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a  b  s  t  r  a  c  t

Twin  studies  indicate  that  the heritability  of general  cognitive  ability  – the  genetic  contribution  to  indi-
vidual  differences  –  increases  with  age.  Brant  et  al. (2013)  reported  that  this  increase  in heritability
occurs  earlier  in  development  for low  ability  children  than  high  ability  children.  Allied  with  structural
brain  imaging  results  that  indicate  faster  thickening  and  thinning  of cortex  for high  ability  children  (Shaw
et al., 2006),  Brant  and  colleagues  argued  higher  cognitive  ability  represents  an  extended  sensitive  period
for brain  development.  However,  they  admitted  no coherent  mechanistic  account  can  currently  reconcile
the  key empirical  data. Here,  computational  methods  are  employed  to demonstrate  the  empirical  data
can be  reconciled  without  recourse  to variations  in  sensitive  periods.  These  methods  utilized  population-
based  artificial  neural  network  models  of cognitive  development.  In the  model,  ability-related  variations
stemmed from  the  timing  of  the increases  in  the  non-linearity  of computational  processes,  causing  dizy-
gotic  twins  to  diverge  in  their  behavior.  These  occurred  in a population  where:  (a)  ability  was  determined
by  the  combined  small  contributions  of many  neurocomputational  factors,  and  (b) individual  differences
in  ability  were  largely  genetically  constrained.  The  model’s  explanation  of  developmental  increases  in
heritability  contrasts  with  proposals  that  these  increases  represent  emerging  gene-environment  corre-
lations  (Haworth  et al., 2010).  The  article  advocates  simulating  inherited  individual  differences  within
an  explicitly  developmental  framework.

© 2016  The  Author.  Published  by Elsevier  Ltd.  This  is an  open  access  article  under  the  CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. Cognitive ability and brain structure

Structural properties of the brain have been found to correlate
with individual differences in cognitive ability. For example, there is
a correlation of brain size to general cognitive ability1 of between
0.1 and 0.3 (McDaniel, 2005). When Ritchie et al. (2015) used a
range of measures from structural brain imaging to predict general
cognitive ability in adults, they found that brain volume explained
12% of the variance, cortical thickness another 5%, and all mea-

Abbreviations: IQ, intelligence quotient; MZ,  monozygotic; DZ, dizygotic; ANN,
artificial neural network; SES, socio-economic status.
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E-mail address: m.thomas@bbk.ac.uk
1 Some authors use the terms ‘ability’ and ‘intelligence’ interchangeably. Others

make a distinction whereby ‘cognitive ability’ is used to refer to the mental processes
and mechanisms required to execute tasks, while ‘intelligence’ is used to describe
a  score on a test that relates an individual’s cognitive ability to that of the general
population. Here, instead of ‘intelligence’, we  mostly use the term ‘general cognitive
ability’.

sures together up to 21% of the variance. It has been proposed that
the timing and magnitude of developmental changes in structural
indices, such as cortical thickness or cortical surface area, are the
more important predictors of general cognitive ability than brain
structure per se (Schnack et al., 2015). For example, in a longitu-
dinal study tracing development from young childhood into early
adulthood, Shaw et al. (2006) reported that a superior intelligence
(121–149 IQ points) was  associated with faster and more prolonged
thickening of cortex in childhood and faster thinning in adoles-
cence, with correlations between structure and ability at any time
point falling between 0 and 0.1. Thickening and thinning effects
differed between brain regions, being most noticeable in frontal
and temporal regions. However, in this study, only the superior
intelligence group showed reliable differences, with high (109–120
IQ points) and average (83–108 IQ points) IQ groups overlapping
sufficiently to be statistically indistinguishable.

The relationship between general cognitive ability and brain
structure is re-enforced by the finding that both are highly herita-
ble (e.g., Thompson et al., 2001; Plomin and Spinath, 2004), where
heritability is defined as the proportion of phenotypic variability
explained by genetic similarity. Moreover, bivariate analyses reveal
that the heritability of ability and structure is explained by partially
overlapping genes (e.g., Posthuma et al., 2002). This finding extends
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to the rate of change of structural properties such as cortical thick-
ness (Brans et al., 2010). The observation that general cognitive
ability is related to dynamic properties of cortical maturation led
Shaw et al. (2006) to propose that ‘the prolonged phase of pre-
frontal cortical gain in the most intelligent might afford an even
more extended “critical” period for the development of high-level
cognitive cortical circuits’ (p. 678), that is, a period of heightened
sensitivity to variation in environmental influences.

However, Brant et al. (2013) noted that extended structural
brain development does not necessarily imply longer sensitivity
to environmental influences. That is, the brain data provide no
direct evidence for individual differences in the length of a sen-
sitive period associated with cognitive ability (see Thomas and
Johnson, 2008; for discussion of the notion of sensitive periods
in brain development). Brant et al. (2013) sought out more direct
evidence by taking advantage of the finding that the heritability
of general cognitive ability increases linearly with age (Haworth
et al., 2010). The common explanation for this pattern is that
the aged-related increase marks an emerging gene-environment
correlation, which then exaggerates the influence of the initial
genetic differences on performance (Briley and Tucker-Drob, 2013;
Haworth et al., 2010). As individuals become more autonomous
with increasing age, they seek out environments that match their
genetic profiles. For example, brighter children may  seek out more
stimulating environments. Environmental influences then cause an
exaggeration of initial genetic differences. Haworth et al. described
the gene-environment correlation thus: ‘as children grow up, they
increasingly select, modify and even create their own  experiences
in part based on their genetic predispositions’ (2010, p. 1112).

Brant et al. (2013) reasoned that if higher cognitive ability cor-
responds to an extended sensitive period in brain development,
individuals with higher ability should remain sensitive to envi-
ronmental variation for longer. Greater influence of environmental
variation translates to lesser influence of genetic variation. The pre-
diction was therefore that in higher ability individuals, the rise in
heritability should occur later. Combining data from over 10,000
monozygotic (MZ) and dizygotic (DZ) twin pairs in a cross-sectional
study, and around 400 MZ and DZ pairs in a longitudinal study, they
found support for this hypothesis (see Fig. 1a). High and low abil-
ity groups showed similar heritability in childhood (4–12 years).
By adolescence (13–18 years), the low ability group now showed
an increase in heritability, while the high ability group continued
to show the same lower level observed in childhood. In adulthood
(18+ years), both groups now showed similarly high heritability.

There are, however, some difficulties with the picture. There is
little understanding of the low-level mechanisms linked to neu-
ral processing that underpin the macro cortical changes in indices
such as thickness or surface area; or, indeed, whether the corti-
cal changes reflect intrinsic genetic processes or the influence of
environmental variables such as socio-economic status (SES) (Shaw
et al., 2006; Noble et al., 2015). Shaw et al. (2006) suggested that
cortical thickening might correspond to experience-dependent
molding of the architecture of cortical columns along with den-
dritic spine and axonal remodeling, while the thinning observed
in adolescence might reflect the refining of neural circuits via use-
dependent selective elimination of synapses. But hypotheses of this
form largely rely on animal models, and the link to the develop-
ment of high-level cognitive behavior is not demonstrated. Indeed,
there is disagreement about which are the key structural indices
and how they relate to function, with absolute cortical volume, cor-
tical thickness, and cortical surface area all implicated, but showing
different developmental relationships to cognitive ability (see, e.g.,
Noble et al., 2015).

The consequence of an absent mechanistic account is illus-
trated by Brant et al.’s (Brant et al. 2013) admission that they
were unable to derive a coherent causal account of their find-

ings. The hypothesis that protracted development is beneficial
for the acquisition of higher and uniquely human cognitive func-
tions as measured by intelligence quotient (IQ) does not suffice,
because individuals with an eventual higher IQ tend to score
higher in tests from early in development (Columbo and Frick,
1999; Deary et al., 2000)—not just in adolescence, when the bene-
fit of protracted sensitivity would become apparent. Neither does
the association of longer environmental sensitivity in high IQ
fit with the common explanation of the age-related increase in
the heritability of general cognitive ability, as an emerging gene-
environment correlation. As Brant et al. 2013 put it, one would need
to ‘posit, counter-intuitively, that higher-IQ individuals seek out
environments concordant with their genetic propensities later in
development than do lower-IQ individuals’ (2013, p.1493, italics
added). Brant et al. (2013) concluded that the reason for develop-
mental increases in the heritability of IQ remains unclear.

1.2. Population-level computational modeling of development

Computational modeling provides a method to clarify theoret-
ical proposals via implementation, to unify empirical data with
respect to common mechanisms, and to generate novel predictions.
Its main disadvantage involves the simplifications required for
implementation. Artificial neural networks (ANNs) have been used
widely in the modeling of cognitive development (e.g., Spencer
et al., 2009; Thomas and McClelland, 2008). Recently, these mod-
els have been used to investigate associations between levels of
description, including those between genes, brain structure, brain
activation, and behavior (Thomas et al., 2016). While much simpli-
fied and focusing on development within a single computational
mechanism, the formalism of the ANN that the authors employed
had several useful properties for this purpose. The model com-
prised an associative network with distributed processing across
a network of simple integrate-and-fire processing units; behavior
was acquired via an experience-dependent developmental process,
which involved interaction with a structured and variable learn-
ing environment and gradual alterations in network connectivity
strengths; and the developmental trajectory and final representa-
tional states of each network were constrained by parameters with
analogues in neurocomputation, such as the activation function of
the neurons, the number of neurons, and the connection density.

Three aspects of the Thomas et al. (2016) model make it use-
ful for addressing the current empirical data. First, the model
simulated cognitive development in populations of individuals,
where variability in trajectories arose from intrinsic neurocom-
putational sources or extrinsic environmental sources (see also,
Thomas and Knowland, 2014; for the application of this method to
modeling sub-types of language delay; Thomas et al., 2013, for its
application to modeling socio-economic status effects on language
development). Second, the model included an artificial genome
that specified the neurocomputational properties of the ANN. This
allows modeling of genetic similarity between individuals, includ-
ing creating identical and non-identical twin pairs. Twin study
designs can then be simulated, which are the principal method to
measure the heritability of individual differences. Third, the output
of model can be viewed as generating behavior, while changes in
structural properties of the ANNs, such as their connectivity, can be
viewed as potentially informative of mechanisms contributing to
structural changes in the brain. As indicated above, there is no con-
sensus on the low-level neural mechanisms responsible for macro
changes in brain structure. The ANN included two potentially rele-
vant properties, one analogous to thinning (the decay and pruning
of unused connectivity) and one analogous to thickening (the accu-
mulation of connectivity strength), which were both central to the
developmental process. Individual differences in these properties
can provide candidate hypotheses for factors that contribute to
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Fig. 1. (a) Empirical data estimating the heritability of IQ split between high ability and low ability individuals, for childhood, adolescence, and adulthood (Brant et al., 2013).
(b)  Simulated data for the change in heritability across development for the population split by ability at the population mean. Note, for the simulation, a proxy of heritability
was  taken as the difference between MZ  and DZ correlations. The early measure was calculated at 100 epochs, mid  at 500 epochs, and late at 990 epochs. Error bars show
95%  confidence intervals.

observed changes in macro brain structure properties over human
development.

The aim of the following simulations was five-fold: (1) to capture
cognitive development in several populations, where individual
differences arose from different mixes of genetic and environ-
mental variation; (2) to use a twin study design to estimate the
heritability of function and structure; (3) to identify ability differ-
ences in the populations based on their behavior; (4) to show how
the heritability of differences in ability changed across develop-
ment in each population; and (5) to identify how ability related to
developmental changes in network structure properties.

2. Method

The following simulations use a base model taken from the
field of language development, addressed to the domain of English
past-tense formation. Here, the model was employed in an illus-
trative setting, intended only as an example of a developmental
system applied to the problem of extracting the latent structure of
a cognitive domain through exposure to a variable training envi-
ronment. The intention was to capture qualitative characteristics
of the empirical data rather than, for example, to exactly calibrate
variances from genetic and environmental sources to fit empirically
observed estimates of heritability in certain populations. The sim-
ulations reported here were not originally designed to simulate the
target empirical data. Full details of the simulation can be found in
Thomas et al., 2016. Here, a brief overview is provided.

2.1. Base model

A 3-layer backpropagation network was used to learn input-
output mappings over 57 input units and 62 output units. The
training set comprised approximately 500 such mappings. A back-
propagation network usually has a layered organization of simple
processing units, each with a sigmoid activation function. Layers
in between the input and output layer (so-called hidden units)
give the network the power to learn arbitrary input-output map-
pings. An error-correction algorithm iteratively adjusts connection
weights to reduce the disparity between the actual output and
the desired output for each input pattern (the backpropagation
algorithm). Training comprises repeated presentations of the set
of input-output mappings to the network, with each presentation
called an ‘epoch’ of training. For a given sized training set, a mini-
mum  number of hidden units will be necessary for the network to
learn the set. See Thomas and McClelland (2008) for further details.

2.2. How neurocomputational variation was implemented

ANNs contain a range of parameters that increase or decrease
their ability to learn a given training set or the rate at which learning
occurs. Parameters such as learning rate, momentum, and number
of hidden (internal) processing units feature in most published sim-
ulations. In models of normal/average development, parameters
are optimized to achieve best learning (usually in the presence of
the full training set). In the current model, a number of parameters
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were simultaneously varied by small amounts across individual
networks, with learning ability determined by their cumulative
effect. This reflected the expectation that in reality, many low-level
neural properties are likely to show small variations between indi-
viduals. Variations occurred over 14 computational parameters,
determining four broad properties of the artificial neural networks:
network construction, network dynamics, network adaptation, and
network maintenance. The parameters had general computational
functions and no specific relation to the problem domain that the
system was acquiring, in line with the ‘generalist gene’ hypothesis
(Plomin and Kovas, 2005).

The parameters were as follows. Network construction: architec-
ture, number of hidden units, range for initial connection weight
randomization, and sparseness of initial connectivity between
layers. Network dynamics: unit threshold function (or “tempera-
ture”), processing noise, and response accuracy threshold. Network
adaptation: backpropagation error metric used in the learning
algorithm, learning rate, and momentum. Network maintenance:
weight decay, connectivity pruning onset, pruning probability, and
pruning threshold. These parameters have derivations in neuro-
computational theory, and differences in their settings have been
used in a range of models to simulate variations in cognition,
including those found in general cognitive ability, specific language
impairment, dyslexia, schizophrenia, autism, and ageing. Specifi-
cation of the parameters, their previous use in the literature, and
information on how the range of variation was benchmarked and
calibrated can be found in Supplementary materials.

In terms of connectivity changes, the growth phase in human
brain development was not directly simulated. Rather, differences
in the outcome of the growth process were specified in terms of
the number of units and the sparseness of connectivity. Regres-
sive processes were simulated first by a continuous weight decay
parameter, and second by a pruning process that probabilistically
removed unused (small) connection weights beyond a certain stage
of development. Importantly, loss of connectivity reduces plastic-
ity in backpropagation networks (Thomas and Johnson, 2006); and
the timing of onset of pruning was a parameter that varied between
individual networks. In principle, then, there was  scope within the
model for differences in the timing of reduction of plasticity to be
related to behavioral outcomes, in line with the Brant et al. 2013
hypothesis.

For the purposes of this simulation, the settings of the parame-
ters were taken to be under genetic control, and were specified in
an artificial genome comprising binary genes (see Supplementary
materials, for the polygenic coding scheme). Genomes could be cre-
ated that shared 50% of their values on average, thereby simulating
sets of siblings or DZ twins. Identical genomes simulated MZ twins.
Populations of 1000 individual networks were created, made up
of 250 MZ  network pairs and 250 DZ network pairs. Two sets of
1000 genomes were created. Based on the benchmarked impact of
varying each parameter, one set of genomes included wide vari-
ation in the computational properties of the networks, while the
other set had a narrower range of variation. In the former, net-
works could be computationally very good or very poor, while in
the latter, networks varied around medium.

2.3. How environmental variation was implemented

Within the model, environmental influences on development
could in principle target either neurocomputational properties or
the level of cognitive stimulation. Here we implemented only the
latter, in line with a recent model of SES effects on language
development (Thomas et al., 2013, for discussion of this method
of implementing environmental influence). The training problem
was specified by the full set of input-output mappings. Variations
in the quality of the environment to which each simulated child

was exposed were implemented by a one-time filter applied to
the training set. Networks in higher quality environments were
exposed to a higher proportion of the full training set, those in
lower quality environments to a lower proportion. Quality was
determined by a single value between 0 and 1. Again, two ranges
of environmental variation were permitted: wide, where values
were randomly sampled for a twin pair in the range from 0 to 1,
and narrow, where values were randomly sampled in the range
from 0.6 to 1. Both members of a twin pair received the same ‘fam-
ily’ environment, and the quality of the environment was sampled
independently of properties of the genotype (i.e., there were no
gene-environment correlations).

This approach to implementing environmental influence was
sufficient to simulate, for example, the asymmetric relationship
between SES and delay versus between SES and giftedness (Thomas
et al., 2013). More relevant to current aims, it is sufficient to
simulate the way  that SES modulates the heritability of individ-
ual differences in behavior: the heritability of cognitive ability is
reduced in individuals from low SES backgrounds (Turkheimer
et al., 2003; though see Hanscombe et al., 2012). It is also sufficient
to show small non-linear influences of SES on network structure,
with the steepest gradient present at the lower end of SES variable
(Noble et al., 2015; Thomas & Coecke, in prep.). These effects are
shown in Fig. S1 in Supplementary materials.

2.4. The relative importance of genetic and environmental
variation for generating individual differences

One difficulty in using formal models to simulate genetic and
environmental contributions to individual differences is the lack
of a priori information constraining the relative range of variation
of these two factors. A given population distribution of behavior
could be caused by wide variation in environmental influences
among individuals who  are genetically fairly similar, or similar
environmental influences among individuals who genetically dif-
fer quite widely. The relative range materially affects measures like
heritability, irrespective of the flexibility of developmental mech-
anisms to respond to environmental variation (e.g., in terms of
notions like brain plasticity).2 While estimates of heritability can
be readily simulated in models that allow the relative ranges of
genetic and environmental influences to be free parameters, this is
achieved at the expense of explanatory power.

Given the aim of investigating qualitative effects, the current
model instead used two levels of genetic variation (wide and
narrow), implemented by the range of variation of neurocomputa-
tional parameters; and two  levels of environmental variation (wide
and narrow), implemented by the range of variation of the envi-
ronmental quality parameter. The four populations generated by
this 2 × 2 combination permitted exploration of the consequences
of different relative ranges for simulating the target empirical
phenomenon. Among the four, the condition with narrow environ-
mental variation and wide genetic variation produced the highest
heritability (i.e., proportion of behavioral individual differences
explained by genetic similarity), since genetic/neurocomputational
factors were more likely than environmental/training set factors
to limit performance. For the domain from which the base model
was drawn (English past tense acquisition), this high heritability
condition was the closest fit to human data (Thomas et al., 2013).
The reported high heritability of human general cognitive ability
(Haworth et al., 2010; Plomin and Spinath, 2004) also generated

2 Heritability is not only influenced by the relative range of environmental and
genetic influences but also by their absolute level and thus scope to serve as limiting
factors. These issues fall beyond the scope of the current paper (see Thomas and Gray,
in  preparation).
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the expectation that this condition would be the most appropriate
for simulating individual differences in cognitive ability.

2.5. How behavior was measured

The continuous output activation of each network was  thresh-
olded to provide a discrete response, which was rated as correct or
incorrect. The base domain, that of English past tense, is character-
ized by a predominant regularity and a set of exceptions. Regular
verbs are learned more robustly, while exception verbs are harder
for the networks to learn. Behavior was measured by accuracy on
regular verbs, making up 80% of the training set. However, perfor-
mance on exception verbs was a more discriminating measure and
more normally distributed, and so fed into to the measurement of
ability levels.

2.6. How ability was measured

The simplest way to measure ability is to take a behavior that is
highly discriminating between individuals and assign each individ-
ual a score. Performance on exception verbs early in development
(50 epochs, where an epoch corresponded to presentation of all
the patterns in an individual’s training set) was used for this
purpose in the current simulations. However, historically, intel-
ligence tests underwent a long process of design changes in the
20th century aimed at producing measures of cognitive ability
that could accurately estimate intelligence devoid of sociocul-
tural and environmental influences (e.g., Cattell, 1949). To capture
this filtering-out of environmental influence, a statistical regres-
sion model was constructed for each population that predicted
performance on exception verbs based on each network’s neu-
rocomputational parameter values and environmental quality.
The subsequent linear equation was used to generate a value
for each individual but excluding the environmental component
(Table 1 includes the regression coefficients per neurocomputa-
tional parameter). Results are reported for the use of this ‘culture
fair’ method of measuring ability. In Supplementary materials,
parallel results are provided when ability was determined by
untransformed exception verb performance, for comparison. Note,
the method used to reduce environmental influence from the abil-
ity measure did not remove all environmental influence, only its
main effect. Interactions of the quality of the training set with
neurocomputational parameters (i.e., ‘gene x environment interac-
tions’) remained. Such interactions are observed in these simulated
populations and account for some of the unexplained variability in
the linear regressions (Thomas et al., 2016).

2.7. How heritability was measured

Estimates of heritability are derived from twin correlations
either by the use of linear equations (e.g., Falconer and MacKay,
1996) or by model fitting. Assumptions are typically made in these
analyses, such as whether genetic effects are additive or dominant
(e.g., if the MZ  correlation is less than twice the DZ correlation, an
additive model is used; if the MZ  correlation is less than four times
the DZ correlation, a dominant model is used). Such assumptions
have been argued to bias estimates of heritability (Polderman et al.,
2015). Here, we simply report the difference between MZ and DZ
correlations, which provides a measure proportional to heritability.
The greater the disparity between the two correlations, the higher
the heritability. This has the advantage of allowing direct compar-
ison across populations with very different heritability levels.

Model fitting provides one method to estimate confidence inter-
vals, that is, the robustness of the estimates of heritability. Here,
another method was used, which took advantage of the fact that
data were derived from developmental models. Twin correlations

were computed at each incremental step of development, where
development took place over 1000 steps. Since heritability should
be relatively stable over nearby steps, variability across a moving
window of 10 steps before and 10 steps after a given time step
was used to assess the robustness of the measure at any given time
point.

2.8. How network structure was  measured

Two metrics served as indices of network structure: total
number of network connections and total connectivity magni-
tude (where magnitude is defined as the absolute size of the
connection irrespective of whether it is positive/excitatory or nega-
tive/inhibitory). After the onset of pruning, number of connections
in the model showed an exponential decline, similar to that exhib-
ited by gray matter. Total connection strength showed a linear
increase, similar to that exhibited by white matter (see Fig. S2).
In the model, the number of connections offered plasticity, such
that the network’s ability to change reduced as pruning took place.
This is in line with the notion of sensitive periods observed in
the cognitive system and the proposal that they may  be linked to
synaptic density (Huttenlocher, 2002; Thomas and Johnson, 2006).
Increasing connection magnitude reflected experience-dependent
strengthening. This is consistent with the idea that white matter
changes are associated with skill acquisition (Bengtsson et al., 2005;
Scholz et al., 2009).

2.9. Simulation design

Four populations of 1000 networks were trained on the target
domain, for 1000 epochs (presentations of the training set). The
populations represented a 2 × 2 design of range of genetic varia-
tion in learning ability (narrow vs. wide) and range of variation
in environmental influences on the training set (narrow vs. wide).
At each epoch, the behavior and structural properties of each net-
work were measured, and using the twin design, heritability was
estimated.

3. Results

Fig. 1a shows the general cognitive ability heritability estimates
for children, adolescents, and adults, re-plotted from Brant et al.
(2013). Given the reported high heritability of cognitive ability,
we focused on the simulated population where heritability was
highest, that is, the population where genetic variation was wide
and environmental variation was  narrow. Fig. 1b plots the her-
itability proxy, the difference between MZ  and DZ correlations,
for high ability and low ability groups, which were split at the
mean ability score of the population based on the average abil-
ity of each pair. Measures were taken at an early (100 epochs),
mid  (500 epochs), and late (990) point in training. The robust-
ness of the measure was  assessed by considering values for the
10 previous and 10 following epochs in training, and these were
used to compute statistical reliability. As with the empirical data,
there was an overall increase in heritability with age (main effect of
developmental stage: F(1,40) = 304.35, p < 0.001, �p

2 = 0.884). Her-
itability increased due to a reduction in the correlation between
DZ twins (see later Fig. 5). In other words, as with the empirical
data, heritability increased due to a reduction in the influence of
shared environment on behavior. The pattern of change in heritabil-
ity was  different between ability groups (F(1,40) = 25.08, p < 0.001,
�p

2 = 0.385). As with the empirical data, for the high ability group,
there was  no significant difference in heritability between early and
mid points (t(20) = 0.38, p = 0.707) but a significant rise between
mid  and late points (t(20) = 4.79, p < 0.001). As with the empiri-
cal data, for the low ability group, heritability showed a significant



M.S.C. Thomas / Developmental Cognitive Neuroscience 19 (2016) 258–269 263

Table  1
Linear regression analyses predicting behavior from neurocomputational parameters of the artificial neural networks and environmental quality, for the four populations.
Scores show standardized beta coefficient and significance level for each parameter. GWEN = wide genetic variation, narrow environmental variation. GWEW = wide genetic
variation, wide environmental variation. GNEN = narrow genetic variation, narrow environmental variation. GNEW = narrow genetic variation, wide environmental variation.
(Note:  type of learning algorithm did not vary in the genetic narrow conditions.).

Population

Parameter GWEN* GWEW** GNEN*** GNEW****

Beta Sig. Beta Sig. Beta Sig. Beta Sig.

Hidden unit number 0.176 <0.001 0.075 0.001 0.260 <0.001 0.196 <0.001
Temperature 0.275 <0.001 0.225 <0.001 0.371 <0.001 0.288 <0.001
Noise  −0.176 <0.001 −0.154 <0.001 −0.148 <0.001 −0.130 <0.001
Learning rate 0.324 <0.001 0.271 <0.001 0.373 <0.001 0.305 <0.001
Momentum 0.177 <0.001 0.151 <0.001 0.100 <0.001 0.108 <0.001
Weight variance −0.056 0.016 −0.033 0.148 −0.042 0.064 −0.038 0.088
Architecture 0.187 <0.001 0.153 <0.001 −0.111 <0.001 −0.059 0.008
Learning Algorithma 0.272 <0.001 0.202 <0.001 – – – –
Response threshold 0.229 <0.001 0.203 <0.001 0.166 <0.001 0.160 <0.001
Pruning onset 0.040 0.087 0.014 0.549 −0.014 0.534 −0.003 0.887
Pruning probability −0.037 0.111 −0.009 0.683 −0.039 0.082 −0.029 0.189
Pruning threshold −0.058 0.013 −0.053 0.019 −0.014 0.528 0.032 0.150
Weight decay −0.010 0.674 −0.017 0.466 −0.066 0.003 −0.077 0.001
Sparseness −0.091 <0.001 −0.075 0.001 −0.215 <0.001 −0.170 <0.001
Environment quality 0.115 <0.001 0.464 <0.001 0.163 <0.001 0.473 <0.001

* R2 = 0.486, F(15,984) = 61.90, p < 0.001.
** R2 = 0.507, F(15,984) = 67.40, p < 0.001.

*** R2 = 0.509, F(15,984) = 72.96, p < 0.001.
**** R2 = 0.516, F(15,984) = 75.02, p < 0.001.

a Learning algorithm did not vary in the genetic-narrow variation conditions.

increase between early and mid  points (t(20) = 31.02, p < 0.001) but
no change between mid  and late points (t(20) = 1.47, p = 0.157).
In contrast to the empirical data, there were reliable differences
both at the early measurement point (high ability > low ability,
t(40) = 2.78, p = 0.008) and the late measurement point (low abil-
ity > high ability, t(40) = 5.41, p < 0.001).

Within the simulation framework, it was possible that higher
ability could have been generated by an extended sensitive period,
consistent with Brant et al.’s (2013) hypothesis. That hypothesis
would be supported if it should turn out that connection prun-
ing (which reduced plasticity) had a later onset for the high ability
group than the low. While the high ability group did indeed have
a later onset (mean epoch 103.6 versus 98.7 for the low ability
group), this effect was not reliable (t(998) = 1.15, p = 0.251); nor
did pruning onset predict ability as a continuous variable (Pear-
son correlation = 0.043, p = 0.172). While the qualitative pattern of
Brant et al.’s (Brant et al. 2013) heritability data was  captured, the
main mechanistic difference between high and low ability groups
in the simulations was not, therefore, an extended sensitive period
in plasticity. Moreover, as with real children, in the simulation, dif-
ferences in the performance of high ability and low ability networks
were observable from early in development (Fig. S4).

The above simulation data were drawn from the population
where the heritability of behavior was the highest. Fig. 2 displays
equivalent data from the other conditions, with differing ranges
of genetic and environmental variation. Fig. 2 plots the heritabil-
ity proxy for ability groups across the full period of development,
indicating the points of measurement used in Fig. 1b. Compari-
son indicates that two  patterns, the increasing heritability across
development, and the overlapping heritability for the ability groups
followed by divergence followed by convergence, were unique to
the highest heritability condition. In the other conditions, where
environmental influences were relatively more important, heri-
tability reduced with age, and lower heritability was consistently
observed for the high ability group. As described in Section 2.5,
ability was assessed using a method that reduced the influence
of environmental variation, in line with the contemporary use of
‘culture fair’ intelligence tests. The same data contrasts in Fig. 2

are included in Fig. S5, but calculated using untransformed perfor-
mance on exception verbs at 50 epochs. The use of this different
measure to define ability groups modulated the interaction of abil-
ity and heritability, mainly for conditions of wide genetic variation.
For the target condition with high heritability, it served to reduce
the heritability of performance in the high ability group beyond
the early stage of development. This is because the conditions
of the environment in which simulated individuals were raised
increasingly contributed to how well they scored in ability tests,
reducing the manifestation of their intrinsic ability. In other words,
the model predicted that the observed empirical data of Brant et al.
(2013) are dependent on using ability tests that are relatively insen-
sitive to environmental influence.

Fig. 3 shows the change in the structural indices of total number
of connections (Fig. 3a) and total connection magnitude (Fig. 3b)
across development. The total number of connections shows a
profile of exponential decline with the onset of pruning. Notably,
high ability networks started from a higher peak (i.e., more able
networks tended to be larger); and the trajectories converged as
the larger networks experienced more pruning. However, as indi-
cated by the standard deviation error bars, there was large overlap
between the ability groups. This is because the parameters affect-
ing the macro measure of network size (architecture, number of
hidden units, sparseness) explained only some of the variance in
behavior, as shown in Table 1 (correlations between these met-
rics, performance, and timing of pruning onset can be found in
Table S1). Behavioral variance was influenced by a larger set of low-
level mechanisms. The trajectories were compared at discrete time
points (50, 100, 300, 500 epochs). At a group level, where groups
were defined by a split at the population mean ability level, compar-
ison of early time points (50 vs. 100, 100 vs. 300, 50 vs. 300) yielded
no statistically reliable interaction of group with rate of connec-
tion loss (p > 0.7). However, the empirical data of Shaw et al. (2006)
showed similar large overlap between ability groups in the rate
of change of cortical thickness, and only comparison of a superior
intelligence group (IQ 121–149) to high (IQ 109–120) or average
(IQ 83–108) ability groups yielded reliable differences in rates of
change. High and average groups did not reliably differ. However,
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Fig. 2. Developmental change in the difference between MZ  and DZ correlations of performance for high ability and low ability groups, for four simulated populations,
those  produced by a cross of narrow or wide genetic variation, and narrow or wide environmental variation. Vertical dashed lines demonstrate the points in development
represented in Fig. 1(b). Trajectories include 95% confidence intervals.

for the simulations, when ability was included as a covariate, rather
than used to define discrete groups, it was found to reliably mod-
ulate total connectivity, shown in Fig. 4a. Moreover, the extent to
which ability modulated total connectivity reliably reduced across
development (in Fig. 4a, the lines become less steep for later time
points). This reflects the narrowing of the gap between the trajecto-
ries defined at the group level. In other words, there was faster loss
of connectivity in more able networks, which nevertheless started
from a higher peak.

The structural index of total connection magnitude demon-
strated a different profile, with a gradual increase across
development (Fig. 3b). Nevertheless, a similar pattern was observed
for the effect of ability: the high ability group started from a higher
baseline than the low ability group; there was convergence of
the trajectories for the ability groups across development; but
large overlap at a group level producing non-reliable differences in
rates of change; when ability was used as a covariate, it explained
reducing amounts of variance across development, reflecting the
convergence of trajectories observed at a group level (Fig. 4b).
In contrast to connection loss, the pattern here was of the low
ability group catching up the high ability group later in devel-
opment. To the extent that the learning of low ability networks
was compromised by having too few connection weights, ceiling
performance was  achieved by strengthening these weights pro-
portionally more, particularly later in development. Low ability
networks consequently had larger average connection strengths,
a disparity which increased across development (main effect of
ability group: F(1,998) = 29.91, p < 0.001, �p

2 = 0.029; interaction
of ability x development: Ability x Development, F(1,998) = 28.83,
p < 0.001, �p

2 = 0.028; shown in Fig. S3). When performance was
close to ceiling levels, the non-linear nature of the simple pro-
cessing units in these networks meant that ever larger increases
in connection strength were required to achieve the same sized
improvement in behavior. Hence, connection magnitudes contin-
ued to increase while behavior had more or less plateaued.

Heritability of structural indices across development for the four
populations are included in Fig. S6, while Fig. S7 shows these data
split by ability for the high heritability population.

4. Discussion

Researchers have found it challenging to integrate several
emerging findings from the developmental cognitive neuroscience
of individual differences. These include the correlation of macro
structural properties of the brain (size, rate of thickening and
thinning with age) with general cognitive ability; the increasing
heritability of general cognitive ability with age; and the differ-
ential timing of the increase in heritability of general cognitive
ability between ability groups. No mechanistic account currently
reconciles these data.

Using a combination of ANNs and population modeling of cogni-
tive development, it was  possible to qualitatively simulate each of
these patterns within a single mechanistic framework. The sim-
ulations demonstrated that as a cognitive domain was acquired
by the population of ANNs, the heritability of individual differ-
ences increased across development. The heritability increased
earlier for low ability networks than high ability networks. Behav-
ioral improvements were associated with structural changes in the
ANNs, assessed by the indices of total connection number and total
connection magnitude. These structural changes occurred at dif-
ferential rates depending on ability. This pattern was observed in
a population with high heritability of behavior, in line with the
high heritability of general cognitive ability, and when ability was
assessed using a method that downplayed in the influence of the
environment, in line with culture fair measures of intelligence.

Brant et al. (2013) proposed that the observation of a later
rise in the heritability of general cognitive ability in higher ability
individuals supported the hypothesis that cognitive ability might
correspond to an extended sensitive period in brain development
(Shaw et al., 2006). However, they also noted that this hypothe-
sis is inconsistent with the observation that differences in general
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Fig. 3. (a) Simulation data showing the developmental change in the total number of connections in individual networks, for population groups mean-split into high ability
and  low ability. (b) Developmental change in the total connection magnitude (combining excitatory and inhibitory connections) for high ability and low ability groups. Error
bars  represent standard deviations.

cognitive ability are already observable early in development, and
the hypothesis does not fit well with a leading account of the origin
of the developmental increase in heritability, an emergent gene-
environment correlation, since there is no obvious reason why  this
correlation should emerge later in individuals of higher ability. The
model, by contrast, demonstrated that heritability can increase
across development without the need to postulate an emerging
gene-environment correlation; that heritability can rise earlier for
low ability individuals even when differences in the timing of sen-
sitive periods explain little of the variation in ability; and under
these circumstances, differences in ability are readily observable
from early in development.

Why  was the model able to capture these qualitative effects?
That is, what was the mechanistic account of the empirical data?
In the model, there is experimental control over the constraints
that shape development. We  can therefore plot predictive power of
these constraints across development, split by ability groups. Fig. 5
plots observed correlations between neurocomputational param-
eter values and behavior, and between environmental quality and
behavior. In addition, it plots MZ  and DZ behavioral correlations.
Lastly, it plots the total percentage variance explained by all the
neurocomputational parameters together, summing the linear fits.
It is apparent that the earlier increase in heritability in the low

ability group is driven by an earlier decrease in the DZ twin
correlation compared to the high ability group. While some indi-
vidual neurocomputational parameters (which are more likely to
have different values between DZ twins) increase their predic-
tive power over development, the total predictive power of all
genetic/neurocomputational properties is approximately constant.
It does not therefore explain the divergence of DZ performance.

The divergence of DZ performance occurs because of two factors,
both concerning the characteristics of non-linear learning systems.
First, the relationship of neurocomputational parameters to behav-
ior is typically non-linear. Second, neurocomputational parameters
show higher order interactions (i.e., non-additive effects) in their
influence on behavior. Both of these factors have been proposed as
explanations of ‘missing heritability’, that is, the reason why the
summed linear predictive power of measured genetic similarity in
genome-wide association studies tends to fall short of the level
of heritability estimated from twin study designs (Thomas et al.,
2016). Together these factors cause genetic differences between
DZ twins to be exaggerated in their neurocomputational influence
on behavior. Non-linear neurocomputational influences become
greater as the systems approach ceiling performance. Low ability
networks have lower dimensional internal representational spaces
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Fig. 4. Modulation of structural indices by ability at four different points in development, derived from regression analyses (Time 1 = 50 epochs, Time 2 = 100 epochs, Time
3  = 300 epochs, Time 4 = 500 epochs). (a) Total number of connections; main effect of ability on connectivity number: F(1,998) = 86.60, p < 0.001, �p

2 = 0.080; interaction of
ability with time point: F(1,998) = 18.14, p < 0.001, �p

2 = 0.018). (b) Total connection magnitude; main effect of ability on connection magnitude: F(1,998) = 17.67, p<0.001,
�p

2 = 0.017; interaction of ability with time point: F(1,998) = 7.49, p = 0.006, �p
2 = 0.007). Earlier points in development show greater modulation according to ability.

and as a consequence tend to adopt non-linear processing states
sooner during training.

The pattern depended, to some extent, on ability being assessed
by measures that were more sensitive to neurocomputational lim-
iting factors and less sensitive to environmental influences. If the
assessment of ability was more sensitive to environmental expe-
riences, this altered the way that limiting factors manifested in
individual differences, specifically adding a greater environmental
limiting factor to the performance of high ability networks.

Researchers have highlighted the notable finding that ability is
related to the rates of change of structural properties of the brain,
such as cortical thickness and surface area (Shaw et al., 2006). The
model demonstrated similar ability-related modulation of rates of
change of structural properties of the ANNs, derived from mea-
sures of their connectivity (total number and total magnitude). We
know in the model that differences in ability were generated by
small differences over a large set of general neurocomputational
properties, some of which directly influenced measures of con-
nectivity (architecture, hidden unit numbers, sparseness), some
of which influenced connectivity only indirectly via experience-

dependent change. Ability modulated reductions in connection
numbers because larger networks tended to be more computa-
tionally powerful but also lost connections more quickly during
pruning (in the sense that higher mountains tend to have steeper
sides). Ability modulated increases in connection strength because
late in development, low ability networks had to buttress their
smaller networks more to extract the best performance gains they
could manage. In short, the model provides a way to conceptualize
how structural differences between networks, and between their
dynamic rates of change, may  be related to differences in the quality
of behavior via low-level neurocomputational properties.

Aside from reconciling these key data, the model also exhibited
some other attractive properties that support its validity at a quali-
tative level. General cognitive ability is captured as the outcome
of many small differences in general neurocomputational prop-
erties; these properties are mainly under genetic control, but the
mapping of genes to these properties and these properties to behav-
ior is many to one (Plomin et al., 2013; Plomin and Kovas, 2005).
The genetic influence on behavior via the neurocomputational
properties remains relatively consistent across development, even
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Fig. 5. Correlations between all neurocomputational parameters and individual performance on regular verbs across development, for different ability groups. The figure also
plots  MZ  twin and DZ twin correlations (split by average twin ability); the correlation between environmental quality and performance; and the total variance explained by
all  neurocomputational parameters computed via summed independent linear fits. The y-axis shows Pearson correlation size (or% variance for the total variance measure);
the  x-axis shows epoch of training in the population. (a) High ability individuals; (b) low ability individuals.

while heritability is increasing (Thomas et al., 2016; Trzaskowski
et al., 2014). Since some but not all neurocomputational parameters
influence structural indices of the networks, while all contribute to
the ability of the networks, the genes determining ability and struc-
ture are partially overlapping (Brans et al., 2010; see Thomas et al.,
2016, Figs. 9 and 10). Structural indices correlate highly with each
other, behavioral measures correlate highly with each other, but

the correlation between the two  is weaker (Posthuma et al., 2003;
Thomas et al., 2016). If differences in the richness of the training
set implement one causal pathway of SES effects on development
(Thomas et al., 2013), the model demonstrates relatively small
effects of SES on structural indices (Table S1), in line with recent
data (Lawson et al., 2013; Noble et al., 2015). When SES serves as a
limiting factor on development, low SES can reduce the heritability
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of behavior and has detectable impact on network structure (Fig.
S1; Noble et al., 2015; Turkheimer et al., 2003; Thomas & Coecke,
in prep.).

The model generated several predictions. The pattern of
increasing heritability over development was a characteristic of
populations exhibiting high heritability, where genetic variation
was a stronger limiting factor than environmental variation. When
the environment was the limiting factor, heritability reduced across
development. The modulation of heritability patterns by ability also
depended on the way that ability was measured. When ability mea-
sures were more influenced by the environmental conditions in
which the individual was raised (i.e., the use of less culture-fair
tests), observed heritability reduced. This was more apparent in
high ability groups.

The model is rich enough to be applied to the development
of behavior, individual differences in behavior, changes in struc-
tural properties of processing systems, and data on heritability,
but of course, it is highly simplified. The current model had the
following limitations. First, the objective was a qualitative fit to
the data. For example, the heritability of ability in the genetic-
wide environment-narrow population was quantitatively higher
than that usually observed for general cognitive ability (though
appropriate for base domain from which the model was drawn). It
remains to be seen whether the findings replicate when heritabil-
ity values are quantitatively calibrated to the empirical data, by
adjusting ranges of variation. Second, in many respects, the neural
plausibility of the ANN is rudimentary, particularly in the map-
ping of structural measures to brain data. For example, the growth
phase of the neural networks was not simulated, just the outcome
of this process. To account for the growth phases of the Shaw et al.
(2006) data, one would need to assume that larger networks are the
outcome of faster and more prolonged growth and therefore rates
of cortical thickening. The structural measures of the ANNs at the
current level of simplification can at best offer candidate mecha-
nisms that may  contribute to observed changes in actual brains.
Third, the model only simulated a single system. This means it
cannot speak to the empirical data indicating region-specific brain
changes and differences in timing of thinning/thickening effects
(e.g., Shaw et al., 2008). Moreover, general cognitive ability is often
viewed as a property of multiple systems working together, or at
least, the shared variability of the performance of multiple systems,
and this is beyond the scope of a single-system model. Fourth, an
implemented model only demonstrates the viability of theoreti-
cal proposals, not their truth. For example, even though the model
demonstrated that an increase in heritability over age can be pro-
duced without an emerging gene-environment correlation, such
a correlation may  nevertheless be part or all of the explanation of
why it occurs for human general cognitive ability (though, per Brant
and colleagues’ argument, one would then need to find a plausible
explanation of why the correlation emerges later in higher abil-
ity individuals). Finally, it is worth pointing out that although the
empirical observations made by Brant et al. (2013) stem from a
large study, they still require replication in other samples and pop-
ulations to be viewed as completely robust, and to shed light on
the sampling and measurement factors that influence the timing of
observed increases in heritability.

5. Conclusion

The model presented here is the first mechanistic account to rec-
oncile diverse data on general cognitive ability from twin studies
and studies of developmental changes in brain structure. Indeed, it
is the first demonstration that it is even possible to reconcile them
within a common mechanistic framework. The model also gener-
ated novel predictions of what should obtain in populations with

different relative influences of genetic and environmental varia-
tion on individual differences, or when using intelligence measures
of different types. It offered several insights—the importance of
limiting factors on heritability measures, the role of non-linear sys-
tems in increasing heritability, the relation of dynamic changes in
brain structure to underlying processing. It is in many respects,
a highly simplified model. Nevertheless, it represents a response
to the important challenge of capturing individual differences and
development within a common mechanistic framework, and rec-
onciling data from separate levels of description, a key concern of
modern developmental cognitive neuroscience.
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