Sewell, R.J. and Carter, Andrew and Rittner, M. (2016) Middle Jurassic collision of an exotic microcontinental fragment: implications for magmatism across the southeast China continental margin. Gondwana Research 38, pp. 304-312. ISSN 1342-937X.

Downloaded from:

Usage Guidelines:
Please refer to usage guidelines at lib-eprints@bbk.ac.uk. or alternatively contact lib-eprints@bbk.ac.uk.
Middle Jurassic collision of an exotic microcontinental fragment: Implications for magmatism across the southeast China continental margin

Roderick J. Sewella*, Andrew Carterb & Martin Rittnerc

aHong Kong Geological Survey, Geotechnical Engineering Office, Civil Engineering and Development Department, 101 Princess Margaret Road, Kowloon, Hong Kong SAR, China.
bDepartment of Earth and Planetary Sciences, Birkbeck, University of London, Malet Street, London, WC1E 7HX, UK
cDepartment of Earth Science, University College, London, Gower Street, London, WC1E 6BT, UK

1. Introduction

A major igneous event occurred in southeast China at about 160 Ma during which an enormous volume of dominantly I-type and subordinate A-type granitoids was emplaced over an area of 75,000 km2 within a broad 400-km wide NE-trending belt (Li et al., 2007). Although various tectonic models have been proposed to account for this activity (e.g., Gilder et al., 1991; Zhou and Li, 2000; Li and Li, 2007), there is no consensus on its causal mechanism. Much of the debate has centred on the geochemistry of the granitoids with one school of thought preferring to interpret the I-type and A-type compositions as reflecting a within-plate (i.e., anorogenic) tectonic setting (e.g., Gilder et al., 1991; Li et al., 2007), while another school argues for a mature continental arc tectonic setting (Sewell et al., 1992; Zhou and Li, 2000). An expression of the ca. 160 Ma igneous event is recorded in the Hong Kong Special Administrative Region (hereafter Hong Kong) by four precisely-dated I- and A-type granite plutons (Davis et al., 1997). These rocks have previously been interpreted to reflect a late orogenic to post orogenic setting (Sewell et al., 1992). The trace element abundances of these rocks relative to MORB (Sewell & Campbell, 1997) show enrichment in K, Rb, and Th and depletion of Nb, which are characteristic of subduction-related magmas (e.g., Thorpe et al., 1984). Unlike other pulses of magmatism in Hong Kong, these relatively weakly deformed granitoids do not have a recognizable volcanic equivalent (Sewell and Campbell, 1997). Furthermore, they intrude regionally folded and metamorphosed late Paleozoic to Middle Jurassic rocks, including volcanic and plutonic rocks that have been precisely dated by TIMS U–Pb zircon analysis at ca. 164 Ma (Davis et al., 1997). Thus, the period of deformation is constrained to between 164 and 161 Ma. In this paper, through highlighting the results of a structural, stratigraphic and geochemical study of late Paleozoic to middle Mesozoic sedimentary rocks of Hong Kong, we propose a cause for this deformation and how it may be related to the widespread igneous flare-up event at 160 Ma.

2. Geological Setting

South China comprises two continental blocks, Yangtze in the northwest and Cathaysia in the southeast. The latter block is further separated into eastern and western structural domains along a crustal scale discontinuity known as the Zhenghe–Dapu deep fault (Fig. 1). Although the precise trace of this structure in southeast China is poorly defined, it has been frequently depicted (e.g., Wang et al., 2013a; Li et al., 2014) to intersect the coast in the vicinity of the Hong Kong. Based on mantle and crustal isotope signatures reflected in magmatic rocks, some workers (e.g., Darbyshire and Sewell, 1997; Fletcher et al., 2004; Xu et al., 2007) have postulated that this fault may represent a basement terrane boundary.

Hong Kong is divided into two broad structural and stratigraphic domains by a NE-trending tectonic lineament, generally known as the Tolo Channel Fault (TCF) (Fig. 1). The TCF is exposed on the north side of Tolo Channel where it is character-
ized by a zone of sheared and silicified rock that separates strongly indurated late Paleozoic conglomerates and sandstones to the NW from Early to Middle Jurassic sandstones and shales to the SE (Sewell et al., 2000). North of the TCF, late Paleozoic to early Middle Jurassic strata and Middle Jurassic volcanic–plutonic rocks are folded and regionally metamorphosed to greenschist facies (Allen and Stephens, 1971). Early workers (e.g., Lai, 1976; Langford et al., 1989) interpreted the overall structure to be a series of SW-plunging anticlines and synclines, plunging to the SW. South of the TCF, the late Paleozoic to early Middle Jurassic sedimentary strata are gently E-dipping (ca. 15°) and generally non-metamorphosed. Devonian rocks NW of the TCF contain an Early to Middle Devonian flora and marine fauna, and show paleocurrent directions toward the northwest (Jones et al., 1997). In contrast, Devonian rocks to the south have a Late Devonian flora and show paleocurrent directions toward the southeast (Jones et al., 1997). Jurassic sandstones and shales north of the TCF have an Early to Middle Jurassic terrestrial flora and marine fauna (Lee et al., 1997), whereas Jurassic sandstones and shales south of the TCF are exclusively marine (Lee et al., 1997).

Darbyshire and Sewell (1997) identified contrasting NE-trending Nd–Sr isotope domains in granitic rocks across Hong Kong.

Table 1. Description and location details of analysed samples.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Lithology</th>
<th>Fossil Age</th>
<th>Location</th>
<th>Lat.</th>
<th>Long.</th>
</tr>
</thead>
<tbody>
<tr>
<td>HK13473</td>
<td>Sandstone</td>
<td>E.- Mid. Jurassic</td>
<td>Fung Wong Wat</td>
<td>22.29 08 36799</td>
<td>114.18 19 30843</td>
</tr>
<tr>
<td>HK13474</td>
<td>Sandstone</td>
<td>E.- Mid. Jurassic</td>
<td>Sham Chung</td>
<td>22.26 47 15967</td>
<td>114.16 29 92821</td>
</tr>
<tr>
<td>HK13475</td>
<td>Sandstone</td>
<td>E.- Mid. Jurassic</td>
<td>Three Fathoms Cove</td>
<td>22.26 04 74666</td>
<td>114.16 12 13474</td>
</tr>
<tr>
<td>HK13791</td>
<td>Metasandstone</td>
<td>E.- Mid. Jurassic</td>
<td>Ho Sheung Heung</td>
<td>22.30 49 39570</td>
<td>114.06 25 27388</td>
</tr>
<tr>
<td>HK13337</td>
<td>Metasandstone</td>
<td>E.- Mid. Jurassic</td>
<td>Sheung Shui</td>
<td>22.25 10 60966</td>
<td>114.14 08 84744</td>
</tr>
<tr>
<td>HK13338</td>
<td>Metasandstone</td>
<td>E.- Mid. Jurassic</td>
<td>San Tin</td>
<td>22.30 34 01848</td>
<td>114.05 15 34916</td>
</tr>
<tr>
<td>HK13496</td>
<td>Sandstone</td>
<td>E.- Mid. Jurassic</td>
<td>San Shek Wan</td>
<td>22.16 42 42363</td>
<td>113.53 16 28699</td>
</tr>
<tr>
<td>HK13470</td>
<td>Metasiltstone</td>
<td>E.- Mid. Jurassic</td>
<td>Fu Tei</td>
<td>22.24 33 01810</td>
<td>113.58 49 25029</td>
</tr>
<tr>
<td>HK13477</td>
<td>Siltstone</td>
<td>E.- Mid. Jurassic</td>
<td>CUHK</td>
<td>22.25 25 07572</td>
<td>114.11 55 24798</td>
</tr>
<tr>
<td>HK13340</td>
<td>Sandstone</td>
<td>E.- Mid. Jurassic</td>
<td>Ma Shi Chau</td>
<td>22.27 36 06205</td>
<td>113.14 19 21608</td>
</tr>
<tr>
<td>HK13266</td>
<td>Metasiltstone</td>
<td>E.- Mid. Jurassic</td>
<td>Tin Shui Wai Area 104</td>
<td>22.27 50 05301</td>
<td>114.00 07 18768</td>
</tr>
<tr>
<td>HK13801</td>
<td>Metasandstone</td>
<td>Carboniferous</td>
<td>Tam Kon Chau</td>
<td>22.29 40 38525</td>
<td>114.03 02 77880</td>
</tr>
<tr>
<td>HK13341</td>
<td>Sandstone</td>
<td>Devonian</td>
<td>Harbour Island</td>
<td>22.27 21 62562</td>
<td>114.15 17 27571</td>
</tr>
<tr>
<td>HK13342</td>
<td>Sandstone</td>
<td>Devonian</td>
<td>Bluff Head</td>
<td>22.30 37 35281</td>
<td>114.20 01 41391</td>
</tr>
<tr>
<td>HK13792</td>
<td>Metasandstone</td>
<td>Carboniferous</td>
<td>Tai Shek Mo</td>
<td>22.31 14 07380</td>
<td>114.06 33 51955</td>
</tr>
<tr>
<td>HK13793</td>
<td>Metasandstone</td>
<td>Carboniferous</td>
<td>Chau Tau</td>
<td>22.30 56 34152</td>
<td>114.04 59 22853</td>
</tr>
<tr>
<td>HK13796</td>
<td>Metasiltstone</td>
<td>Carboniferous</td>
<td>Sheung Ma Lei Yue</td>
<td>22.31 45 82458</td>
<td>114.06 09 00828</td>
</tr>
<tr>
<td>HK13797</td>
<td>Metasiltstone</td>
<td>Carboniferous</td>
<td>Yuen Long, A11</td>
<td>22.27 02 84089</td>
<td>114.01 42 23578</td>
</tr>
<tr>
<td>HK13744</td>
<td>Sandstone</td>
<td>Devonian</td>
<td>Sai Sha Road</td>
<td>22.25 48 20779</td>
<td>114.15 30 20861</td>
</tr>
</tbody>
</table>
Kong suggesting inherent differences in the source regions. They proposed a major crustal terrane boundary separating dominantly Archean and Mesoproterozoic protoliths in the southeast. The peraluminous chemistry, strongly negative εNd(t) values (<-9), and radiogenic Sr–isotope chemistry (>0.71) of granites in the northwest indicated a major component of recycled crust in the source region. By contrast, the metaluminous chemistry, more enriched εNd(t) values (-4.2 to -7.2) and slightly less radiogenic Sr–isotope chemistry (0.7061 to 0.7102) of granites in the southeast suggested the involvement of juvenile (i.e. mantle-derived) components in the source region.

A steep SE-trending gradient in Bouguer gravity anomaly values along a NE-trending alignment through central Hong Kong was reported by Busby and Langford (1995). Modeling of the regional gravity data by Fletcher et al. (1997) revealed contrasting densities in the basement consistent with a felsic Archean crust in the northwest separating denser blocks of mafic Proterozoic crust in the southeast. The gravity map of the region around Hong Kong and neighbouring Guangdong Province compiled by Fletcher et al. (2004) shows a prominent NE-trending gradient in Bouguer anomaly values extending along the coast consistent with the pattern observed in Hong Kong. The boundary between both the isotope geochemistry domains and the regional gravity gradients in Hong Kong coincides with the trace of the TCF. Thus, the isotope geochemistry of the granites and regional gravity data provide strong circumstantial evidence for a deep crustal discontinuity through Hong Kong. We therefore conducted a detailed detrital zircon U–Pb dating and Hf isotope study to determine whether these differences were also expressed in sediment sources.

3. Analytical methods

Detrital zircon U–Pb dating was carried out on 19 samples (comprising 2630 single grain ages) from both sides of the TCF, with a subset of six samples selected for Hf isotope analysis (Fig. 1). Sample descriptions and location details are given in Table 1. Hf isotope data were obtained from the main age modes present in each tested sample. Descriptions and location details of analysed samples are given in Table 1.

3.1 Zircon LA-ICPMS U–Pb analysis

Laser Ablation Inductively Coupled Mass Spectrometry (LA – ICPMS) U–Pb zircon analysis was carried out at the University College of London. Heavy minerals were separated from bulk sediment samples using standard density liquid and magnetic separation procedures. Zircon-enriched extracts were mounted in hard epoxy resin on glass slides and polished for analysis.

Polished grain mounts were CL imaged and the samples analyzed on an Agilent 7700 quadrupole-based inductively coupled plasma mass spectrometer (ICP–MS) coupled to a New Wave aperture-imaged frequency quintupled laser ablation system (213 nm) following the methodology of Jackson et al. (2004). Real time data were processed using GLITTER 4.5, data reduction software, developed by the ARC National Key Centre for Geochemical Evolution and Metallogeny of Continents (GEMOC) at Macquarie University and CSIRO Exploration and Mining. A 30–55 µm laser spot size was used at 7–10 Hz repetition rate with 65% power. Background measurement before ablation lasted 40 seconds and laser ablation dwell time was 40 seconds. All analyzed grains were numbered on a photomap to enable revisiting for Hf analysis.

Repeated measurements of external zircon standard Plešovice which has a TIMS reference age 337.13 ± 0.37 Ma (Sláma et al., 2008) and NIST 612 silicate glass (Pearce et al., 1997) were used to correct for instrumental mass bias and depth-dependent inter-element fractionation of Pb, Th and U.

3.2 Zircon Hafnium isotope analysis

Hafnium isotope analyses, carried out at the NERC Isotope Geosciences Laboratory (NIGL), used a Neptune Plus multi-collector ICP–MS coupled to a New Wave Research UP193FX 193 nm excimer laser ablation system.

Ablation data were acquired using the instrument software on the Neptune Plus but processed through an in-house calculation routine using a Microsoft Access database. A static spot ablation protocol was employed utilizing a 25µm beam and a 7 Hz laser pulse repetition rate. A fluence of 6.5 J/cm² and ablation time of 40 seconds resulted in total Hf signals for the Mud Tank reference zircon averaging 7V and combined uncertainties of 1.3 eV units (2σ) assuming an age uncertainty of 1 Ma (1s). All data were normalised to the ¹⁷⁶Hf/¹⁷⁷Hf of the Mud Tank zircon assuming a value of 0.282507. Zircon standard 91500 was used to normalize the ¹⁷⁶Lu/¹⁷⁷Hf ratio assuming a value of 0.000311 (Woodhead and Hergt, 2005). All uncertainty components, including those for age and normalisation, were factored into the uncertainty quoted.

Further details of data reduction and error propagation for U–Pb zircon and Hf isotope analysis are given in the supplementary data. Selected field photographs are given in Supplementary Figure 1. U–Pb zircon and Hf isotope analytical data are given in Supplementary Tables 1 and 2.

4. Results

Zircon age spectra for Early to Middle Jurassic rocks from either side of the TCF differ noticeably (Fig. 2). The maximum depositional age for rocks on the south side is 580 Ma, with strong population peaks at 790, 970 and 2490 Ma. By contrast, those from the north show a major population at 236 Ma, but with 24 grains of Early Jurassic age (Weighted Mean: 178 ± 5.6 Ma), and strong peaks at 436 Ma, 760–1200 Ma, 1860 Ma and 2500 Ma. Additionally, the rocks south of the TCF have a population of Archean age zircons ca. 3550 Ma. The tectonic setting for these rocks based on differences between zircon crystallization age and depositional age (Cawood et al., 2012) is an extensional basin or passive margin, whereas for the north side, the tectonic setting is a collisional basin.

Similar zircon spectra are observed among late Paleozoic rocks from either side of the TCF with principal age populations at 440 Ma, 760–1200 Ma, and 2500 Ma (Fig. 2), but with two important differences. The sample from south of the TCF shows a well-defined 790 Ma peak which is largely absent from samples on the north side. Additionally, the sample from the south shows a strong peak at 2470 Ma, whereas most samples from the north side show strong peaks at 2500 Ma. These differences in older age clusters for late Paleozoic rocks on either side
of the TCF are similar to those shown by the Early to Middle Jurassic rocks.

Hf isotopes in zircons may be used to help characterize crustal source materials (Patchett et al., 1981; Griffin et al., 2004; Fig. 3). A negative $\varepsilon_{Hf}(t)$ value (parts per 10,000 deviation from the chondritic line at the time of zircon crystallization) suggests involvement of dominantly recycled materials in the crustal source region, whereas a positive $\varepsilon_{Hf}(t)$ value indicates a more juvenile (mantle-derived) source component.

Early to Middle Jurassic rocks north of the TCF have a large proportion of old zircons with age population peaks between 1800–1850 Ma and 2500 Ma, as well as input from granitoids of Indosinian, Wuyi–Yunkai, Rodinian and Jiangnan tectothermal events. The source area for these rocks was mainly exposed Proterozoic basement. The youngest coherent zircon population (Fig. 2) indicates Early to Middle Jurassic sediments were sourced from exposed Triassic (ca. 236 Ma) granitoids. The strongly negative $\varepsilon_{Nd}(t)$ values (-20) for some zircons (Fig. 3a) reflect the involvement of ancient crustal sources, possibly Late Archean to Paleoproterozoic basement, and accords with the source area of Triassic S-type granite in Hong Kong (Davis et al., 1997) which is thought to have been derived from a Late Archean to Paleoproterozoic basement ($\varepsilon_{Nd}(t) = -13.9$).

By contrast, Early to Middle Jurassic rocks south of the TCF lack input from Wuyi–Yunkai or Indosinian granitoids, and instead have input from Pan–African orogeny (600 – 550 Ma) granitoids associated with Gondwana assembly. These rocks also lack input from Paleoproterozoic (1850 Ma) basement and have a larger proportion of very old zircons, including Eoarchean. The sources of the majority of zircons are therefore quite distinct from the rest of Cathaysia. However, an abundant population of 970 Ma zircons suggests involvement of Jiangnan metamorphic basement (Fig. 3b), while other populations show a contribution from mainly Mesoproterozoic crustal sources, along with some very ancient crustal materials.

Among the late Paleozoic rocks, the 440 Ma and 760–1200 Ma age populations show the most prominent differences either side of the TCF. For example, 440 Ma zircons from north of the TCF (Fig. 3a) show a mixture of both juvenile and recycled...
crustal components (Fig. 3a), whereas 440 Ma zircons from south of the TCF (Fig. 3b) have a dominantly recycled crustal component.

Late Paleozoic rocks north of the TCF were derived from a terrain rich in granitoid rocks with key age populations at 440 Ma, 760–1200 Ma, and 2500 Ma. Such suites reflect tectonothermal events associated with collision of Yangtze and Cathaysia blocks at 1000–900 Ma (Jiangnan (or Sibao) Orogeny), and breakup of Rodinia at 830–750 Ma (Cawood et al., 2013). Granitoids were also emplaced across the southeast half of the South China block during a major intraplate orogenic event at ca. 460–420 Ma known as the Wuyi–Yunkai (or occasionally Kwangsian) Orogeny (Li et al., 2010).

Late Paleozoic rocks south of the TCF were derived from a terrain rich in both metasedimentary and granitoid rocks. Zircons in these rocks also reflect tectonothermal events associated with the Jiangnan Orogeny and breakup of Rodinia. However, the granitoids that were emplaced during the Wuyi–Yunkai Orogeny were derived principally from recycled crust (Wang et al., 2013c). This reflects contrasting basement source regions as indicated by Nd–Sr isotopes for Middle Jurassic to Early Cretaceous Hong Kong granitoids (Darbyshire and Sewell, 1997).

A simple explanation for the range of zircon ages seen in Early to Middle Jurassic rocks south of the TCF is that they were sourced from Precambrian basement in the southeastern Yangtze block (Fig. 2). However, the Yangtze block zircon spectra lack the strong 580 Ma peak shown by the Early to Middle Jurassic rocks, and also show marked age populations at 1560 Ma and 2020 Ma which are absent from the Jurassic rocks south of TCF. While it is possible that the zircons in Early to Middle Jurassic rocks south of the TCF could have been derived from exposed Cathaysia Precambrian basement, the zircon age peaks do not coincide (Fig. 2). It is also unlikely that sediments could have been transported across the southeast China during the Early to Middle Jurassic without any trace of contamination from Wuyi–Yunkai (460–420 Ma) or Indosinian (250–220 Ma) granitoids.

5. Discussion

5.1 Late Mesozoic tectonic model for SE China

Major differences in stratigraphy, structure, and zircon provenance among late Paleozoic to Middle Mesozoic strata on either side of the TCF strongly suggest that rocks south of the TCF were isolated from Mesozoic Cathaysia and therefore belong to a discrete terrane (here termed the “Tolo Terrane”). Either the Tolo Terrane represents an exotic terrane, or one that has been juxtaposed as a result of large-scale strike-slip movement from elsewhere within the same convergent margin complex. A strike-slip juxtaposition cannot easily account for the passive margin tectonic setting inferred for Early to Middle Jurassic rocks from the zircon spectra. Passive margins are dominated by subdued relief with low zircon production (Cawood et al., 2012), quite unlike any other known settings in southeast China. Neither could strike-slip juxtaposition involving sliver-plate tectonics, similar to the modern-day highly oblique subduction of the Indian Ocean plate beneath Sundaland in Sumatra, western Indonesia (e.g. McCaffrey, 2009), be easily accommodated. It is most unlikely that two sedimentary basins sliding past each other could preserve no record of detrital cross-contamination. An exotic terrane would have originated from Gondwana and therefore it is useful to examine the zircon age signatures for the main blocks considered to be in the proximity of South China prior to break-up. There is as yet no consensus on the precise location of the South China craton within Gondwana but there is a general agreement that it was a part of East Gondwana and occupied a position near West Australia and the Lhasa and Qiangtang terranes adjacent to northern Greater India (Cawood et al., 2013; Cocks and Torsvig, 2013; Duan et al., 2011), Basement zircon ages for the Lhasa and Qiangtang terranes lie between ca. 1000 and 500 Ma (Leier et al., 2007; Pullen et al., 2008; Gehrels et al., 2011). Kolmogorov–Smirnov distances (Vermeesch, 2013) for sample age spectra and other potential Precambrian sources were fed into a multidimensional scaling (MDS) algorithm to convert the data into a ‘map’ (Fig. 4) to display the relative distances (similarities) between the data. Comparing other potential Precambrian sources

![MDS map of analyzed samples and other potential source terranes shown in Fig. 2. The MDS map provides a visualization of Kolmogorov-Smirnov distances between samples and shows which samples are similar to each other (cluster together) and which are different (spaced apart).](image)

![Kernel Density Estimate plots for representative U-Pb detrital zircon ages from the Western Qiangtang terrane compared with Early to Middle Jurassic rocks south of the TCF. Data sources from Zhu et al., (2011), Dong et al., (2011), Pullen et al., (2008), and Gehrels et al., (2011). (n = no. of grains analyzed)](image)
for Early to Middle Jurassic rocks from the Tolo Terrane, the zircon age spectra do not easily match with signatures from West Australia. Importantly, however, the zircon age spectra have a close match with the Qiangtang Terrane (Fig. 5). The Hf isotopes for the Qiangtang Terrane (Dong et al., 2011) also match with those of the Early to Middle Jurassic strata from the Tolo Terrane (Fig. 3b).

5.2 Origin of the Tolo Terrane and link to the Qiangtang Terrane

Yao et al. (2014) have suggested that Cambrian sedimentary rocks from SW Cathaysia preserve a NW Indian Himalaya provenance. They propose that after breakup of Rodinia, the South China Block (SCB) drifted toward NW India in the Ediacaran during Gondwana assembly, with SW Cathaysia as the leading edge. The Qiangtang Terrane was partly sandwiched between NW India and the SCB at this time, with western Qiangtang and SW Cathaysia receiving detritus dominantly from the East African Orogen (Fig. 6a). Collision with the NW India is thought to have occurred diachronously as the SCB rotated clockwise with the closure of a V-shaped ocean basin (Yao et al., 2014). We suggest that during this collision, a portion of western Qiangtang may have calved off and become isolated by strike-slip faulting (Fig. 6b). While the isolated Qiangtang microfragment ceased receiving detritus in the Ediacaran, SW Cathaysia and the main part of Qiangtang continued to receive sediments from the NW margin of the Indian continent during the Cambrian. Collision of the SCB with the India craton is thought to have triggered a Cambro-Ordovician mountain-building event called the North India Orogen. Uplift and erosion of rocks supplied detritus to depositional basins in Cathaysia and Qiangtang (Fig. 6b). During opening of Tethys in the Late Paleozoic, the isolated Qiangtang microfragment may have drifted north along with the SCB (Fig. 6c). By the Early Triassic, it was repositioned adjacent to East Cathaysia, and as the SCB drifted north to collide with the North China Block (Fig. 6d), a new SE China active continental margin developed.

Therefore, we propose that a portion of the Qiangtang Terrane (Tolo Terrane) derived from the Greater India portion of east Gondwana, possibly western Qiangtang, approached the SCB along an active continental margin during Early to Middle Jurassic. Accretion took place in the late Middle Jurassic. High precision U–Pb zircon dating of Middle and early Late Jurassic volcanic rocks, plutons and dykes (Davis et al., 1997) constrain the timing of terrane amalgamation to between approximately 164 and 161 Ma followed shortly afterward by a pulse of plutonism. The Tolo Terrane coincides with isotopically distinct basin sources of Hong Kong granitoids which are reflected by regional gravity models (Fletcher et al., 1997).

The event is consistent with deformation and regional metamorphism recorded in Hong Kong but also may provide a plausible mechanism to explain the presence of a broad regional scale magmatic event in SE China at ca. 160 Ma.

5.3 Implications for the 160 Ma magmatic event across the SE China continental margin

A number of tectonic models have been proposed to explain the enormous volume of fractionated I-type and subordinate A-

Fig. 6. Paleogeographic reconstructions for the position of the South China Block (SCB) and Qiangtang Terrane (QT) relative to northern India during assembly of Gondwana. (a) Ediacaran, and (b) Cambrian (modified after Yao et al. 2014). (c) Suggested position of the QT microfragment during opening of Tethys. (d) Suggested position of QT microfragment prior to collision of the SCB with the North China Block (NCB) in the Triassic. SB = Sibumasu, IC = Indochina.

type granitoids that were emplaced over an area of 75,000 km² within broad 400-km wide NE-trending belt in SE China at ca. 160 Ma. These include basin and range extensional tectonics (Gilder et al., 1991), low-angle subduction of the Paleo-pacific plate beneath southeast China (Zhou and Li, 2000), slab-foundering (Li et al., 2007), and post-orogenic extension (Chen et al., 2008). These models are based almost exclusively on the interpretation of major and trace element geochemistry, and isotope geochemistry of igneous rocks and have little supporting tectonic evidence.

U–Pb zircon, geochemical and Sr–Nd–Hf isotope studies on the 160 Ma granites of SE Guangdong (e.g., Li et al., 2007; Huang et al., 2012) have suggested that the high-K calcalkaline I-type and aluminous A-type granites were emplaced in a dominantly within-plate tectonic setting. It is argued that the geochemistry of the I-type granites shows no evidence of a subduction
influence and that granite magmas were derived principally from crustal components. An OIB-like mantle-derived source that had also assimilated some to have been generated from extensive crystal fractionation from aluminous A-type granites are thought to have been produced from partial melting of ancient mafic to intermediate igneous materials. On the other hand, the aluminous A-type granites are thought to have been generated from extensive crystal fractionation from an OIB-like mantle-derived source that had also assimilated some to have been produced from partial melting of ancient mafic to intermediate igneous materials. On the other hand, the aluminous A-type granites are thought to have been generated from extensive crystal fractionation from an OIB-like mantle-derived source that had also assimilated some to have been produced from partial melting of ancient mafic to intermediate igneous materials.

Granite magmas are known to be associated with melting of overthickened crust (Sylvester, 1998). Among the various tectonic models proposed for the origin of the 160 Ma igneous event in SE China, the slab-founding model (Li et al., 2007) has gained considerable support (e.g., Meng et al., 2012, Huang et al., 2012). This is considered to be consistent with the basin and range-type extensional setting proposed by Gilder et al., (1991). However, neither model provides an adequate causal mechanism for the sudden pulse of magmatism at 160 Ma, nor satisfactorily explains the subduction-related signature observed in the 160 Ma Hong Kong granitoids. Detachment and foundering of the subducted flat-slab is thought to have commenced as early as 190 Ma with the appearance of the first A-type granites in SE China (Li and Li, 2007). However, this Early Jurassic anorogenic magmatism in South China was relatively sparse, and the region is thought to have been dominated by marine and terrestrial sedimentation due to crustal down-warping (Li and Li, 2007). This is reflected by the remarkable paucity of Early Jurassic magmatic zircons in these sediments as shown by the Hong Kong zircon age spectra and those from central SE China (Meng et al., 2015). Basin and range extensional tectonics in SE China is indicated by an influx of Triassic age zircons (ca. 236 Ma) from unroofing of Indosinian granitoids in the earliest Middle Jurassic sediments (Meng et al., 2015). Andesitic magmatism in the Hong Kong region at about 170 Ma provides the most direct evidence for coastward re-positioning of the subduction zone following Early Jurassic rollback. However, there was still no sign of large-scale anorogenic magmatism in central SE China at this time. Subduction-related intermediate to silicic magmatism recorded in the Hong Kong region at 164 Ma (Sewell and Campbell, 1997) indicates that the continental arc was developing and maturing. At about 160 Ma, there was an abrupt change of events marked by a surge of widespread I-type and A-type magmatism across a large part of SE China.

Direct evidence of a syn-orogenic setting for the SE China continental margin during the Middle Jurassic is provided by exposures of subduction-related andesitic rocks in Hong Kong (Sewell and Campbell, 1997) which have returned a U–Pb zircon age of ca. 170 Ma (GEO, unpublished data). Additionally, the 164 Ma volcanic and plutonic rocks in Hong Kong preserve a strong subduction signature in their major and trace element geochemistry (Sewell and Campbell, 1997). By contrast, field observations and whole-rock geochemistry suggest that the 160 Ma I-type and A-type granites in Hong Kong were most likely generated in a late orogenic to post-orogenic setting (Sewell et al., 1992). The Nd and Sr isotope geochemistry of the 160 Ma A-type granites suggests an origin from partial melting of a Paleoproterozoic tonalitic to granodioritic crustal protolith with minimal contribution from mantle-derived sources (Darbyshire and Sewell, 1997). Such a scenario is consistent with post-collisional settings where peraluminous granites are known to be associated with melting of overthickened crust (Sylvester, 1998).

Collision of a microcontinental fragment with the SE China continental margin accompanied by subduction zone rollback between 164 and 161 Ma provides an effective tectonic solution to the abrupt change of events in the late Middle Jurassic. Such a model (a) provides a mechanism to hasten the final stages of flat-slab foundering and trigger the widespread magmatism at 160 Ma (Fig. 7), (b) explains the coeval distribution of late orogenic I-type to post orogenic A-type magmatism on the continental margin and within-plate I-type and A-type magmatism in the continental interior, and (c) provides a suitable explanation for the overall change in tectonic setting in Hong Kong during the Late Jurassic from subduction to transtension as reflected by the change in style of magmatism from a continental intra-arc environment to a back-arc environment (Campbell and Sewell, 1997). We therefore consider that a terrane collision model can accommodate both a continental-arc setting and a within-plate setting proposed to explain the broad 160 Ma magmatic event in SE China.

6. Conclusions

A major tectonomagmatic event occurred in SE China around the end of the Middle Jurassic. In the Hong Kong region, the event was characterized by regional thrusting, folding and metamorphism. This episode may have been triggered by the collision...
of an exotic microcontinental fragment with the eastern Cathaysia margin. Subsequent intrusion of fractionated I-type and A-type granites in Hong Kong at ca. 160 Ma stitched the suture zone and signaled the onset of extensional tectonics in the region following roll-back of the subduction zone. The collision may have hastened the final stages of fracturing and mouldering of a subducted flat slab beneath SE China. The origin of the microcontinental fragment fits with the Greater India part of east Gondwana. The flat slab beneath SE China. The origin of the microcontinental fragment fits with the Greater India part of east Gondwana. The origin of the microcontinental fragment fits with the Greater India part of east Gondwana. The origin of the microcontinental fragment fits with the Greater India part of east Gondwana. The origin of the microcontinental fragment fits with the Greater India part of east Gondwana. The origin of the microcontinental fragment fits with the Greater India part of east Gondwana.

in response to foundering of a subducted flat-slab? Lithos 96, 86–204.

