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Abstract 

 

In this paper we outline the range of probes and scientific instruments that will be required in order for 

Icarus to fulfill its scientific mission of exploring a nearby star, its attendant planetary system, and the 

intervening interstellar medium. Based on this preliminary analysis, we estimate that the minimum total 

Icarus scientific payload mass (i.e. the mass of probes and instruments which must be decelerated to rest 

in the target system to enable a meaningful programme of scientific investigation) will be in the region of 

100 tonnes. Of this, approximately 10 tonnes would be allocated for cruise-phase science instruments, and 

about 35 tonnes (i.e. the average of estimated lower and upper limits of 28 and 41 tonnes) would be 

contributed by the intra-system science payload itself (i.e. the dry mass of the stellar and planetary probes 

and their instruments). The remaining ~55 tonnes is allocated for the sub-probe intra-system propulsion 

requirements (crudely estimated from current Solar System missions; detailed modelling of sub-probe 

propulsion systems will be needed to refine this figure).  The overall mass contributed by the science 

payload to the total that must be decelerated from the interstellar cruise velocity will be considerably 

more than 100 tonnes, however, as allowance must be made for the payload structural and infrastructural 

elements required to support, deploy, and communicate with the science probes and instruments. Based 

on the earlier Daedalus study, we estimate another factor of two to allow for these components. Pending 

the outcome of more detailed studies, it therefore appears that an overall science-related payload mass of 

~200 tonnes will be required. This paper is a submission of the Project Icarus Study Group. 

 

Keywords: Interstellar travel; exoplanets; interstellar medium; stellar properties; planetary science; 

astrobiology 

 

 

 

1. Introduction 

 

The Icarus study [1,2] is tasked with designing an interstellar space vehicle capable of making in situ 

scientific investigations of a nearby star and its accompanying planetary system. This paper presents an 

initial consideration the range of probes and scientific instruments that will be required in order for Icarus 

to fulfill its scientific mission. It is important to realize that at this stage in the project any such analysis 

can only be very preliminary, as decisions regarding the actual complement of scientific instruments 

carried by an interstellar mission will depend on the following: 

 

(i) The available mass, power, and communications bandwidth budgets; and 

  



(ii) The architecture of the target star and planetary system (especially the number and type of planets 

present, including any observations of possible biosignatures that may have been made by solar system-

based astronomical observations). 

 

For the purposes of the Icarus project, it is expected that understanding of (i) will mature as the design 

progresses, whereas (ii) will be satisfied by the definition of a hypothetical, but plausible, planetary 

system at a later stage of the project.  

 

Although neither of these key prerequisites are currently defined, it is nevertheless considered worthwhile 

at this stage of the project to identify at least the kinds of probes and instruments, and their approximate 

numbers, that would be required by an Icarus-type interstellar mission conducting an initial scientific 

investigation of a nearby exoplanetary system. 

 

2. Top-level scientific objectives 

 

As discussed by Crawford [3], and building on earlier work by Webb [4] in the context of the Daedalus 

study, the Icarus science objectives include: 

 

(1) Science to be conducted on route. This includes studies of the interstellar medium (ISM) encountered 

traversed on the way to the target star, and also physical and astrophysical studies which can make use of 

the Icarus vehicle as an observing platform; 

 

(2) Astrophysical studies of the target star itself, or stars, if a multiple system is selected; 

 

(3) Planetary science studies of any planets in the target system, including moons and large asteroids of 

interest; and 

 

(4) Astrobiological/exobiological studies of any habitable (or inhabited) planets which may be found in 

the target planetary system. 

 

These broad science areas may themselves be sub-divided into a number of different areas of 

investigation. These are summarised in Table 1.  

 

The remaining sections of this paper outline the kinds, and approximate numbers, of sub-probes and 

accompanying instruments that would be required to address these different scientific questions. 

 

 

3. Science probes and instruments 

 

3.1 Science conducted en route 

 

 

The main scientific investigations to be conducted en route will be studies of the interstellar medium 

(ISM) between the Sun and the target star system. The sizes, physical properties, and locations of the low-

density cloudlets known to be present in the vicinity of the Sun, and the nature of the lower density inter-

cloudlet medium, are of particular interest [5]. Key instruments for these studies would be: 

 

 A dust analyser (to determine both dust masses and compositions) 
 



 Gas analyser(s) (to measure densities, ionisation states, and composition of the gas phase 
interstellar medium – probably a suite of several instruments in practice) 

 

 Magnetometer(s) and plasma wave instruments 

 

 High-energy (cosmic ray) detectors 
 

The instruments required to study the structure of the interstellar medium should have the highest priority 

for cruise-phase science. These instruments would be similar to those routinely flown on outer Solar 

System missions (e.g. Cassini; [6]) and proposed for interstellar precursor missions (e.g. [7]). They could 

be mounted on the main vehicle, but booms (or free-flying sub-probes) may be desirable to insulate them 

as much as possible from electromagnetic and other interference from the vehicle. Thought will also have 

to be given to protection from interstellar dust impacts. 

 

If Icarus is also to be used as a platform for detecting ‘exotic’ (e.g. dark matter) particles then additional 

instrumentation may be required. The Alpha Magnetic Spectrometer [8], currently mounted on the ISS, 

could provide an example, although in practice an innovative new instrument would probably need to be 

designed. If Icarus was to be used as a platform for optical or radio parallax studies, appropriate 

instrumentation (i.e. optical or radio telescopes) would need to be defined and a allowance made in the 

appropriate mass budget. 

 

Table 1 also identifies studies of the Solar System’s heliosphere, Kuiper Belt and Oort Cloud as possible 

targets for investigation. These three areas of investigation are rather different. The instrumentation 

described above for the study of the ISM will also be sufficient for heliospheric studies, and indeed the 

boundary between the heliosphere and the local ISM is of compelling scientific interest [5].  However, it 

is not considered here that Kuiper belt objects (KBO) should be a high priority for Icarus, partly because 

pre-Icarus precursor missions are likely to have made in situ observations of these objects, and partly 

because refining the Icarus trajectory to pass close a KBO may overly complicate the flight profile. The 

Oort cloud is so thinly populated that it is unlikely that Icarus will pass close enough to an Oort cloud 

comet to make in situ observations, and in any case the vehicle will probably be travelling at or close to 

its cruise velocity, making such observations difficult (and potentially dangerous). 

 

3.2 Studies of target star(s) 

 

Studies of the target star(s) will be of compelling astrophysical interest. However, it must be noted that 

for these very nearby stars a lot can, and will, be learned from astronomical observations made from 

Earth. It follows that in situ studies should be designed to complement these astronomical studies, and be 

used to obtain information that cannot plausibly be obtained using telescopic observations from the Solar 

System. Examples include in situ measurements of stellar wind and magnetic field, high-spatial resolution 

observations of stellar photospheres, active regions and coronae, and ultra-high precision measurements 

of stellar mass, radii and luminosity.  

 

The choice of suitable instruments should be guided by instruments on existing solar missions such as the 

Solar and Heliospheric Observatory (SOHO, [9]), Solar Terrestrial Relations Observatory (STEREO, 

[10]), and the forthcoming Solar Orbiter [11].  Standard instruments would include: 

 

 Magnetometers 
 

 Charged particle (stellar wind) detectors 
 



 X-Ray, UV and visible imaging systems 
 

 Instrument to measure total stellar luminosity to high precision (essentially the stellar ‘solar 

constant’) and any variability therein. 

 

Most of these instruments could be mounted on the main spacecraft bus rather than on sub-probes, and 

some of them (excluding the imaging instruments) could probably be the same as those used during the 

cruise phase to study the ISM. That said, the main vehicle is unlikely to be operating at an optimal 

distance from the star for many stellar physics studies, and in any case the STEREO mission [10] has 

demonstrated the value of making simultaneous observations of solar (here stellar) activity from different 

angles. It follows that at least one, and ideally two, sub-probe/s dedicated to stellar observations in 

addition to instruments on the main spacecraft would be desirable (and at least two, and ideally four, such 

stellar-physics sub-probes if a binary star such as alpha Centauri is the target). 

 

 

3.3 Planetary science 

 

The requirements for planetary probes will depend on the number and types of planets present in the 

target system. It is anticipated that, at least for planets of Moon-size and larger, by the time Icarus is 

launched this information will have been provided by Solar System-based astronomical observations. In 
what follows, we identify some generic instrumentation for different modes of planetary science 

investigations (although closely related, specifically astrobiology-related investigations are discussed in 

Section 3.4). 

 

3.3.1 Planetary orbiters 

 

Planetary orbiters provide an efficient means of mapping planets, determining surface and atmospheric 

composition, and making top-level inferences about their geological evolution. In general, planetary 

mapping orbiters should be placed in polar orbits to maximize surface coverage, and this will either 

require each planet’s polar axis to be identified before orbital insertion, or each orbiter to carry sufficient 

fuel to effect orbital plane changes. The instrumentation required on planetary orbiters will depend 

somewhat on the nature of the planet (e.g. gas giant or rocky planet), but orbiters designed for giant 

planets should also be able to explore orbiting moons (as for the Galileo and Cassini missions). 

Instrumentation will also depend on the presence or absence of an atmosphere, and the extent to which a 

planet may be totally cloud covered (like Venus and Titan). These may be difficult to determine in 

advance, so a flexible instrument suite would be desirable.  

 

Typical instruments for planetary orbiters would include: 

 

 High-resolution optical imaging system 

 

 High-resolution imaging UV-VIS-IR mapping spectrometer(s) 
 

 X-Ray fluorescence (XRF) or gamma-ray spectrometer (airless bodies only) 
 

 Laser altimeter (airless bodies or planets with transparent atmospheres) 

 

 Synthetic aperture radar (primarily for mapping cloud covered planets) 
 

 Magnetometer 



 

 

3.3.2 Atmospheric probes: giant planets 

 

Here the principal interest will be in making in situ measurements of the chemical composition of the 

atmosphere. A good model would be the Galileo Jupiter atmospheric entry probe [12], although if long-

term monitoring were considered desirable balloons or aircraft (drones) might be considered. Principle 

instruments for such probes would include: 

 

(1) Mass spectrometer(s) 

 

(2) Nephelometer 

 

(3) Thermometers, barometers, etc 

 

Line-of-sight communication with an orbiter, or with the main vehicle, will be required for data transfer. 

Doppler tracking of the signal will permit measurements of wind speed at different depths. 

 

3.3.3 Atmospheric probes: rocky/icy planets 

 

To a first approximation the kinds of instruments required to probe the atmospheres of solid planets are 

the same as required for giant planets (see above), but in this case balloons and/or aircraft would appear to 

be especially desirable. This is because, in addition to measuring atmospheric parameters, they could 

assist in surface exploration (e.g. by obtaining high-resolution images and spectral data of the surface, 

something which would be especially important if the surface was obscured from orbital investigation by 

clouds or hazes). In this case, in addition to the instruments designed to characterize the atmosphere 

(listed in Section 3.3.2 above) additional instruments for surface observations could include: 

 

 High-resolution multi-spectral imaging system 
 

 UV-VIS-IR mapping spectrometer(s) 
 

 

3.3.4 Rocky/icy planet surfaces: hard landers/penetrators 

 

From a planetary science point of view, much of the information we would like to obtain about solid 

planets will require in situ measurements made by contact instruments at the surface. Obtaining some of 

this information will require sophisticated instruments to be soft-landed on the planetary surface, and 

many will require rover-facilitated mobility (as discussed below). However, a lot of valuable top-level 

geophysical and geochemical information can be obtained by suitably instrumented hard landers or 

penetrators, which would be dropped from orbit and land intact on, or embed themselves a few metres 

below, the surface. Penetrators are likely to be especially efficient at emplacing network geophysical 

instruments (e.g. seismometers and heat-flow probes), as several penetrators could be targeted at each 

planet of interest. This mode of deploying instruments will be most effective on airless bodies, but might 

be adapted for planets with atmospheres as well.  

 

Examples of suitable penetrator studies include the MoonLITE [13] and LunarEX [14] concepts proposed 

for lunar exploration, and a similar concept proposed for Europa [15]. As demonstrated in these studies, 

examples of the kind of scientific instruments which could be efficiently deployed using penetrators 

include: 



 

 Seismometers 
 

 Heat-flow-probes 

 

 In situ geochemical sensors (e.g. mass spectrometers and X-ray fluorescence spectrometers) 
 

Note that at least intermittent line-of-sight communication with an orbiting satellite will be required for 

data downlink from penetrators.  

 

 

3.3.5 Rocky/icy planet surfaces: soft landers/rovers 

  

Some important planetary science investigations, especially those relating to geology and astrobiology, 

will require larger and more complex instrumentation than can plausibly be emplaced by penetrators. 

Moreover, many of these investigations would benefit from mobility, which implies the ability to land 

rovers on planetary surfaces. A good state-of-the-art rover, that is equipped with appropriate 

instrumentation, is NASA’s Mars Science Laboratory [16].  

 

Examples of the kinds of instruments required for surface geological and environmental investigations 

include: 

 

 Multi-spectral imaging system 
 

 Weather station (e.g. temperature, humidity, wind speed, etc) 
 

 Rock abrasion tool and/or rock splitter 

 

 High-resolution close-up (‘hand lens’) imager 
 

 In situ geochemical instruments (e.g. XRF, Raman, and/or laser-induced breakdown 
spectrometers) 

 

 Mass spectrometer(s). Note that different mass spectrometers may be required for geochemical 

and astrobiological investigations, as the former will mostly be concerned with trace element 

concentrations in rock samples, whereas the latter will be concerned with identifying complex 

organic molecules; we return to the latter in Section 3.4. 

 

 In situ rock dating capability (using some combination of the above instruments, as demonstrated 
recently by Farley et al. [17]) 

 

 Drill (for sub-surface sampling; depth TBD, but ideally several metres) 
 

 Geophysical package (e.g. seismometer, heat-flow probe). 
 

As was the case for penetrators, at least intermittent line-of-sight communication with an orbiting satellite 

will be required for data downlink from surface landers. 

 

 



3.3.6 Small bodies: asteroids and comets 

 

By analogy with the Solar System, we would expect that the minor bodies (i.e. comets and asteroids) of 

exoplanetary systems will contain valuable information relating to the age and formation history of the 

system. This will make such objects valuable targets of investigation. Examples of Solar System missions 

to such bodies include the Dawn mission to Vesta and Ceres [18] and the Rosetta mission (with Philae 

lander) to Comet 67P/Churyumov–Gerasimenko [19]. Instruments would be a sub-set of those identified 

above for the investigation of planetary surfaces.  

 

Note that obtaining the age of primitive cometary and/or asteroidal material through radiometric dating 

will be especially valuable from an astrophysical perspective. Such measurements would provide an 

independent estimate of the age of the parent star, and therefore help calibrate age estimates based on 

stellar evolution models for a star (or stars) having a spectral type other than the Sun. The recent results of 

Farley et al. [17] give some confidence that, by the time an Icarus-style interstellar mission can be 

mounted, such in situ radiometric dating will be possible. Note, however, that it will likely require a more 

sophisticated and more massive cometary/asteroid lander than the ~100 kg Philae probe. 

 

 

3.4 Astrobiology 

 

Requirements for astrobiological investigations are closely related to those of planetary science. In 

particular, they will likely require the soft-landing of rover-facilitated mobile instruments as discussed in 

Section 3.3.5). Presumably dedicated astrobiology instruments would only be targeted those planets 

identified in advance as being good candidates for habitability (e.g. possessing liquid water and a life-

friendly atmospheric composition), or for which atmospheric biomarkers have already been detected 

spectroscopically (either from Earth or from previously deployed orbiting spacecraft). In the event that 

biosignatures have been detected from Earth prior to launch it is likely that this would dominate the entire 

Icarus scientific investigation of the target system, and that the scientific payload would be tailored to its 

further investigation (possibly at the expense of some of the other scientific objectives outlined above). 

Even in the absence of the prior detection of actual biosignatures, it is likely that astronomical 

observations from the Solar System will have identified potentially habitable planets in the target system, 

if such exist, and that this information will also inform the particular choice of astrobiology experiments 

to be included in the payload. 

 

In the absence of such prior information, we here outline generic astrobiology investigations that might be 

suitable for the investigation of potentially habitable planets in the target system. Good models for 

astrobiological instrument suites include the Viking biology package [20] (although it would be possible 

to design a more sophisticated package today, and ideally more tailor-made to the specific target 

environment to the extent that this can be known in advance), the Pheonix Lander high-resolution 

microscope [21], and the Surface Analysis at Mars (SAM, [22]) and Urey [23] instruments designed for 

Mars Science Laboratory and ExoMars, respectively. 

 

Appropriate instruments would the first eight bullet points identified in Section 3.3.5 above as being 

required for planetary science investigations, but with the addition of the following: 

 

 High-resolution microscope 
 

 Mass spectrometer(s) for detection and characterization of complex organic molecules and carbon 
(and perhaps other element) isotope ratios 

 



 Measurements of temperature, pH and redox state (Oxidation-Reduction Potential, ORP) of liquid 
water (or any other liquids) found in the vicinity of the landing site 

 

 ‘Wet’ biology experiments to identify and characterize active metabolism and metabolic products 

(e.g. loosely based on the Viking biology package, but with updated (and ideally specially 

tailored) experimental protocols) 

 

 Some kind of metagenomic analysis might be desirable, but probably impossible without precise 
knowledge of indigenous genetic processes. 

 

If the target planet is wholly or partially covered in liquid water then, given the importance of liquid water 

to biology as we understand it, it will be desirable to deploy some of these instruments on a mobile 

floating platform (i.e. a boat) and to obtain and analyse water samples. In such a situation, a water (liquid) 

sampler would replace the drill specified in Section 3.3.5. 

 

4. Number or probes required and implications for payload mass 

 

The number of probes required to conduct a thorough investigation of the target planetary system will 

depend on number and types of planets present. In practice, this is likely to be determined before the 

launch of an Icarus-style interstellar mission by astronomical observations made from the Solar System.  

Such observations will also inform the relative balance between giant planet and rocky planet 

investigations, and the weighting given to astrobiological investigations.  

 

In the absence of such knowledge it is only possible to make some very rough and preliminary estimates 

of the minimum number of probes that will be required as follows: 

 

 Stellar orbiters: 2-4 
 

 Planetary orbiters: 6-8 (say one per planet; may need more) 
 

 Giant planet entry probes/balloons: 2-4 (at least one per giant planet) 

 

 Rocky planet atmospheric vehicles/balloons: 6-8 (ideally at least two for each rocky planet with 
an atmosphere) 

 

 Planetary soft landers: 6-8 (ideally at least two for each rocky planet; at least half should be 
equipped for astrobiological investigations and at least two designed to function on water) 

 

 Probes to explore/date minor bodies such as asteroids and/or comets: 2-4 

 

 Low mass penetrators for simple in situ geochemical and geophysical studies of airless planets, 
moons and asteroids: 30-50 

 

It is instructive to estimate the total mass of the above scientific payload. Taking SOHO (dry mass 1.35 

tonnes [24]) as a model for a stellar orbiter; Cassini (mass 2.15 tonnes, excluding the Huygens probe [6]) 

as a high-performance planetary orbiter; the Galileo Entry Probe (mass 0.34 tonnes [12]) as a typical 

planetary atmospheric probe); Mars Science Laboratory (mass 0.90 tonnes [16]) as a high performance 

planetary rover with astrobiology capability); Rosetta (mass 1.33 tonnes including Philae lander [19]) as 

an example asteroid/comet probe; and the LunarEX penetrators (mass 0.04 tonnes, including descent 



modules [14]) as typical of this type of delivery system, we arrive at a total probe mass in the range of 29 

to 43 tonnes for the lower and upper limits for the number of probes given above. For ease of reference, 

this information is summarized in Table 2. 

 

Note however, that these estimates, although they include the masses of the scientific instruments, 

communications systems, electronics and power systems, and supporting structure integrated into these 

various spacecraft, they do not include any fuel or propulsion systems for intra-system maneuvering, orbit 

insertion, or, where required, landing. These additional masses will be significant. For example, Cassini 

was launched with 3.1 tonnes of propellant for orbital insertion and maneuvering within the Saturn 

system [6], which significantly exceeds the mass of the spacecraft itself and brings the total Cassini mass 

to 5.2 tonnes (i.e. about 2.5 times the dry mass of the spacecraft). Similarly, although the mass of the 

MSL rover is ‘only’ 0.9 tonnes, the total launch mass (which of course had to include the aeroshell, 

heatshield, parachutes and skycrane used for entry, descent and landing) was 3.9 tonnes [16], or 4.3 times 

the mass of the rover alone.  

 

Clearly, the masses that must be allowed for intra-system maneuvering, and landing where appropriate, 

will depend on the technologies and energy sources adopted, and this should be a priority for further 

investigation. Certainly it will be important to adopt an exploration strategy which minimizes the energy 

requirements for intra-system maneuvering, for example by adopting an approach whereby probes are 

delivered to their targets from the main vehicle on Hofmann transfer orbits [25]. In the absence of any 

better information, we here follow the Cassini example and multiply the dry probe masses given above by 

a factor of 2.5 to allow for whatever propulsion system is needed to transport them to where they need to 

operate (in the full knowledge that this may be conservative for some probes, e.g. stellar orbiters, and 

optimistic for others, e.g. planetary landers). This brings our estimate of a minimum stellar and planetary 

probe mass to 70 to 103 tonnes.  

 

We still have to add the mass of instruments required for cruise phase science discussed in Section 3.1. 

The basic measurements of fields and particles are similar to those already made by outer solar system 

spacecraft such as Cassini, so allowing an additional 2.0 tonnes (i.e. approximately the total mass of the 

Cassini Orbiter) for these instruments would appear to be conservative.  However, if it is desired to make 

use of the interstellar vehicle as a platform for more exotic studies during the cruise phase (e.g. dark 

matter searches or astronomical observations) additional mass must be allowed for these instruments. As 

a baseline we here add another 8 tonnes for these unspecified instruments (this may also be conservative, 

but note that the Alpha Magnetic Spectrometer on the ISS, which might act as a proxy for an advanced 

exotic particle detector, has a mass of 8.5 tonnes [8]).  

 

This brings the estimated total mass of probes and scientific instruments to lie within the range of 80 to 

113 tonnes. Given all the uncertainties, it seems safe to conclude that an Icarus-style interstellar mission 

could perform a scientifically valuable exploration of a nearby exoplanetary system if it is able to deliver 

a total scientific payload of order 100 tonnes to the target system.  

 

Of course this scientific payload is only a sub-set of the mass of the total Icarus payload which must be 

decelerated into the target star system from the vehicles interstellar cruise velocity. The latter will include 

many additional elements, including (but not limited to): payload-committed structure and power 

supplies; the main computer and data management systems; intra-system and system-Earth 

communications systems; the payload dust protection system (or at least that part of it designed to protect 

the payload as it enters the target system); and whatever fuel and thrusters may be required to maneuver 

the main vehicle itself within the target system. In his analysis of the Daedalus payload Webb [4; see his 

Table 1] found the total payload mass to be roughly twice the mass allocated for scientific probes 

(although he excluded the main vehicle’s power supplies and dust protection system in this estimate). 



Using this as a baseline, we arrive at a total Icarus payload mass of the order of 200 tonnes for a 

reasonably complete scientific exploration of a nearby star, its planetary system, and the intervening 

interstellar medium. Needless-to-say, a larger payload mass would significantly enhance the scientific 

return 

 

5. Conclusions and recommendations 

 

We have presented some initial considerations on the selection of probes and instruments that would be 

required to make a scientifically useful exploration of a planetary system orbiting a nearby star. In 

practice, the scientific payload will be tailored to both the capabilities of the interstellar vehicle and the 

architecture of the particular planetary system to be explored. Information on the latter is likely to be 

provided by astronomical observations from the Solar System long before an Icarus-style interstellar 

vehicle is constructed. Nevertheless, based on how we have explored our own Solar System, it is possible 

to consider a generic scientific payload able to address the top-level science requirements for such an 

expedition. This has led to the following conclusions: 

 

(1)   Based on existing spacecraft and instruments, the dry mass of probes required to perform a 

minimally useful exploration of a target system containing 1-2 stars and 6-8 planets (such as may be 

appropriate for number of nearby star systems, including alpha Centauri A/B [25,26]) will probably be in 

the range of 28-41 tonnes (mid-range: 35 tonnes; Table 2). While this might be reduced by improved 

technology (especially the likely miniaturization of instruments over the coming century), it seems best to 

use this figure in order to be conservative (and any mass savings made as a result of improved technology 

would probably be better used to increase the range of science that could be performed rather than 

reducing the scientific payload mass). 

 

(2) Allowance must be made for transporting the scientific probes to the locations in orbit about, or on the 

surfaces of, planets to be investigated. This will require propulsion systems and fuel requirements not 

considered in the above mass estimate. It is not possible to estimate the mass that must be allocated for 

probe deployment and intra-system maneuvering until the probe propulsion systems are defined. This 

should be the basis of a future study. Here, based on chemically propelled Solar System probes, we 

estimate (perhaps conservatively) that this will increase the total mass required for science probes by a 

factor of 2.5, bringing it into the range 70-103 tonnes (mid-range: 87 tonnes). Adding an estimated 10 

tonnes for cruise phase science, brings the total to 80-113 tonnes (mid-range: 97 tonnes). 

 

(3) Given all the uncertainties, we conclude that an Icarus-style interstellar mission could perform a 

scientifically valuable exploration of a nearby exoplanetary system if it is able to deliver a total scientific 

payload of order 100 tonnes to the target system.  

 

(4) In addition to the science payload itself, allowance must be made for the structural and infrastructural 

elements required to support, deploy, and communicate with the science probes and instruments. Based 

on the earlier Daedalus study [4], we estimate this to be an additional factor of two, resulting in a total 

minimum science-related payload mass (i.e. the total science-related payload which must be decelerated 

to rest in the target system) in the region of 200 tonnes. However, we stress that this must be verified by a 

detailed integrated study of all the payload systems. 

 

(5) Demonstrating that a mainly fusion-based propulsion system is capable of delivering a science-related 

payload mass of order 200 tonnes to rest at a nearby star, with a total travel time of under 100 years (as 

specified in the Icarus Terms of Reference [27]), is therefore an important objective for on-going studies 

of the Icarus propulsion system.  

 



(6) As 200 tonnes appears to be close to the minimum science-related payload mass required to meet the 

science objectives, and as de-scoping the science requirements will surely compromise the justification 

for investing in something as complex and expensive as an interstellar spacecraft, if the Icarus study 

indicates that a nuclear fusion-based propulsion system is unable to meet these objectives then alternative 

propulsion concepts may need to be considered. Having a definitive answer to this question, one way or 

the other, would be a major contribution of the Icarus project to the wider field of interstellar travel 

studies. 
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Table 1: Preliminary list of Icarus science objectives. 

 

 
Scientific 
Area 

Area of Investigation Examples 

1  Outer solar system studies  Heliosphere, Kuiper belt and Oort Cloud 
Science en- 
route 

Local interstellar medium  Structure, density, temperature, composition, magnetic fields, 
etc 

 Astronomical studies  Parallax measurements; other? 
 Fundamental physics Gravitational waves, gravity, dark matter, etc 
2  Outer environment of target star Astrosphere, dust disk, comets, etc 
Stellar Target star astrophysics I Mass, composition, temperature, mag. fields 
astrophysics Target star astrophysics II Photospheric and coronal activity; long-term monitoring 
 Target star astrophysics III Stellar wind/corona composition 
3  Terrestrial planets I Mass, density, magnetic fields 
Planetary Terrestrial planets II Atmospheric composition and structure 
science Terrestrial planets III Surface geology 
 Terrestrial planets IV Internal structure (geophysics) 
 Giant planets I Mass, density, magnetic fields 
 Giant planets II Atmospheric composition and structure 
 Asteroids/small bodies I Numbers, mass, density, composition 
 Asteroids/small bodies II In situ dating of primitive meteorites  
4 
Astrobiology 

Astrobiology I Identification of habitable environments in target system 

 Astrobiology II Search for biomarkers  
 Astrobiology III Detection of planetary surfaces 
 Astrobiology IV Life detection below planetary surfaces 
 Astrobiology V Search for evidence of extinct life 
 Astrobiology VI Biochemical characterization of extant life forms 
 Astrobiology VII Search for evidence of technological artefacts in target system 

 

 

 

 

Table 2 : Summary of types, and estimated numbers, of sub-probes required to conduct an exploration of 

a multi-planet system sufficient to meet the Project Icarus science objectives identified in Table 1. An 

additional 10 tonnes are estimated for cruise-phase instruments (science area #1). See text for discussion. 

 
Scientific 

Area 
Probe Type Example Probe 

dry mass 
(tonnes) 

Number of 
probes 

required 

Total probe 
dry mass  
(tonnes) 

2 Stellar orbiters SOHO 1.35 2 - 4 2.7 – 5.4 

3 Planetary orbiters Cassini 2.15 6 - 8 13 – 17 

3 Gas Giant probes/balloons Galileo entry 
probe 

0.34 2 - 4 0.7 – 1.4 

3/4 Rocky Planet atmospheric probes  Galileo entry 
probe 

0.34 6 - 8 2.0 – 2.7 

3/4 Planetary soft landers MSL   0.90* 6 - 8 5.4 – 7.2 

2/3 Minor body (asteroid/comet) probes Rosetta 1.33 2 - 4 2.7 – 5.3 

3/4 Low mass penetrators Lunar-EX 0.04 30 - 50 1.2 – 2.0 

 Total     28 – 41 

 

* Rover mass only, excluding mass required for entry, descent and landing. 


