitored

sub-actions considered under the assumptions of Eq. 3.

Moreover, we assume that when action execution times

are short, or the span of the time–series aggregate used

is wider than most of actions executions, then Eq. 4

approximates Eq. 3.

In other words, the general approach presented above

is based on similarity and shapes matching between dif-

ferent domains: activities and resources usage, where

units are different. Thus, it should rather not consider

values comparison directly. Therefore all signals should

be normalized before any further processing is done,

and the equation R = MA + U is considered to be a

good approximation of the system.

Still in situations where activity levels (execution

counts or times) are far different between actions in A,

the precision can be enhanced when such information

is factored in as a weighted vector of action execution

times. Actions less often used (thus having lower total

execution times) should be considered as having less

impact on resources and effectively their error should

be augmented as part of another tier of penalty setting.

An iterative optimization process searches for suit-

able coefficients of the mixing matrix M . Solving the

problem by a greedy approach to calculate the objec-

tive function for every designed dimension n of k–th

values would be O(nk), such a brute–force search may

be acceptable for low–dimensional cases only. As men-

tioned earlier the search space S dimensionality is a

product of A · R, where typically in a real system we

can have tens to hundreds of resources and hundreds to

thousands of actions.

Each iteration of the method focuses on all resources

R. If an action is found during its execution to use time

from many different resources, then for a particular ac-

tion implementation the usage should be consistent over

time. Consequently it has been assumed that mik is

constant for the i–th action a and the k–th resource r

at iteration t, see Eq. 3. Depending on the application

context, this assumption may be subject to revision af-

ter significant code, parameters or input data changes,

or when other factors, like intrusive load or control ac-

tions, change the normal system responses behavior. Al-

though this situation is not considered in this paper, we

can briefly comment that a way to potentially overcome

this issue is to consider threating actions running with

different parameters or input data, or after changes in

the release of the software – this however needs careful

consideration as it may lead the count of dimensions to

explode, which in turn could limit the method used.

Lastly, it is worth mentioning the possibility of low-

ering the count of actions by aggregating actions sig-

nals with similar load–functional characteristics that

give comparable result on the usage of resources. Then,

signal unmixing analysis can be used to confirm any

similar relations between actions of different types and

resources impact.

3.1 The ASM-SD Methodology

The proposed methodology includes the following signal

processing steps.

Step 1. Signals Normalization

Time–series data are linearly scaled, so their ampli-

tudes are standardized to the range of [0, 1]. This

is required because in practice actions and various

resources signals are expressed in different units,

and values gathered are difficult to compare directly.

Emphasis here is on the signals shapes under consid-

eration rather than the specific values gathered and

aims at evaluating all dimensions (e.g. resources, ac-

tions) equally.

Step 2. Signals Denoising

System administrators are used to interpret scalar

values that represent various system dimensions, like

resources utilization and systems actions (aggregated

values), and associate their changes in time. This is

a simple but effective way of aggregating data and

lowering the scale of resolution of the metrics time–

series to be stored. Most of the monitoring tools ac-

tively gathering data about systems actions collect

counts and execution times continuously through

software components (collectors), which are weaved

into application runtime (Grinshpan, 2012; Haines,

2006). Such raw metrics are stored in various in-

ternal storages for further use by metrics collection

tools and need to be aggregated for presentation

and further times–series processing purposes. Sim-

ple Moving Average (SMA) (Pyle, 1999) as a low
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pass filter has been used3. This form of signals filter-

ing allows enhancing the level of similarity between

the input action and the resources signals which play

the role of the system’s response– see Fig. 1.

Step 3. Transformation of the Executions Load

Next, an “action execution load” transformation is

executed for each action signal. The essence of the

transformation is to change execution time measure-

ments collected at the end of the action call4 into

a time–series that represents the count of actions

being executed at a given point in time. Such a

transformation performs signals smoothing, which is

useful when signals contain many peaks, and helps

enhancing the level of similarity further– see com-

parison presented in Fig. 1.

Fig. 2 illustrates all stages of the ASM-SD method-

ology. It includes an additional step of dimensionality

reduction which filters out system actions that have

lower impact. In ASM industry practice, the number

of action signals A greatly exceeds the number of re-

sources R. Thus reducing the actions dimensionality

can improve the ASM-SD execution time. Actions im-

pact can be measured by ranking selected action types–

e.g. those which have higher cumulative execution times–

or highly called actions5, or, even in certain cases, by

using a weighted product of those two ranking criteria.

3.2 The ASM Search Space

Seeking appropriate coefficients of the mixing matrix

in Eq. 3 requires searching a multidimensional space.

Below, a simple ASM system containing four actions

and a single resource, where the intensity of the actions

and usage of the resource are different per action type

(see Fig. 3), is used as an example to illustrate features

that are common to ASM systems. The search is con-

ducted in a 4–dimensional normalized hypercube, and

denoising of all signals is achieved through SMA filter-

ing that follows a window size of 15 secs– see Step 2 in

Section 3.1.

In Fig. 3, different slices of the search space are

shown by projecting the search surface along two di-

mensions, which represent pairs of actions against a sin-

gle utilized resource. This visualization could help gain-

ing some insight about the characteristics of the opti-

3 As a rule of thumb a fair level of denoising is achieved
when SMA aggregates values following the width of the
longest action.
4 In engineering practice in most of the cases action execu-

tions are assigned at the time the action started.
5 The execution count can very often cause software or

hardware resources utilization regardless of the execution
time.

Fig. 2: ASM system incorporating the ASM-SD

methodology.

mization problem. Potential minimizers in these 3D and

2D plots are marked with a blue diamond. Obviously,

these are only slices and the full search space explored

by the ASM-SD method has higher dimensionality, so

the coordinates of the actual problem minimizers differ

from the ones shown in these figures. In fact, the ASM-

SD search space appears to be multimodal. This is also

illustrated in the 2D contour plots, which show that

there are neighborhoods of local minima (see the plots

at the upper right side of the diagonal in Fig. 3) sur-

rounded by the contour lines. The space is complex with

irregular gradient values, from very narrow barrier re-

lated slopes (discussed later), to flat regions with many

widespread local minima, and valleys– see the 3D plots

at the lower left side of the diagonal in Fig. 3. From

our observations in the experiments reported next, the

region surrounding a good minimizer is flat and often

wide. Moreover, often the neighborhood of the best so-

lution found contains many shallow local minima that

are not very different in terms of function values to the

“global” minimum.

As mentioned earlier, in Section 3, negative values

of residuals of Eq. 3 should be avoided, and to this

end bouncing boundaries are used in the optimization

function implementation. This is done through the in-

troduction of penalties, whose values are passed to the
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Fig. 3: The search space of an ASM system having four actions and a single resource being utilized. The figure

illustrates the search space with respect to each pair of actions.The original action signals are shown in the plots

placed along the main diagonal. The 3D surfaces and the corresponding 2D contour plots depict the fitness function

with respect to a pair of isolated action types. The 3D surface plots (at the lower left side of the diagonal) provide

a good view of the shape of the fitness function along two dimensions, whilst the corresponding contour plots (at

the upper right side of the diagonal) provide a better view of the various local extrema (areas of closed isolines).

The lowest point in each of these projections indicates a minimizer and has been marked with a blue diamond.

methods as a parameter, that are added to the error for

every negative coefficient and residual value (Wright

and Nocedal, 1999). Such an approach forms barriers

for matching signals whose total impact exceeds re-

source utilization. Any candidate solution that violates

the problem’s assumptions/constraints is removed from

the feasible region by assigning a penalty to it.

4 Testbed Design and Experiments

In this paper we are focusing on evolutionary meth-

ods to solve the ASM–SD problem, as this approach

appears to be eminently suitable due to the character-

istics of the search space, discussed in Section 3.

The test–bed framework of Fig. 4 has been imple-

mented to allow us to explore the potential use of the
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Fig. 4: The ASM system test framework.

proposed approach in the industry practice. It provides

an ASM environment where iterative experimentation

can be conducted, collecting performance data for the

various methods tested and generating a rich set of

ASM data for testing population–based methods under

various loads several times.

Previous research in the ASM field showed that the

minimal time for a load test – rich enough in terms

of different load pattern changes – is around 1 to 2

hours long (Sikora and Magoulas, 2013). To alleviate

the problem of conducting long simulation runs queu-

ing model simulations were used. This is a well known

simulation modeling approach, as discrete event sim-

ulation modeling in the form of queuing systems has

a long history of applications (Lazowska et al, 1984;

Banks et al, 2000; Harchol-Balter, 2013).

To this end, we reviewed several existing event–

based frameworks for systems modeling and workload

analysis, such as GridSim toolkit (Buyya and Murshed,

2002), GroudSim (Ostermann et al, 2011), Java Mod-

eling Tools (Bertoli et al, 2009, 2006), Palladio (Becker

et al, 2009) and CloudSim (Buyya et al, 2009; Calheiros

et al, 2011). We found that the framework based on

DESMO-J (Page et al, 2005; Gehlsen and Page, 2001;

web, 2014b) is more appropriate due to simplicity, in-

sight and flexibility of direct elements instrumentation

for metrics gathering that are required in our case.

DESMO-J utilizes plain Java code for the model

and the queue networks framework, which allows to in-

tegrate it with the rest of the proposed framework6.

The software framework provides APIs for forming

custom topologies of queue networks, utilizing many

different actions, adding custom counters for SLAs and

putting customized load in a flexible manner. It is a

pure–old Java objects approach (POJO), so it is ready

to be equipped with a controller actuators to simulate

environments under service control to test operation

and performance of the computer system during the de-

sign phase, or be applied as a model base for a weaved-in

controller to be instrumented directly in the application

code to manage and regulate the application behavior

in operation.

Fig. 4 presents the design of the test–bed that con-

sists of the: Load Generator that defines execution pa-

rameters for the modeled system; Data Preparation block

that provides the enterprise system model that gen-

erates ASM metrics, which are required to prepare a

dataset for the Search Runner that uses various evolu-

tionary computing methods.

All empirical evaluations were done with the use of

R scripting, which can be directly called from a Java–

hosted ASM controller. The authors used the approach

of RCaller that was proposed and described in Sat-

man (2014). Experiments utilized RCaller v2.1.1 imple-

mented by Satman (2013) as an R integration library for

Java applications.

4.1 The Load Generator

The Load Generator is a software component that is

responsible for creating input data for the ASM model

deployed in the Data Preparation system– see Fig. 4.

Identifying bottlenecks, overused or saturated com-

ponents/resources, and monitoring the entire perfor-

mance of the modeled system are key functional prereq-

uisites of the test–bed design in order to cover opera-

tional areas in our experiments that are interesting from

systems performance perspective. Moreover, the model

can be a subject of runs under various load conditions

in order to geta an insight of the system dynamics. The

Load Generator provides an API that gives the neces-

sary flexibility of defining the load mixture by specify-

ing arrival and execution rates and distributions of each

of the action types individually. Action type definition

contains a vector of load sources that specifies how the

arrival rates are distributed in time during simulation.

6 After applying a simulation–based data generator, the
speed increased by a factor of approximately 600 to 800 (that
practically allows running 24hrs load simulation in about 2
to 3 minutes, depending on the count of the load sources).
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Each action must be also equipped with measures show-

ing proportions of available resources utilization.

Such an approach gives a very concise yet flexible

way of modeling a load coming to the system from

many sources (users interface, web services and sched-

uled batch jobs) using the system concurrently. The

test–bed can execute simulation from very simple sig-

nals mixture to very complex, multi-action workloads.

The following example provides a concrete scenario

where actions play the role of input to the queue model.

Normally to test the ASM deconvolution process of

Eq. 3 under a mixture of signals, a set of many con-

currently executing actions of many types needs to be

run.

The example is based on a single action type defini-

tion that is rather CPU–bound, but also utilizes Disk

in only 5% of the execution time, with the following

execution distribution parameters: exponential distri-

bution with given arrival rate Exp(λ = 10); action ex-

ecution time defined with use of normal distribution

N (µ = 5, σ2 = 0.1); a variable load defined as a call

probability pattern given by the sequence p = [0, 0.2,

0.2, 0.2, 0.2, 0.2, 0.1, 0.0, 0.0, 0.1, 0.4, 0.4, 0.6, 0.2, 0.1,

0.0, 0.0] repeated 3 times in the time of a single exper-

iment7. For better comparison, the corresponding Java

code snippet is provided below:

new ActionType ( ”A3IO2” ,

new LoadPattern ( // a r r i v a l

new LoadDistExponential (

” DistrExp ” , 10) ,

new double [ ] { // i n t e n s i t y

0 . 0 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 2 ,

0 . 1 , 0 . 0 , 0 . 0 , 0 . 1 , 0 . 4 , 0 . 4 ,

0 . 6 , 0 . 2 , 0 . 1 , 0 . 0 , 0 . 0} ,

3 ) ,

new LoadDistNormal ( // execu t ion

”DistrNorm” , 1 , 0 . 1 ) ,

new ResourcesUsage [ ] { // re source s use

new ResourcesUsage (

Process ingType .CPU, 0 . 9 5 ) ,

new ResourcesUsage (

Process ingType . Disk , 0 . 0 5 )} ,

new SLA ( ) ) ;

7 The load pattern gives a precise way for configuring vari-
ability in the expected intensity of the frequency of incom-
ing calls for a given action. This parameter is very helpful
to define special test cases, such as actions interference us-
ing the same resource, receiving temporarily higher load to
observe effects of spikes in resources consumption, or short
reoccurring load changes to analyze any “delay” impacting
the strength of the ASM-SD.

4.2 Model and ASM Data Preparation

The computer system model implementation in Fig. 5

applies Processor Time Sharing approach, where each

job is sliced to atomic subtasks that, as per action type

characteristics (functionality and load), have different

resources distributed (Lazowska et al, 1984; Harchol-

Balter, 2013).

As mentioned earlier, DESMO-J (Page et al, 2005)

has been found suitable for this study. More details

on available frameworks and comparisons are provided

in Göbel et al (2013). For the benefit of this study the

framework provides implementations of CPU and IO

load simulations, based on those resources queues where

there is no waiting line and all jobs receive an equal

proportion of the service capacity. That is essential in

order to model a simple operating system dispatcher

which is a building block of every computing system.

Based on our experience the artificial data generated

by the model of this queuing system design match the

metrics collected during real load runs. Rerunning the

simulation is reproducing hours of load test in seconds.

It is worth mentioning that more advanced com-

puter systems, including distributed components (net-

work delays), multi-core (lower load queues as per sim-

ple processor sharing) or farms of servers covered with

load-balancers (each of them are multiprocessor with a

disk controller) are feasible to be implemented in the

framework used. Nevertheless the extensions are not

needed in order to illustrate the operation of the ASM-

SD method – as in engineering practice most of the

activity and resources metrics can be isolated as per

machine or sub-system, and consequently the problem

is reduced to a single server again. Of course adding re-

sources (network delays, wait to connection pools etc.)

to the picture would increase the dimensionality of the

search space– see Section 3.2.

4.3 The Search Runner

As mentioned earlier in Section 3.2, due to the multiple

minima and high–dimensional nature of the ASM-SD

search space, the experimental study focused on com-

parison of different population–based methods.

Several series of experiments were performed on syn-

thetic datasets to confirm the effectiveness of the ap-

proach. Three different population–based search strate-

gies available in R are presented in this paper: PSO (Clerc
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Fig. 5: Load Generator and ASM system model for sig-

nals generation.

et al, 2011)8, GAoptim (Tenorio and Tenorio, 2013) 9,

and DEoptim (Ardia et al, 2011; Mullen et al, 2011) 10.

The Search Runner component provides a software

framework abstracting access to different APIs of the

search methods R implementations. As R optimization

implementations, based on the approach taken by optim

{stats}, PSO, GAoptim, and DEoptim differ in input

parameters, it was necessary to wrap the access with a

single access layer giving input parameters abstraction.

In order to compare the speed of convergence, preci-

sion, robustness, and general performance of the differ-

ent methods we use as our main performance criteria

the execution time and the residual error– see Eq. 3.

More detailed description of the evolutionary methods

is provided next in Section 5.

8 A Particle Swarm Optimization (PSO) implementation
consistent with the standard PSO 2007/2011 of Maurice Clerc
et al. (Bendtsen, 2012), version 1.0.3 (2012-09-02).
9 Genetic Algorithm (GA) optimization package for real–

based and permutation–based problems, version 1.1 (2013-
03-24).
10 The DEoptim package implements the Differential Evolu-
tion (DE) algorithm for global optimization of a real–valued
function of a real–valued parameter vector, version 2.2-2
(2014-12-17).

Interested readers can find a performance compari-

son of non–population–based, general–purpose optimiza-

tion methods in (Sikora and Magoulas, 2014b), where

Simplex (Nelder and Mead, 1965) and Simulated An-

nealing (SANN) (Bélisle, 1992) were tested. Prelimi-

nary experiments in Sikora and Magoulas (2014b) found

that population–based methods find good ASM-SD so-

lutions earlier, and are generally resilient to the problem

of local minima.

Fig. 6a presents an example response and unmixed

action signals using the proposed approach, where one

of the actions signals is a result of the Java code snippet

presented in Section 4.1.

5 Search Methods Performance and

Parameters Tuning

This study is not tackling meta-optimization, where

another overlaid optimizer for parameter calibration

(tuning) is being used (Grefenstette, 1986; Pedersen,

2010a,b). The purpose of this work is to explore the

different methods and validate their applicability. Thus,

much work has been done on visualization comparison

of the optimization characteristics from various per-

spectives.

This section provides insights in the examined search

methods performance when tested under different ex-

perimental conditions and tuning modes. Series of ex-

periments have been executed checking different load

situations (variable arrival rates and difference load pat-

ters).

The experiments focused on R implementations only,

giving a good comparison ground for selected population–

based optimization. Typical for this class of global search

methods metrics like maximum number of iterations,

population size and others have been gathered.

Due to the large number of individual simulation

runs conducted, the visualization of multivariate datasets

focused on entire distributions rather than statistically

aggregated values for groups of data. Thus the methods

comparisons in Figs. 7– 16, use violin plots (Hintze and

Nelson, 1998) that better shows individual experiments

than box–and–whiskers plots (McGill et al, 1978). To

highlight the directions of the changes Local Polyno-

mial Regression Fitting (loess) trend line is used (Cleve-

land, 1979; Cleveland and Devlin, 1988; Cleveland et al,

1992). To generate the figures R {graphics} and gg-

plot2 (Wickham, 2009) plotting systems were used.

The following sections present the experimental re-

sults.
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Fig. 6: Comparison of deconvolution process for three optimization methods: PSO, DE and GA. The time series

were captured by the Search Runner debugging during one of the runs, where six different concurrently executing

actions are present. Most of the actions are mainly CPU–bound but also use Disk with different proportions of

CPU and Disk usage, one of the actions is rather Disk–bound. Resources are denoted by black and blue thick lines,

whilst actions are shown as thin lines using different tones of red. Each of the groups shows from top to bottom:

original action values signals, all normalized, unmixed actions impacting CPU and Disk respectively.
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5.1 Particle Swarm Variants

In this section, variants of Particle Swarm Optimization

are presented. They use a population of simple agents

interacting locally to develop collective behavior in a

decentralized fashion, in order to find the best solution

in the search space (Clerc, 2010).

Particle Swarm Optimization (Clerc and Kennedy,

2002; Clerc et al, 2011) implementation is consistent

with the standard PSO2007/2011 of Maurice Clerc et

al. (Bendtsen, 2012), version 1.0.3 (2012-09-02).

Figure 7 shows a comparison of the two variants.

The default swarm sizes (population size) for the two

methods differ: SPSO2007 defaults to b10+2∗
√
A ∗Rc,

while SPSO2011 use 40. This has been considered in the

figures showing comparison as a function of population

size that is always relative (in %) to the default value.

Comparison of SPSO2007 and SPSO2011 has been

done for default 1000, 700, 500 and 300 max itera-

tions (maxit) in eight–dimensional space deconvolution

problem– see Fig. 7. Results confirm that performance

of SPSO2007 and SPSO2011 is very similar. The ex-

periment shows that even quite low swarm sizes, e.g.

10–15 swarm size, give good solutions, with low error

and short execution times.

5.2 Genetic Algorithms

This group of global search methods is based on a pop-

ulation of candidate solutions that iteratively evolve to-

ward better solution points (in terms of fitness value) in

the search space. Each candidate solution, often called

individual, is defined as a set of genotype data, which

provide a basis for selection, crossover, and mutation

operations that take different forms depending on the

method. The population of individuals in each iteration

is called a generation (Michalewicz, 1996).

The Genetic Algorithm of GAReal {GAoptim}, ver-

sion 1.1 (published 2013-03-24) (Tenorio and Tenorio,

2013) has been tested.

Due to complex implementation of custom crossover,

selection and mutation operators default functions have

been used. Thus, the GAReal function for real–based

optimization has been tested under the following con-

ditions. Selection: the default option performs a fitness

proportionate selection, so that the fittest individuals

will have greater chances of being selected. Crossover :

this used the blend option that performs a linear combi-

nation of the individuals chromosomes, and so introduc-

ing new information into the resulting offspring, with

the crossover rate equal to 0.9 (see Figs. 8–9) as prob-

ability of two individuals effectively exchanging geno-

type. Mutation: the implementation uniformly samples

given mutation rate, (default 0.01) multiplied by pop-

ulation and present dimensions, mutation points along

the population matrix, each sampled locus is replaced

by a random-uniform number between 0 and 1. Elite

rate: it uses a default value of 0.4, as ratio of the best–

fitted individuals amongst the whole population that

are automatically selected for the next generation.

As it will be discussed later (cf. with Fig.14), the GA

has been found to be very fast (in terms of execution

time) in high dimensional cases, over 50 dimensions.

5.3 Differential Evolution Variants

Differential Evolution (DE) introduced by Storn and

Price (1997) has been applied to problems from a va-

riety of domains. ASM-SD experiments used DEoptim

{DEoptim}, version 2.2-2 (published 2014-12-17) (web,

2014a; Ardia et al, 2011; Mullen et al, 2011).

The choice of DE parameters, population members

count, NP, crossover probability, CR, and differential

weighting factor, F, can have an impact on optimization

performance (Storn and Price, 1997). Therefore select-

ing the DE parameters that provide a good performance

has been thoroughly researched. Nevertheless, our ex-

periments – results summarized in Figs. 10–16 – show

that in the ASM-SD problem changes in default param-

eters have limited influence on the method performance

and therefore default values are suggested.

A comparison of six DE strategies available (web,

2014a; Ardia et al, 2011; Mullen et al, 2011) is presented

in Fig. 10, crossover probability values are shown in

Fig. 8 and population members count is exhibited in

Fig. 16. DEoptim performance as function of maximum

set iterations (maxit) is shown in Figs. 10, 11 and 12.

DE finds solution points with much lower error val-

ues than GA, with very similar execution times, in low–

dimensional cases (Fig. 8). In high–dimensional cases,

execution times of DE are much higher than those of

GA (Fig. 9).

This method has been found to possess the longest

execution times especially in highly–dimensional cases,

but generated quite low Error values (Fig. 14). DE is the

most sensible method for low dimensions count, Fig. 15.

All DE strategies applied to ASM-SD problem give

very similar results. All of them give very similar er-

ror and execution time characteristics. Fig. 11 and 12

show comparison of all six strategies under different

load, maximum iteration and dimensions involved con-

ditions.

The best combination for a general ASM-SD use of

differential weighting F and crossover CR was found to

be: F = 0.1 and CR = 0.7 (Fig. 13).
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Fig. 7: Comparison of SPSO2007 and SPSO2011 variants of PSO.
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Fig. 8: Comparison of Crossover parameter of GA and DE using low–dimensional ASM-SD problem set.
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Fig. 9: Comparison of Crossover parameter of GA and DE using high–dimensional ASM-SD problem set.
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Fig. 10: Differential Evolution performance as function of % of default maximum iterations (maxit) parameter.

6 Search Methods Quality Validation

The main selection criteria in the ASM context for

selecting a particular search method is performance,

which typically is established based on search cost (as

per Eq. 3), execution time and the distance of the so-

lution point from the expected result point (precise for

simpler, low–dimensional cases, where modeled system

is not overloaded) – this is given as % of maximum

space length (that is the search space diagonal of the

n–dimensional normalized hypercube, equal to
√
n).

This section presents the above measures for each

method with respect to load, dimensions (a function of

actions and resources), and maximum iterations.

6.1 Execution Runs

All experiments have been carried on a single CPU ma-

chine (all runs on the same platform, R + JVM + OS +

hardware) in order to test a serial processing execution

times in a rigorous fashion.

The first set of experiments focused on signals de-

composition (ASM-SD) of the model containing 10 di-
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Fig. 11: Comparison of Differential Evolution strategies performance with respect to the problem dimensions.
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Fig. 12: Comparison of Differential Evolution strategies under different dimensions and maximum iterations con-

ditions.

mensions, five action types running with use of two re-

sources. To explore the behavior of the methods further

a series of experiments were conducted using a model

containing between 10 to 100 dimensions, and variable

arrival rates and load patterns (Fig. 14, 15, 16).

In order to validate the method, we must establish

an error measure such as the residual of Eq. 3. Since

Load Generator parameters are under strict control (see

Section 4.1), it is possible to derive analytically an ex-

pected solution point containing values of actions im-

pact on resources, using load model parameters, i.e. ar-

rivals, execution time distribution and load distribution

in time.

The results of the experiments show that typically:

(a) execution time is exponentially dependent on max-

imum iterations (maxit), Fig. 10, (b) execution time is

linearly dependent on populations used, Fig. 16. In con-

trast, error characteristics remain flat with respect to

either population or max iterations. Thus it would make

sense to limit maximum number of iterations (maxit)

and population.

Due to the ASM-SD search space nature, e.g. flat re-

gions around optimum (as discussed in Section 3.2), nei-

ther the maximum number of iterations (maxit) nor the

count of population set for a given search run change

the error substantially. Similar error rates are found

even for very small maxit values, indicating that each

of the methods tested was able to find low error values

very quickly (see the first column on Fig. 15). However,

as the search operates further, reaching higher maxit, it

finds points of slightly smaller errors. Small differences

in error values are produced by different search space

points that have a significant impact on the distance to

the expected solution point. This is shown in the third

column of maxit– and population– based comparisons

in Fig. 15 and Fig. 16 respectively.

The main factor impacting error is the number of di-

mensions and consequently the size of the search space,

as shown in Fig. 14. The search (execution) time, shown

in the middle column of the figures, is primary impacted

by maxit and the population size used. Generally the

fastest method is GA. SPSO2007 is slightly slower but

often it converges closer to the expected point (Fig. 15

and Fig. 16).

6.2 Industrial Applicability

Experiments show that the ASM-DS method gives sta-

ble results very early; for example within 20–30% de-

fault maxit (see Fig. 14 and 15). Thus, in engineering

applications limiting the maximum iterations to 20%

could balance the good performance/value trade-off.

Also the impact of population size can be limited,

as shown in Fig. 16 where the error characteristics as

function of the population count remain almost con-

stant.

In the real world context, a system with a 100 lead-

ing action types and a minute long time aggregate, col-

lected over a single release cycle, which is usually one

month long, generates a dataset that contains approx-

imately 43200 samples. The processing time is around

40–50 minutes, under the run–time conditions used in

the experiments (e.g. considering the average GA exe-

cution time for a 100–dimensional system of 800–samples

long dataset), which can be easily implemented in a

scheduled task of an ASM framework.

7 Conclusions and Future Work

The ASM area still lacks research in data analysis method-

ologies to support ASM operators and improve perfor-

mance of autonomous controllers.

This paper presented an approach that can be ap-

plied as a deconvolution technique to help uncovering

hidden run–time relations between observed signals in
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Fig. 13: Comparison of Differential Evolution (strategy 2 – default) under different crossover probability CR and

differential weighting factor F conditions.
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Fig. 14: Comparison of error, execution time and distance to expected solution point with respect to dimensions
count.

the ASM field. Metrics signals gathered during normal

operation of the enterprise system build a database of

time–series data that effectively contains definitions of

hidden causality chains present in the system.

In order to extract the causal relations and establish

models of systems interactions, utilization dependen-

cies and performance characteristics that a controller

or administrator can exploit for further decision mak-

ing, matching of running application responses under

given conditions with resources usage is required.

The high–dimensionality of the search spaces, the

size of the multivariate datasets and the morphologi-

cal characteristics of the search space require special

qualities from the specific search methods applied.

To this end, in this work we described a signal de-

convolution method driven by evolutionary search that

can be applied in ASM data analytics and adaptive

controllers, and investigated the potential of Particle

Swarm, Genetic Algorithms and Differential Evolution

methods in this context.

Our tests confirmed the practical potential of the

population-based type of search with GAs being the

fastest method amongst the tested ones. PSO is very

well performing, is close to GAs in terms of execution

time, and the solution points found are often closer to

an expected optimal point.

Parallelization of the populations, even though sup-

ported by some of the tested methods (DE, PSO), has

not been included in this study but it was left for future

work. Also scalability issues require further investiga-

tion, especially as there is much interest in the commu-

nity for parallel population based metaheuristics (Ned-
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Fig. 15: Comparison of error, execution time and distance to expected solution point as function of maximum
iterations (maxit).

jah et al, 2006), where concurrent search runs interact

to improve the overall solution. Furthermore, our future

work investigates ways to extend the deconvolution ap-

proach, enhancing the proposed method to better tackle

issues related to specific types of resources and actions

signals, system responses delays, signals noise, impacts

of unmonitored blind spots, and observer effects, to bet-

ter address needs of adaptive controllers, schedulers,

but also decision support systems. Moreover, additional

research needs to be done in processing signals that are

acquired from more complex computing system mod-

els, containing many architectural units, components,

network elements and communicating with other dis-

tributed services to support the integration needs of

modern computing systems. All these issues are linked

to our ongoing work on both autonomous and human-

driven control in ASM environments that is equipped

with soft computing and machine learning methods.
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Fig. 16: Comparison of error, execution time and distance to expected solution point with respect to population
count.
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