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Looking times (LTs) are frequently measured in empirical research on infant cognition. We analyzed the
statistical distribution of LTs across participants to develop recommendations for their treatment in
infancy research. Our analyses focused on a common within-subject experimental design, in which
longer looking to novel or unexpected stimuli is predicted. We analyzed data from 2 sources: an in-house
set of LTs that included data from individual participants (47 experiments, 1,584 observations), and a
representative set of published articles reporting group-level LT statistics (149 experiments from 33
articles). We established that LTs are log-normally distributed across participants, and therefore, should
always be log-transformed before parametric statistical analyses. We estimated the typical size of
significant effects in LT studies, which allowed us to make recommendations about setting sample sizes.
We show how our estimate of the distribution of effect sizes of LT studies can be used to design
experiments to be analyzed by Bayesian statistics, where the experimenter is required to determine in
advance the predicted effect size rather than the sample size. We demonstrate the robustness of this
method in both sets of LT experiments.
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Measuring looking times (LTs) is one of the most frequently
used behavioral techniques in research with infants. LTs are mea-
sured and evaluated in various paradigms, which share the basic
assumption that the length of time for which infants look at a
stimulus reflects the operation of the psychological mechanisms
recruited to process it. For example, many studies were devoted to

the analysis of habituation: how LTs to the same stimulus change
across successive trials and whether the individual differences in
this habituation function reflect stable characteristics of infants
and/or predict their later achievements (e.g., Colombo, 2001; Dan-
nemiller, 1984; Gilmore & Thomas, 2002). Another use of LTs is
the measurement of variability of duration of looks during free
viewing of continuous dynamic stimuli, such as TV programs
(e.g., Richards, 2010; Richards & Anderson, 2004). LTs, or their
proportion, can be compared between stimuli presented simulta-
neously (e.g., Ferry, Hespos & Waxman, 2010; Senju & Csibra,
2008).

In the context of this article we restrict our analysis to one
particular utilization of LTs: the study design in which infants are
successively exposed to two different stimuli, the LT to these
stimuli are measured, and the difference of looking duration is
interpreted in terms of the underlying cognitive mechanisms.
Within-subject comparison of LTs is among the most popular
study designs in infancy research, not only because it requires
fewer participants than the between-subjects design, but also be-
cause it efficiently deals with the fact that baseline LTs vary
considerably across infants (Gilmore & Thomas, 2002). Paradigms
adopting this design include the assessment of visual preference
between two stimuli, evaluating the effect of familiarity or novelty
after familiarizing infants with, or habituating them to, certain
stimuli, and testing whether infants develop expectations about
states of affairs in a situation by presenting them with events that
would confirm or violate these expectations (e.g., Baillargeon,
Spelke, & Wasserman, 1985; Kellman & Spelke, 1983; Wood-
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ward, 1998; Wynn, 1992; Younger & Cohen, 1983). LTs to visual
stimuli are also measured to assess infants’ processing of accom-
panying auditory stimuli or multimodal matching (e.g., Gogate &
Bahrick, 1998; Kuhl & Meltzoff, 1984; Saffran, Aslin, & Newport,
1996; Werker, Cohen, Lloyd, et al., 1998; Yeung & Werker,
2009).

Depending on what mechanisms and what experience research-
ers consider relevant in a situation, there could be different ways
of interpreting the results of a study measuring LTs in this kind of
paradigm (Bogartz, Shinskey, & Speaker, 1997; Houston-Price &
Nakai, 2004; Rivera, Wakeley, & Langer, 1999; Roder, Bushneil,
& Sasseville, 2000; Slater, 2004). In this article, we are not
concerned with these controversies (Aslin, 2000; Cohen, 2004;
Haith, 1998; Munakata, 2000; Sirois & Mareschal, 2002). Instead,
our aim is to evaluate the quantitative nature of LT measures and
offer recommendations for their efficient use in infant research.
First, we establish that LTs are log-normally distributed across
participants, and therefore, need to be log-transformed before
parametric statistical analysis. Second, we estimate the typical size
of significant effects in LTs studies, which allows us to make
recommendations about setting sample sizes. Third, our estimate
of the distribution of effect sizes of LT studies can be used in
Bayesian statistics, which have several important advantages over
standard “frequentist” statistical tests (Dienes, 2011, 2014; How-
ard, Maxwell, & Fleming, 2000; Kruschke, 2013; Sanborn & Hills,
2014; van de Schoot, Kaplan, Denissen, et al., 2014; Wagenmak-
ers, 2007).

It is often reported that LTs show a right-skewed distribution
across participants (e.g., Farroni et al., 2005; Garnham & Ruffman,
2001; Leslie & Chen, 2007), because, within a specific experi-
ment, the infants who look longer than average to the stimulus
produce LTs that tend to be farther away from the mean than the
LTs of short-lookers. Strong skewness of LT data renders them
formally inappropriate for parametric statistical analyses, such as
analysis of variance (ANOVA), t test and regression analysis,
which require normally distributed data, especially with small
sample sizes (8 to 32 participants) characteristic of LT studies. One
way to deal with this problem is to treat extreme long-lookers as
outliers and to exclude them from the sample on the basis of some
statistical criteria (e.g., Beier & Spelke, 2012; Sommerville, Hil-
debrand, & Crane, 2008; Surian, Caldi, & Sperber, 2007; Wagner
& Carey, 2005). While such exclusions may be justified in many
cases, sometimes the criteria applied to them seem to be ad hoc and
arbitrary, and, in general, discarding data is detrimental to statis-
tical efficiency. Another way to deal with a skewed distribution is
to apply some type of, most frequently logarithmic, transformation
to the data before statistical analysis (e.g., Csibra, 2001; Farroni,
Csibra, Simion, et al., 2002; Kibbe & Leslie, 2011; Kirkham,
Slemmer, & Johnson, 2002; Starkey, Spelke, & Gelman, 1990;
Woodward, 1998). This method is usually justified by statistical
tests that demonstrate the nonnormality of the distribution of raw
LTs.

These two kinds of procedures treat the skewed distribution of
LTs across infants as a statistical accident that has to be corrected
before proper analysis of the data could begin. However, another
possibility is that the distribution of LTs across participants sys-
tematically deviates from normality, whether or not this is evident,
or statistically demonstrable, in experiments conducted with the
small sample size that is typical in studies with infants. LTs are

typically assessed from a specific moment in time that determines
the onset of the psychological process under investigation (e.g., the
onset of the stimulus to be detected, accomplishment of an event-
outcome to be interpreted, or the moment when stimuli start to
diverge across conditions), and the same is true of many other
dependent measures of duration, such as reaction times (RTs).
Duration in these types of measurements is a nonnegative quantity
with a nonarbitrary zero point, and it can as much be considered to
be on a ratio scale as on an interval scale. Interpreting LTs
proportionally to each other makes intuitive sense: an infant who
is fast in processing a stimulus may display 10% (rather than, say,
1 s) shorter looking times than others, and a difficult event may
protract looking by 40% rather than by a fixed amount of time
(say, 4 s). Thus, it is possible, or even plausible, that the factors
influencing the duration of looking measured from a specific zero
point are not additive but multiplicative in nature. If this is the
case, then LTs would be better considered to be the product than
the sum of different independent factors, and, according to the
central limit theorem, their distribution would follow a log-normal
rather than a normal distribution.

Indeed, the duration of individual looks toward a TV screen was
reported to be distributed log-normally within infants (for a re-
view, see Richards, 2010). The phenomenon that the longer a look
has been lasting for the less likely it is terminated was attributed to
the deepening of attentional engagement during a look, resulting in
“attentional inertia” and a characteristic distribution of individual
looks. However, the log-normal distribution is not restricted to LTs
but is also characteristic of RTs (Ulrich & Miller, 1993; Wood-
worth & Schlosberg, 1954) and other duration-based psychological
phenomena (e.g., Zhou et al., 2004), and is manifest in distribu-
tions not only within subjects but also across subjects. In fact, such
log-normal distributions are ubiquitous across several disciplines
(for a review, see Limpert, Stahel, & Abbt, 2001).

A random variable is log-normally distributed if its logarithm is
normally distributed. This distribution assumes only positive val-
ues, and is always right-skewed, though the amount of skewness
depends on the actual parameters. If LTs are log-normally distrib-
uted then it is the rule rather than the exception that their distri-
bution is skewed, and logarithmically transformed LTs should
generally approximate normal distribution better than raw data.
However, a single looking-time study cannot provide sufficient
amount of data to confirm or reject the hypothesis that LTs are
log-normally distributed. So far, systematic analyses of statistical
properties of LTs investigated how LTs measured from the same
individuals (in free viewing or across habituation trials) are dis-
tributed across measurements (e.g., Pempek et al., 2010; Richards
& Anderson, 2004; Thomas & Gilmore, 2004). However, to test
our hypothesis, we needed a different kind of information, namely
how LTs are distributed among different individuals and across
studies. To obtain this information, we analyzed two different sets
of data: a set of studies conducted by members of our laboratory
during recent years, and a representative set of published studies
from the infant research literature.

Data Sets

We performed our analyses on two sets of data: an in-house data
set, and a set of published studies (all data are available as an Excel
file in the Supplementary Material). LTs were measured in, or
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transformed to, seconds in all cases. Note that although we could
include in the in-house data set unsuccessful, and eventually un-
published, experiments, the data set collected from the literature
was more likely biased by the so-called “file-drawer problem”
(Rosenthal, 1979).

In-House Data Set

We combined the data from 13 studies, comprising 47 experi-
ments, which included all the completed LT experiments con-
ducted by the second, third, and fourth author of this article,
irrespective of their results (see Table 1). In each of these exper-
iments, infants between 6 and 15 months of age were familiarized
with (45 experiments) or habituated to (2 experiments) video-taped
or animated events presented on a computer screen, and their LTs
were measured in two subsequent test events (representing two
conditions) to single (not paired) stimuli, counterbalanced in order.
The data set included the LTs to these 94 test events from all
participants. The prefixed sample size in each experiment was
either 16 or 24 (after exclusion of participants for fussiness, failure
to look for a predetermined minimum amount of time or at crucial
events during familiarization or test, parental interference, techni-
cal failure, or experimental error). In some of the experiments we
had predicted a difference between the LTs to the two test events

(which was not always confirmed), in others we did not (control
experiments). Some of these studies have already been published,
others are under review, still others are in progress with further
conditions being added to them, or will remain unpublished. We
do not report either the hypotheses or the specifics of these
experiments, because we are only concerned here with the statis-
tical properties of the collected data.

The average of the mean LTs calculated across participants
within the 94 conditions (two conditions in each experiment) in the
in-house data set was 14.6 s, with the average SDs of 9.6 s. The age
group of the infants (averaged to 12.6 months) did not correlate
with the mean or SD across these conditions (r ! .090 and 0.081,
respectively; p " .3).

Literature Data Set

We identified articles to be included in our study through a
search by Google Scholar for relevant articles. The search, per-
formed in October 2013, used the exact query: infant OR infants
“looking time” OR “looking times” and restricted the results to
articles tagged as published in 2012. This query yielded 639
results. Within this set we collected data from all available studies
that (a) were published in a peer-reviewed journal (note that some
of the articles had the eventual publication date of 2013), and (b)

Table 1
List of Studies in the “In-House” Data Set

Study
Number of
experiments

Age range
(months) Participants per experiment

Hernik, M. (unpublished). Self-steering and goal-attribution in 12-month-olds. 1 12 24
Hernik, M., & Csibra, G. (2015). Infants learn enduring functions of novel

tools from action demonstrations. Journal of Experimental Child
Psychology, 130, 176–192. (Experiment 1–3, and a pilot study) 4 12–14 16

Hernik, M., Fearon, R. M. P & Southgate, V. (in preparation). Goal-
attribution in 6-months-old infants critically depends on action efficiency. 2 6 16

Hernik, M. & Haman, M. (in preparation). Fourteen-month-olds transfer
sequences of features derived from internally-driven object transformation. 3 14 16

Hernik, M., & Southgate, V. (2012). Nine-months-old infants do not need to
know what the agent prefers in order to reason about its goals: on the role
of preference and persistence in infants’ goal-attribution. Developmental
Science,15, 714–722. 3 9 16

Mascaro, O. & Csibra, G. (2012). Representation of stable dominance
relations by human infants. Proceedings of the National Academy of
Sciences of the USA, 109, 6862–6867. 8 9–15 16

Mascaro, O. & Csibra, G. (2014). Human infants’ learning of social
structures: The case of dominance hierarchy. Psychological Science, 25,
250–255. 4 15 24

Mascaro, O. & Csibra, G. (in preparation). Fourteen-month-old infants
compute the efficiency of joint actions. 2 14 16

Tatone, D., & Csibra, G. (in preparation 1). Infants’ encoding of reciprocity-
tracking information is specific for benefit exchanges based on giving. 4 12 16

Tatone, D., & Csibra, G. (in preparation 2). Beyond the triad. Giving—but
not taking—actions prime equality expectations in dyadic social
interactions for 15-month-old human infants. 3 12–15 16

Tatone, D., & Csibra, G. (unpublished). No evidence of equality expectations
for redistributive interactions based on taking actions in 12- and 15-month-
olds. 4 12–15 16

Tatone, D., Geraci, A., & Csibra, G. (2015). Giving and taking.
Representational building blocks of resource-transfer events in human
infants. Cognition, 137, 47–62. (Experiments 1–7) 7 12 16

Tatone, D., Hernik, M., & Csibra, G. (in preparation). The side effect that
wasn’t. Other-benefiting outcomes crucially influence infants’ goal
attribution. 2 15 16
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Table 2
List of Studies in the “Literature” Data Set

Study
Number of
experiments

Age range
(months) Participants per experiment

Bahrick, L. E., Lickliter, R., & Castellanos, I. (2013). The development of face
perception in infancy: intersensory interference and unimodal visual facilitation.
Developmental Psychology, 49, 1919–1930. 5 2–3 16

Beier, J. S., & Spelke, E. S. (2012). Infants’ developing understanding of social gaze.
Child Development, 83, 486–496. 6 9–10 16–20

Bremner, J. G., Slater, A. M., Johnson, S. P., Mason, U. C., & Spring, J. (2012). The
effects of auditory information on 4-month-old infants’ perception of trajectory
continuity. Child Development, 83, 954–964. 6 4 12

Casasola, M., & Park, Y. (2013). Developmental changes in infant spatial
categorization: When more is best and when less is enough. Child Development,
84, 1004–1019. 1 10 9

Ceulemans, A., Loeys, T., Warreyn, P., Hoppenbrouwers, K., Rousseau, S., &
Desoete, A. (2012). Small number discrimination in early human development: the
case of one versus three. Education Research International. http://dx.doi.org/10.1155/
2012/964052 1 8 16

Cheung, H., Xiao, W., & Lai, C. M. (2012). Twelve-month-olds’ understanding of
intention transfer through communication. PLoS ONE, 7, e46178. 4 12 18

Curtin, S., Campbell, J., & Hufnagle, D. (2012). Mapping novel labels to actions:
How the rhythm of words guides infants’ learning. Journal of Experimental Child
Psychology, 112, 127–140. 3 16 14–20

Daum, M. M., Attig, M., Gunawan, R., Prinz, W., & Gredebäck, G. (2012). Actions
seen through babies’ eyes: a dissociation between looking time and predictive
gaze. Frontiers in Psychology, 3, 370. 1 9 24

Fennell, C. T. (2012). Object familiarity enhances infants’ use of phonetic detail in
novel words. Infancy, 17, 339–353. 2 14 23–24

Flom, R., & Pick, A. D. (2012). Dynamics of infant habituation: Infants’
discrimination of musical excerpts. Infant Behavior and Development, 35, 697–
704. 6 5–7 24

Graf Estes, K. G. (2012). Infants generalize representations of statistically segmented
words. Frontiers in Psychology, 3, 447. 5 11–17 22–28

Graf Estes, K., & Hurley, K. (2013). Infant-directed prosody helps infants map
sounds to meanings. Infancy, 18, 797–824. 3 18 26–28

Henderson, A. M., & Woodward, A. L. (2012). Nine-month-old infants generalize
object labels, but not object preferences across individuals. Developmental Science,
15, 641–652. 4 9 20

Hohenberger, A., Elsabbagh, M., Serres, J., de Schoenen, S., Karmiloff-Smith, A., &
Aschersleben, G. (2012). Understanding goal-directed human actions and physical
causality: The role of mother–infant interaction. Infant Behavior and Development,
35, 898–911. 4 6–10 21–59

Ma, L., & Xu, F. (2013). Preverbal infants infer intentional agents from the
perception of regularity. Developmental Psychology, 49, 1330. 6 9 16

Macchi Cassia, V., Picozzi, M., Girelli, L., & de Hevia, M. D. (2012). Increasing
magnitude counts more: Asymmetrical processing of ordinality in 4-month-old
infants. Cognition, 124, 183–193. 6 4 12

MacKenzie, H., Curtin, S., & Graham, S. A. (2012). Class matters: 12-month—olds’
word—object associations privilege content over function words. Developmental
Science, 15, 753–761. 3 12 16

Marcus, G. F., Fernandes, K. J., & Johnson, S. P. (2012). The role of association in
early word-learning. Frontiers in Psychology, 3, 283. 5 7–14 18–20

Marquis, A., & Shi, R. (2012). Initial morphological learning in preverbal infants.
Cognition, 122, 61–66. 3 11 16

Martin, A., Onishi, K. H., & Vouloumanos, A. (2012). Understanding the abstract
role of speech in communication at 12 months. Cognition, 123, 50–60. 5 12 16–28

Moher, M., Tuerk, A. S., & Feigenson, L. (2012). Seven-month-old infants chunk
items in memory. Journal of Experimental Child Psychology, 112, 361–377. 7 7 20

Möhring, W., Libertus, M. E., & Bertin, E. (2012). Speed discrimination in 6-and
10-month-old infants follows Weber’s law. Journal of Experimental Child
Psychology, 111, 405–418. 3 6–10 24

Muentener, P., Bonawitz, E., Horowitz, A., & Schulz, L. (2012). Mind the gap:
Investigating toddlers’ sensitivity to contact relations in predictive events. PLoS
ONE, 7, e34061. 8 24 22

(table continues)
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measured LTs in infants not older than 24 months. Moreover, to be
included, articles (c) had to report infants’ LTs at a scene until a
criterion was reached (typically up to the point participants looked
away for a preset amount of time, or reached a maximum amount
of looking). Other measures of LTs (e.g., comparing amounts of
looking at two different areas of a single scene) were not included.
(d) We included only articles reporting within-subject LT data for

two comparable types of test events (e.g., consistent and inconsis-
tent tests). We chose to focus on within-subject designs because
they are the most commonly used in infants’ LTs studies (in our
sample, only three articles used between-subjects designs to assess
the effect of condition on infants’ LTs). (e) We also excluded
articles that did not provide sufficient information to extract rele-
vant data (participants’ age, and means and SDs of LTs).

Table 2 (continued)

Study
Number of
experiments

Age range
(months) Participants per experiment

Ozturk, O., Krehm, M., & Vouloumanos, A. (2013). Sound symbolism in infancy:
evidence for sound—shape cross-modal correspondences in 4-month-olds. Journal
of Experimental Child Psychology, 114, 173–186. 3 4 12

Pons, F., Albareda-Castellot, B., & Sebastián-Gallés, N. (2012). The interplay
between input and initial biases: Asymmetries in vowel perception during the first
year of life. Child Development, 83, 965–976. 12 4–12 12

Schlottmann, A., Ray, E. D., & Surian, L. (2012). Emerging perception of causality
in action-and-reaction sequences from 4 to 6 months of age: Is it domain-specific?.
Journal of Experimental Child Psychology, 112, 208–230. 7 5–6 16–56

Sirois, S., & Jackson, I. R. (2012). Pupil dilation and object permanence in infants.
Infancy, 17, 61–78. 2 10 19

Sloane, S., Baillargeon, R., & Premack, D. (2012). Do infants have a sense of
fairness? Psychological Science, 23, 196–204. 6 19–21 16–18

Soska, K. C., & Johnson, S. P. (2013). Development of three-dimensional completion
of complex objects. Infancy, 18, 325–344. 6 4–9.5 16

Spangler, S. M., Schwarzer, G., Freitag, C., Vierhaus, M., Teubert, M., Fassbender,
I., . . . & Keller, H. (2013). The other-race effect in a longitudinal sample of 3-,
6-and 9-month-old infants: Evidence of a training effect. Infancy,18, 516–533. 6 3–9 53–54

Ting, J. Y., Bergeson, T. R., & Miyamoto, R. T. (2012). Effects of simultaneous
speech and sign on infants’ attention to spoken language. The Laryngoscope, 122,
2808–2812. 2 8 10

Vaillant-Molina, M., & Bahrick, L. E. (2012). The role of intersensory redundancy in
the emergence of social referencing in 5½-month-old infants. Developmental
Psychology, 48, 1–10. 2 6 16

Weikum, W. M., Oberlander, T. F., Hensch, T. K., & Werker, J. F. (2012). Prenatal
exposure to antidepressants and depressed maternal mood alter trajectory of infant
speech perception. Proceedings of the National Academy of Sciences of the USA,
109, 17221–17227. 6 6–10 16–30

Figure 1. Distribution of standardized looking times (LTs) (converted to Z scores within conditions) in the
in-house data set compared with the standard normal distribution. (A) Histogram derived from raw data. (B)
Histogram derived from log-transformed data. (C) Cumulative distribution of raw, and log-transformed data and
the normal distribution. On A and B, the area below the Gaussian curve is equal to the total area of the histogram.
See the online article for the color version of this figure.
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The final data set included 33 articles (149 experiments alto-
gether) reporting data from infants 2 to 24 months of age, and
covering a large span of presentation modes, methods, and topics
(see Table 2). Relevant data was collected primarily from the text
of the articles. However, when means and SDs of LTs were not
available in the text, we extracted them from graphs, estimating
means and standard errors in seconds to 1 decimal digit precision.
The literature data set was collected by three independent coders,
who each processed about one third of the articles.

The average of the means and the SDs of the 298 conditions
were 11.2 s and 6.4 s, respectively, and neither statistic was
correlated with the age group (r ! .082 and 0.020, respectively;
p " .15). However, infants in the experiments of the literature data
set were significantly younger (mean 9.6 months) than those of the
in-house data set (t194 ! 3.656, p # .001), and produced shorter
mean LTs (t390 ! 3.935, p # .001) and corresponding SDs (t390 !
6.024, p # .001). We also investigated whether these statistics
differed between purely visual experiments (n ! 88) and those that
measured LTs to auditory stimuli or to audio-visual matching (n !
61) in the literature data set. Visual experiments produced longer
mean LTs (13.0 s) and SD of LTs (7.7 s) than auditory studies (8.5
and 4.5 s, respectively), and these differences were statistically
significantly across the 298 conditions (t296 ! 4.943 and 5.582,
respectively, p # .001 in both cases).

The Distribution of Looking Times

The distribution of LTs can be analyzed both within a study
(across individuals) and across studies. Because the first method
requires access to individual data, we applied it only to our
in-house data set.

Within-Study Distribution

In our in-house data set, we measured LTs to two test events in
each of the 47 experiments. Thus, we had 94 sets of LT data
(representing 94 experimental conditions) comprising 1,584 ob-
servations (16 or 24 measurements per condition). Assuming that
the data within each condition was normally distributed, these sets
would be different only in scale and their mean. We standardized
the data within each set by subtracting its own sample mean and
dividing the results with the sample SD. If the sampled data within
each condition were coming from a normal distribution, the stan-
dardized data in each study should come from the same standard
normal distribution with mean 0 and SD 1. We then collapsed the
data across all conditions to check how well the sample of the
1,584 standardized observations fitted the standard normal distri-
bution. Figure 1A shows a histogram of our finding contrasted
with a standard normal distribution density function.

It is clear from this figure that the match between the standard-
ized data and the standard normal distribution is rather poor.
Although the mean of the collapsed standardized data is 0 (by
definition), the mode is closer to $1, and the distribution is heavily
skewed (skewness ! 0.97). According to an often used 2.5 SD
criterion for identifying outliers, 29 data points (1.83%) would be
excluded from these data as outliers in their respective conditions,
which would result in only a slight change to the skewness (0.82).

Next, we checked the hypothesis that our data were coming
from log-normal distributions. We log-transformed all 1,584 data

points, and then standardized the data within each condition the
same way as we did with the raw data. The collapsed data set is
depicted on Figure 1B as a histogram against the standard normal
distribution. The distribution of standardized log-transformed data
is only slightly skewed to the left (skewness ! $0.11) and its
shape matches closely that of the normal distribution. Only 6 data
points (5 on the left and 1 on the right) would be excluded from the
log-transformed data with a 2.5 SD criterion of outliers.

The distributions of the raw and the log-transformed data can be
directly compared by their cumulative distributions (Figure 1C).
According to Kolmogorov–Smirnov tests, the distribution of raw
standardized LTs was significantly different from standard normal
distribution (p # .0001) while the distribution of the log-
transformed LTs was not (p ! .1354). We conclude that the
distribution of individual raw LTs within each condition was likely
log-normal rather than normal.1

Across-Study Distribution

While the above analysis investigated the distribution of LTs
across infants within individual conditions, it does not reveal the
factors that affect this measure across studies. However, if these
factors, just like individual differences, exert multiplicative effects
on LTs, one may hypothesize that the distribution of LTs across
studies will differ mainly in scale. (Note that this hypothesis is
theoretically independent from the within-study distribution of
LTs.) One consequence of this hypothesis is that within-Condition
SDs should change proportionally to the means, while the coeffi-
cients of variation should remain relatively constant.

In-house data set. Figure 2A depicts the relationship between
the means and SDs in the 94 sets of LTs in the in-house data set:
the correlation between means and SDs is high (above 0.8), as the
SD tends to increase linearly with the mean across studies and
conditions. Specifically, the SD for each set of data tended to be
about 2/3 of the mean (the average coefficient of variation across
conditions was 0.667).

Logarithmic transformation removed this scaling factor: the
means and SDs of (base-10) logarithmically transformed data
were barely correlated (Figure 2B). In addition, the coefficient
of variation of SDs across conditions was 0.35 in the raw and
0.21 in the transformed data, suggesting more homogeneity
after transformation. The majority of SDs in the log-
transformed data was between 0.25 and 0.35, with the average
SD being 0.298. We conclude that, in the in-house data set, LTs
displayed log-normal distributions, with the underlying normal
distributions differing in mean (corresponding to differences in
average log-looking time), but had a relatively uniform SD,
which was close to 0.3.

1 We also compared directly whether a Normal (N), log-normal (LN),
shifted-LN (sh-LN), ex-Gaussian (ex-G, the sum of an exponential and a
normal random variable), or % distribution fitted better the data in this data
set. Using the Bayesian Information Criterion (BIC ! log10(likelihood
with optimized parameters) $ 1/2 & number of parameters & log10(#data
points); Bishop, 2006) as a measure of goodness-of-fit, we found that the
data were overwhelmingly in favor of the LN distribution, which was
10126-times more likely than the N, 1037-times more likely than the sh-LN,
1021-times more likely than the ex-G, and 105-times more likely than the
% distribution.
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Literature data set. The correlation between means and SDs
of LTs was even stronger in the sample of 298 conditions collected
from the literature (Figure 2C), with the average coefficient of
variation being lower than in the in-house sample, 0.566.

Assuming that the LTs in all studies in this data set were coming
from log-normal distributions, we estimated the means and SDs of
the base-10 log-transformed data from the means and SDs of the
raw data (for the details of the calculation, see Appendix A). In the
transformed data set, the correlation between means and SDs
completely disappeared (Figure 2D). This outcome is consistent
with the assumptions that LT distributions within studies are
log-normal and the factors influencing LT differences across stud-
ies tend to be multiplicative.

Interpretation

Log-transformation of LT data is thus recommended before
parametric statistical analyses are performed because these analy-
ses usually assume (a) normal distribution, and (b) homogeneity of
variance (though with appropriate choice of tests, t tests and
ANOVAs are robust with respect to the latter condition). If LTs are
log-normally distributed and mainly differ in scale across condi-

tions, then both of these assumptions are violated by raw data but
met by log-transformed data. It is important to note that parametric
multifactor analyses of LTs could also result in spurious effects
(e.g., showing an interaction rather than two main effects in an
ANOVA) if they are applied to raw data.

Statistical Comparison of LTs Across Conditions on
Raw Versus Log-Transformed Data In-House Data Set

When we analyzed the raw LTs in the in-house data set by
within-subject t tests at ' ! 0.05, 15 of the 47 experiments showed
statistically significant differences between conditions (14 in the
expected direction and one in the opposite direction). Using log-
transformed LTs, 19 experiments produced statistically significant
effects (18 in the expected direction, 1 in the opposite direction),
14 of them being the same experiments as with nontransformed
data. Thus, log-transformation of LTs revealed statistically signif-
icant effects in five experiments that would have been rendered
nonsignificant by analyses of nontransformed data. Only one ex-
periment rendered significant effect with raw LTs but not with
log-transformed data. While log-transformation does not necessar-
ily increase the chance of obtaining significant results, when the

Figure 2. Scatterplots illustrating the relationship between means and SDs of looking time (LT) data of the two
data sets with raw and log-transformed forms. The lines represent the best-fit linear regression. See the online
article for the color version of this figure.
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data are skewed and the LT difference between test trials is small,
it could reveal an otherwise hidden effect.

Literature Data Set

To perform statistical tests on these data, we needed the SD of
the within-subject, between-condition differences of log-
transformed LTs for each experiment. While this information was
not directly available to us, we could still estimate it using avail-
able information about the statistics of raw LTs. First, we recov-
ered the between-condition Pearson correlation of the raw LTs
from the corresponding t-values, whenever these were reported
(where, instead of t tests, one-way ANOVAs were performed, we
used the reported F values to calculate the corresponding t-values;
see Appendix B for the details of the calculation). In the 64 (of
149) experiments that reported t-statistics (or allowed us to calcu-
late t-values), the average between-condition correlation of raw
LTs was r ! .421, very close to what we found in the in-house data
set (r ! .414). This allowed us, in a second step, to estimate the
between-condition correlation of the log-transformed LTs in these
64 experiments by using the regression equation we found in our
in-house data set relating correlations of log-transformed and raw
LT values.2 Third, we assumed that the average correlation coef-
ficient between log-transformed LTs in these 64 experiments (r !
.386) was representative, and applied this value to the remaining
85 experiments. Finally, we estimated the SD of the log-
transformed LT differences using the correlation values obtained
above in the whole data set (see Equation B2 in Appendix B).

Eighty-four of the 149 experiments in this data set were reported
to produce a statistically significant effect based on the analysis of
the raw data (including one where the effect went in the unpre-
dicted direction), and 14 of these experiments were judged to be
nonsignificant with the estimated log-transformed data. Seven of
these 14 mismatches might have been because of the fact that we
had to resort to estimating correlations between LTs when t tests or
one-way ANOVAs were not reported for them (see above). In all
these seven cases, the raw LTs must have been very strongly
correlated (0.72, 0.74, 0.79, 0.86, 0.87, 0.92, and 0.98), otherwise
they could not have accounted for the effect. The other seven
experiments produced p values only slightly below the 0.05 level,
and log-transformation pushed them above that level. However, in
further two experiments log-transformation made the statistical
results stronger, turning one-tailed significant effects into two-
tailed ones.

Statistical Parameters of Log-Transformed
Looking Times

In the following, unless we specify otherwise, our analyses are
based on log-transformed LT data (or their estimates), which we
assume to have an approximately normal distribution. For para-
metric statistical analyses of within-subject data with a normal
distribution, only three summary statistics of the sample need to be
taken into account: the sample size, and the mean and SD of the
between-condition, within-subject differences. The sample sizes
were given in the data sets. The SD of the within-subject differ-
ences depends on the SD of the LTs and the correlation between
the LTs in the two conditions. (At r ! .5, the SD of the difference
would be about the same as the SDs of the LTs as long as they do

not differ substantially from each other.) The difference between
the LTs of the two conditions represents the effect produced by the
experimental manipulation. Where this manipulation had the pre-
dicted effect, we expect to see a positive value; where it did not
have an effect, the value will be close to zero. We investigated the
distribution of these two parameters (SD and mean of between-
Condition LT differences) across the experiments in two ways: by
distinguishing between experiments with and without effects based
on standard statistical criteria, and by using an unsupervised
Bayesian method to fit their distributions.

Estimating Effect Sizes From the Data Sets

SDs of between-condition LT differences. The average SD
of the base-10 log-transformed LT differences across studies in the
in-house data set was 0.332. This is higher than the average SD of
log-transformed LTs (0.298) because the average correlation be-
tween the log-transformed LTs in the two conditions was 0.380
(lower than 0.5). The between-condition differences were not
directly available in the literature data set, but were estimated from
t-values and from assumed levels of correlations (see above). With
these estimates, we found that the average SD of LT differences
across conditions in this data set was 0.252, significantly lower
than what we found in the in-house data set (t194 ! 6.583, p #
.001). This was partly due to the fact that in the literature data set
auditory studies produced lower SDs of LT difference (0.223) than
visual ones (0.272; t147 ! 4.486, p # .001). Nevertheless, collaps-
ing the two data sets did not create a visibly bimodal distribution
(Figure 3, bottom row, right column). In the aggregated data set of
196 experiments, the average SD of LT differences was 0.271.

Means of between-condition LT differences. The top row of
Figure 3 depicts histograms of the size of the average between-
condition difference in the two data sets separately and together.
The distribution of these differences in the in-house data set is
clearly bimodal with a peak around 0.04, representing the exper-
iments that did not produce differential LTs, and another peak
around 0.24, representing those that might have revealed an effect.
Note that not all experiments that fell around 0.2 produced statis-
tically significant results—some might have failed this test be-
cause of higher SDs (or lower sample sizes). Among the 18
experiments that, after log-transformation, actually produced a
statistically significant difference by conventional t tests, the av-
erage between-condition difference was 0.216 (64.2% increase or
39.1% decrease of LT in raw value). The data set collected from
the literature also produced a bimodal distribution of between-
condition differences, with peaks around 0.04 and around 0.16
(Figure 3, top row, middle column). Of the 71 experiments that,
according to our estimates, would have resulted in significant
effects in the predicted direction had they been analyzed with
log-transformed data, the average significant difference was 0.210.

The average LT difference between conditions in the experi-
ments that produced (or would have produced) a statistically

2 The average correlation coefficient between LTs to the two conditions
(rR) calculated on the untransformed data in the in-house data set was
0.414. This was reduced to 0.380 after log-transformation (rL). We used the
regression equation between these two sets of correlation coefficients (rL !
0.8177 & rR ( 0.0414) for estimating the correlation coefficients for the
log-transformed LTs in the literature data set.
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significant effect at 0.05 level was not significantly different
between the data sets (t88 ! 0.325) or between auditory and visual
studies (t88 ! 0.071), and was not significantly correlated with the
age group in which the experiment was performed. In the collapsed
data set the average between-condition effect in successful exper-
iments was 0.210, while the experiments without an effect pro-
duced an average difference value of 0.000. We conclude that a
suitable estimate for the mean between-condition difference for a
generic successful LT study would be around 0.2. This value
corresponds to a 58.5% of increase (or 36.9% of decrease, if the
higher LT is considered to be the baseline) of raw LTs between
conditions.

Note that this last analysis has two questionable elements that
we rectify in the next section. First, it requires a hard categorical
decision to be made about whether an experiment did or did not
produce an effect, which can only be made using an arbitrary
threshold for significance (here, at 0.05). This can also lead to
“double dipping” (Kriegeskorte et al., 2009), that is, making the
analysis circular when some data (here, LT difference) is used to
create categories (presence or absence of effect), and then this
categorical judgment is used to select samples to estimate some
statistic of the same data (here, the mean of LT differences) in each
category. Second, taking a plain average across studies (of one
category) ignores the fact that the sample size of the experiments
included in the analysis were different (ranging 9 to 59), and so the

reliability of these experiments with which mean LT differences
(and SDs) reflected the underlying populations’ mean (and SD)
was also different.

Model-Based Analyses

Another approach to the estimation of the parameters of log-
transformed LT difference data is fitting explicit probabilistic
models to the available data. Unlike the analyses of the previous
section, the procedure by which we determined the parameters of
our models did not require a prior hard categorical judgment as to
which experiment was deemed to produce an effect. Instead, the
analyses inferred this information probabilistically at the same
time while estimating the model parameters in a completely un-
supervised way, by simply maximizing the likelihood of the model
on the given data set (Bishop, 2006). Moreover, we formulated our
models at the level of individual participants’ LT differences,
which ensured that experiments with larger sample sizes contrib-
uted more to the parameter estimates, as appropriate. (For the
details of the models and the fitting procedure, see Appendix C.)

We adopted two approaches to model the data. The first ap-
proach took the empirical description of the findings in terms of a
bimodal distribution of LT differences (see the previous section) at
face value, and assumed that the distributions of experiments with
and without a real effect differ in means but not in variance, and

Figure 3. Histograms of the means and SDs of log-looking time (LT) differences in the two data sets separately
and together. See the online article for the color version of this figure.
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all successful experiments had the same underlying LT difference.
In contrast, the second approach assumed that the underlying LT
differences of experiments with real effects can be different and
themselves vary around zero, and the within-experiment variance
can be different for experiments with and without an underlying
effect.

Fixed LT difference. This model assumed that LT differences
were coming from two normal distributions having the same
variance, but different means: one had a positive mean, which was
unknown and thus had to be estimated from the data, and the other
had a mean of zero (respectively, corresponding to experiments
producing or failing to produce an effect). Note that this model
assumed that all experiments within either category had the same
expected LT difference and the empirical variation in the actual
sample means was entirely because of limited sample sizes. After
fitting this model, we found that in the in-house data set the mean
of the positive distribution (i.e., the distribution of the experiments
that produced an effect) was 0.210 and the SD of the LT differ-
ences was 0.345. These values were very close to our previous
estimates (0.216 and 0.332, respectively). The mean of the positive
LT difference (0.209) and SD (0.264) yielded by the model for the
literature data set also matched well our previous estimates (0.210
and 0.252, respectively). The best fit distribution for the data
collapsed across data sets had a mean of 0.209 and SD of 0.296.

LT differences varying around zero. This model assumed
that subjects’ LT differences were coming from two types of
normal distributions: (a) the experiments without an underlying
effect were modeled with a normal distribution with zero mean and
unknown variance, and (b) the experiments with an effect were
modeled by a normal distribution with an unknown variance and a
mean which itself was assumed to vary across studies and to be
distributed normally with zero mean and unknown variance. This
model thus assumed that different “successful” experiments may
have fundamentally different effect sizes. While the previous ap-
proach estimated two parameters (the LT difference and the equal
variance of the two distributions), this model estimated three
parameters: the variance of the LT means around zero in experi-
ments with an effect, and the variances of LT differences within
experiments with and without an effect separately. We estimated
these parameters only for the collapsed data sets. The analysis
yielded the best fit with the data where the across-experiments SD
of the mean LT difference was 0.171, and the SD of the within-
experiment LT differences was 0.325 and 0.195 for experiments
with and without effects, respectively. This model provided a
better fit with the data than the previous one: it produced a
Bayesian information criterion (BIC; Bishop, 2006; see footnote 1
for formula) 220.88 as opposed to the BIC of the previous model,
which was 177.78, thus corresponding to a factor of 1043 differ-
ence in their likelihoods.

Interpretation

Our various estimates of the log-transformed LT differences in
studies exhibiting an effect across conditions ranged from 0.209 to
0.216, while the SDs of these differences ranged from 0.223 (in
auditory studies) to 0.332 (in the in-house data set). We propose
that the suitable estimate for these parameters for a typical LT
study would be 0.2 for the expected mean and 0.3 for its SD. Such
values would yield an effect size of 0.667, which would require at

least 12 participants to produce a statistically significant effect
with a t test at ' ! 0.05.

While these statistical parameters describe well the experiments
included in our data sets, these studies may not be representative
of all possible LT studies. Indeed, it is possible that the sets of
studies we used in our analyses is biased by selective publication
(experiments with small effects and small sample size may not
appear in articles) and by the particular topics investigated. Thus,
the bimodal distribution of effect sizes may be artifactual, and
should be taken with caution when it is exploited to generate
expectations for future studies. In this respect, the parameter
estimates from the second model-based analysis may provide safer
predictions for LT studies that are different from the ones we
selected for our analyses. On the basis of this model, we would
estimate that experiments with underlying effects produce LT
differences that vary around zero with SD of 0.2 and had a
between-subjects SD of 0.3 (matching the previous estimate),
while the experiments without an effect display a smaller between-
subjects SD of 0.2. We use these estimates to develop Bayesian
statistics for LT experiments in the next section.

Bayesian Statistics of LTs

Bayesian statistics offer various advantages over traditional
“frequentist” tests, including the possibility to infer the absence of
effects, no need to prefix sample size, and so forth (Dienes, 2011,
2014; Gallistel, 2009; Glover & Dixon, 2004; Kruschke, 2011;
Morey & Rouder, 2011). However, the most popular Bayesian
statistical methods, which rely on determining Bayes factors cal-
culated as the ratio between the likelihood of two competing
hypotheses that could explain the data, require the researcher to
provide quantitative estimates of the size of the expected effect
under each hypothesis.

In most LT studies, the two competing hypotheses can be
conceived as the one (H1) according to which the experimental
manipulation (i.e., the difference between conditions) exerts an
effect on the dependent measure (i.e., on LT), and the one (H0)
according to which no such effect occurs. Note that while the size
of the expected effect under H0 is explicit, that is, it predicts zero
difference between LTs in the two conditions, H1 remains unquan-
tified in traditional statistical approaches. Calculating Bayes fac-
tors requires the specification of how much the LTs should in-
crease (or decrease) in one condition compared to the other. Using
raw LT data, this is rarely a viable method because the size of the
increase also depends on the baseline LT measure.

However, because log-transformed differences essentially mea-
sure multiplicative effects, they are not scaled with the baseline
value. Thus, if a researcher performs a LT experiment and predicts
an average sized effect for her experimental manipulation, she
could hypothesize expected effect size estimation from other LT
studies. The best strategy to obtain such an effect size would be to
base the estimate on previous data with similar methods. For
example, one could estimate this effect size by relying on data
from previous studies applying similar stimuli, similar age groups,
and similar overall methods (e.g., familiarization or habituation).
However, our analysis suggests that the log-transformed LT dif-
ferences between conditions do not vary tremendously across
studies, which will enable researchers to form effect size estimates
even in the absence of prior studies in their specific domain.
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We developed two ways of performing Bayesian analysis on LT
data. The first one assumes that the average effect size we iden-
tified in our data sets provides a suitable H1 for any potential future
LT study. The second type of analysis relies on the results of the
model-based analysis that assumed varying effect sizes. We inves-
tigated what conclusions one could draw from the experiments on
our samples with each of these Bayesian analyses by calculating
the corresponding Bayes factors. Following conventions (Dienes,
2011; Jeffreys, 1961), we judged the evidence to be substantially
or strongly in favor of the theory that the manipulation had an
effect on LTs if the Bayes factor was larger than 3 or 10, respec-
tively. Instead of straight Bayes factors, we calculated and report
here their base-10 logarithm, which above 1.0 would indicate
strong, and above 0.5 would indicate substantial effects. Con-
versely, when the logarithm of the Bayes factor (lBF henceforth)
falls below $1 (or $0.5), we consider the contrastive hypothesis
(i.e., that there is no effect) to be favored strongly (or substantially)
by the evidence.

Bayesian Analysis Assuming Fixed Effect Size

Using the values that we derived from the two data sets we
analyzed, one could predict that the between-condition differences
of log-transformed LTs in an experiment with averaged-sized (i.e.,
neither too weak, nor not too strong) expected effect will come
from a normal distribution with the mean of 0.2 and SD of 0.3
(these values assume base-10 log-transformation). We calculated
lBFs for each experiment contrasting two hypotheses predicting
that the experimental manipulation would result in a log-LT dif-
ference that comes (H1) from a normal distribution with the mean
of 0.2 and SD of 0.3, or (H0) from a normal distribution with zero
mean and the same SD. We calculated the base-10 lBF the fol-
lowing way (for derivation, see Appendix D):

lBF ! log10(e) " n " # " (m $ # ⁄ 2) ⁄ %2, (1)

where e is the base of the natural logarithm, n is the sample size,
m is the mean of the differences of log-transformed LTs in the
sample, and ) and * are the mean and SD of the hypothesized
distribution of the experimental effect. With ) ! 0.2 and * ! 0.3,
this calculation is further simplified to lBF ! 0.965 & n & (m $
0.1) + n & (m $ 0.1). This Bayes factor acts like a one-sided test:
it will show high positive values only when the effect occurs in the
predicted direction. In case m is negative and the above lBF is
strongly negative (e.g., lBF # $1.0), one can also test whether the
opposite LT effect is obtained by calculating lBF as $0.965 & n &
(m ( 0.1).

In-house data set. In 17 of the 18 experiments judged by
conventional statistical analyses to have resulted in significant
effects in the predicted direction this verdict was confirmed by the
Bayesian analysis. In three of these experiments, the lBF values
were between 0.5 and 1.0 (substantial evidence), in the other 14
experiments they went up to 3.98 (corresponding to a Bayes factor
close to 10,000), indicating strong evidence for the predicted
effect. The experiment in which the Bayesian statistics did not
confirm the significance of the effect displayed a very small
looking time difference (below 0.1 in base-10 log units). However,
the results of two experiments that failed to reach the level of
statistical significance with conventional statistics indicated very
strong effects (lBFs above 2.0) in Bayesian analyses. An additional

22 control experiments, which showed no effect with conventional
statistics, plus the single experiment that resulted in LT difference
opposite to the predicted one, provided evidence for the null effect
(lBFs below $0.5).

Literature data set. In the 71 experiments for which conven-
tional statistics on the estimated log-transformed data judged the
predicted effect statistically significant, the lBFs ranged
from $1.607 to 12.272. Eleven of these values were below 0.5,
indicating only weak evidence for the effect of experimental
manipulation by Bayesian statistics, and 46 of them were above
1.0, indicating strong evidence. Thus, in 60 of 71 cases the Bayes-
ian statistics confirmed the result of conventional statistics. In two
further experiments, where a difference was predicted by research-
ers but their prediction was not confirmed by conventional statis-
tics, Bayesian analysis suggested substantial evidence supporting
this prediction. In addition, Bayesian analyses would have allowed
researchers to infer the absence of effect in many control experi-
ments in the literature data set (see the Supplementary Material).

Bayesian Analysis Assuming Variable Effect Size

The second model-based analysis suggested that the LT differ-
ences in experiments with an underlying effect may vary around
zero with an SD of 0.2, and the within-experiment (between-
subjects) SD could be estimated as 0.3 for experiments with an
effect and as 0.2 for experiments without an effect. The lBFs based
on this model can be calculated using the following approximate
formula (for derivation, see Appendix D):

lBF ! "log10(e) " #1 ⁄ & $ 1 ⁄ '$ " n " m2 $ log10#' ⁄ &$% ⁄ 2,
where ' ! %1

2 ( n " )1
2 and & ! %0

2,

(2)

where e is the base of the natural logarithm, n is the sample size,
m is the mean of the differences of log-transformed LTs in the
sample, ,1 is the SD of the mean LT differences, and *0 and *1 are
the SDs of the hypothesized distribution without and with an
effect, respectively. Substituting ,1 ! 0.2, *0 ! 0.2, and *1 ! 0.3,
the calculation becomes

lBF ! "5 . 429 $ 21 . 715 ⁄ #9 ( 4n$% " n " m2

$ log10" & #9 ( 4n$% ( 0.301. (3)

In this case, the Bayesian analysis acts as a two-sided test: high
positive lBF will be obtained regardless of whether the LT differ-
ences are strongly above or below zero, while negative lBF values
support the conclusion of no effect in either direction.

In-house data set. Just like in the previous Bayesian analyses,
the lBFs confirmed the results of the conventional statistics in all
but one experiment. In fact, these analyses yielded considerably
higher Bayes factors than the earlier ones. In addition, a high
positive lBF (1.149) was found for the experiment that resulted in
the opposite looking time difference to what had been predicted.
The two experiments that produced high Bayes factors in the
earlier analyses despite failing to reach the level of statistical
significance with conventional statistics again produced high lBFs.
However, only nine of the remaining experiments carried some
evidence for H0, and none of these was strong ($1.0 #
lBFs # $0.5).
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Literature data set. The results of these Bayesian analyses
were even more consistent with those of the conventional analyses
than the previous one. Only five (of 71) experiments that conven-
tional statistics on the estimated log-transformed data judged the
predicted effect statistically significant did not produce substantial
evidence for H1 on the basis of lBFs. In addition, H1 was supported
in four experiments that did not produce a significant effect in t
tests, and in four further experiments an effect to the opposite
direction was confirmed. This type of Bayesian analysis would
have confirmed the absence of the effect (i.e., confirmed H0) in 37
experiments.

Comparing Bayesian Analyses

The two versions of Bayesian analyses differed in how H1 was
specified. Nevertheless, in most experiments from both sets of
studies the conclusions that the two types of Bayesian statistics
supported agreed with each other (for a study-by-study compari-
son, see the Supplementary Material). When H1 assumed a fixed
effect size, the analyses produced less positive (and more negative)
lBFs than when H1 hypothesized variable effect sizes. Thus, the
former analysis were more likely to support H0 and less likely to
support H1 than the latter one.

Recommendations

On the basis of our analyses of the two data sets, we offer the
following recommendations for researchers who intend to perform
experiments measuring LTs in infants.

Logarithmic Transformation

Looking time data should be subjected to logarithmic transfor-
mation before statistical analysis, whether or not the data collected
are found to violate the assumption of normality by a statistical
test. Note that this requirement assumes that the LT data are on a
ratio scale (rather than on an interval scale) with a suitably chosen
zero point (e.g., the moment when the information to be processed
becomes available).

Sample Size

For experiments that are intended to be analyzed by conven-
tional statistics, the sample size should be fixed in advance. As-
suming that the parameters we derived from the two sets of studies
are representative, the effect of a within-subject independent vari-
able on log-transformed LTs will have sufficient power to dem-
onstrate an effect with two-tailed t tests (' ! 0.05) with 0.75
probability by 16 participants, and with 0.95 probability by 32
participants. If the expected effect is smaller than usual, that is, if
the expected increase of LT from the lower to the higher value is
between 40 and 50%, we recommend a minimum sample size of
26 to achieve a power of 0.75. An experimental manipulation that
is expected to increase raw LTs by less than 35% with normal
between-subjects variance is unlikely to be successful if the sam-
ple size is smaller then 40.

Bayesian Analyses

In the absence of previous experiments with similar design or
available theoretical considerations, a new study can hypothesize

(H1) that the base-10 log-transformed LTs increase or decrease by
an unknown amount that comes from a normal distribution around
0 with an SD of 0.2, while the within-study SD of LT differences
would be 0.3. A suitable H0 against this prediction is that the
log-LT differences will come from a normal distribution with a
mean of zero and an SD of 0.2. These values are robust—they
work with a wide range of experiments and actual effect sizes—
and the corresponding approximate lBF values are easy to calcu-
late for any sample by Equations 2-3 above.

Alternatively, if previous studies allow the development of a H1

for a specific effect size, one can adopt the method we followed
above for fixed effect sizes. Equation 1 can be used for calculating
lBFs with any hypothesized LT difference as long as the predicted
SD of the difference is the same for H1 and H0.

Experiments analyzed by Bayes factors do not have to fix the
sample size in advance. Instead, the researcher could check peri-
odically whether the collected data provides sufficient evidence for
either that the manipulation works (e.g., by obtaining an lBF value
larger than 1.0) or that it does not work (lBF below $1.0). For
example, if counterbalancing some variables demands a sample in
multiples of 8 participants, one could calculate the Bayes factor at
the 8th, 16th, 24th, and so forth, participant, and stop the experi-
ment when the data provide sufficiently strong evidence for either
the presence or the absence of the effect of the manipulation, or
otherwise terminate it without a verdict when the sample size
reaches a high limit (e.g., 40 participants). While the method of
expanding the sample size until a desirable effect is found (“pref-
erential stopping”) would invalidate conventional “frequentists”
statistical analyses, it is permissible with Bayesian analysis
(Dienes, 2011). Although, in certain situations, preferential stop-
ping could also produce high Bayes factors with unreasonably high
probability, this mostly affects Bayes factors favoring the null
hypothesis (false negatives), so that the probability of obtaining a
spuriously high Bayes factor supporting the alternative hypothesis
(false positive, the concern of standard frequentist statistical anal-
yses) still remains bounded (Sanborn & Hills, 2014).

Conclusions

Our analyses were restricted to the between-subjects statistical
properties of LTs, and do not allow us to evaluate or judge the
methodological soundness or scientific value of the studies in
either data set. Nevertheless, our recommendations can benefit
future studies by allowing researchers to justify their choice of
analysis. Currently, log-transformation is hardly applied to LT data
in the literature (e.g., none of the studies in the literature data set
used it), and when it is applied, the researchers feel compelled to
justify this step by referring to the skewness of the data or to a test
of normality. Our analyses suggest that not applying log-
transformation is the methodological choice that should require
justification.

When a new LT study is designed, the researchers need to
decide how they will statistically analyze the collected data. Both
conventional and Bayesian analyses require predetermining some
parameters (the sample size and the effect size, respectively)
before conducting the experiment. Our recommendations offer
researchers justifications for choosing these parameters for LT
studies even when theoretical or empirical considerations do not
allow prior specification of them in the given field of research.
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Considering how simple technique it is, measuring looking
times has become a very popular and flexible tool in infant
research. Improving the analyses of collected LT data will make it
even more valuable.
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Appendix A

Estimating the Parameters of Log-Transformed Data

Estimating the mean (mt) and SD (st) of base-10 log-transformed
data from the mean and SD of raw data assumed to come from a
log-normal distribution.

mt ! log10(m
2 ⁄ [m2 ( s2]½)

st ! (log10(e) " log10[1 ( s2 ⁄ m2])½

where m and s are the mean and SD of the raw data and e is the
base of the natural logarithm.

Appendix B

Using t Values to Calculate SDs and Correlations

Calculating the correlation coefficient of LTs and the SD of LT
differences from the available data.

Available:

n: Sample size

m1 and m2: Mean LTs in the two conditions

s1 and s2: The SDs of LTs in the two conditions

t: The value of the t statistics

Calculated:

r: Pearson correlation between conditions

sd: The SD of the LT difference between conditions

Since

t ! & n " (m1 $ m2) ⁄ sd

sd
2 ! n " (m1 $ m2)

2 ⁄ t2 (B1)

sd
2 can also be expressed from the two known SDs:

sd
2 ! s1

2 ( s2
2 $ 2 " r " s1 " s2 (B2)

From (B2):

r ! #s1
2 ( s2

2 $ sd
2$ ⁄ (2 " s1 " s2)

Substituting sd
2 from (B1):

r ! #s1
2 ( s2

2 $ [n " #m1 $ m2$2 ⁄ t2]$ ⁄ (2 " s1 " s2)

Appendix C

Model-Based Estimation of the Statistical Parameters of Log-LT Difference Distributions

Model-based estimation assuming fixed effect size

We modeled individual participants’ log-LT differences as com-
ing from one of three normal distributions having the same SD (*),
one with zero mean (absence of effect), the other with a positive
mean (), presence of effect), and the third with a negative mean of
the same magnitude ($), presence of effect, but in the opposite
direction to what was expected).

As we did not have access to individual participants’ data in
some cases (in particular, in the literature data set), we derived
model predictions for the summary statistics (sample mean and
SD) of the data to which we always had access. For this, all
participants of the same experiment were assumed to come from
the same normal distribution, hence the joint distribution of the

sample mean and variance of their log-LT differences were statis-
tically independent given the parameters of the underlying normal
distribution, with the sample mean being distributed normally with
mean ! 0, ), or $), and SD ! */-n, where n is the sample size
(number of participants), and the sample variance (SD squared)
being % distributed with shape parameter (n $ 1)/2 and scale
parameter 2*2/(n $ 1). Furthermore, we treated the indicator
variable, indicating whether an experiment did or did not produce
an effect, and if so in which direction (i.e. whether the participants’
data came from the zero-, the positive-, or the negative-mean
normal distribution), as a hidden variable and properly integrated
it out, with a prior probability of it belonging to each of these
categories, p0, p1, and p2 ! 1 $ p0 $ p1, respectively.

(Appendices continue)
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In summary, the unknown parameters that needed to be esti-
mated from data were *, ), p0, and p1. We estimated these
parameters by jointly maximizing their (log) likelihood on the data
(set of sample sizes, means and SDs in either the in-house, or the
literature data set, or both, see main text), adapting the standard
expectation-maximization algorithm (Dempster, Laird, & Rubin,
1977) to this case. To avoid overfitting, we placed very weak
priors on the p parameters (Dirichlet with parameter 1.02) and *2

(inverse % distribution, with shape parameter 1, and scale param-
eter 1; Bishop, 2006).

Model-based estimation assuming variable effect size

We proceeded as in the previous analysis with the following
changes. We modeled individual participants’ log-LT differences
as coming from one of two (rather than three) normal distributions.

One distribution (absence of effect) had zero mean and finite SD
(*0), and thus the sample statistics of the first type of experiment
were distributed as before. The other distribution had a different
(rather than the same) SD (*1), and a mean that was unknown and
assumed to vary (rather than being identical) across experiments
such that it itself was normally distributed with zero mean and
some finite SD (,1). Note that this implied that sample means
for the second type of experiment were normally distributed
with zero mean and a variance of *1

2/n(,1
2 (while the sample SD

were still distributed as before). As the indicator variable for the
type of an experiment could only take on two values, only one
parameter was associated with it, the prior probability of an
experiment producing an effect, p. In summary, the unknown
parameters that needed to be estimated from data were *0, *1,
,1

2, and p. These were estimated using the same maximum
likelihood procedures as before.

Appendix D

Calculation of Bayes Factors

Bayes factor assuming fixed effect size

The Bayes factor measures the ratio of the likelihood of two
hypotheses (Bishop, 2006). In our case, the two relevant hypoth-
eses were whether the participants’ log-LT differences in a new
experiment come from the zero-mean (absence of effect) or
positive-mean (presence of effect) normal distribution. (If they are
more likely to come from the zero mean then one can analogously
further measure the Bayes factor of the negative- vs. zero-mean
hypotheses.) This can be formalized as

BF ! (Normal[m; #, % ⁄ & n] " Gamma[s2; (n $ 1) ⁄ 2, 2%2 ⁄ (n $ 1)])⁄

(Normal[m; 0, % ⁄ & n] " Gamma[s2; (n $ 1) ⁄ 2, 2%2 ⁄ (n $ 1)])

where m and s are the sample mean and SD of the new data, and
) and * are set by the hypothesized effect size, determined, for
example, by model fitting to previous data sets (see Appendix C).
As one can see, the terms containing the sample SD (s) cancel
between the numerator and the denominator, and so one arrives at
a much simpler formula:

BF ! Normal[m; #, % ⁄ & n] ⁄ Normal[m; 0, % ⁄ & n]

of which the base-10 logarithm can be expressed as

lBF ! log10(e) " n " # " (m $ # ⁄ 2) ⁄ %2

where e is the base of the natural logarithm as above.

Bayes factor assuming variable effect size

The Bayes factor is computed as above with the following
changes. Its formula becomes:

BF ! #Normal"m; 0, & #%1
2 ⁄ n ( )1

2$% " Gamma"s2;(n $ 1) ⁄ 2, 2%1
2 ⁄ (n $ 1)%$⁄

#Normal[m; 0, %0 ⁄ & n] " Gamma"s2;(n $ 1) ⁄ 2, 2%0
2 ⁄ (n $ 1)%$

Note that unlike in the previous analysis, the terms containing
the sample SD (s) do not cancel between the numerator and
denominator, as they now include different population SDs (*0 vs.
*1). However, to prevent sample SDs driving statistical judgement
and to keep the final formula simple and more consistent with that
obtained in the previous analysis we still neglect these terms in the
following. After a couple of lines of algebra, this results in the
following approximate formula for the lBF:

lBF ! "log10(e) " #1 ⁄ %0
2 $ 1 ⁄ #%1

2 ( n " )1
2$$ " n " m2

$ log10##%1
2 ( n " )1

2$ ⁄ %0
2$% ⁄ 2

We have made the Matlab code computing these quantities
available at https://bitbucket.org/matelengyel/lookingtimes.
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