
BIROn - Birkbeck Institutional Research Online

Farmer, Michael and Loizou, George and Maybank, Stephen J. (2017)
Iteration functions re-visited. Journal of Computational and Applied
Mathematics 311 , pp. 484-496. ISSN 0377-0427.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/15900/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/15900/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk


Journal of Computational and Applied Mathematics manuscript No.
(will be inserted by the editor)

Iteration Functions Re-visited

Michael Farmer, George Loizou, Stephen
Maybank

Received: / Accepted:

Abstract Two classes of Iteration Functions (IFs) are derived in this paper. The first
(one-point IFs) was originally derived by Joseph Traub using a different approach to
ours (simultaneous IFs). The second is new and is demonstrably shown to be more
informationally efficient than the first. These IFs apply to polynomials with arbitrary
complex coefficients and zeros, which can also be multiple.
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1 Introduction

1.1 Context

It is better to start by putting the material in this paper into the context of our latest
global algorithm [Far14, pp. 62–63]. We compute the zeros of arbitrary polynomials
in two distinct stages.
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1.1.1 Stage 1

In this first stage we systematically search the complex plane for regions containing
the zeros of a given polynomial. This search continues until we are satisfied that each
region contains a single zero, which may be a multiple zero of the polynomial.

This search stage could be continued until we were satisfied that the centres of
our regions were sufficiently accurate approximations to the true values of the zeros.
However, the work is computationally intensive, so we switch to Stage two, which
offers quicker convergence.

1.1.2 Stage 2

This second stage uses the centres of our regions found in Stage 1 as initial approx-
imations for IFs that converge rapidly to accurate approximations to the true values
of the zeros of a polynomial defined over the complex numbers or the real numbers.

It is the derivation of and discussion about these IFs that form the basis of this
paper. The IFs are used for computing the zeros of arbitrary polynomials given suit-
able initial values for which convergence can be achieved. The main justification for
this paper is to present our contention that working with multiple zeros is the best
approach [FL85]; simple zeros are just a special case.

The second reason d’être is to present some results that were missing from the
first named author’s recent PhD thesis [Far13], namely the exact Asymptotic Error
Constants (AECs) of the fourth order and fifth order simultaneous IFs presented
therein. In addition, the AEC of the third order IF in (A.35) of [Far13] is corrected.

The third reason is to present our approach using IFs in polynomial format, which
emphasises more clearly how the structure of the IFs changes as we build IFs of
higher and higher orders, yielding a power series obtained from our given polynomial.

The results of this paper have been incorporated into a revised version of the
thesis. This version is available on the web [Far14]. All references to the thesis are to
the web version rather than the original submission.

The remainder of this paper is set out as follows.

1.2 The Scheme of Things

Next, §2 takes the reader through definitions and equations that are used throughout
this paper.

This is followed by §3 which derives a class of one-point IFs followed by a class
of simultaneous IFs.

Next, §4 derives the orders of convergence of the various IFs, and especially their
AECs. The IFs for polynomials with only simple zeros are easily derived from the
IFs for polynomials with multiple zeros.

Next, §5 contains some remarks concerning R-order convergence, where applying
an IF in a serial fashion, rather than in a parallel fashion, can improve the order of
convergence in certain cases.
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An overview of Stage 1 of the algorithm for finding the zeros of a polynomial is
given in §6 and information about the software and the experiments is given in §7.

Finally, §8 presents a summary of our conclusions on the work presented in this
paper.

2 Preamble

Let p(z) be a polynomial of degree n given by

p(z) = anzn +an−1zn−1 + · · ·+a0, ana0 ̸= 0 , (1)

where the coefficients have complex or real values and the zeros also have complex
or real values. In addition, the zeros {αi} can have multiplicities {mi} greater than
one, respectively. The polynomial p(z) has N distinct zeros.

Throughout this paper sums and products will be over the range 1, 2, . . . , N (N ∈
N+, the set of positive integers) unless stated otherwise, e.g.

∑
i<ν

ai ≡
ν−1

∑
i=1

ai ,

∏
i ̸=ν

bi ≡
N

∏
i=1
i ̸=ν

bi .
(2)

When p(z) is monic, an = 1, and we have

p(z) = ∏
i
(z−αi)

mi . (3)

We next define
M = max

i
mi . (4)

Let p(z) be defined as in Equation (1). The following definitions, originally given by
Joseph Traub [Tra82, pp. 5–6], will be used subsequently.

u(z) =
p(z)
p′(z)

, (5)

which Joseph Traub calls the normalised p(z), and

Ai(z) =
p(i)(z)
i!p′(z)

, i = 1, 2, . . . , n , (6)

where p(i)(z) is the ith derivative of p(z) and which Joseph Traub calls the normal-
ised Taylor series coefficient. Note that u(z) is often referred to as Newton’s correc-
tion [Pet89, p. 85]. For later use it is worth noting that

A′
i(z) = (i+1)Ai+1(z)−2A2(z)Ai(z), i = 1, 2, . . . , n . (7)



4 Michael Farmer, George Loizou, Stephen Maybank

The following definitions will also be useful.

Sk(zν) = ∑
i ̸=ν

mi

(zν −αi)k , k = 1, 2, . . . , N . (8)

We note that
S′k(zν) =−kSk+1(zν), k = 1, 2, . . . , N . (9)

Let zi be an approximation to the zero αi, and ẑi be the next approximation to αi,
using some iterative scheme. We now define

εi = zi −αi,

ε̂i = ẑi −αi,
i = 1, 2, . . . , N , (10)

with
ε = max

i
|εi|, i = 1, 2, . . . , N . (11)

3 Multiple Zeros

This section describes our two classes of IFs. We begin with some useful basic equa-
tions.

3.1 Basic Equations

In [FL75] we derived a class of IFs for improving the zeros of a polynomial with only
simple zeros. In a later paper [FL77] we extended those results to multiple zeros in the
context of a globally convergent algorithm [Far14]. This section presents a new class
of IFs expressed in a polynomial format in preference to the rational format used
previously by us and other authors, see [FL77], [Kis54], and [Tra82] for examples.

If p(z), as defined in Equation (3), has a zero αν with multiplicity mν then the
function P(zν) defined by

P(zν) = p
1

mν (zν) (12)

has a simple zero, αν . The following definitions will be used subsequently.

U(zν) =
P(zν)

P′(zν)
= mν u(zν) , (13)

Bi(zν) =
P(i)(zν)

i!P′(zν)
i = 1, 2, . . . , N. (14)

Using Equations (12) and (14), it is simple to verify that

B′
i(zν) = (i+1)Bi+1(zν)−2B2(zν)Bi(zν) i = 1, 2, . . . , N, (15)
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which will be used subsequently. Once again, following our approach in [FL75], we
can use the Taylor series expansion of P(αν) about zν [Hen74, pp. 492–493], since
P(zν) has a simple zero αν , to obtain, after dividing both sides of the series by P′(zν),

U(zν) =
ρ−1

∑
i=1

(−1)i−1Bi(zν)ε i
ν +O(ερ

ν ), (ρ ∈ N+) . (16)

Equation (16) can be rearranged to obtain a class of IFs. We start with ρ = 2 (see
Equations (19) and (21)), namely

Ψ2(zν) =U(zν) . (17)

Now, as ρ increases, substitute ε i
ν in Equation (16) with the appropriate value for

powers of Ψi(zν) as follows

Ψ2(zν) = U(zν) ,

Ψ3(zν) = U(zν)+B2(zν)Ψ 2
2 (zν) ,

Ψ4(zν) = U(zν)+B2(zν)Ψ 2
3 (zν)−B3(zν)Ψ 3

2 (zν) ,

Ψ5(zν) = U(zν)+B2(zν)Ψ 2
4 (zν)−B3(zν)Ψ 3

3 (zν)+B4(zν)Ψ 4
2 (zν) , (18)

etc. Then the IF
Rρ = zν −Ψρ(zν) (19)

is of order ρ . If the higher-order powers of U(zν) other than those required for the IFs
(of the appropriate order) are removed, then the expansion of Equation (18) yields a
class of IFs which we term basic, as they form the basis for our new class.

Λ2(zν) = U(zν) ,

Λ3(zν) = U(zν)+B2(zν)U2(zν) ,

Λ4(zν) = U(zν)+B2(zν)U2(zν)+ [2B2
2(zν)−B3(zν)]U3(zν) ,

Λ5(zν) = U(zν)+B2(zν)U2(zν)+ [2B2
2(zν)−B3(zν)]U3(zν)

+ [5B3
2(zν)−5B2(zν)B3(zν)+B4(zν)]U4(zν) . (20)

The corresponding IF is
Rρ = zν −Λρ(zν). (21)

As mentioned in [FL77, pp. 428–429], some members of this class of IFs are well
known when only simple zeros are present. They are also described in [Far14, pp. 47–
53]. The IFs (19) and (21) are identical to within an error of order O(ερ), in that

Λρ(zν) =Ψρ(zν)+O(ερ
ν ),

however they have different asymptotic error constants.
The IFs presented below are given in polynomial format rather than the more

common rational format. We think that this emphasises how the IFs in the differ-
ent classes are generated as their order of convergence increases. To see the rational
format IF corresponding to one of our current IFs, see [FL77, pp.429–430], [Far14,
pp.122–123], and [Kis54, p. 68].
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3.2 One-point Iteration Functions

We consider it necessary to include the older one-point IFs as they form an interme-
diary stage between the basic equations and our newly derived simultaneous IFs.

From a computational point of view Bi(zν) cannot be calculated directly from
p(zν). Therefore we require an equation converting Bi(zν) to Ai(zν).

In order to express the basic equations given in Equation (20) in terms of u(zν)
and Ai(zν), we successively differentiate Equation (12) to obtain the following set of
equations.

B2(zν) = − mν −1
2!mν u(zν)

+A2(zν) ,

B3(zν) =
(mν −1)(2mν −1)

3!m2
ν u2(zν)

− mν −1
mν u(zν)

A2(zν)+A3(zν) ,

B4(zν) = − (mν −1)(2mν −1)(3mν −1)
4!m3

ν u3(zν)

+
(mν −1)(2mν −1)

2!m2
ν u2(zν)

A2(zν)

− (mν −1)
mν u(zν)

[
A2

2(zν)

2!
+A3(zν)

]
+A4(zν) , (22)

etc. which gives us another class of IFs depending explicitly on mν , the multiplicity
of the zero αν . Note that these equations have been verified using a Matlab program,
multiple.m, see §7. These are described below.

3.2.1 Ernst Schröder’s second-order modified Newton IF [Sch70]

ẑν = zν −mν u(zν) . (23)

3.2.2 Joseph Traub’s third-order IF [Tra82, p. 139]

ẑν = zν +mν

(
mν −3

2

)
u(zν)−m2

ν A2(zν)u2(zν) , (24)

which might be better known in its rational format, as Ljiljana Petković, Miodrag
Petković, and Dragan Živković have demonstrated that this family is a form of Laguerre’s
method [PPŽ03, pp. 111–112]. For further information about Laguerre’s method, es-
pecially in the case of real zeros, we recommend Alston Householder’s description
in [Hou70, pp.176–179].
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3.2.3 Joseph Traub’s fourth-order IF [Tra82, p. 139]

ẑν = zν −mν

(
m2

ν −6mν +11
6

)
u(zν)+m2

ν(mν −2)A2(zν)u2(zν)

−m3
ν [2A2

2(zν)−A3(zν)]u3(zν) , (25)

which he originally defined in a variation of a polynomial format referred to as the
Horner format after the well-known Horner’s rule for the efficient evaluation of a
polynomial [Hou70, pp. 3–4].

3.2.4 Joseph Traub’s fifth-order IF [Tra82, p. 139]

ẑν = zν +24−1mν(m3
ν −10m2

ν +35mν −50)u(zν)

−12−1m2
ν(7m2

ν −30mν +35)A2(zν)u2(zν)

+2−1m3
ν(3mν −5)[2A2

2(zν)−A3(zν)]u3(zν)

−m4
ν [5A3

2(zν)−5A2(zν)A3(zν)+A4(zν)]u4(zν) , (26)

which he originally defined in Horner format.

3.3 Simultaneous Iteration Functions

To improve the informational efficiency of our one-point IFs, we replace the highest-
order derivative in each IF with an expression containing only lower-order derivat-
ives. We start as follows.

1
u(zν)

=
p′(zν)

p(zν)
,

=

∑
i

mi(zν −αi)
mi−1∏

j ̸=i
(zν −α j)

m j

∏
j
(zν −α j)

m j
,

= ∑
i

mi

(zν −αi)
,

=
mν
εν

+S1(zν) . (27)

We also have, by a Taylor series expansion,

1
U(zν)

=
1
εν

{1+B2(zν)εν +[B2
2(zν)−B3(zν)]ε2

ν

+[B3
2(zν)−2B2(zν)B3(zν)+B4(zν)]ε3

ν

+[B4
2(zν)−3B2

2(zν)B3(zν)+2B2(zν)B4(zν)+B2
3(zν)−B5(zν)]ε4

ν}
+O(ε4

ν ) . (28)
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Combining Equations (13), (27) and (28) we obtain

S1(zν) = mν{B2(zν)+ [B2
2(zν)−B3(zν)]εν +[B3

2(zν)−2B2(zν)B3(zν)+B4(zν)]ε2
ν

+[B4
2(zν)−3B2

2(zν)B3(zν)+2B2(zν)B4(zν)+B2
3(zν)−B5(zν)]ε3

ν}
+O(ε4

ν ) . (29)

Differentiating both sides of Equation (29) with respect to zν we now obtain

S′1(zν) = mν{2B3(zν)−B2
2(zν)−2[B3

2(zν)−2B2(zν)B3(zν)+B4(zν)]εν

− [3B4
2(zν)−8B2

2(zν)B3(zν)+3B2
3(zν)+4B2(zν)B4(zν)−2B5(zν)]ε2

ν}
+O(ε3

ν ) . (30)

Continuing in the same vein we obtain

S′′1(zν) = mν{2B3
2(zν)−6B2(zν)B3(zν)+6B4(zν)

+6[B4
2(zν)−3B2

2(zν)B3(zν)+B2
3(zν)+2B2(zν)B4(zν)−B5(zν)]εν}

+O(ε2
ν ) . (31)

Finally, combining Equations (29) through (31) together with Equation (9) yields the
following

S1(zν) = mν B2(zν)+O(ε) ,

S2(zν) = mν [B2
2(zν)−2B3(zν)]+O(ε) ,

S3(zν) = mν [B3
2(zν)−3B2(zν)B3(zν)+3B4(zν)]+O(ε) . (32)

In our basic IF of order ρ , as given by (21), we cannot replace Bρ−1(zν) with one
of the above equations containing Sρ−2(zν) because every Sk(zν) contains terms in-
volving the unknown zeros, αi. We overcome this problem by introducing the follow-
ing definition.

Tk(zν) = ∑
i ̸=ν

mi

(zν − zi)k . (33)

Replacing zi by αi + εi, from Equation (10), yields the following.

Tk(zν) = ∑
i ̸=ν

mi

(zν −αi − εi)k ,

= ∑
i ̸=ν

mi

(zν −αi)
k(1− εi

zν −αi
)k

,

= ∑
i ̸=ν

mi

(zν −αi)k (1−
εi

zν −αi
)−k ,

= Sk(zν)+O(ε) , (34)

which gives the required equations, namely

T1(zν) = mν B2(zν)+O(ε) ,

T2(zν) = mν [B2
2(zν)−2B3(zν)]+O(ε) ,

T3(zν) = mν [B3
2(zν)−3B2(zν)B3(zν)+3B4(zν)]+O(ε) , (35)
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on using Equations (32). These equations are therefore used to replace the highest-
order derivative in each of the basic IFs, given in Equation (20), thus generating the
new IFs

Rρ = zν −Ξρ(zν),

in which the terms Ξρ(zν) are given by

Ξ2(zν) = U(zν) ,

Ξ3(zν) = U(zν)+m−1
ν T1(zν)U2(zν) ,

Ξ4(zν) = U(zν)+B2(zν)U2(zν)+ [(3/2)B2
2(zν)+(2mν)

−1T2(zν)]U3(zν)) ,

Ξ5(zν) = U(zν)+B2(zν)U2(zν)+ [2B2
2(zν)−B3(zν)]U3(zν)

+ [(14/3)B3
2(zν)−4B2(zν)B3(zν)+(3mν)

−1T3(zν)]U4(zν) . (36)

Once again, note that these new IFs have been verified by a Mathematica version 10
program, see §7. There is no second-order simultaneous IF expressible in polynomial
format.

3.3.1 Our third-order IF

ẑν = zν −mν u(zν)−mν T1(zν)u2(zν) . (37)

3.3.2 Our fourth-order IF

ẑν = zν −
mν
8
(3m2

ν −10mν +15)u(zν)+
m2

ν
2
(3mν −5)A2(zν)u2(zν)

−m2
ν

2
[3mν A2

2(zν)+T2(zν)]u3(zν) . (38)

3.3.3 Our fifth-order IF

ẑν = zν −
mν
12

(m3
ν +3m2

ν −17mν +25)u(zν)

− m2
ν

6
(m2

ν −12mν +17)A2(zν)u2(zν)

+m3
ν [(3mν −5)A2

2(zν)− (2mν −3)A3(zν)]u3(zν)

− m3
ν

3
[14mν A3

2(zν)−12mν A2(zν)A3(zν)+T3(zν)]u4(zν) .

(39)
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3.4 Efficiency Considerations

According to Joseph Traub [Tra82, pp. 11–13] the informational efficiency, EFF, of
an IF is the order of the IF, i.e. ρ in our notation, divided by the informational usage
of the IF, i.e. d in our case, namely the number of new polynomial and polynomial
derivative evaluations required per iteration. Thus

EFF =
ρ
d

. (40)

In addition, he also proves that EFF ≤ 1 for one-point IFs. This leads him to define
a one-point IF as optimal if its EFF = 1. It follows therefore that the one-point IFs,
described in §3.2, are optimal.

However, our simultaneous IFs, as described in §3.3, have an EFF of

EFF =
ρ

d −1
(41)

because the highest-order derivative in each basic IF has been replaced by an equa-
tion using only lower-order derivatives. Therefore, our simultaneous IFs, described
in §3.3, are more informationally efficient than the one-point IFs, described in §3.2.
These results are summarised in Table 3.4 below.

Order One-point IFs Simultaneous IFs
2 1 n/a
3 1 1.5
4 1 1.33
5 1 1.25

Table 1. Comparative Efficiency of IFs

The paper by Robert Voigt [Voi71] contains some interesting insights into this
topic.

4 Convergence of IFs

There is a certain symmetry between those equations used to generate our IFs and
those used to generate our asymptotic error constants (AECs). When generating our
IFs we have

p(αν) = p(zν)− p′(zν)εν +
p′′(zν)

2!
ε2

ν −·· · . (42)

Since p(αν) = 0 we have

p(zν) = p′(zν)εν −
p′′(zν)

2!
ε2

ν + · · · . (43)
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However, when generating our AECs we have

p̃(zν) = p(αν)+ p′(αν)εν +
p′′(αν)

2!
ε2

ν + · · · ,

= p′(αν)εν +
p′′(αν)

2!
ε2

ν + · · · .

(44)

In order to distinguish between the two expansions of p(zν) we designate the expan-
sion given in Equation (44) as p̃(zν). This notation will also be used for the other
functions used in generating our AECs, see §4.1.

4.1 Basic Equations

The following definition is a slight variation on Joseph Traub’s B j,m(z) which he calls
the generalised normalised Taylor series coefficient [Tra82, p. 6],

Ci(zν) =
1

mν

p(mν+i−1)(zν)

(mν + i−1)!
(mν)!

p(mν )(zν)
, i = 1, 2, . . . , (45)

which is used when the multiplicity mν > 1. Note that when only simple zeros are
present, then

Ai(zν)≡ Bi(zν)≡Ci(zν), i = 1, 2, . . . , n . (46)

In the case of a multiple zero, αν , we have

p̃(zν) =
∞

∑
i=mν

p(i)(αν)

i!
ε i

ν , (47)

Now multiply the above by the factor

κ(εν) =
mν !

mν p(mν )(αν)εmν−1
ν

(48)

to obtain

κ(εν)p̃(zν) =
εν
mν

+C2(αν)ε2
ν +C3(αν)ε3

ν +C4(αν)ε4
ν +C5(αν)ε5

ν + . . . (49)

The derivative of p̃(zν) is obtained using the equation εν = zν −αν and the identity

κ(εν)p̃′(zν) = (κ(εν)p̃(zν))
′−κ ′(εν)p̃(zν) .

The higher order derivatives of p̃(zν) are obtained in a similar way.
The factor κ(εν) cancels out in applications. For example,

ũ(zν) =
p̃(zν)

p̃′(zν)
=
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εν m−1
ν {1−C2(αν)εν +[(mν +1)C2

2(αν)−2C3(αν)]ε2
ν

− [(m2
ν +2mν +1)C3

2(αν)− (3mν +4)C2(αν)C3(αν)+3C4(αν)]ε3
ν

+[(m3
ν +3m2

ν +3mν +1)C4
2(αν)−2(2m2

ν +5mν +3)C2
2(αν)C3(αν)]ε4

ν

+[2(2mν +3)C2(αν)C4(αν)+2(mν +2)C2
3(αν)−4C5(αν)]ε4

ν}
+O(ε6

ν ) . (50)

Continuing in a similar vein, we have

Ã2(zν) =
p̃′′(zν)

2! p̃′(zν)
,

Ã3(zν) =
p̃′′′(zν)

3! p̃′(zν)
,

Ã4(zν) =
p̃′′′′(zν)

4! p̃′(zν)
, (51)

etc. Evaluating the right-hand sides of Equation (51) finally yields the following equa-
tions.

Ã2(zν) = (2!εν)
−1{[mν −1]+ [mν +1]C2(αν)εν

− [(m2
ν +2mν +1)C2

2(αν)−2(mν +2)C3(αν)]ε2
ν

+[(m3
ν +3m2

ν +3mν +1)C3
2(αν)−3(m2

ν +3mν +2)C2(αν)C3(αν)

+3(mν +3)C4(αν)]ε3
ν

− [(m4
ν +4m3

ν +6m2
ν +4mν +1)C4

2(αν)

−4(m3
ν +4m2

ν +5mν +2)C2
2(αν)C3(αν)+4(m2

ν +4mν +3)C2(αν)C4(αν)

+2(m2
ν +4mν +4)C2

3(αν)−4(mν +4)C5(αν)]ε4
ν}+O(ε4

ν ) , (52)

Ã3(zν) = (3!ε2
ν )

−1{[m2
ν −3mν +2]+2(m2

ν −1)C2(αν)εν

− [2(m3
ν +m2

ν −mν −1)C2
2(αν)−2(2m2

ν +3mν −2)C3(αν)]ε2
ν

+[2(m4
ν +2m3

ν −2mν −1)C3
2(αν)−2(3m3

ν +7m2
ν −4)C2(αν)C3(αν)

+6(m2
ν +3mν)C4(αν)]ε3

ν

− [2(m5
ν +3m4

ν +2m3
ν −2m2

ν −3mν −1)C4
2(αν)

−2(4m4
ν +13m3

ν +8m2
ν −7mν −6)C2

2(αν)C3(αν)

+2(4m3
ν +15m2

ν +8mν −3)C2(αν)C4(αν)

+2(2m3
ν +7m2

ν +4mν −4)C2
3(αν)−4(2m2

ν +9mν +4)C5(αν)]ε4
ν}

+O(ε3
ν ) , (53)
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Ã4(zν) = (4!ε3
ν )

−1{[m3
ν −6m2

ν +11mν −6]+ [(3m3
ν −6m2

ν −3mν +6)C2(αν)]εν

− [(3m4
ν −3m3

ν −9m2
ν +3mν +6)C2

2(αν)− (6m3
ν −18mν +12)C3(αν)]ε2

ν

+[3(m5
ν −4m3

ν −2m2
ν +3mν +2)C3

2(αν)

−3(3m4
ν +2m3

ν −11m2
ν −2mν +8)C2(αν)C3(αν)

+3(3m3
ν +6m2

ν −7mν +6)C4(αν)]ε3
ν

− [3(m6
ν +m5

ν −4m4
ν −6m3

ν +m2
ν +5mν +2)C4

2(αν)

−6(2m5
ν +3m4

ν −7m3
ν −9m2

ν +5mν +6)C2
2(αν)C3(αν)

+6(2m4
ν +5m3

ν −4m2
ν −mν +6)C2(αν)C4(αν)

+6(m4
ν +2m3

ν −3m2
ν −4mν +4)C2

3(αν)

−12(m3
ν +4m2

ν +mν +4)C5(αν)]ε4
ν}+O(ε2

ν ) . (54)

From Equation (27) we have

1
ũ(zν)

=
p̃′(zν)

p̃(zν)
,

=
mν
εν

+ S̃1(zν) .

(55)

The terms S̃k(zν) for k = 2,3, . . . are obtained from S̃1(zν) using (9). It follows that

S̃1(zν) = mν{C2(αν)− [mνC2
2(αν)−2C3(αν)]εν

+[m2
νC3

2(αν)−3mνC2(αν)C3(αν)+3C4(αν)]ε2
ν

− [m3
νC4

2(αν)−4m2
νC2

2(αν)C3(αν)+4mνC2(αν)C4(αν)

+2mνC2
3(αν)−4C5(αν)]ε3

ν}+O(ε4
ν ) ,

S̃2(zν) = mν{mνC2
2(αν)−2C3(αν)−2[m2

νC3
2(αν)−3mνC2(αν)C3(αν)+3C4(αν)]εν

+3[m3
νC4

2(αν)−4m2
νC2

2(αν)C3(αν)+4mνC2(αν)C4(αν)+2mνC2
3(αν)

−4C5(αν)]ε2
ν}+O(ε3

ν ) ,

S̃3(zν) = mν{m2
νC3

2(αν)−3mνC2(αν)C3(αν)+3C4(αν)

−3[m3
νC4

2(αν)−4m2
νC2

2(αν)C3(αν)+4mνC2(αν)C4(αν)+2mνC2
3(αν)

−4C5(αν)]εν}+O(ε2
ν ) ,

S̃4(zν) = mν{m3
νC4

2(αν)−4m2
νC2

2(αν)C3(αν)+4mνC2(αν)C4(αν)+2mνC2
3(αν)

−4C5(αν)}+O(εν) . (56)

Finally, we need an expansion of Tk(zν) about αν , namely T̃k(zν). We first define the
term Gk(αν) by

Gk(αν) = ∑
i ̸=ν

miεi

(αν −αi)k , k = 1,2, . . . .
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It is noted that Gk(αν) = O(ε). It follows that

T̃k(zν) = ∑
i ̸=ν

mi

(zν − zi)k ,

= ∑
i ̸=ν

mi

(αν −αi + εν − εi)k ,

= ∑
i ̸=ν

mi

(αν −αi)k

[
1+

εν − εi

αν −αi

]−k

,

= ∑
i ̸=ν

mi

(αν −αi)k

[
1− k

(
εν − εi

αν −αi

)
+O(ε2)

]
,

= ∑
i ̸=ν

mi

(αν −αi)k − kεν ∑
i ̸=ν

mi

(αν −αi)k+1

+ k ∑
i ̸=ν

miεi

(αν −αi)k+1 +O(ε2) ,

= Sk(αν)− kSk+1(αν)εν + kGk+1(αν)+O(ε2) . (57)

Note that ν = 1, 2, . . . , N for each of the IFs described below.

4.2 One-point Iteration Functions

This section derives the AECs of our one-point IFs together with verification of their
order of convergence.

4.2.1 Ernst Schröder’s second-order IF

ε̂ν = εν −Λ2(zν) ,

= εν −mν ũ(zν) ,

= C2(αν)ε2
ν +O(ε3

ν ) . (58)

The IF zν −Ψ2(zν) has the same AEC.

4.2.2 Joseph Traub’s third-order IF

ε̂ν = εν −Λ3(zν) ,

= εν +mν
mν −3

2
ũ(zν)−m2

ν Ã2(zν)ũ2(zν) ,

= [2−1(mν +3)C2
2(αν)−C3(αν)]ε3

ν +O(ε4
ν ) . (59)

The IF zν −Ψ3(zν) has the same AEC.
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4.2.3 Joseph Traub’s fourth-order IF

ε̂ν = εν −Λ4(zν) ,

= εν −6−1mν
(
m2

ν −6mν +11
)

ũ(zν)+m2
ν(mν −2)Ã2(zν)ũ2(zν)

−m3
ν [2Ã2

2(zν)− Ã3(zν)]ũ3(zν) ,

=
[
3−1(m2

ν +6mν +8)C3
2(αν)− (mν +4)C2(αν)C3(αν)+C4(αν)

]
ε4

ν

+O(ε5
ν ) . (60)

The IF zν −Ψ4(zν) has

ε̂ν = [3−1(m2
ν +6mν +5)C3

2(αν)− (mν +4)C2(αν)C3(αν)+C4(αν)]ε4
ν

+O(ε5
ν ).

4.2.4 Joseph Traub’s fifth-order IF

ε̂ν = εν −Λ5(zν) ,

= εν +24−1mν
(
m3

ν −10m2
ν +35mν −50

)
ũ(zν)

−12−1m2
ν
(
7m2

ν −30mν +35
)

Ã2(zν)ũ2(zν)

+2−1m3
ν(3mν −5)[2Ã2

2(zν)− Ã3(zν)]ũ3(zν)

−m4
ν [5Ã3

2(zν)−5Ã2(zν)Ã3(zν)+ Ã4(zν)]ũ4(zν) ,

= [24−1(6m3
ν +55m2

ν +150mν +125)C4
2(αν)

−2−1(2m2
ν +15mν +25)C2

2(αν)C3(αν)+(mν +5)C2(αν)C4(αν)

+2−1(mν +5)C2
3(αν)−C5(αν)]ε5

ν +O(ε6
ν ) . (61)

The IF zν −Ψ5(zν) has

ε̂ν = [24−1(6m3
ν +55m2

ν +90mν +41)C4
2(αν)

−2−1(2m2
ν +15mν +15)C2

2(αν)C3(αν)+(mν +5)C2(αν)C4(αν)

+2−1(mν +5)C2
3(αν)−C5(αν)]ε5

ν +O(ε6
ν ).

To the authors’ best knowledge, this is the first time that these AECs have been
explicitly given.

4.3 Simultaneous Iteration Functions

This section derives the AECs of our simultaneous IFs together with verifications of
their orders of convergence. To obtain the simple zero versions, take the equations
used in §3, and set

mi = 1, i = 1, 2, . . . ,N, N = n . (62)
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4.3.1 Our third-order IF

ε̂ν = εν −Ξ3(zν) ,

= εν −mν ũ(zν)−mν T̃1(zν)ũ2(zν) ,

= C2
2(αν)ε3

ν −m−1
ν G2(αν)ε2

ν +O(ε4) . (63)

The term G2(αν) is of order O(ε), thus ε̂ν = O(ε3).

4.3.2 Our fourth-order IF

ε̂ν = εν −Ξ4(zν) ,

= [2−1(3mν +5)C3
2(αν)−3C2(αν)C3(αν)]ε4

ν −m−1
ν G3(αν)ε3

ν +O(ε5) .(64)

The term G3(αν) is of order O(ε), thus ε̂ν = O(ε4).

4.3.3 Our fifth-order IF

ε̂ν = εν −Ξ5(zν) ,

= [6−1(11m2
ν +36mν +31)C4

2(αν)−6(mν +2)C2
2(αν)C3(αν)

+4C2(αν)C4(αν)+2C2
3(αν)]ε5

ν −m−1
ν G4(αν)ε4

ν +O(ε6) . (65)

The term G4(αν) is of order O(ε), thus ε̂ν = O(ε5).

5 R-order Convergence

Our simultaneous IFs, described in §3.3, utilise the function Tk(zν), given in Equa-
tion (33), to improve their efficiency over the one-point IFs, described in §3.2. In
other words, only the old set of approximations, {zi}, is used in computing the new
set of approximations, {ẑi}, i.e. the new zeros are computed in a parallel fashion.

However, the new approximations can be improved by being computed in a serial
fashion by rewriting Tk(zν) as

∑
i<ν

mi

(zν − ẑi)k + ∑
i>ν

mi

(zν − zi)k i = 1, 2, . . . , N , (66)

where the new approximations are brought into play as soon as they become available.
The formal term for the study of this technique is R-order convergence. See [AH74],
[MP86], and [PR06] for further details.

However, one look at the AECs for our simultaneous IFs, see §4.3, will reveal
that each of them contains two terms, and it is only the second of these that can be
improved by using R-order convergence. This is therefore not an advantage in using
our polynomial format, i.e. R-order convergence is not relevant in this case.
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6 Overview of Stage 1

As noted in §1.1.1, the task in Stage 1 is firstly to find regions in the complex plane
such that each region contains exactly one root of the polynomial p(z) and secondly to
find the multiplicity of each root of p(z). The process to carry out this task is based on
two theorems. One theorem, due to Marden [Mar66], provides a way of counting the
number of roots of p(z) in a disk. The other theorem, due to Lagouanelle [Lag66],
provides a way of estimating the multiplicity of a root that is contained in a given
small disk.

To start the process, a disk that contains all the roots of p(z) is obtained. A suitable
disk is defined by Dekker [Dek68]. This disk is centred at the origin and has the radius

2 max
0≤i≤n−1

|ai/an|1/(n−i) .

This disk is covered by a number of smaller disks, all with the same area. The roots
in each smaller disk are counted, including multiplicities, using Marden’s theorem.
In detail, let p∗(z) be the polynomial defined by

p∗(z) = a0zn +a1zn−1 + . . .+an ,

where ai is the complex conjugate of ai. Define the Schur transform of p(z), p(z) 7→
T (p(z)) by

T (p(z)) = a0 p(z)−an p∗(z) .

The degree of T (p(z)) is strictly less than the degree of p(z). Define the terms γi by

γi = T i(p(z))
∣∣
z=0 , i = 1,2, . . . ,n .

It can be shown that the γi are real numbers. Define the terms Pi by

Pi = γ1γ2 . . .γi, i = 1,2 . . .n .

Marden’s theorem states that if for some k < n, Pk ̸= 0 but T k+1(p(z))≡ 0, then p(z)
has n−k zeros on the unit circle at the zeros of T k(p(z)). If r of the Pi for i= 1,2, . . . ,k
are negative, then p(z) has r zeros inside the unit disk and k− r zeros outside the unit
disk. The theorem is the basis of a method for counting the zeros of p(z) in any disk.

The covering disks that contain no roots are discarded. This process is iterated to
produce a set of small disks, each of which contains at least one root of p(z). When a
disk is sufficiently small the multiplicity of a root in the disk can be estimated using
Lagouanelle’s theorem which states that the multiplicity mi of a root αν of p(z) is
given by

mi = lim
z→αν

|u′(z)−1|, i = 1,2, . . . ,n .

Any disk for which this multiplicity is equal to the number of roots in the disk is not
reduced further. The final result is a set of disks such that each disk contains exactly
one root of p(z) with a known multiplicity.

The use of disks to constrain the locations of the zeros of p(z) is inefficient be-
cause of the large overlaps among the smaller disks that are chosen to cover a larger
disk. More efficient algorithms can be constructed using squares in place of disks.
Further information can be found in [GM67] and [Far14].
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7 Software and Experimental Results

The search stage (Stage 1) and all the IFs used in the second, iterative, stage are pro-
grammed in C using the GNU Multiple Precision Arithmetic Library (GMP) [Gra11].
The advantage of this library is that the precision of the arithmetic can be increased
in order to remove errors due to a loss of precision. See [Far14] for the details, in-
cluding computer programs and scripts in various languages. In addition, there is one
Matlab program, multiple.m, which generates symbolic equations for our multiple
IFs, both one-point and simultaneous, together with their orders of convergence and
asymptotic error constants. A listing can be found in [Far14, pp. 132–139].

All of the formulae have been checked using Mathematica, version 10. The Mat-
lab code and the Mathematica code can be provided by the authors on request.

The software was tested intensively on a database of 215 polynomials taken from
the literature since 1950. Stage 1 was successful for all of the polynomials. Stage
2 succeeded on all but two polynomials in the database. The results showed that in
general the higher order IFs converge faster than the lower order IFs. In more detail,
the IFs (23), (24), (37) and the IFs

ẑν = zν −mν u(zν)/(1−T1(zν)u(zν)), (67)
ẑν = zν −mν u(zν)/(2−1(mν +1)−mν A2(zν)u(zν)), (68)

ẑν = zν −mν u(zν)−mν

(
∑
i ̸=ν

mi(zν − (zi −miu(zi)))
−1

)
u2(zν) (69)

are compared in [Far14]. The IF (67) is taken from [Ehr67], (68) is taken from [HP77]
and (69) is the IFs Farmerv, as defined in [Far14]. These six IFs are implemented in
parallel, and in addition, (37) and (67) are implemented in serial fashion, as described
in §5. The performances of the eight IFs are measured by the number of iterations
required for convergence. The results are shown in Table 7.2 in [Far14]. The IFs
Farmerv outperforms the seven competing IFs as the degree of the polynomial is
increased.

The database contains the following two extreme polynomials. The Wilkinson
polynomial [Wil59]

p(z) =
20

∏
i=1

(z+ i) (70)

has extremely large coefficients, but each root has multiplicity one. In contrast, the
polynomial [BF00]

p(z) = (z4 −16−1)40(z4 − (2−1 +η)4),η = 4096−1 , (71)

has four roots of multiplicity 40 and each of these roots is near to a root of multipli-
city one. The roots of (70) were found to a high accuracy in Stage 2 using just two
iterations of Farmerv. The roots of (71) were found to a high accuracy by each of the
eight IFs using one iteration.
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8 Conclusion

This paper demonstrates a straightforward mechanism for deriving one-point IFs of
order two or more, or simultaneous IFs of order three or more. In addition, by taking
the most general approach, i.e. multiple zeros, IFs for polynomials with only simple
zeros are just a special case.

These IFs have been extensively tested computationally. In the context of our
global algorithm, outlined in §1.1, we have tested polynomials of high degree (up to
degree 400) and polynomials with zeros of high multiplicity (up to order 40), with
complete success, i.e. they converge to within the accuracy that is required.
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