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Abstract: An appearance model adaptable to changes in object appearance is critical in visual object tracking. In 

this paper, we treat an image patch as a 2-order tensor which preserves the original image structure. We design 

two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the 

background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of 

the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the 

transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding 

space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- 

based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information 

obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph 

embedding learning algorithm to visual tracking. The new tracking algorithm captures an object’s appearance 

characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results 

on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm. 

Index terms: Discriminant tracking, Tensor samples, Semi-supervised learning, Graph embedding space 

1. Introduction 

Visual tracking [48, 49, 50, 51] is an essential component in many practical computer vision applications, 

such as visual surveillance, vehicle navigation, vision-based control, human computer interfaces, intelligent 

transportation, and augmented reality. Despite much effort resulting in many novel tracking algorithms, tracking 

generic objects remains challenging [31] because of the intrinsic and extrinsic appearance changes. The intrinsic 

appearance changes are caused by objects themselves, for example if they deform or rotate. The extrinsic 

appearance changes are associated with the environment of the objects, and the causes of such changes include 

partial occlusions, illumination changes, and cluttered or moving backgrounds. The effective modeling of object 

appearance variations plays a critical role in visual object tracking [1, 2, 3, 6, 8, 9, 13, 21]. Many tracking 

algorithms construct an adaptive appearance model for an object based on image patches collected in previous 

frames, and use this model to find the most likely image patch on the object in the current frame. Appearance 
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models can be categorized into generative models and discriminative models [45]. A generative model describes 

the distribution of the image patches of an object in previous frames. Tracking is reduced to a search for an 

optimal state that yields an object appearance most similar to the model. A discriminative model describes not 

only the image patches of the object but also some background image patches. The tracking is based on a binary 

classifier to distinguish the object from the background. Usually, the image patches corresponding to the tracking 

results are used as the labeled positive samples, and the image regions selected from the background are used as 

the labeled negative samples [6, 10]. Then, a classifier is trained in a supervised way using these labeled positive 

and negative samples. A number of new samples can be selected in each new frame, and these unlabeled samples 

are used in a semi-supervised way [6, 10] to improve the classifier. 

In this paper, we propose a new discriminative tracking algorithm in which each image patch is represented 

by a 2-order tensor. The relations among object image patches and background image patches in the previous 

frames are represented by graphs. The 2-order tensor-based graph embedding is used to learn the discriminative 

subspace (the discriminative embedding space) for distinguishing the object image patches from the background 

image patches. A number of unlabeled image patches collected from the current frame are used to refine the 

discriminative embedding space. 

1.1. Related work 

In order to give the context of our work, we briefly review image-as-vector representation, image-as-feature 

representation, and image-as-matrix representation for image patches, together with semi-supervised strategies 

for discriminant tracking. 

1) Image-as-vector representation: Many tracking algorithms [21, 35] adopt a holistic image-as-vector 

representation in which image patches are flattened to vectors. These algorithms include 1  minimization- 

based tracking algorithms [3, 17, 18, 33, 34], which exploit the sparse representation of image patches on the 

object. Kwon and Li [8, 9] constructed multiple basic appearance models using sparse principal component 

analysis (PCA) of a set of feature templates, such as global image-as-vector descriptors of hue, saturation, 

intensity, and edge information. These image-as-vector representation methods ignore the fact that an image is 

intrinsically a matrix or a 2-order tensor, and thus mask the underlying 2D structure of an image. This may lead 

to the loss of the discriminant information required for tracking. 

2) Image-as-feature representation: There are algorithms that directly extract features from image patches 

and use the features to carry out tracking. For instance, Grabner et al. [5, 6] used Haar-like features, histograms 

of oriented gradients, and local binary patterns to obtain weak hypotheses for boosting-based tracking. In [2, 10] 

only Haar-like features were used, but great improvements were achieved by novel appearance models. Li et al. 

[12, 15] only used histograms of oriented gradients but applied novel appearance models to achieve good results. 

Adam et al. [1] robustly combined multiple patch votes with each image patch represented only by gray-scale 
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histogram features. Although image-as-feature representations, such as Haar-like featured-based ones, are 

appropriate for specifically designed discriminant learning methods, such as boosting, a lot of useful information 

is omitted from the features. 

3) Image-as-matrix presentation: image-as-matrix representation, such as tensor representation, retains 

much more useful information because the original image structure is preserved. It usually models the relations 

between pixel rows and the relations between pixel columns while the image-as-vector representation usually 

only models the relations between pixels. Tensor-based subspace learning [7, 27, 29] has been applied to visual 

tracking [11, 13, 24, 25, 26]. Some tensor-based tracking algorithms [13, 24, 25] conducted PCA on the mode-k 

unfolding matrix. There are algorithms [11, 26] in which eigenvalue decomposition on the covariance [19] in the 

mode-k unfolding matrix was applied to carry out tracking tasks. Although these tensor-based tracking methods 

take into account the correlations between different dimensions of the object appearance which changes over 

time, they currently have the following limitations: 

 The dimension reduction-based subspace learning methods used in [13, 24, 25] have the problem of 

subspace learning degradations [27] which may lead to loss of tracking. Although Yan et al. [27] 

proposed to rearrange pixels in the tensor to deal with subspace learning degradation, the time 

consuming pixel rearrangement is unsuitable for tracking applications. 

 The current tensor-based tracking algorithms cannot fully detect the intrinsic local geometrical and 

discriminative structure of the collected image patches in tensor form. 

 The current tensor-based tracking algorithms ignore the influence of the background and consequently 

suffer from distractions caused by background regions with appearances similar to the object. 

Two-dimensional linear discriminant analysis (2DLDA) [30] was proposed to detect the discriminative structure 

of 2-order tensor samples. However, the intrinsic local geometrical structure of the samples cannot be detected, 

because 2DLDA does not take into account the variations in the samples within the same class. 

Discriminant tracking utilizes the background information to improve object tracking. Avidan [46, 47] made 

important contributions to the research on discriminative tracking. In [46], Avidan trained online an ensemble of 

weak classifiers to distinguish between the object and the background. The resulting strong classifier was then 

used to label pixels in the next frame as either belonging to the object or the background. In [47], Avidan 

integrated the support vector machine classifier into an optic-flow-based tracker. In discriminant tracking, 

semi-supervised learning techniques can be applied to improve the classification of samples as the object or the 

background. Most semi-supervised improvement-based tracking algorithms [6, 10, 12] use all the unlabeled 

samples for training without selection. For example, Grabner et al. [6] weighted the unlabeled samples and then 

used all the unlabeled samples to train their feature selection-based boosting classifier. Li et al [10] developed an 

excellent semi-supervised CovBoost method for discriminant tracking. As not all the unlabeled samples are 
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useful for improving the classifier, it is required to select useful unlabeled samples and assign correct class labels 

to them. Bennett et al. [4] and Rosenberg et al. [20] proposed the classification margin improvement techniques 

[4, 20] to select the unlabeled samples with the highest classification confidences. These unlabeled samples were 

assigned with the class labels that are predicted by the current classifier. These techniques may increase the 

classification margin, but they do not provide any novel information to adjust the discriminative subspace. The 

margin improvement techniques are inappropriate for visual tracking. 

1.2. Our work 

Graph embedding for dimension reduction [22, 28] provides a new framework to handle the limitations in 

the image-as-matrix representations. In this paper, we propose a semi-supervised tensor-based graph embedding 

learning algorithm and apply it to visual discriminant tracking [38]. Fig. 1 shows the high level framework for 

our tracker. Our algorithm treats an image patch as a 2-order tensor. The labeled object and background tensor 

samples collected in previous frames and the unlabeled tensor samples collected in the current frame are used to 

train a tensor-based graph embedding space by our proposed semi-supervised graph embedding learning 

algorithm. This graph embedding algorithm is incorporated into the particle filtering-based tracking framework 

to track the object in the current frame. The tracking result in the current frame is used to update the set of the 

labeled samples. 

 

 

 

 

 

 

 

Fig. 1. The high level framework for our tracker. 

 

In our 2-order tensor-based graph embedding learning algorithm, an intrinsic graph is designed to represent 

correlations between the object tensor samples and correlations between the background tensor samples. A 

penalty graph is designed to keep apart the object tensor samples and the background tensor samples. The 

framework of graph embedding for dimension reduction is used to find the transformation matrices for mapping 

the original tensor samples to the tensor-based graph embedding space. Due to the degradations in the tensor 

embedding space learning [27], the embedding may not contain enough discriminative information for reliable 

tracking. We propose to encode more discriminant information by improving the tensor-based discriminative 

embedding space using the available unlabeled tensor samples in a semi-supervised way. In discriminant 

tracking, the existing single transformation matrix-based method [36] improves the discriminant space only by 

adding to the objective function a constraint term for handling the unlabeled samples. This method is difficult to 

use intuitively and directly in the 2-order tensor-based graph embedding learning for which two transformation 
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matrices are required, because it is difficult to define an appropriate regularizer for handling the two associated 

transformation matrices. In this paper, we carry out a transfer-learning-based semi-supervised improvement in an 

iterative way. At each iteration, the unlabeled tensor samples which are most probably misclassified at the 

previous iteration are selected according to their similarities to the labeled samples which are collected at earlier 

tracking stages. The corrected class labels are assigned to the selected unlabeled samples and used to learn a new 

discriminative embedding space into which the information about the earlier changes in object appearance is 

transferred. The learned embedding spaces from different iterations are combined linearly to form a final 

adjusted embedding space. 

The main contributions of our work are summarized as follows: 

 We develop a 2-order tensor-based graph embedding learning algorithm. The intrinsic local 

geometrical and discriminative structures of the tensor samples are effectively represented. 

 We propose a transfer-learning-based semi-supervised learning method to adjust the 2-order tensor 

graph embedding space. The semi-supervised technique selects the unlabeled tensor samples by 

comparing them with the samples with known classes collected at earlier times. Historical 

complementary information is transferred to adjust the discriminative embedding space. 

 We incorporate the proposed semi-supervised 2-order tensor-based graph embedding learning 

procedure into a Bayesian inference framework. Then, a new visual discriminative tracker is formed to 

effectively capture the appearance changes and reliably separate a moving object from the background. 

The remainder of the paper is organized as follows: Section 2 proposes our 2-order tensor-based graph 

embedding learning algorithm. Section 3 presents the transfer-learning-based semi-supervised improvement 

strategy. Section 4 describes our discriminant tracking algorithm. Section 5 demonstrates the experimental 

results. Section 6 summarizes the paper. 

2. Tensor-Based Graph Embedding 

In the following, we summarize the tensor operations, introduce the basic concept of tensor-based graph 

embedding, and propose our 2-order tensor-based graph embedding learning algorithm. 

2.1. Tensor operations 

A tensor [23] can be regarded as a multi-order “array” lying in multiple vector spaces. An n-order tensor is 

denoted as 1 2 k nI I I I   , where kI  ( 1,2,..., )k n  is a positive integer. An element in the tensor is 

represented as 
1 ,..., ,...,k ni i ia , where 1 k ki I . The inner product of two n-order tensors  and  is defined as: 

1 2

1 2 1 2

1 2

, ,..., , ,...,

1 1 1

, ...
n

n n

n

I I I

i i i i i i

i i i

a b
  

  .                             (1) 

The norm of  is , , where for a 2-order tensor it is called the Frobenius norm and written as 



6 

F
. The distance between  and  is  . 

Each order of a tensor is associated with a “mode”. Along a mode k, a tensor is unfolded into a matrix 

( )

( )

k ii k
I I

k


 A  which consists of 
kI -dimensional mode-k column vectors obtained by varying the k-th mode 

index 
ki  and keeping the indices of the other modes fixed. The inverse of mode-k unfolding is mode-k folding, 

which restores the original tensor  from ( )kA . The mode-k product k M  of a tensor  and a matrix 

M k kJ I  is a tensor 1 1 1... ...k k k nI I J I I        whose entries are: 

1 1 1 1 1 1,..., , , ,..., ,..., , , ,...,

1

, 1,...,
k

k k n k k n

I

i j i i i i i i i ji k

i

c a M j J
   



  .                          (2) 

The tensor  can also be obtained by matrix multiplication 
( ) ( )k kC MA  and then mode-k folding of 

( )kC . 

Given a tensor  and three matrices n nJ I
Γ , n nK J

Ψ , and m mJ I
Z  ( n m ), the following tensor 

mode-n product formulae hold ( ) ( )n m m n n m       Γ Z Z Γ Γ Z  and ( ) ( )n n n   Γ Ψ ΨΓ . 

2.2. Tensor-based graph embedding 

Let 1 2

1,2,...,{ }nI I I
i i N

  
  be the set of N training samples in the n-order tensor form. An intrinsic graph 

 and a penalty graph p , both of which have the vertex set 1,2,...,{ }i i N , are constructed to model the local 

geometrical and discriminative structure of tensor samples. Let W  and W
p  be the edge weight matrices of 

 and p , respectively. The entry ijW  in W measures the similarity between vertices i  and j , and the 

entry p
ijW  in W

p  measures their difference. The intrinsic graph describes desired statistical or geometric 

properties of the samples. The penalty graph characterizes statistical or geometric properties to be suppressed. 

The graphs  and p  are designed according to the application [40]. 

The task of the tensor-based graph embedding [28] is to find an optimal low dimensional tensor 

representation for each vertex in a graph  such that the low dimensional tensor representations optimally 

characterize the similarities between the vertex pairs. The characteristics of the original intrinsic graph are 

preserved and at the same time the characteristics identified by the penalty graph are suppressed. Let 

1,2,..., ,{ }
 M k k

k k

k l I
k n l I  be a set of n transformation matrices which map the samples 1,2,...,{ }i i N  to N points 

1 2 ...
1,2,...,{ }nl l l

i i N
  

  in a lower dimensional tensor subspace. Namely 1 2
1 2 ... n

i i n   M M M . Then, an 

optimal transformation which preserves the graph structure is obtained by solving the following optimization: 

 
2

1
1 1

2

1 1

arg min

subject to

N N
n

k
i j ij

k
i j

N N
p

i j ij

i j

W

W d


 

 

 
  

 

 





M

                            (3) 
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where d is a constant. 

2.3. Two order tensor-based graph embedding learning 

In many applications, such as discriminant tracking, the samples can be expressed in the 2-order tensor 

form: 1 2

1,2,...,{ }I I
i i N


 , and the sample set consists of labeled training samples and unlabeled samples. The 

unlabeled samples are usually given pseudo labels which are predicted by a classifier. Let “ 1 ” indicate the 

labeled positive samples, and “ 1 ” indicate the labeled negative samples. Let “+2” indicate the pseudo positive 

samples, and “ 2 ” indicate the pseudo negative samples. Then, the class labels of the training samples are 

represented by { , 1,2,..., }iL i N  ( 2, 1, 1, 2 )iL      . Let 
cn  be the number of the samples with class 

 2, 1, 1, 2    c . Then, 
2

2




 cc

n N . 

The intrinsic graph in the graph embedding framework characterizes the intra-class compactness. The 

penalty graph characterizes the interclass separability. The distributions of samples, such as the background 

samples in tracking applications, are disordered, irregular, and multimodal. The global linking [36] between 

samples for defining the graph structure may not be effective for classes which are widely scattered. As a result, 

its ability to maximize the between-class scatters is limited. Local linking between samples for defining the 

graph structure is more appropriate to preserve the scattered sample distributions. In this paper, we design the 

two graphs,  and p , to model the local geometrical and discriminative structure of the tensor samples. 

2.3.1. Definition of graph structure 

We define the affinity ijA  between samples i and j using the local scaling method in [32]. Without loss of 

generality, we assume that the data points in  
1

N

i i
 are ordered according to their labels { }iL  

(  2, 1, 1, 2    iL ). When 0iL  and 0jL , ijA  is defined as: 

2

exp
i j

ij

i j

A
 

 
  
 
 

                                    (4) 

where 
( )k

i i i   , and ( )k

i  is the k-th nearest neighbor of 
i
 in 

2 1 1{ }N

j j n n    . The affinities for a 

positive or pseudo positive sample are defined for all the positive and pseudo positive samples. When 0iL  

and 0jL , ijA  is defined as: 

2|| ||
exp , if ( ) or ( )

0, otherwise

i j

k k

ij i j

i N j j N i
A  

 
  

    
    




                       (5) 

where ( )

kN i  is the index set of the k-nearest neighbors of i  in 2 1

1{ }
n n

j j
 

 , 
( ) ,k

i i i    and ( )k

i  is 

the k-th nearest neighbor of 
i
 in 2 1

1{ }
n n

j j
 

 . The affinities for a negative or pseudo negative sample are only 



8 

defined for its k-nearest negative or pseudo negative neighbors. This definition reflects the local spatial relation 

between negative and pseudo negative samples. 

We construct the intrinsic graph  by defining the weights ijW  in W  of . When i j , 0i j  , 

and then the value of iiW  does not influence the optimization in (3). So, we only consider the definition of ijW  

when i j . The weights are defined as follows: 

1 2

1 2

,  if  

, if  0,  0,

, if  0,  0,

0,           otherwise

ij

i j

c

ij

i j i j

ij

ij

i j i j

A
L L c

n

A
L L and L L

n nW

A
L L and L L

n n

 

 


 




  
 

   




.                         (6) 

When 0i jL L , the nearby data pairs (large values of ijA ) are assigned large positive weights, and the data 

pairs far apart (small values of ijA ) are assigned small positive weights. When 0i jL L , there is no linking 

between the samples. 

We construct the penalty graph p  by defining the elements ( )p
ijW i j  of W

p  of p  as follows: 

1 2

1 2

1 1
, if  ,

1 1
, if  0,  0,

1 1
, if  0,  0,

1
,                    otherwise

ij i j

c

ij i j i j

p
ij

ij i j i j

A L L c
N n

A L L and L L
N n n

W

A L L and L L
N n n

N

 

 

  
    

 
  
         

 
      

 




 .                  (7) 

When 0i jL L , the nearby data pairs are assigned more negative weights. When 0i jL L , the data pairs are 

assigned a positive weight 1/ N . As the penalty graph is used to separate the object from the background, we 

assign a positive weight to each pair of samples whose labels have different signs (“+” or “-”) in order to 

increase separability between the object samples and the background samples. We assign a negative weight to 

each pair of samples whose labels have the same sign, in order to draw closer the samples with the same sign. 

Due to the definition of ijA , local spatial relations between tensor samples are included in the graph 

structure. The weights of the graphs are averaged by the number of the samples with the same label. The effect 

of the unlabeled samples is reflected by the terms 1/ cn , 1 21/  n n , and 1 21/ ( ) n n  in (6) and (7). In this 

way, non-uniformity of the number of the labeled positive (or negative) samples and the number of the pseudo 

positive (or negative) samples is dealt with. 
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2.3.2. Solution 

He et al. [7] proposed a tensor subspace analysis method in which only an adjacency graph, rather than an 

intrinsic graph and a penalty graph, is used. We extend the derivation in [7] to the framework of graph 

embedding, to reduce (3) to a more tractable form. 

Instantiation of (3) for 2-order tensors yields: 

2

1 1

2

1 1

minimize      || ||

subject to     || ||

N N
T T

i j F ij

i j

N N
T T p

i j F ij

i j

W

W d

 

 



 





U,V
U V U V

U V U V

                          (8) 

where 1U M
T  and 2V M

T . We derive (8) in the tensor form. In the 2-order tensor case, 

1 2
1 2i i  M M . The mode-1 unfolding of the tensor  is (1) A  and the mode-2 unfolding is 

(2)

TA . Denote 1

1i  M  as tensor . Then,  can be computed by matrix multiplication 

1

(1) (1)

T

i i T M U  and mode-1 folding of (1)T . Then, T

i U . Tensor 
i
 can be computed by matrix 

multiplication 2

(2) (2)

T T

i  Y M T V  and mode-2 folding of (2)iY . Then, 
i
 can be derived as:  

(2)( ) ( ) .T T T T T

i i i   Y V V U V                             (9) 

Substitution of (9) into (3) yields (8).
 

Proposition 1: Let D  and D
p  be diagonal matrices whose diagonal elements are 

1


N

ii ijj
D W  and 

1


Np p

ii ijj
D W , respectively. The optimization problem in (8) can be reformulated as the following optimization 

problem: 

minimize      trace( ( ) )

subject to     trace( ( ) )
2

T

U U

T p p

U U

d



 

U,V
V D W V

V D W V
                             (10) 

where 

1 1 1

,
N N N

T T T T

U ii i i U ij i j

i i j

D W
  

  D UU W UU                         (11) 

1 1 1

,
N N N

p p T T p p T T

U ii i i U ij i j

i i j

D W
  

  D UU W UU                        (12) 

  

Proof: Referring to [7], the following equations are obtained: 

  2

1 1

1  || || trace
2

N N
T T T

i j F ij U U

i j

W
 

   U V U V V D W V                     (13) 

  2

1 1

1 || || trace
2

N N
T T p T p p

i j F ij U U

i j

W
 

   U V U V V D W V                     (14) 

Substitution of (13) and (14) into (8) reformulates the optimization problem in (8) as the optimization problem in 
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(10). In (10), U and V can be swapped. Similar to (11) and (12), we define 
VD , 

VW , p

VD , and p

VW . 

Proposition 2: When V is fixed, the optimal U  is composed of the generalized eigenvectors 

corresponding to the 
1l  largest eigenvalues of the equation ( ) ( )p p

V V V V  D W u D W u , where u is a vector 

whose dimension equals the column vector dimension of U. Similarly, when U is fixed, the optimal V  is 

composed of the generalized eigenvectors corresponding to the 
2l  largest eigenvalues of the equation 

( ) ( )p p

U U U U  D W v D W v , where v is a vector whose dimension equals the column vector dimension of V. 

Proof: The Lagrangian format of the constrained optimization in (10) is: 

( ) trace( ( ) ) - trace( ( ) )
2

T T p p

U U U U

d
 

 
    

 
V V D W V V D W V .                   (15) 

Equation (15) corresponds to a minimization problem and the smallest eigenvalues are required for solving. We 

transform (15) to 

( ) trace( ( ) ) - trace( ( ) )
2

T p p T

U U U U

d
g 

 
    
 

V V D W V V D W V .                   (16) 

Equation (16) corresponds to a maximization problem and the largest eigenvalues are required for solving. The 

partial derivative of (16) yields 

 trace( ( ) ) trace( ( ) )( )
T p p T

U U U Ug    
 

 

V D W V V D W VV
0

V V
.                 (17) 

It follows that 

(( ) ( ) ) (( ) ( ) )T p p p p T T T

U U U U U U U U       V D W D W V D W D W 0 .                (18) 

It is apparent that ( ) ( )p p p p T

U U U U  D W D W  and ( ) ( )T

U U U U  D W D W . Then 

( ) ( )T p p T T T

U U U U  V D W V D W                              (19) 

( ) ( )p p

U U U U  D W V D W V .                               (20) 

Then, when U  is fixed the optimal V consists of the 
2l  generalized eigenvectors that correspond to the 

2l  

largest eigenvalues of the equation ( ) ( )p p

U U U U  D W v D W v . 

The Laplacian matrix p p

U UD W  is 1 2I I -dimensional. The corresponding Laplacian matrix for the 

image-as-vector representation-based tracking algorithms are 1 2 1 2( ) ( )I I I I    dimensional while the 

dimension of a vector obtained by flattening an image is 1 2I I . Therefore, the number of the samples sufficient 

to learn an effective tensor subspace is much less than the number of the samples sufficient to learn an effective 

vector subspace. 

2.3.3. Algorithm 

We use the training dataset  , 1,2,...i i N  associated with class labels { , 1,2,... }iL i N
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(  2, 1, 1, 2iL      ), to acquire transformation matrices U and V which are used to project the original tensor 

samples to the tensor-based graph embedding space. It is difficult to obtain the optimal U and V simultaneously. 

As in [7], we estimate U and V iteratively. For a fixed U, we estimate the optimal V using Proposition 2. Then, 

with the estimated V, we update U. This iteration process is repeated a certain number of times. The algorithm is 

outlined below: 

Step 1: Initially set U to the first 
1l  columns of the identity matrix and set the iteration step t to 1. 

Step 2: Calculate W and W
p  from (6) and (7), respectively. 

Step 3: for t = 1T  do 

           Calculate DU
, WU

, D
p

U , and W
p

U  from (11) and (12); 

          Compute V  by solving the generalized eigenvector problem: ( ) ( )p p

U U U U  D W v D W v ; 

    Calculate DV
, WV

, D p

V , and W p

V  by swapping U and V in (11) and (12); 

  Update U  by solving the generalized eigenvector problem: ( ) ( )p p

V V V V  D W u D W u ; 

end for. 

    Step 4: Return U and V. 

The number of iterations which ensures that the algorithm reaches a satisfactory result is determined empirically. 

While our graph embedding model updates the samples online, the graph embedding subspace is updated 

iteratively. 

Based on the obtained U and V, a tensor classifier ( )h  is constructed using the Euclidean distance in the 

low dimensional tensor embedding space. The unlabeled samples with pseudo labels are combined with the 

labeled training samples to train the classifier ( )h  which labels  according to the weighted center 

positions R
+
 of the positive samples and R

-
 of the negative samples. The weighted center position R

+
 of the 

positive samples is defined as: 

1 1

1 1

( , 2) (1 ) ( , 1)

( , 2) (1 ) ( , 1)

N N

i i i i
T i i

N N

i i

i i

L L

L L

   

   

  

 

 
    

 
 

    
 

 

 
R U V                        (21) 

where (0.5 1)    is used to give more weight to the samples whose labels are “+2” than the samples whose 

labels are “+1”, and ( , ) x y  equals 1 if x y , otherwise it equals 0. The weighted center position R
-
 of the 

negative samples is defined as: 

1 1

1 1

( , 2) (1 ) ( , 1)

( , 2) (1 ) ( , 1)

N N

i i i i
T i i

N N

i i

i i

L L

L L

   

   

  

 

 
    

 
 

    
 

 

 
R U V .                      (22) 
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We define a function ( )f : 

( ) T T

tf      U V R U V R                            (23) 

where 
t  is chosen to ensure that for any training sample 

i
 sign( ( )) sign( )i if L . Then, the classifier ( )h  

is defined by ( ) sign( ( ))h f . Two points ensure that samples are separable: 1) In general, the object 

samples are separable from the background samples. 2) In the penalty graph, more weights are defined to 

separate the object samples from the background samples. 

3. Transfer-Learning-Based Semi-Supervised Improvement 

We construct a semi-supervised method which uses the unlabeled data to adjust the learned discriminative 

embedding space. As in the previous discriminant trackers [6, 10], we use the image patches corresponding to 

the tracking results as the labeled positive samples, and use the image patches in the background as the labeled 

negative samples. Then, a discriminative embedding space is learned using these labeled positive and negative 

samples in the supervised way described in Section 2. We further select a number of useful unlabeled samples in 

the new frame to adjust the embedding space in a semi-supervised way. 

We introduce transfer learning into the semi-supervised learning process. In the tracking application, if the 

sample set is updated frequently, then there can be a more rapid response to changes in appearance. However, 

errors may occur in the updates, and tracking drift may be induced by large variations in appearance over time. 

Stability of the tracker is reduced. If the sample set is updated slowly, the tracker is less affected by tracking 

errors and more robust to tracking drift, but its adaptability is reduced. To maintain both the adaptability and the 

stability of tracking, we construct two sample sets. One is called “the target set” [10] which only consists of the 

object and background samples collected from recent frames. The other is called “the auxiliary set” [10] which 

consists of the samples collected at earlier tracking stages. The target set is updated frequently, to ensure that it is 

adaptable to changes in appearance. The auxiliary set is updated slowly to ensure stability of tracking and 

robustness to tracker drift. The samples in the auxiliary set are treated as the source data and the samples in the 

target set are treated as the target data [52]. The changes in the environment ensure that the distribution of the 

samples is changed, i.e., the distribution of the source data may be quite different from the distribution of the 

target data. We transfer information in the source domain to the target domain [52]. First, we use only the 

samples in the target set to learn an initial tensor graph embedding space which retains the discriminative 

information about the changes in object appearance in recent frames. Then, using the auxiliary set, we select the 

unlabeled samples which are most probably misclassified by the current learned graph embedding space. Their 

labels are chosen according to their similarities to the samples in the auxiliary set. The selected samples are used 

to iteratively update the graph embedding tensor subspace. In this way, the discriminative information about the 

earlier changes in object appearance is transferred into the graph embedding space. This transfer-learning-based 
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semi-supervised improvement makes the appearance model more robust to tracking drift. 

In the semi-supervised adjustment, samples with high similarity usually share the same label [41]. We do 

not use the projected tensor difference to measure the similarities between tensor samples. This is because the 

initial projection matrices in the iterative semi-supervised improvement process are not accurate enough for 

projecting tensor samples into a low-dimensional space. We also do not use the similarity measure based on the 

2-order tensor distance in (4). This is because in contrast with the graph embedding learning process in which it 

is only necessary to compute the distances between recent samples, the transfer learning-based semi-supervised 

improvement requires the computation of the distances between the recent samples in the target set and the 

earlier samples in the auxiliary set. As the recent environment and earlier environments may be quite different, a 

simpler similarity measure based on the 2-order tensor distance is not effective enough for measuring similarities 

between recent samples and earlier samples. Instead, we develop a more accurate block division-based 

covariance matrix descriptor measuring the similarities between these samples. In the descriptor, the local 

relations between pixels in sample patches are modeled. The division of an image patch into non-overlapping 

blocks incorporates more local spatial information into the similarity measurement. The local information in the 

covariance distance is a supplementary to the holistic features used in the tensor-based graph embedding. In the 

following, we first describe the block-division-based similarity estimation, and then propose our transfer- 

learning-based semi-supervised improvement. 

3.1. Block division-based similarity estimation 

In each sample patch, a feature vector f for each pixel is defined as: 

 2 2, , , , , ( ) ( )x y x yx y      f                               (24) 

where ( , )x y  are the pixel coordinates,   is the intensity value of this pixel, and 
x  and 

y  are the first 

order intensity derivatives. We divide the patch into m n  blocks. Given a block (p, q), let   be the number 

of pixels in the block and let μ  be the mean of 
1,2,...,{ }k k f . The image block (p, q) is represented using a 

covariance matrix pqC  [14, 37] which is obtained by: 

1

1
( )( )

1

pq T

k k

k





  


C f μ f μ .                               (25) 

Given the symmetric positive definite matrix pq
C , the SVD (singular value decomposition) for pq

C  

( pq TC EΣF ) produces the orthogonal matrix E and the diagonal matrix 1 2 6( , ,..., )Diag   Σ  where 

1,2,...,6{ }i i   are the eigenvalues of pq
C . The matrix logarithm of pq

C  is defined by: 

1 2 6log( ) (log( ), log( ),..., log( ))pq TDiag     C E E .                      (26) 

Due to the vector space structure of log( )pqC , it can be unfolded into a vector 
pqo . As log( )pqC  is a symmetric 
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matrix, only the elements of its upper triangular matrix are utilized in 
pqo . The off-diagonal elements in 

log( )pqC  are multiplied with 2  to ensure that the distance between any two symmetric matrices is equal to 

the distance between the corresponding unfolded vectors. The image patch is represented by the set of vectors 

1,2,...,

1,2,...,{ }q n

pq p mo . The similarity between the block (p, q) in patch i and the block (p, q) in patch j is computed by: 

2

exp

pq pq

i jpq

ij pq pq

i j

s
σ σ

o o
                                  (27) 

where ( )k

pq pq pq

i i i
  o o  and ( )ki  indicates the k-th nearest neighbor of patch i. 

The blocks nearer to the center of an image patch are more informative, while the boundary blocks are 

prone to be influenced by the exterior of the image patch. So, we weight the blocks in a patch using the spatial 

global Gaussian filtering. The weight pq  for a block (p, q) is defined as: 

2 2

2

( ) ( )
exp

2

pq o pq opq

spatial

x x y y




   
  

 
 

                            (28) 

where 
pqx  and 

pqy  are the positional coordinates of block (p, q), ox  and oy  are the positional coordinates 

of the center of the patch, and 
spatial  is a scaling factor. Then, the similarity ( , )i jS  between samples i  

and j  is defined as: 

 1 1

1 1

( , )

m n
pq pq

ij

p q

i j m n
pq

p q

s

S





 

 






.                                 (29) 

3.2. Semi-supervised improvement 

Let  
1

( , ) AN

i i i
L


 denote the auxiliary set of the tensor samples, where 

AN  is the number of the auxiliary 

samples, and 
iL  be the label, either “+1” or “ 1 ”, of sample 

i
. Let  

1
( , A T

A

N N

i i i N
L



 
 denote the target sample 

set, where 
TN  is the number of the samples in the target set. Let  

1

UN

j j
 denote the set of the unlabeled 

samples, where UN  is the number of the unlabeled samples. 

We derive the transfer-learning-based semi-supervised adjustment algorithm in an iterative way. Let 

 1 2(0) ( ) : 1, 1
I I

h


    denote the tensor classifier that is obtained by the tensor-based graph embedding 

learning algorithm in Section 2.3.3 only using the labeled samples in the target set. Let 

 1 2( ) ( ) : 1, 1
I Ith


    denote the classifier that is obtained in the t-th iteration by the tensor-based graph 

embedding learning algorithm using the labeled samples in the target set and the samples with pseudo labels. It is 

used to improve ( 1) ( )th  . Let 1 2( ) : 
I I

H


  denote the tensor classification model which is obtained by 
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linearly combining the classifiers obtained in the previous T̂ iterations: 

ˆ

(0) ( )

0

1

( ) ( ) ( )
T

t

t

t

H h h 


                                (30) 

where 
0  and { }t  are the combination weights. While ( )h  outputs the sign for labeling , the ensemble 

classifier ( )H  outputs a real value which represents the weight for labeling  and whose sign corresponds to 

the label of . At the ˆ( 1)T -th iteration, our goal is to find a new tensor classifier ( )h  together with the 

combination weight  , satisfying the following optimization: 

 

   
1 2 1 2 1 2

1 2

( ),
1 1

1 1

Minimize     = exp 2 ( ( ) ( ))

exp ( ) ( ) exp ( ( ) ( ))

Subject to     ( ) , 1,...

UA

U U

NN

ij i j j
h

i j

N N

j j j j j j

j j

i i A

F S L H h

S H H h h

h L i N




 

 

 

 

  

 



                  (31) 

where η weights the contribution of the inconsistencies among the unlabeled data. The usual value of η is 

/A UN N . The similarity ijS  between a sample in the auxiliary set and an unlabeled sample and the similarity 

1 2j jS  between two unlabeled samples j1 and j2 are computed using the block division-based covariance matrix 

descriptor in Section 3.1. The first term in the objective function in (31) measures the inconsistencies between 

the labeled samples in the auxiliary set and the unlabeled samples: for an unlabeled sample j which is similar to a 

labeled sample i (i.e., 
ijS  is large), it decreases the objective function if sample j shares the same label with 

sample i (i.e., ( )j ih L ). The second term in the objective function measures the inconsistencies among the 

unlabeled samples: it decreases the objective function if a pair of similar unlabeled samples j1 and j2 (i.e., 
1 2j jS  

is large) share the same label (
1 2

( ) ( )j jh h ). Although there is the product of the labels in the first term, the 

component 
iL  in the product is 1 or -1, and the product is equal to ( ) ( )j jH h  or –( ( ) ( )j jH h ). 

Then, the first term and the second term in the objective function in (31) finally have similar forms. 

On regrouping the terms in the objective function F in (31), the objective function is rewritten as follows: 

 2 ( ) 2 ( )

1

U

j j

N
h h

j j

j

F P e Q e
 



                                 (32) 

where 

*

*

*

( ( ) ( ))2 ( )

1 1

( ,1)
2

UA

j jj

NN
H HH

j ij i jj

i j

P S e L S e





 

                            (33) 

*

*

*

( ( ) ( ))2 ( )

1 1

( , 1)
2

UA

j jj

NN
H HH

j ij i jj

i j

Q S e L S e





 

                             (34) 

where (.)  is defined as in (21). According to [16], F is minimized when only the unlabeled samples with 
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maximum values of | |j jP Q  are classified as ( ) sign( )j j jh P Q  . So, we choose these unlabeled samples, 

and label them with 2sign( )j jP Q (“-2” or “+2”). Then, they are combined with the labeled samples  
1

A T

A

N N

i i N



 
 

in the target set to learn a new discriminative embedding space which yields a new tensor classifier ( )h . By 

minimizing F [16], the optimal   is derived as: 

1 1

1 1

( ( ),1) ( ( ), 1)
1 ln
4

( ( ), 1) ( ( ),1)

U U

U U

N N

j j j j

j j

N N

j j j j

j j

P h Q h

P h Q h

 



 

 

 

 
  

 
 

  
 

 

 
.                         (35) 

Then, the improved tensor classification model ( )H   is obtained. 

The procedure of the semi-supervised improvement algorithm is outlined as follows: 

Step 1: Compute the similarities between the unlabeled samples and the similarities between the auxiliary 

samples and the unlabeled samples. 

Step 2: Train (0) ( )h  by the tensor-based graph embedding algorithm only using  
1

A T

A

N N

i i N



 
. 

Step 3: Compute 
0  using (33), (34), and (35). 

Step 4: Initialize (0)

0( ) ( )H h ; 

Step 5: for ˆ1 t T do 

Compute 
jP  and 

jQ  for every unlabeled sample j using (33) and (34); 

Find the unlabeled samples with maximal values of | |j jP Q , and label them with 

2sign( )j jP Q ; 

Combine these chosen samples with  
1

A T

A

N N

i i N



 
 to train a new classifier ( ) ( )th  using 

the tensor-based graph embedding learning algorithm; 

Compute  t
 using (35); 

adjust the tensor classification model by ( )( ) ( ) ( )t

tH H h  ; 

end for 

Step 6: Return ( )H . 

From (33) and (34), it is seen that, if an unlabeled sample 
j
 is highly similar to the positive samples in the 

auxiliary set, but wrongly predicted to have the negative label by the current tensor-based graph embedding 

classifier, then this unlabeled sample has a large 
jP  and a small 

jQ . We choose this unlabeled sample and 

label it with 2sign( )j jP Q . Likewise, we choose the top few most “mis-predicted” samples for improving the 

tensor-based ensemble classifier ( )H . These chosen unlabeled samples are useful to encode discriminant 
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information at earlier time for compensating for the loss of discriminant information in the tensor-based graph 

embedding space. 

4. Visual Tracking 

We apply the proposed transfer-learning-based semi-supervised tensor-based graph embedding learning 

algorithm to appearance-based object tracking. We incorporate it into the flexible and effective Bayesian 

inference tracking framework [21] to generate a new tracking algorithm. Fig. 2, an extension of Fig. 1, shows an 

overview of the proposed tracker. The main modules in the proposed tracking algorithm include sampling the 

positive and negative samples in the target set, collecting the labeled samples in the auxiliary set, sampling the 

unlabeled samples, and combining the transfer-learning-based semi-supervised tensor graph embedding 

algorithm with the particle filtering framework. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. An overview of the proposed tracker. 

 

The online update of our tracker is carried out by updating the samples in the target set and the auxiliary set. 

The tracking results at a number of previous frames are used to generate positive samples in the target set. The 

variations of these samples are mainly caused by the object appearance variations over time. We draw the 

negative samples in the target set from the image region near to and surrounding the image patch indicated by 

the tracking result at the previous frame t-1, to ensure that these negative samples do not lie too far or too close 

to the object. A dense sampling method is used: a window slides in the surrounding region with high overlap 

ratio to generate a large number of image patches. A subset of the patches is randomly selected and the elements 

are labeled as negative. The auxiliary set of the labeled samples is collected from the earlier frames, i.e., we 

choose a positive sample and some negative samples every several frames for the auxiliary set. 

An object’s state is represented using an affine parameter vector η. A Gaussian distribution 1( , )tG η Σ  is 

used to model the state transition distribution corresponding to the dynamic model in the particle filtering. The 

mean vector of the Gaussian distribution is the affine parameter vector 1tη  estimated at the previous frame t-1, 

and the covariance matrix Σ  is set empirically. We simply consider the object state information in 2D (x, y) 
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translation and scaling in order to fairly compare our results with other tracking algorithms. The particles at the 

current frame t are drawn from the state transition distribution 
1( , )tG η Σ . The image patches determined by the 

state vectors of these particles are normalized to tensors 1{ } UN

j j  which are used as the unlabeled tensor 

samples. 

We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to the labeled 

samples in the target set, the labeled samples in the auxiliary set, and the unlabeled samples. Then, the ensemble 

classifier ( )H  is obtained. Corresponding to ( )H , the weight ( )jE η  of each particle 
jη  (j=1,2,..,NU) in 

the particle filtering is defined as: 

ˆ

(0) ( )

0

1

( ) ( ) ( )
T

t

j j t j

t

E f f 


 η                             (36) 

where 
j
 is the tensor corresponding to particle 

jη . Maximum a posterior (MAP) estimation is used to 

estimate the tracking result 
tη  at the current frame t: 

arg max ( )t j
j

Eη η .                                 (37) 

The global tracking algorithm is summarized as follows: 

Step 1: The positive tensor samples in the target set are updated using the tracking results at the previous 

frame. 

Step 2: The negative tensor samples in the target set are drawn from the image region near to and 

surrounding the patch indicated by the tracking result 
1tη  at the previous frame t-1. 

Step 3: The samples in the auxiliary set are updated once every several frames. 

Step 4: The dynamic model 
1( , )tG η Σ  is used to produce a number of particles at the current frame t. The 

tensors corresponding to these particles are used as the unlabeled tensor samples. 

Step 5: The transfer-learning-based semi-supervised tensor graph embedding algorithm is applied to the 

labeled samples in the auxiliary set, the labeled samples in the target set, and the unlabeled samples. 

A final graph embedding space is then obtained iteratively. 

Step 6: The weight of each particle 
jη  is evaluated using ( )jE η . 

Step 7: The particle with the largest weight is taken as the tracking result, as shown in (37). 

To simplify the complexity analysis of the algorithm, we assume that 1 2 l l l , and 1 2I I I  . The main 

computational cost of the proposed tracker is the calculations of WU , WV , W p

U , and W p

V , the generalized 

eigenvalue decomposition, and calculation of jP  and jQ . Each of the calculations of WU , WV , W p

U , and 

W p

V  requires 2 2 2( ( 2 ))N I I l  floating-point multiplications. The sparseness of W  and W
p  reduces the 

computational cost. The generalized eigenvalue decomposition requires 3( )I  floating-point multiplications. 
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Calculation of jP  and jQ  for each unlabeled sample j requires ( )A UN N
 
floating-point multiplications. 

So, the computational complexity of the proposed tracker is 2 2 2 3ˆ ˆ( ( ) ( 1) ( ( 2 ) ))A U UT N N N T T N I I l I     . 

As ˆ, , , UT T I l N N  , The computational complexity approximates 2(( ) )A U UN N N N  . 

5. Experimental Results 

There are many comparison results in the conference version of the work [38]. In this paper, we only 

present the new experimental comparison results focusing on the benchmark tracking dataset [39] published in 

CVPR 2013. In this dataset, there are 51 fully annotated sequences containing more than 25000 frames. These 

sequences were annotated with the following 11 attributes: illumination variation, scale variation, occlusion, 

deformation, motion blur, fast motion, in-plane rotation, out-of-plane rotation, out-of-view, background clutter, 

and low resolution. The providers of the benchmark evaluated 29 state-of-the-art tracking algorithms and 

released their results on this dataset. The evaluation of the results is based on the following criteria: 

 the center location error (CLE) between the center of the predicted bounding box and the center of the 

ground truth bounding box at each frame; 

 the visual overlap ratio (VOR) between the predicted bounding box 
pB  and the ground truth bounding 

box 
gB : 

( )
VOR

( )

p g

p g

area B B

area B B





.                                 (38) 

The benchmark used the precision plots based on the location error metric and the success plots based on the 

overlap rate metric to evaluate performances of different tracking algorithms: 

 Precision plot: the x-coordinate of a point in the plot is a location error threshold, and the y-coordinate 

of the point is the proportion of a video’s frames in which the center location error is less than the 

threshold. These points form a curve as the threshold is gradually increased. 

 Success plot: the x-coordinate of a point in the plot is an overlap ratio threshold, and the y-coordinate 

of the point is the proportion of a video’s frames in which the overlap ratio is larger than the threshold. 

The following representative precision and representative success rate were used to summarize the overall 

tracking performance: 

 The y-coordinate of the curve in the precision plot when the x-coordinate is 20 pixels 

 The y-coordinate of the curve in the success plot when the x-coordinate is 0.5. 

In the experiments, the first positive sample was the initial bounding box at the first frame supplied on the 

benchmark. Eight positive samples were constructed by perturbing a few pixels in four possible directions at the 

corner points of the first sample at the first frame. These nine samples were used as initial positive samples. The 

number of particles, i.e., the number UN  of the unlabeled samples, was set to 600. The parameter k for the 
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k-nearest neighbors was empirically chosen as 7 according to [32]. The number 1n  of the positive samples and 

the number 1n  of the negative samples in the target set were set to 50 and 100, respectively. The scaling factor
 

spatial  in (28) was set to 2.9. A positive sample and four negative samples were chosen every six frames for the 

auxiliary set. The number of the positive samples and the number of the negative samples in the auxiliary dataset 

were set to 20 and 80, respectively. We found 60 unlabeled samples with maximum values of | |j jP Q  and 

used them to adjust the ensemble classifier ( )H . All the image patches corresponding to the samples were 

normalized to templates of size 32 32 , making the dimensions of the 2-order tensors unchanged. Each image 

patch was divided into 4*4 blocks. The number of columns of both U and V in the tensor-based graph 

embedding learning algorithm were set to 2, i.e., 
1 2 2 l l . The number T of iterations for estimating U and V 

was set to 20 for solving 0 ( )h  and to 5 for solving ( )th , 1t  . The weight β in (21) was set to 0.8. The 

parameter T̂  in the semi-supervised adjustment algorithm was set to 4 for a compromise between tracking 

speed and accuracy, i.e., 5 tensor-based ensemble classifiers are used in the final model. The above parameter 

settings remained the same in all the experiments. 

We evaluated the performance of our tracking algorithm on the entire dataset and on the sub-sets with 

different annotated attributes. We first validated the main properties of our tracker, such as image-as-matrix 

representation and semi-supervised improvement. Then, we compared our tracker with state-of-the-art trackers. 

5.1. Illustration of properties of our tracking algorithm 

Our framework for tracking is a combination of multiple strategies whose coordination ensures the final 

tracking performance. To illustrate the effectiveness of the strategies of the image-as-matrix representation, the 

graph embedding for discriminative representation of tensors, the semi-supervised improvement (ensemble 

learning), the transfer learning, and the spatial Gaussian filtering in our tracking algorithm, we compared our 

Tensor-based Discriminant Tracking algorithm with Transfer-learning-based Semi-Supervised Improvement 

(TrSSI-TDT) with the following variants: 

 TrSSI-VDT: This is the image-as-Vector representation-based Discriminant Tracking algorithm with 

transfer-learning-based semi-supervised improvement, i.e., the image-as-tensor representation is 

replaced with the image-as-vector representation. It uses the traditional vector-based graph embedding 

with only one transformation matrix in [28] to learn the graph embedding. The classifier ( )h  is 

constructed using this transformation matrix. Then, the transfer-learning-based semi-supervised 

improvement in Section 3 is applied in the vector representation. 

 TrSSI-2DLDA: This is the tracking algorithm obtained by replacing the 2D tensor discriminant graph 

embedding in TrSSI-TDT with the 2D linear discriminant analysis (LDA). 

 TDT: This is the tensor-based discriminant tracking algorithm without semi-supervised improvement, 
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i.e., the transfer-learning-based semi-supervised improvement (TrSSI) is removed from TrSST-VDT. 

 MI-TDT: This is the tensor-based discriminant tracking algorithm combined with the Margin 

Improvement technique [4], which adjusts the classification margin in a semi-supervised way. Namely, 

it is obtained by replacing TrSSI in TrSSI-TDT with MI in [4]. 

 SSI-TDT: This is the algorithm obtained by replacing the auxiliary sample set with the target sample 

set, i.e., transfer learning is not used in the semi-supervised improvement. This algorithm is just the one 

in our conference version of the work [38]. 

 TrSSI-RSF: This algorithm is obtained by Removing the Spatial Filtering in (28) from TrSSI-TDT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Tracking results of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and TrSSI-RSF. 

 

Fig. 3 shows some examples of the tracking results of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, 

MI-TDT, SSI-TDT, and TrSSI-RSF on the benchmark dataset. Fig. 4 shows the precision plots and the success 
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plots of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and TrSSI-RSF on all the 

sequences in the benchmark dataset. From these figures, the following useful points are revealed: 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                 (b) 

Fig. 4. The precision plots and the success plots of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and 

TrSSI-RSF on all the sequences: each decimal number in the legend is the representative precision or the representative success rate 

of the corresponding tracker: (a) the precision plots and (b) the success plots. 

 

 The transfer-learning-based semi-supervised improvement (TrSSI), semi-supervised improvement 

(SSI), and margin improvement (MI) enhance TDT, and the enhancement from SSI is higher than from 

MI. This indicates that TrSSI and SSI effectively adjust the graph embedding subspace. 

 Our TrSSI-TDT obtains more accurate results than TrSSI-2DLDA. This illustrates the effectiveness of 

the graph embedding for a discriminative representation for 2D tensors. 

 TrSSI-TDT yields more accurate results than TrSSI-VDT. As shown in the sixth and seventh examples 

in Fig. 3, when occlusion occurs, TrSSI-TDT still successfully tracks the objects, but TrSSI-VDT loses 

the track. This indicates that the 2-order tensor (image-as-matrix) representation which uses the 

projections U and V retains more useful structure information than image-as-vector representation 

which uses one projection. 

 TrSSI-TDT yields more accurate results than SSI-TDT. This indicates that historical information is 

effectively transferred into our object appearance model. This ensures that our tracker keeps the 

diversity of object appearance and avoids tracking drift after large changes in appearance, caused by 

large occlusions or serious pose or scale variations, etc. 

 TrSSI-TDT yields more accurate results than TrSSI-RSF. This indicates the effectiveness of the spatial 

filtering in our appearance model. 

 TrSSI-VDT, in which the tensor representation is not used, yields slightly more accurate results than 

SSI-TDT in which transfer leaning is not used. This indicates that transfer leaning may, overall, be 

more important than tensor representation for improving the tracking accuracy. 
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The proposed transfer-learning-based semi-supervised improvement can be used for reference for other tracking 

algorithms for improving the tracking performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The precision plots of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and TrSSI-RSF for different 

attributes. 

 

Figs. 5 and 6 show, respectively, the precision plots and the success plots of TrSSI-TDT, TrSSI-2DLDA, 

TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and TrSSI-RSF for annotated attributes, respectively. Due to the space 

limitation, only the plots for the attributes of occlusion, deformation, out-of-plane rotation, and background 

clutter are shown here. The plots for all the 11 annotated attributes are shown in the supplemental file which is 

published electronically. The following useful points are exhibited: 

 TrSSI always improves the tracking results except for low resolution videos. TDT and MI-TDT are not 

robust against large changes in illumination (such as in videos Car4, Cardark, Coke, David, and 

singer2), occlusions (such as in videos Coke, David3, and Lemming), and background clutter (such as 

in videos Football, Freeman4, and Lemming), etc. TrSSI-TDT can effectively handle large occlusions 

(such as in videos Coke, David3, Freeman4, and Lemming). However, the variants lose the track to 

some extent. 

 For the videos with the attributes of occlusion, deformation, and out-of-plane rotation, transfer learning 

contributes more than tensor representation, because the results of TrSSI-VDT are more accurate than 
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the results of SSI-TDT. For the videos with the attributes of background clutter, in-plane rotation, and 

illumination variation, transfer learning contributes as much as tensor representation and combination 

of transfer learning and tensor representation into the semi-supervised adjustment produces a large 

improvement in the results of our TrSSI-TDT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. The success plots of TrSSI-TDT, TrSSI-2DLDA, TrSSI-VDT, TDT, MI-TDT, SSI-TDT, and TrSSI-RSF for different 

attributes. 

 

5.2. Comparison with competing trackers 

To show the effectiveness of TrSSI-TDT, we conducted a comparison between TrSSI-TDT and the 29 

state-of-the-art trackers whose results were released on the CVPR 2013 benchmark dataset. 

Fig. 7 shows some tracking results of TrSSI-TDT and the top 10 ranked competing trackers on the dataset. 

Fig. 8 shows the precision plots and the success plots of the top 10 ranked trackers among TrSSI-TDT and the 29 

competing trackers on all the sequences in the benchmark dataset. The following useful points are seen: 

 In the precision plots, when the location error threshold lies within a large interval [5, 50], our 

TrSSI-TDT yields the highest precision compared with the competing algorithms. In the success rate 

plots, when the overlap rate threshold lies within a large interval (0, 0.8), TrSSI-TDT yields the highest 

success rates. TrSSI-TDT’ s representative precision is larger, by 7.6%, than the representative 

precision of Struck [42] which is the top tracker ranked by the representative precision among all the 
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competing trackers. TrSSI-TDT’s representative success rate is larger, by 5.3%, than the representative 

success rate of SCM [43] which is the top tracker ranked by the representative success rate among all 

the competing trackers. 

 Even the TrSSI-VDT and the SSI-TDT yield performances comparable to Struck and SCM. This 

further indicates the effectiveness of the transfer learning and semi-supervised improvement in our 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Tracking results of TrSSI-TDT and the top 10 ranked competing trackers. 

 

Figs. 9 and 10 show, respectively, the precision plots and the success plots of the top 10 ranked trackers 

among TrSSI-TDT and the 29 competing trackers for the annotated attributes of occlusion, deformation, 

out-of-plane rotation, and background clutter. The plots for all the 11 annotated attributes are shown in the 
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supplemental file. The following points are seen: 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                    (b) 

Fig. 8. The precision plots and the success plots of the top 10 ranked trackers among TrSSI-TDT and the 29 competing trackers on 

all the sequences: (a) the precision plots; (b) the success plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. The precision plots of the top 10 ranked trackers among TrSSI-TDT and the 29 competing trackers for different attributes. 

 

 Our TrSSI-TDT yields the results of top one for 6 attributes, top-2 for 8 attributes, and top -4 for 10 

attributes. 

 Our TrSSI-TDT clearly outperforms the competing trackers for the following attributes which pose 

frequent challenges in tracking: occlusions (such as in the videos David3, Jogging-1, and Woman), 

illumination variation (such as in the videos Coke, David, and Singer2), deformation (such as in the 
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videos Basketball, Crossing, and Subway), and background clutter (such as in the videos Football, 

Freeman4, and Deer). 

 TrSSI-TDT performs reasonably well on the videos with the attributes of fast motion and out-of-view, 

as TrSSI-TDT does not use a specific motion model with re-detection such as in TLD 

(tracking-learning-detection) [44]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. The success plots of the top 10 ranked trackers among TrSSI-TDT and the 29 competing trackers for different attributes. 

 

We also compared our tracker with the very recent trackers in [53, 54]. On the benchmark dataset, the 

representative precision of the tracker in [53] is 0.730, and its representative success rate is 0.551. The 

representative precision of the tracker in [54] is 0.649, and its representative success rate is 0.484. Overall, the 

results of our tracker are better than the results in [53, 54]. 

6. Conclusion 

In this paper, we have proposed an effective and robust discriminant tracking algorithm based on the 

proposed transfer-learning-based semi-supervised 2-order tensor graph embedding algorithm. The effectiveness 

of our work is attributed to: 

 the specially designed two graphs for modeling the local geometrical and discriminative structure of the 

2-order tensor samples; 

 the learning of the 2D tensor-based graph embedding space 



28 

 the transfer-learning-based semi-supervised adjustment technique. 

This 2-order tensor representation-based algorithm retains more discriminant information than image-as-vector 

representation-based algorithms. The transfer-learning-based semi-supervised adjustment technique effectively 

transfers discriminant information obtained from earlier times into the discriminative embedding space. This 

makes the proposed tracking algorithm able to address the challenges caused by heavy occlusion and large pose 

variations, etc. Experimental comparisons on the CVPR 2013 benchmark tracking dataset have demonstrated the 

effectiveness and robustness of the proposed tracking algorithm. 

In our future work, we will extend our image-as-matrix representation to higher-order tensor representation, 

e.g., 3-order tensor representation, with a feature vector for each pixel. 
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