
BIROn - Birkbeck Institutional Research Online

Razgon, Igor (2015) Quasipolynomial simulation of DNNF by a non-
determinstic read-once branching program. In: Pesant, G. (ed.) Principles
and Practice of Constraint Programming. Lecture Notes in Computer
Science 9255. New York, U.S.: Springer, pp. 367-375. ISBN
9783319232188.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/15408/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/15408/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Quasipolynomial simulation of DNNF by a
non-determinstic read-once branching program

Igor Razgon

Department of Computer Science and Information Systems, Birkbeck, University of London
igor@dcs.bbk.ac.uk

Abstract. We prove that DNNFs can be simulated by Non-deterministic Read-
Once Branching Programs (NROBPs) of quasi-polynomial size. As a result, all
the exponential lower bounds for NROBPs immediately apply for DNNFs.

1 Introduction

Decomposable Negation Normal Forms (DNNFs) [3] is a well known formalism in the
area of propositional knowledge compilation notable for its efficient representation of
CNFs with bounded structural parameters. The DNNFs lower bounds are much less un-
derstood. For example, it has been only recently shown that DNNFs can be exponentially
large on (monotone 2-) CNFs [2]. Prior to that, it was known that on monotone func-
tions DNNFs are not better than monotone DNNFs [6]. Hence all the lower bounds for
monotone circuits apply for DNNFs. However, using monotone circuits to obtain new
DNNF lower bounds is hardly an appropriate methodology because, in light of [2], on
monotone functions, DNNFs are much weaker than monotone circuits.

In this paper we show that DNNFs are strongly related to Non-deterministic Read-
Once Branching Programs (NROBPs) that can be thought as Free Binary Decision Dia-
grams (FBDDs) with OR-nodes. In particular, we show that a DNNF can be transformed
into a NROBP with a quasi-polynomial increase of size. That is, all the exponential lower
bounds known for NROBPs (see e.g. [5, 8]) apply for DNNFs. As NROBPs can be linearly
simulated by DNNFs (using a modification of the simulation of FBDDs by DNNFs pro-
posed in [4]), we believe that the proposed result makes a significant progress in our
understanding of complexity of DNNFs. Indeed, instead of trying to establish exponen-
tial lower bounds directly for DNNFs, we can now do this for NROBPs , which are much
better understood from the lower bound perspective.

In the proposed simulation, we adapt to unrestricted DNNFs the approach that was
used in [1] for quasi-polynomial simulation of decision DNNFs by FBDDs. For the adap-
tation, we find it convenient to represent NROBPs in a form where variables carry no
labels and edges are labelled with literals. In particular, each input node u of the DNNF
is represented in the resulting NROBP as an edge labelled with the literal of u and these
are the only edges that are labelled (compare with [1] where the labelling is ‘pertained’
to OR nodes, which is impossible for unrestricted DNNFs where the OR nodes can have
an arbitrary structure).

The most non-trivial aspect of the simulation is the need to transform an AND of
two NROBPs Z1 and Z2 into a single NROBP. Following [1], this is done by putting Z1

‘on top’ of Z2. However, this creates the problem that Z1 becomes unusable ‘outside’
this construction (see Section 4.1. and, in particular, Figure 2 of [1] for illustration of
this phenomenon). Similarly to [1], we address this problem by introducing multiple
copies of Z1.

Formal statement of the result. A DNNF Z∗ is a directed acyclic graph (DAG) with
many roots (nodes of in-degree 0) called input nodes and one leaf (node of out-degree 0)
called the output node. The input nodes are labelled with literals, the rest are AND, and
OR nodes such that each AND node has the decomposability property defined as follows.
Let us define V ar(u) for a node u of Z∗ as the set of variables x such that Z∗ has a path
from a node labelled by x to u. Then, if u is an AND node of Z∗ and v and w are two
different in-neighbours of u then V ar(v)∩V ar(w) = ∅. Let Z∗u be the subgraph of Z∗

induced by a node u and all the nodes from which u can be reached. Then the function
F [Z∗u] computed by Z∗u is defined as follows. If u is an input node then F [Z∗u] = x,
where x is the literal labelling u. If u is an OR or an AND node with in-neighbours
v1, . . . vq then F [Z∗u] = F [Z∗v1] ∨ . . . ∨ F [Z∗vq

], or F [Z∗u] = F [Z∗v1] ∧ . . . ∧ F [Z∗vq],
respectively. The function F [Z∗] computed by Z∗ is F [Z∗out], where out is the output
node of Z∗. In the rest of the paper we assume that the AND nodes of Z∗ are binary.
This assumption does not restrict generality of the result since an arbitrary DNNF can
be transformed into one with binary AND nodes with a quadratic increase of size.

A Non-deterministic Read-once Branching Program (NROBP) is a DAG Z with one
root (and possibly many leaves). Some edges of Z are labelled with literals of variables
in the way that each variable occurs at most once on each path P of Z. We denote
by A(P) the set of literals labelling the edges of a path P of Z. To define a function
F [Z] computed by Z, let us make a few notational agreements. First, we define a truth
assignment to a set of variables as the set of literals of these variables that become true as
result of the assignment. For example, the assignment {x1 ← true, x2 ← false, x3 ←
true} is represented as {x1,¬x2, x3}. For a function F on a set V ar of variables,
we say that an assignment S of V ar satisfies F is F (S) = true. Now, let S be an
assignment of variables labelling the edges of Z. Then S satisfies F [Z] if and only if
there is a root-leaf path P of Z with A(P) ⊆ S. A DNNF and a NROBP for the same
function are illustrated on Figure 1.

Remark. The above definition of NROBP is equivalent to FBDD with OR-nodes in the
sense that each of them can simulate the other with a linear increase of size.

Our main result proved in the next section is the following.

Theorem 1. Let Z∗ be a DNNF with m nodes computing a function F of n variables.
Then F can be computed by a NROBP of size O(mlogn+2).

2 Proof of Theorem 1

This section is organised as follows. We first present a transformation of a DNNF Z∗

into a graph Z, then state two auxiliary lemmas about properties of special subgraphs
of Z, their proofs postponed to Section 2.1, and then prove Theorem 1.

The first step of the transformation is to fix one in-coming edge of each AND-node u
of Z∗ as the light edge of u. This is done as follows. Let u1 and u2 be two in-neighbours

V

& & &

X1 X2 X3

X2 ~X2

X1 X1 ~X1

X2

~X3

X3 X3

~X1 ~X2 ~X3

Fig. 1. DNNF and NROBP for function (x1 ∧ x2 ∧ ¬x3) ∨ (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ x3)

of u such that |V ar(u1)| ≤ |V ar(u2)|. Then (u1, u) is the light edge of u and (u2, u) is
the heavy edge of u. (Of course if both in-neighbours of u depend on the same number
of variables then u1 and u2 can be chosen arbitrarily.) We say that an edge (v, w) of Z∗

is a light edge if w is an AND-node and (v, w) is its light edge. Let P be a path from u
to the output node out of Z∗. Denote the set of light edges of P by le(P). Denote by
LE(u) the set of all such le(P) for a u− out path P .

Now we define a graph Z consisting of the following nodes.

– (u, le, in) for all u ∈ V (Z∗) (recall that if G is a graph, V (G) denotes the set of
nodes of G) and le ∈ LE(u). The ‘in’ in the third coordinate stands for ‘internal’
to distinguish from the ‘leaf’ nodes defined in the next item.

– For each input node u of Z∗ and for each le ∈ LE(u), Z has a node (u, le, lf)
where ‘lf’ stands for ‘leaf’. We say that (u, le, lf) is the leaf corresponding to
(u, le, in).

When we refer to a node of Z with a single letter, we use bold letters like u,v to
distinguish from nodes u, v of Z∗. We denote by mnode(u), coord(u), type(u), the
respective components of u, that is u = (mnode(u), coord(u), type(u)). We also call
the components the main node of u, the coordinate of u and the type of u. The nodes
of Z whose type is in are internal nodes and the nodes whose type is lf are leaf nodes.
The leaf nodes are not necessarily leaves of Z but rather leaves of special subgraphs of
Z that are important for the proof.

Setting the environment for definition of edges of Z. We explore the nodes u of
Z∗ topologically sorted from the input to the output and process each internal node u
of Z with u = mnode(u). In particular, we introduce out-neighbours of u, possibly,
together with labelling of respective edges, the set of nodes Leaves(u), and a subgraph
Graph(u) of Z which will play a special role in the proof. The detailed description of
processing of u is provided below.

– Suppose that u is an input node. Let y be the literal labelling u in Z∗ and let u′ be
the leaf corresponding to u.

1. Introduce an edge (u,u′) and label this edge with y.
2. Set Leaves(u) = {u′}.
3. Define Graph(u) as having node set {u,u′} and the edge (u,u′).

– Suppose that u is an OR node. Let v1, . . . vq be the in-neighbours of u in Z∗. Let
v1, . . . ,vq be the internal nodes of Z with v1, . . . , vq being the respective main
nodes and with coord(vi) = coord(u) for all 1 ≤ i ≤ q.
1. Introduce edges (u,v1), . . . , (u,vq).
2. Set Leaves(u) = Leaves(v1) ∪ . . . ∪ Leaves(vq).
3. Graph(u) is obtained from Graph(v1)∪ . . .∪Graph(vq) by adding node u

plus the edges (u,v1), . . . , (u,vq).
– Suppose u is an AND node. Let u1, u2 be two in-neighbours of u in Z∗ and assume

that the edge (u1, u) is the light one. Let u1,u2 be two internal nodes of Z whose
respective main nodes are u1 and u2 and coord(u1) = coord(u) ∪ {(u1, u)} and
coord(u2) = coord(u).
1. Introduce edges (u,u1) and (w,u2) for each w ∈ Leaves(u1).
2. Set Leaves(u) = Leaves(u2).
3. Graph(u) is obtained from Graph(u1) ∪ Graph(u2) by adding node u and

the edges described in the first item.

Remark. Let us convince ourselves that the nodes v1, . . . ,vq, and u1,u2 with the
specified coordinates indeed exist. Indeed, suppose that u is an OR-node of Z∗ and
let v be an in-neighbour of u. Let P be a path from u to the output node of Z∗.
Then le((v, u) + P) = le(P) confirming possibility of choice of nodes v1, . . . ,vq.
Suppose that u is an AND-node and let (u1, u) and (u2, u) be the light and heavy
edges of u respectively. For a P as before, le((u1, u) + P) = {(u1, u)} ∪ le(P) and
le((u2, u)+P)) = le(P) confirming that the nodes u1 and u2 exist. Thus the proposed
processing is well-defined.

Lemma 1. Let u ∈ V (Z) with type(u) = in and let u = mnode(u). Then the follow-
ing statements hold.

1. Graph(u) is a DAG.
2. u is the (only) root of Graph(u) and Leaves(u) is the set of leaves of Graph(u).
3. If u is an OR-node and v1, . . . ,vq are as in the description of processing of u

then each root-leaf path P of Graph(u) is of the form (u,vi) + P ′ where P ′ is a
root-leaf path of Graph(vi).

4. Suppose u is an AND node and let u1,u2 be as in the description of processing of u.
Then each root-leaf path P of Graph(u) is of the form (u,u1)+P1+(w,u2)+P2,
where P1, P2 are root-leaf paths of Graph(u1) and Graph(u2), respectively and
w is the last node of P1.

5. V ar(u) = V ar(u) where V ar(u) is the set of all variables labelling the edges of
Graph(u).

6. Graph(u) is read-once (each variable occurs at most once on each path).

It follows from the first, second, and the last statements of Lemma 1 that Graph(u)
is a NROBP. Therefore, we can consider the function F [Graph(u)] computed by Graph(u).

Lemma 2. For each u ∈ V (Z) with type(u) = in, F [Graph(u)] = F [Z∗u] where
u = mnode(u) and Z∗u is as defined in the first paragraph of formal statement part of
the introduction.

Proof of Theorem 1. Let out be the output node of Z∗ and out = (out, ∅, in)
be a node of Z. Graph(out) is a NROBP by Lemma 1 and, by Lemma 2, it computes
function F (Z∗out). By definition, Z∗out = Z∗ and hence Graph(out) computes the
same function as Z∗.

To upper-bound the size of Z∗, observe that for each u ∈ V (Z), |coord(u)| ≤
log n. Indeed, let us represent coord(u) as (u1, u

′
1), . . . , (uq, u

′
q), a sequence of edges

occurring in this order on a path of Z∗. Then each (ui, u
′
i) is the light edge of an AND-

node u′i. By the decomposability property of DNNF, |V ar(ui)| ≤ |V ar(u′i)|/2. Also,
since Z∗ has a path from u′i to ui+1, |V ar(u′i)| ≤ |V ar(ui+1)|. Applying this reasoning
inductively, we conclude that |V ar(u1)| ≤ |V ar(u′q)|/2q . Since |V ar(u1)| ≥ 1 and
|V ar(u′q)| ≤ n, it follows that |coord(u)| = q ≤ log n. Thus coord(u) is a set of light
edges of Z∗ of size at most log n. Since there is at most one light edge per element
of Z∗, there are at most m light edges in total. Thus the number of possible second
coordinates for a node of Z is

∑logn
i=1

(
m
i

)
≤ mlogn+1. As the number of distinct first

and third coordinates is at most m and 2, respectively, the result follows. �

2.1 Proofs of auxiliary lemmas for Theorem 1

Proof of Lemmas 1 and 2 requires two more auxiliary lemmas.

Lemma 3. Let u ∈ V (Z) with type(u) = in and let u = mnode(u). Then for
each v ∈ V (Graph(u)), coord(u) ⊆ coord(v). Moreover, if type(v) = lf then
coord(u) = coord(v) if and only if v ∈ Leaves(u).

Proof. By induction on nodes u of Z according to the topological sorting of the
nodes u = mnode(u) of Z∗ from input to output nodes. That is if v is an neighbour of u
then for any node v with v = mnode(v) the lemma holds by the induction assumption.

If u is an input node then V (Graph(u)) consists of u and the leaf corresponding to
u, hence the first statement holds by construction. Otherwise, V (Graph(u)) consists
of u itself and the union of all V (Graph(v)), where, following the description of pro-
cessing of u, v is one of v1, . . . ,vq if u is an OR-node and v is either u1 or u2 if u is an
AND-node. For each such v it holds by definition that coord(u) ⊆ coord(v). That is,
each node w 6= u of Graph(u) is in fact a node of such a Graph(v). By the induction
assumption, coord(v) ⊆ coord(w) and hence coord(u) ⊆ coord(w) as required.

Using the same inductive reasoning, we show that for each w ∈ Leaves(u),
coord(w) = coord(u). This is true by construction if u is an input node. Otherwise,
Leaves(u) is defined as the union of one or more Leaves(v) such that coord(v) =
coord(u) by construction. Then, letting v be such that w ∈ Leaves(v) we deduce, by
the induction assumption that coord(w) = coord(v) = coord(u).

It remains to prove that for each w ∈ V (Graph(u))\Leaves(u) such that type(w) =
lf , coord(u) ⊂ coord(w). This is vacuously true if u is an input node. Otherwise, the
induction assumption can be straightforwardly applied as above if w ∈ Graph(v) for

some v as above and w /∈ Leaves(v). The only situation where it is not the case is
when u is an AND node and v = u1 where u1 is as in the description of process-
ing of an AND node. In this case coord(u) ⊂ coord(u1) by construction and, since
coord(u1) ⊆ coord(w), by the first statement of this lemma, coord(u) ⊂ coord(w).
�

Lemma 4. 1. For each internal u ∈ V (Z), the out-going edges of u in Z are exactly
those that have been introduced during processing of u.

2. For each v ∈ V (Z) with type(v) = lf , the out-degree of v in Z is at most 1.
Moreover the out-degree of v is 0 in each Graph(u′) such that v ∈ Leaves(u′).

3. Let u be an internal node and let (w1,w2) be an edge where w1 ∈ V (Graph(u))\
Leaves(u). Then (w1,w2) is an edge of Graph(u).

Proof. The first statement follows by a direct inspection of the processing algorithm.
Indeed, the only case where an edge (u,v) might be introduced during processing of a
node u′ 6= u is where mnode(u′) is an AND node. However, in this case type(u) must
be lf in contradiction to our assumption.

Consider the second statement. Consider an edge (v,w) such that type(v) = lf .
Suppose this edge has been created during processing of a node u. Then u = mnode(u)
is an AND-node. Further, let u1,u2 be as in the description of processing of u. Then
v ∈ Leaves(u1) and w = u2. By construction, coord(w) = coord(u) and by Lemma
3, coord(v) = coord(u1). Hence, by definition of u1, coord(w) ⊂ coord(v). Suppose
that v ∈ Leaves(u′) for some internal u′ ∈ V (Z). Then, by Lemma 3, coord(v) =
coord(u′) and hence coord(w) ⊂ coord(u′). It follows from Lemma 3 that w is not a
node of Graph(u′) and hence (v,w) is not an edge of Graph(u′). Thus the out-degree
of v in Graph(u′) is 0.

Continuing the reasoning about edge (v,w), we observe that coord(w) = coord(v)\
{(u1, u)} where u1 = mnode(u1). Notice that all the edges of coord(v) = coord(u1)
lie on a path from u1 to the output node of Z∗ and (u1, u) occurs first of them. Due to the
acyclicity of Z∗, (u1, u) is uniquely defined (in terms of v) and hence so is coord(w).
Furthermore, as specified above, mnode(w) = mnode(u2) which is the neighbour u
other than u1. Since (u1, u) is uniquely defined, u and u1 are uniquely defined as its
head and tail and hence so is mnode(u2). Finally, by construction, we know that w is
an internal node. Thus all three components of w are uniquely defined and hence so is
w itself. That is, v can have at most one neighbour.

The third statement is proved by induction analogous to Lemma 3. The statement
is clearly true if u = mnode(u) is an input node of Z∗ because then Graph(u)
has only one edge. Assume this is not so. If w1 = u then the statement immedi-
ately follows from the first statement of this lemma and the definition of Graph(u).
Otherwise, w1 ∈ V (Graph(v)) where v is as defined in the proof of Lemma 3. If
w1 /∈ Leaves(v) then, by the induction assumption, (w1,w2) is an edge of Graph(v)
and hence of Graph(u). This may be not the case only if u is an AND node and
w1 ∈ Leaves(u1) (u1 and u2 are as in the description of processing of u). By defi-
nition of Graph(u), (w1,u2) is an edge of Graph(u) and, according to the previous
paragraph, w1 does not have other outgoing edges. Thus it remains to assume that
w2 = u2 and the statement holds by construction. �

Proof sketch of Lemma 1 All the statements except 3 and 4 are proved by induction
like in Lemma 3. If u = mnode(u) is an input node then Graph(u) is a labelled edge
for which all the statements of this lemma are clearly true. So, we assume below that u
is either an OR-node or an AND-node.

Statement 1. Assume that Graph(u) does have a directed cycle C. Since Graph(u)
is loopless by construction, C contains at least one node w 6= u. By construction, w
is a node of some Graph(v) where v is as defined in the proof of Lemma 3. Then C
intersects with Leaves(v). Indeed, if we assume the opposite then, applying the last
statement of Lemma 4 inductively starting from w, we conclude that all the edges of C
belong to Graph(v) in contradiction to its acyclicity by the induction assumption. Now,
C does not intersect with Leaves(u) because they have out-degree 0 by Lemma 4. Thus
if C intersects with Graph(v) then Leaves(v) cannot be a subset of Leaves(u). This
is only possible if u is an AND-node and v = u1 (u1 and u2 are as in the description
of the processing of u). Let w′ ∈ Leaves(u1) be a node of C. By construction, u2

is an out-neighbour of w′ and by Lemma 4, w does not have other out-neighbours in
Z. Thus u2 is the successor of w′ in C and hence C intersects with Graph(u2) while
Leaves(u2) ⊆ Leaves(u) in contradiction to what we have just proved. Thus C does
not exists.

Statement 2. It is easy to verify by induction that Graph(u) has a path from u to
the rest of vertices, hence besides u, Graph(u) does not have any other roots. Now u
itself is a root by the acyclicity proved above. Since vertices of Leaves(u) have out-
degree 0 in Graph(u), clearly, they are all leaves. Suppose that some w ∈ Graph(u)\
Leaves(u) is a leaf of u. By construction, w 6= u and hence w is a node of some
Graph(v) as above. Then w is a leaf of Graph(v) because the latter is a subgraph of
Graph(u) and hence, by the induction assumption, w ∈ Leaves(v). Hence, as in the
previous paragraph, we need v such that Leaves(v) * Leaves(u) and we conclude as
above that v = u1. But then u2 is an out-neighbour of w and hence w cannot be a leaf
of u, a contradiction showing that the leaves of Graph(u) are precisely Leaves(u).

Important remark. In the rest of the section we use u and the root of Graph(u)
as well as Leaves(u) and the leaves of Graph(u) interchangeably without explicit
reference to statement 2 of this lemma.

Statements 3 and 4 Suppose that u is an OR node and let P ′ be the suffix of P
starting at the second node v of P . By statement 1 of Lemma 4, v is some vi as in
the description of processing of u. Hence vertices of Leaves(v) ⊆ Leaves(u) have
out-degree 0 in Graph(u) (statement 2 of Lemma 4) and do not occur in the middle
of P ′. Applying statement 3 of Lemma 4 inductively to P ′ starting from v, we observe
that P ′ is a path of Graph(v). The last node of P ′ is a leaf of Graph(v) because it is
a leaf of Graph(u). Thus statement 3 holds.

Suppose that u is an AND-node. Then by statement 1 of Lemma 4, the second node
of P is u1. Hence, one of Leaves(u1) must be an intermediate node of P . Indeed, oth-
erwise, by inductive application of statement 3 of Lemma 4, the suffix of P starting at
u1 is a path of Graph(u1). In particular, the last node w′ of P is a node of Graph(u1).
However, by Lemma 3, coord(w′) = coord(u) ⊂ coord(u1). Hence, by Lemma 3,
coord(w′) cannot belong to Graph(u1), a contradiction. Let w ∈ Leaves(u1) be the
first such node of P . By inductive application of the last statement fo Lemma 4, the

subpath P1 of P between u1 and w is a root-leaf path of Graph(u1). By construction
and the second statement of Lemma 4, u2 is the successor of w in P . Let P2 be the
suffix of P starting at u2. Arguing as for the OR case we conclude that P2 is a root-leaf
path of u2. Thus statement 4 holds.

Statement 5. We apply induction, taking into account that V ar(u) is the union of
all V ar(v) where v is an in-neighbour of and V ar(u) is the union of all V ar(v) where
v is as defined in the proof of Lemma 3. The details are omitted due to space constraints.

Statement 6. Let P be a root-leaf path of Graph(u). Suppose u = mnode(u) is
an OR-node. Then P = (u,vi) + P ′, the notation as in statement 3. P ′ is read-once
by the induction assumption and the edge (u,vi) is unlabelled by construction. Hence
P is read-once. If u is an AND-node then P = (u,u1) + P1 + (w,u2) + P2, all the
notation as in statement 4. P1 and P2 are read-once by the induction assumption, edges
(u,u1) and (w,u2) are unlabelled. The variables of P1 and of P2 are respective subsets
of V ar(u1) and V ar(u2) equal to V ar(u1) and V ar(u2), respectively, by statement
5 which, in turn, do not intersect due to the decomposability property of AND nodes of
Z∗. Hence the variables of P1 and P2 do not intersect and P is read-once. �

Proof of Lemma 2 By induction as in Lemma 3. If u = mnode(u) is an input
node then F [Z∗u] = x where x is the literal labelling u and Graph(u) is a single edge
labelled with x, hence F [Graph(u)] = x.

In the rest of the proof, we assume that the set of variables of all the considered
functions is V ar, the set of variables of Z∗. Introduction of redundant variables will
simplify the reasoning because we can now make the induction step without modifying
the considered set of variables.

Assume that u is an OR node. If S satisfies F [Z∗u] then there is an in-neighbour v
of u such that S satisfies F [Z∗v]. By construction there is an out-neighbour v of u such
that v = mnode(v). By the induction assumption, S satisfies F [Graph(v)]. Let P ′ be
a v−Leaves(v) path such that A(P ′) ⊆ S. Then, by construction (u,v)+P ′ is a u−
Leaves(u) path with the edge (u,v) unlabelled. Hence A(P) = A(P ′) ⊆ S and hence
S satisfies F [Graph(u)]. Conversely, if S satisfies F [Graph(u)] then there is a u −
Leaves(u) path P with A(P) ⊆ S. By statement 3 of Lemma 1, P = (u,vi)+P ′, the
notation as in the statement. A(P ′) ⊆ A(P) and hence S satisfies F [Graph(vi)] and,
by the induction assumption, S satisfies F [Z∗vi] where vi = mnode(vi). By definition
of vi, vi is an in-neighbour of u, hence S satisfies F [Z∗u].

Assume that u is an AND node. Let u1,u2 be as in the description of processing of
u with u1 = mnode(u1) and u2 = mnode(u2). Suppose that S satisfies F [Z∗u]. Then
S satisfies both F [Z∗u1

] and F [Z∗u2
]. Hence, by the induction assumption S satisfies

F [Graph(u1)] and F [Graph(u2)]. For each i ∈ {1, 2}, let Pi be a ui − Leaves(ui)
path of Graph(ui) with A(Pi) ⊆ S. Let w be the last node of P1. Then P = (u,u1)+
P1 + (w,u2) + P2 is a u = Leaves(u) path with the edges (u,u1) and (w,u2)
unlabelled. Hence A(P) = A(P1) ∪ A(P2) ⊆ S and thus S satisfies F [Graph(u)].
Conversely, suppose that S satisfies F [Graph(u)] and let P be a u− Leaves(u) path
with A(P) ⊆ S. Then by statement 4 of Lemma 1, P = (u,u1) +P1 + (w,u2) +P2,
the notation as in the statement. Clearly, A(P1) ⊆ S and A(P2) ⊆ S, hence S satisfies
both F [Z∗u1

] and F [Z∗u2
] by the induction assumption and thus S satisfies F [Z∗u]. �

References

1. Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Lower bounds for exact model counting
and applications in probabilistic databases. In Proceedings of the Twenty-Ninth Conference
on Uncertainty in Artificial Intelligence, Bellevue, WA, USA, August 11-15, 2013, 2013.

2. Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. Expander cnfs have
exponential DNNF size. CoRR, abs/1411.1995, 2014.

3. Adnan Darwiche. Decomposable negation normal form. J. ACM, 48(4):608–647, 2001.
4. Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.

(JAIR), 17:229–264, 2002.
5. Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer-Verlag, 2012.
6. Matthias P. Krieger. On the incompressibility of monotone DNFs. Theory Comput. Syst.,

41(2):211–231, 2007.
7. Umut Oztok and Adnan Darwiche. On compiling CNF into decision-dnnf. In Principles and

Practice of Constraint Programming - 20th International Conference, CP 2014, Lyon, France,
September 8-12, 2014. Proceedings, pages 42–57, 2014.

8. Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

