BIROn - Birkbeck Institutional Research Online

Razgon, Igor (2017) On oblivious branching programs with bounded repetition that cannot efficiently compute CNFs of bounded treewidth. Theory of Computing Systems 61, pp. 755-776. ISSN 1432-4350.

Downloaded from:

On oblivious branching programs with bounded repetition that cannot efficiently compute CNFs of bounded treewidth

Igor Razgon
Department of Computer Science and Information Systems, Birkbeck, University of London
igor@dcs.bbk.ac.uk

Abstract

In this paper we study complexity of an extension of ordered binary decision diagrams (obDDs) called c-OBDDs on CNFs of bounded (primal graph) treewidth. In particular, we show that for each k there is a class of CNFs of treewidth $k \geq 3$ for which the equivalent c-OBDDs are of size $\Omega\left(n^{k /(8 c-4)}\right)$. Moreover, this lower bound holds if c-OBDD is nondeterministic and semantic. Our second result uses the above lower bound to separate the above model from sentential decision diagrams (SDDs). In order to obtain the lower bound, we use a structural graph parameter called matching width. Our third result shows that matching width and pathwidth are linearly related.

1 Introduction

Ordered Binary Decision Diagrams OBDDs is a famous representation of Boolean functions being actively investigated from both applied and theoretical perspective. The theoretical research, among other things, has resulted in many upper and lower bounds of OBDD size realizing various classes of functions 14 .

One such an upper bound, established in 7] states that a CNF of treewidth k of its primal graph can be represented by an OBDD of size $O\left(n^{k}\right)$. In terms of parameterized complexity, this is an XP upper bound, that is the degree of the polynomial depends on k. A natural open question is whether this upper bound can be improved to an FPT upper bound, i.e. one of the form $f(k) * n^{c}$, where c is a universal constant.

This question is of a particular interest in the area of knowledge compilation because of the recent introduction of Sentential Decision Diagrams (SDDs) [6] for which an FPT upper bound does hold. SDDs share with OBDDs a number of nice properties and have a good potential to replace OBDDs in applications. Yet OBDD-related machinery is much more developed (one reason for that is that OBDDs have been investigated for a much longer time) and hence it is interesting
to say if this gap between upper bounds can be significantly tightened by finding a better upper bound for OBDDS.

In [12], we answered this question negatively by demonstrating that for each $k \geq 3$ there is a class of CNFs of primal graph treewidth at most k for which the size of equivalent OBDDs is $\Omega\left(n^{k / 4}\right)$. In this paper, which can be considered as a follow-up version of [12], our motivation is to see how far the OBDD can be extended so that the above lower bound would hold for that extended model in a way that the lower bound in 12 would follow as a special case. As a result, we extend obDDs as follows. First, for an arbitrary (but fixed) constant c we use c-OBDDs instead OBDD. That is, we allow each variable to occur at most c times along each computational path, however the occurrences are ordered as c concatenated copies of the same fixed permutation (in this setting the OBDD is simply 1-OBDD). Second, we allow the model to be non-deterministic. Roughly speaking, this means that instead of applying this restriction on a branching program, the restriction is applied on a switching and rectifier network. Third, we allow this restriction to be semantic, i.e to hold only for consistent paths that do not contain opposite occurrences of the same variables. The in-consistent paths are not constrained at all. We call the resulting model Nondeterministic Semantic c-OBDD and abbreviate it c-NSOBDD. In particular, we show that for each fixed $k \geq 3$ there is a class of CNFs (in fact, the same class as we used in [12]) for which the smallest c-nsobdd is of size $\Omega\left(n^{k /(8 c-4)}\right)$. Clearly, the lower bound for OBDDs follows if we substitute $c=1$.

The above lower bound shows that c-NSOBDDs are inherently different from SDD with respect to representation of CNF of bounded treewidth. Our second result shows that this difference can, in fact, be turned into a (non-parameterized) separation. In particular by, essentially, setting k to $\log n$, we obtain a class of CNF that can be represented by polynomial size SDDs but require c-NSOBDD of quasipolynomial size.

Our third result is related to the way the main lower bound is obtained. In particular, the CNFs we consider for the sake of obtaining lower bounds, correspond to undirected graphs. We introduce a graph parameter called matching width and show that the size of c-NSOBDD equivalent to the considered CNF is exponential in the matching width of the corresponding graph. Then we show that there are graphs for which the matching width is $\Omega(\log n)$ times larger than their treewidth. The lower bound readily follows from the combination of these results. The relationship between matching width and treewidth suggests that the former is similar to pathwdith. Our third result shows that this is indeed true, that is pathwidth and matching width are linearly related.

The last result might seem a little bit out of scope. The reason why we provide it in this paper is that matching width has already been used several time to obtain lower bounds [12, 11, 5. So, it is interesting to see how it is connected to well known graph parameters. To the best of our knowledge [12] is the first paper where matching width for used for lower bounds, so a followup version of 12 , seems the natural place for showing how matching width is connected to pathwidth.

Let us overview the related work. The c-obDD have been considered in 10]
with exponential lower bound provided for several functions. The c-OBDD model is known to be more powerful than the ordinary obDD. In particular, Theorem 7.2.2. of [14] provides a class of functions polynomial for 2-OBDD and exponential even for Free Binary Decision Diagrams (FBDD) (that is, read-once branching programs). Moreover, it is known that increse of c adds computational power. In particular, it has been demonstrated in [3] that for each $c \geq 2$ there is a class of functions computable by poly-size c-OBDDs and requiring exponential size $c-1$-obdds. Interesting refinements of this hierarchy involving width of branching programs have been proposed in [1, 9].

It is also known that non-determinism adds power to OBDD. In particular, Theorem 10.2.3. of 14 demonstrates a class of functions that can be computed by poly-size non-deterministic OBDDs, yet require exponential size FBDDs. We are not aware of the any existing research specifically on non-deterministic c obDDs. They are obviously a special case of non-deterministic read k-times branching programs and hence exponential lower bounds (e.g. [4) apply to them. It is well known that semantic rather than syntactic restriction adds a lot of power if the obliviousness requirement is dropped. In particular, [8] demonstrates a class of functions that can be computed by poly-size semantic non-deterministic read-once branching programs but require exponential size if 'semantic' is replaced by 'syntactic'. In fact, no super-polynomial lower bound is known for the former. We are not aware, however, if the semantic restriction adds any power to non-deterministic obDDs. The lower bound of [12] has been generalized in 11 to a different direction than the one considered in this paper: namely the obliviousness was dropped. In particular, it has been shown that the non FPT lower bound holds for non-deterministic read-once branching programs.

Matching width can be seen as a special case of maximum matching width introduced in 13 when the underlying tree is a caterpillar. It has been shown in [13] that maximum matching width is linearly related to the treewidth. The linear relationship between matching width and pathwdith, established in this paper, looks natural in this context.

The rest of the paper is structured as follows. Section 2 introduces the necessary background. Section 3 states the lower bound on c-NsobDDs along with the separation from SDD. The lower is proved in Section 4. The proof of linear relationship between matching width and pathwidth is provided in Section 5.

2 Preliminaries

In this paper by a set of literals we mean one that does not contain an occurrence of a variable and its negation. For a set S of literals we denote by $\operatorname{Var}(S)$ the set of variables whose literals occur in S. If F is a Boolean function or its representation by a CNF or OBDD, we denote by $\operatorname{Var}(F)$ the set of variables of F. A truth assignment to $\operatorname{Var}(F)$ on which F is true is called a satisfying assignment of F. A set S of literals represents the truth assignment to $\operatorname{Var}(S)$
where variables occurring positively in S (i.e. whose literals in S are positive) are assigned with true and the variables occurring negatively are assigned with false.

A non-deterministic branching program Z is a directed acyclic graph DAG with one root $r t$ and one leaf $l f$. Some of the edges of Z are labelled with literals of variables. A path P of Z is consistent if it does not have two edges labelled with opposite occurrences of the same variable. This gives us possibility to define $A(P)$, the set of literals labelling the edges of a consistent path P. A consistent root-leaf path of Z is also called a computational path. The function F computed by Z is defined as follows. Let S be an assignment to the variables of Z. Then S is a satisfying assignment of F if and only if there is a computational path P of Z such that $A(P) \subseteq S$.

Special classes of non-deterministic branching programs can be defined by putting restrictions on properties of their root-leaf paths. A restriction is $s e-$ mantic if it is applied to computational paths only and syntactic if it is applied to all the root-leaf paths. In order to define the restriction we use in this paper, we need an additional notation.

Let $S V$ be a permutation of variables and let S be a sequence of literals of (some) variables occurring in $S V$. We say that S is ordered according to $S V$ if for any two variables X and Y occurring in S, the occurrence of X is ordered before the occurrence of Y in S if and only if S is ordered before Y in V. For instance if $S V=\left(X_{2}, X_{4}, X_{5}, X_{1}, X_{3}\right)$ then $\left(\neg X_{4}, X_{5}, \neg X_{3}\right)$ is ordered according to $S V$.

Let P, P_{1}, P_{2} be paths of a directed graph G. Then $P=P_{1}+P_{2}$ if P is obtained by appending P_{2} to the end of P_{1}. For example, suppose that a path is represented by a sequence of its vertices and let $P=\left(v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right)$. Then $P=\left(v_{1}, v_{2}, v_{3}\right)+\left(v_{3}, v_{4}, v_{5}\right)$ and also $P=P+\left(v_{5}\right)$ and also $P=\left(v_{1}\right)+P$. This definition is naturally extended to a a decomposition of $P=P_{1}+\ldots, P_{k}$ into an arbitrary number of paths.

We consider a class of non-deterministic branching programs Z for which there is a permutation $S V$ of its variables and a constant c such that each computational (that is, the restriction is semantic) path P of Z can be represented as $P=P_{1}, \ldots, P_{c}$ so that on each P_{i} each variable occurs at most once and the sequence of literals labelling the edges along P_{i} is ordered according to $S V$.

We call this class of branching programs Nondeterministic Semantic c-OBDD and abbreviate it c-NSOBDD. Notice that the ordering imposed on computational paths is more restrictive than the one imposed on read- c-times oblivious branching programs. Indeed, in the latter case, variables can occur along a path in an arbitrary (though the same for all paths) order. In our case, however, the order of occurrences is determined by concatenation of copies of the same permutation of variables.

Given a CNF F, its primal graph has the set of vertices corresponding to the variables of F. Two vertices are adjacent if and only if there is a clause of F where the corresponding variables both occur.

Given a graph G, its tree decomposition is a pair (T, \mathbf{B}) where T is a tree and \mathbf{B} is a set of bags $B(t)$ corresponding to the vertices t of T. Each $B(t)$ is a
subset of $V(G)$ and the bags obey the rules of union (that is, $\bigcup_{t \in V(T)} B(t)=$ $V(G)$), containment (that is, for each $\{u, v\} \in E(G)$ there is $t \in V(t)$ such that $\{u, v\} \subseteq B(t)$), and connectedness (that is for each $u \in V(G)$, the set of all t such that $u \in B(t)$ induces a subtree of $T)$. The width of (T, \mathbf{B}) is the size of the largest bag minus one. The treewidth of G is the smallest width of a tree decomposition of G. If T is a path then (T, \mathbf{B}) is a path decomposition The pathwidth of a graph is the smallest width of its path decomposition.

Figure 1: A graph and its tree decomposition
Figure 1 shows a graph and its tree decomposition. The width of this tree decomposition is 2 since the size of the largest bag is 3 .

3 Lower bound parameterized by treewidth

In this section, given two integers r and k, we define a class of CNFs, roughly speaking, based on complete binary trees of height r where each node is associated with a clique of size k. Then we prove that the treewidth of the primal graphs of CNFs of this class is linearly bounded by k. Further on, we state the main technical theorem (proven in the next section) that claims that the smallest c-NSOBDD size for CNFs of this class exponentially depends on $r k$. Finally, we re-interpret this lower bound in terms of the number of variables and the treewidth to get the lower bound announced in the Introduction.

Let G be a graph. A graph based CNF denoted by $C N F(G)$ is defined as follows. The set of variables consists of variables X_{u} for each $u \in V(G)$ and variables $X_{u, v}=X_{v, u}$ for each $\{u, v\} \in E(G)$. The set of clauses consists of clauses $C_{u, v}=C_{v, u}=\left(X_{u} \vee X_{u, v} \vee X_{v}\right)$ for each $\{u, v\} \in E(G)$. In other words, the variables of $C N F(G)$ correspond to the vertices and edges of G. The clauses correspond to the edges of G.

Denote by T_{r} a complete binary tree of height r. Let $C T_{r, k}$ be the graph obtained from T_{r} by associating each vertex with a clique of size k and, for each edge $\{u, v\}$ of T_{r}, making all the vertices of the cliques associated with u and v
mutually adjacent. Denote $\operatorname{CNF}\left(C T_{r, k}\right)$ by $F_{r, k}$.

Figure 2: T_{2} and $C T_{2,3}$
Figure 2 shows T_{2} and $C T_{2,3}$. To avoid shading the picture of $C T_{2,3}$ with many edges, the cliques corresponding to the vertices of T_{2} are marked by circles and the bold edges between the circles mean that that there are edges between all pairs of vertices of the corresponding cliques.

Lemma 1 Let $k \geq 2$. Then the treewidth of the primal graph of $F_{r, k}$ is at most $2 k-1$.

Proof. The primal graph of $F_{r, k}$ can be obtained from $C T_{r, k}$ by adding one vertex v_{e} for each edge e of $C T_{r, k}$ and making this vertex adjacent to the ends of e. Let (T, \mathbf{B}) be a tree decomposition of $C T_{r, k}$ of size at most $2 k-1$. For each vertex v_{e}, add a new vertex x to T adjacent to the vertex whose bag contains the ends of e. Associate with x a bag containing v_{e} and the ends of e. It is not hard to see that as a result we obtain a tree decomposition of the primal graph of $F_{r, k}$. Also, as the size of each new bag is 3 and $k \geq 2$, the width of the tree decomposition remains at most $2 k-1$. So, it remains to show that the treewidth of $C T_{r, k}$ is at most $2 k-1$.

Consider the following tree decomposition (T, \mathbf{B}) of $C T_{r, k} . T$ is just T_{r}. We look upon T_{r} as a rooted tree, the centre of T_{r} being the root. The bag $B(u)$ of each node u contains the clique of $C T_{r, k}$ corresponding to u. In addition, if u is not the root vertex then $B(u)$ also contains the clique corresponding to the parent of u. Observe that (T, \mathbf{B}) satisfies the connectivity property. Indeed, each vertex appears in the bag corresponding to its 'own' clique and the cliques of its children. Clearly, the set of nodes corresponding to the bags induce a connected subgraph. The rest of the tree decomposition properties can be verified straightforwardly. We conclude that (T, \mathbf{B}) is indeed a tree decomposition of $C T_{r, k}$. As the size of each bag is at most $2 k$, the width of (T, \mathbf{B}) is at most $2 k-1$.

The following is the main technical result whose proof is given in the next section.

Theorem 1 The size of OBDD computing $F_{r, k}$ is at least $2^{r k /(4 c-2)}$.
The following lemma reformulates the statement of Theorem 1 in terms of the number of variables of $F_{r, k}$ and k.

Lemma 2 Let m be the number of variables of $F_{r, k}$. Then the size of c-NSOBDD computing $F_{r, k}$ is at least $\left(\frac{m}{6 k^{2}}\right)^{k /(4 c-2)}$.

Proof. Recall that T_{r} has $2^{r+1}-1$ nodes. For each node a of $T_{r}, F_{r, k}$ has k variables corresponding to the vertices of the clique of a plus $\binom{k}{2}$ variables corresponding to the edges of this clique. In addition, if a is a non-root node then it is associated with k^{2} variables connecting the clique of a with the clique of its parent. Thus each node of T_{r} is associated with at most $k+\binom{k}{2}+k^{2}$ variables and hence the total number of variables $m \leq\left(2^{r+1}-1\right) *\left(k+\binom{k}{2}+k^{2}\right) \leq 2^{r} * 6 k^{2}$. Thus $2^{r} \geq \frac{m}{6 k^{2}}$.

It follows from Theorem 1 that the size of a c-NSOBDD computing $F_{r, k}$ is at least $2^{r k /(4 c-2)}=\left(2^{r}\right)^{k /(4 c-2)} \geq\left(\frac{m}{6 k^{2}}\right)^{k /(4 c-2)}$ as required.

Two lower bound parameterized by the treewdith now easily follows.
Theorem 2 For each $p \geq 3$ there is an infinite sequence of CNFs $F_{1}, F_{2} \ldots$, of treewidth at most p of their primal graphs such that for each F_{i} the size of c OBDD computing it is at least $\left(\frac{m}{3 p^{2}}\right)^{p /(8 c-4)}$, where m is the number of variables of F_{i}. In particular, for $c=1$ and every fixed p, we get the earlier obtained OBDD lower bound of $\Omega\left(m^{p / 4}\right)$ as a special case.

Proof. For an odd p, consider the CNFs $F_{r,(p+1) / 2}$ for all $r \geq 1$ and for an even p, consider the CNFs $F_{r, p / 2}$ for all $r \geq 1$. By Lemma 1, the treewidth of the primal graph of $F_{r,(p+1) / 2}$ is at most p and of $F_{r, p / 2}$ at most $p-1$. Thus the treewidth requirement is satisfied regarding these classes.

Taking into account Lemma 2 and performing simple algebraic calculation, we observe the c-NSOBDD size is lower-bounded by $\left(\frac{m}{3 p^{2}}\right)^{p /(8 c-4)}$.

Theorem 1 also allows us to separate between c-NSOBDD and Sentential Decision Diagrams SDD [6] for every fixed c.

Theorem 3 There is an infinite family of functions that can be computed by SDDs of size $O\left(n^{3}\right)$ and for which the smallest $c-N S O B D D$ are of size $n^{\Omega(\log n)}$ (for each fixed c)

Proof Consider functions $F_{r, r}$. Let us compute the number n of variables of $F_{r, r}$. Following the calculation as in Lemma 2 we observe that $n=\left(2^{r+1}-\right.$ 1) $*\left(\frac{r *(r-1)}{2}+r\right)+\left(2^{r+1}-2\right) * r^{2}=2^{r}\left(3 r^{2}+r\right)-\frac{5 r^{2}+r}{2}$

Denote $3 r^{2}+r$ by p_{1} and $\frac{5 r^{2}+r}{2}$ by p_{2}. Then $r=\log \frac{n+p_{2}}{p_{1}}$.
In particular, $r \geq \log n-\log p_{1} \geq \log n-r$ and hence $r \geq \log n / 2$ for a sufficiently large r. Substituting $\log n / 2$ instead r and k in the lower bound
provided by Theorem 1 gives us lower bound $2^{\frac{\log ^{2} n}{16 c-4}}=n^{\frac{\log }{16 c-4}}$ which is $\Omega\left(n^{\log n}\right.$ for every fixed c.

On the other hand, for a sufficiently large $n, r \leq \log \left(n+p_{2}\right) \leq \log (2 n)=$ $\log n+1$. By Lemma 1, the treewidth of the primal graph of $F_{r, r}$ is at most $2 r-1$ which is at most $2 \log n+1$ by the above upper bound. Thus, according to [6], the size of SDD for $T_{r, r}$ is bounded by $O\left(2^{2 \operatorname{logn} n} n\right)=O\left(n^{3}\right)$, as required.

4 Lower bound parameterized by the matching width

The central concept we use for the proof of Theorem 1 is that of matching width. A matching M of a graph G is a set of edges of G such that no two edges are incident to the same vertex. Let $S V$ be a permutation of the set $V=V(G)$ of vertices of a graph G. Let S_{1} be a prefix of $S V$ (i.e. all vertices of $S V \backslash S_{1}$ are ordered after S_{1}). Let us call the matching width of S_{1}, the size of the largest matching consisting of the edges between S_{1} and $V \backslash S_{1}$ (we take the liberty to use sequences as sets, the correct use will be always clear from the context). Further on, the matching width of $S V$ is the largest matching width of a prefix of $S V$. Finally the matching width of G, is the smallest matching width of a permutation of $V(G)$.

Example 1 Consider a path of 10 vertices v_{1}, \ldots, v_{10} so that v_{i} is adjacent to v_{i+1} for $1 \leq i<10$. The matching width of permutation $\left(v_{1}, \ldots, v_{10}\right)$ is 1 since between any suffix and prefix there is only one edge. However, the matching width of the permutation $\left(v_{1}, v_{3}, v_{5}, v_{7}, v_{9}, v_{2}, v_{4}, v_{6}, v_{8}, v_{10}\right)$ is 5 as witnessed by the partition $\left\{v_{1}, v_{3}, v_{5}, v_{7}, v_{9}\right\}$ and $\left\{v_{2}, v_{4}, v_{6}, v_{8}, v_{10}\right\}$. Since the matching width of a graph is determined by the permutation having the smallest matching width, and, since the graph has some edges, there cannot be a permutation of matching width 0 , we conclude that the matching width of this graph is 1.

The main 'engine' for establishing the lower bound for Theorem 1 is the following theorem, stating a lower bound on the size of a c-NSOBDD.

Theorem 4 Let G be a graph of matching width at least t and let Z be a cNSOBDD computing $C N F(G)$. Then $|Z| \geq 2^{t / 2 c-1}$.

Theorem 4 is proved in Section 4.1. In order use Theorem 4 for a proof of Theorem 1, we need an additional statement providing a lower bound on the matching width of graphs $C T_{r, k}$ (recall $\left.F_{r, k}=C N F\left(C T_{r, k}\right)\right)$.

Theorem 5 (Lemma 2 of [12]) For any r, the matching width of $C T_{r, k}$ is at least $r k / 2$.

Now, we are ready to prove Theorem 1

Proof of Theorem 1 According to Theorem 4, the size of Z implementing $F_{r, k}=C N F\left(C T_{r, k}\right)$ is at least $2^{t / 2 c-1}$ where t is the matching width of $C T_{r, k}$ Replace t by the lower bound $r k / 2$ on the matching width of $C T_{r, k}$ provided by Theorem 5. The required lower bound $2^{r k /(4 c-2)}$ immediately follows.

4.1 Proof of Theorem 4

Let $S V$ be a permutation of the vertices of G where u precedes v if and only if X_{u} precedes X_{v} in te underlying permutation $S V^{*}$ of Z. We refer to $S V$ as the permutation of $V(G)$ corresponding to Z. Let $S V P$ be a prefix of $S V$ such that there is a matching $M=\left\{\left\{u_{1}, v_{1}\right\}, \ldots,\left\{u_{t}, v_{t}\right\}\right\}$ of G such that all of u_{1}, \ldots, u_{t} belong to $S V P$ and all of $v_{1}, \ldots v_{t}$ do not. Such a prefix exists by definition of matching width and our assumption that matching width of G is at least t.

Let \mathbf{S} be the set of all assignments S to the variables of $C N F(G)$ satisfying the following conditions.

- Each $\neg X_{u_{i}, v_{i}} \in S$ for $1 \leq i \leq t$.
- For each $1 \leq i \leq t$, the occurrences of $X_{u_{i}}$ and $X_{v_{i}}$ have distinct signs (if the former occurs positively the latter occurs negatively and if the former occurs negatively the latter occurs positively).
- All the variables besides $\bigcup_{i=1}^{t}\left\{X_{u_{i}}, X_{u_{i}, v_{i}}, X_{v_{i}}\right\}$ are assigned positively.

Then the following statements are easy to observe.
Observation 1 1. Each $S \in \mathbf{S}$ is a satisfying assignment of \mathbf{S}.
2. $|\mathbf{S}| \geq 2^{t}$.

Proof. For the first statement, note that all the clauses $\left(X_{u} \vee X_{u, v} \vee X_{v}\right)$ besides ($X_{u_{i}} \vee X_{u_{i}, v_{i}} \vee X_{v_{i}}$) are clearly satisfied by S because $X_{u, v}$ is assigned positively by construction. The clauses $\left(X_{u_{i}} \vee X_{u_{i}, v_{i}} \vee X_{v_{i}}\right)$ are also satisfied by S because one of $X_{u_{i}}, X_{v_{i}}$ is assigned positively. This proves the first statement.

There are 2^{t} ways to assign variables $X_{u_{1}}, \ldots, X_{u_{t}}$. By definition of \mathbf{S} each such assignment can be extended to an element of \mathbf{S} and these elements are clearly all distinct. This proves the second statement.

In light of the first statement of Observation 1, for each $S \in \mathbf{S}$ we can identify a computational path P_{S} of Z such that $A\left(P_{S}\right) \subseteq S$. For each P_{S} we are going to identify a sequence of its vertices of length at most $2 c-1$ and to show that for distinct $S_{1}, S_{2} \in \mathbf{S}$, the sequences associated with $P_{S_{1}}$ and $P_{S_{2}}$ are distinct. In light of the second statement of Observation 1, it will follow that Z contains at least 2^{t} sequences of nodes of length $2 c-1$. As the number of such sequences is at most $|Z|^{2 c-1}$, it will immediately follow that $|Z| \geq 2^{t /(2 c-1)}$.

In order to define a sequence of vertices associated with each P_{S}, we need some preparation. Let P be an arbitrary computational path of Z and let P_{1}, \ldots, P_{c} be subpaths of P such that $P=P_{1}+\cdots+P_{c}$ and the following holds for each P_{i}.

- Each variable occurs at most once as a label of P_{i}.
- The labels on P_{i} are ordered according to $S V^{*}$.

Note that the required P_{1}, \ldots, P_{c} exists according to definition of c-NSOBDD.
Further on, let $P_{1}^{\prime}, \ldots, P_{2 c}^{\prime}$ be subpaths of P such that for each $1 \leq i \leq c$, the following holds.

- $P_{i}=P_{2 i-1}^{\prime}+P_{2 i}^{\prime}$.
- For each $v \in S V P, X_{v}$ can occur only in $P_{2 i-1}^{\prime}\left(\right.$ not in $\left.P_{2 i}^{\prime}\right)$.
- For each $v \notin S V P, X_{v}$ can occur only in $P_{2 i}^{\prime}$ (not in $P_{2 i-1}^{\prime}$).

Note that $P_{1}^{\prime}, \ldots, P_{2 c}^{\prime}$ exists. Indeed, by definition of $S V P$, all the variables $X_{1}=\left\{X_{v} \mid v \in S V P\right\}$ occur in $S V^{*}$ before all the variables $X_{2}=\left\{X_{v} \mid v \notin\right.$ $S V P\}$. Therefore, if both X_{1} and X_{2} occur on P_{i}, we can identify the last edge e of P_{i} labelled by a variable of X_{1} and let $P_{2 i-1}^{\prime}$ to be the prefix of P_{i} ending at the head of e. If only variables of X_{1} occur on P_{i} then let $P_{2 i-1}^{\prime}=P_{i}$ and $P_{2 i}$ be the last vertex of P_{i}. If only variables of X_{2} occur on P_{i} then let $P_{2 i-1}^{\prime}$ be the first vertex of P_{i} and $P_{2 i}^{\prime}=P_{i}$. Finally, if no variables occur on P_{i}, the partition can be arbitrary.

Let $x_{1}, \ldots, x_{2 c-1}$ be the respective ends of $P_{1}^{\prime}, \ldots, P_{2 c-1}^{\prime}$. We call $x_{1}, \ldots, x_{2 c-1}$ the separation vector of P and $P_{1}^{\prime}, \ldots, P_{2 c}$ the decomposition of P w.r.t. $x_{1}, \ldots, x_{2 c-1}$.

Remark. Note that there may be more than one possible $P_{1}^{\prime}, \ldots, P_{2 c}^{\prime}$ satisfying the above conditions and hence P can have several separation vectors. We just pick an arbitrary one and call it the separation vector.

The separation vectors of paths P_{S} are these very sequences mentioned in the proof plan above. Now we are going to prove that distinct paths P_{S} have different separation vectors.

Lemma 3 Let S_{1}, S_{2} be two distinct elements of \mathbf{S}. Then $P=P_{S_{1}}$ and $Q=P_{S_{2}}$ have different separation vectors.

Proof. Assume that P and Q have the same separation vector $\left(x_{1}, \ldots, x_{2 c-1}\right)$. Let u_{i} be a variable having opposite assignments in S_{1} and S_{2}. (Such a variable necessarily exists because the assignments of $v_{1}, \ldots v_{t}$ are determined by assignments of u_{1}, \ldots, u_{t}. So, if the assignments if each u_{i} has the same occurrence in both S_{1} and S_{2}, the same is true regarding each v_{i}, and hence $S_{1}=S_{2}$, a contradiction). Assume w.l.o.g. that u_{i} occurs negatively in S_{1} and positively in S_{2}.

Let $P_{1}, \ldots, P_{2 c}$ and $Q_{1}, \ldots, Q_{2 c}$ be the respective decompositions of P and Q w.r.t. to $x_{1}, \ldots, x_{2 c-1}$. Let $P Q$ be the path obtained from P by replacement of each P_{j} with even j by Q_{j}.

Claim $1 P Q$ is a computational path.

Proof. We need only to verify that there is no variable occurring both positively and negatively on $P Q$. By definition of \mathbf{S}, each variable $X_{u, v}$ has the same occurrence in both S_{1} and S_{2}. As $A(P) \subseteq S_{1}$ and $A(Q) \subseteq S_{2}, X_{u, v}$ cannot have distinct occurrences in $A(P)$ and $A(Q)$. By definition of the decomposition w.r.t. the separation vector, a variable X_{v} with $v \in S V P$ cannot occur in Q_{i} with even i. It follows that in $P Q, X_{v}$ can only occur on $P_{1} \cup \ldots P_{2 c-1}$ which is a subgrpah of P. As P is a computational path, it does not contain opposite literals of X_{v} and hence neither does $P_{1} \cup \ldots P_{2 c-1}$. Due to the same reason, a variable X_{v} with $v \notin S V P$ cannot occur on P_{i} with even i. It follows that in $P Q X_{v}$ can only occur on $Q_{2} \cup \ldots Q_{2 c}$ which is a subgrpah of Q. As Q is a computational path, it does not contain opposite literals of X_{v} and hence neither does $Q_{2} \cup \ldots Q_{2 c}$.

Claim $2 A(P Q)$ is disjoint with $\left\{X_{u_{i}}, X_{u_{i}, v_{i}}, X_{v_{i}}\right\}$.
Proof. By definition of $\mathbf{S} X_{u_{i}, v_{i}}$ occurs negatively in both S_{1} and S_{2} and hence it cannot occur positively in $A(P)$ nor in $A(Q)$ and hence, in turn it cannot occur positively in $A(P Q)$ composed of subpaths of P and Q. Since $u_{i} \in S V P$, a literal of $X_{u_{i}}$ cannot occur on $Q_{2}, \ldots, Q_{2 c}$ (by definition of the decomposition w.r.t. the separation vector). If a literal of $X_{u_{i}}$ occurs on $P_{1}, \ldots, P_{2 c-1}$ then it is an element of S_{1} and hence negative by assumption. Similarly, a literal of $X_{v_{i}}$ cannot occur on $P_{1}, \ldots, P_{2 c-1}$ (since $v_{i} \notin S V P$). If a literal of $X_{v_{i}}$ occurs on $Q_{2}, \ldots, Q_{2 c}$ then it is an element of S_{2} and hence negative (by assumption, $X_{u_{i}} \in S_{2}$ and hence $\neg X_{v_{i}} \in S_{2}$ by definition of $\left.\mathbf{S}\right)$.

By Claim 1 and definition of Z, an arbitrary extension of $A(P Q)$ is a satisfying assignment of $C N F(G)$. By Claim 2, there is an extension S of $A(P Q)$ containing all of $\neg X_{u_{i}}, \neg X_{u_{i}, v_{i}}, \neg X_{v_{i}}$. However, S falsifies clause $\left(X_{u_{i}} \vee X_{u_{i}, v_{i}} \vee X_{v_{i}}\right)$ existing since $\left\{u_{i}, v_{i}\right\}$ is an edge of G. This contradiction shows that our initial assumption that P and Q have the same separation vector is incorrect and hence the lemma holds.

Proof of Theorem 4 It follows from Lemma 3 and the second statement of Observation 1 that there are at least 2^{t} distinct separation vectors of computational paths of Z. Each separation vector is a sequence of nodes of Z. Clearly, there are at most $Z^{2 c-1}$ such sequences. That is $2^{t} \leq Z^{2 c-1}$. Hence $Z \geq 2^{t /(2 c-1)}$, as required.

5 Matching width vs. pathwidth

In this section we will show that the matching width, $m w(G)$, of a graph G is linearly related to its pathwidth, $p w(G)$. It particular, we will show that $p w(G) / 2 \leq m w(G) \leq p w(G)+1$.

Let us extend our notation. The maximum matching size of a graph G is denoted by $\nu(G)$. Let $S V=\left(v_{1}, \ldots v_{n}\right)$ be an ordering of vertices of G. For $1 \leq i<n$, we denote $\left\{v_{1}, \ldots, v_{i}\right\}$ by $V_{i}^{S V}$ and $V(G) \backslash V_{i}^{S V}$ by $\neg V_{i}^{S V}$. The superscript can be omitted if the ordering is clear from the context. We denote by $G_{i}^{S V}$ or by G_{i}, if the ordering is clear from the context, the graph with the set
of vertices $V(G)$ and the set of edges $\left\{\{u, v\} \mid\{u, v\} \in E(G), u \in V_{i}, v \in \neg V_{i}\right\}$. In other words the edges of G_{i} are exactly those edges of G that have one end in V_{i} and one end in $\neg V_{i}$. With this notation in mind, the matching width $m w_{S} V(G)$ of $S V$ can be stated as follows.

$$
\begin{equation*}
\operatorname{mw}_{S V}(G)=\max _{i=1}^{n} \nu\left(G_{i}\right) \tag{1}
\end{equation*}
$$

If we denote by $\mathbf{S V}$ the set of all permutations of vertices of G then

$$
\begin{equation*}
m w(G)=\min _{S V \in \mathbf{S V}} m w_{S V}(G) \tag{2}
\end{equation*}
$$

Recall that a vertex cover (VC) of graph G is a set of vertices incident to all of its edges. The smallest size of vertex cover of G is denoted by $\tau(G)$.

Observe that each G_{i} is a bipartite graph because V_{i} and $\neg V_{i}$, partitioning its set of vertices are indepdent sets of G_{i}. It is well known that for a bipartite graph the size of the smallest vertex cover equals the size of maximum matching, that is $\nu\left(G_{i}\right)=\tau\left(G_{i}\right)$. Hence $m w_{S V}(G)$ can be restated as follows

$$
\begin{equation*}
m w_{S V}(G)=\max _{i=1}^{n} \tau\left(G_{i}\right) \tag{3}
\end{equation*}
$$

Now we are bready to prove an upper bound on $m w(G)$.
Theorem 6 For any graph $G, m w(G) \leq p w(G)+1$.
Proof. Let (P, \mathbf{B}) be a path decomposition of G of width $p w(G)$. Let x_{1}, \ldots, x_{m} be the vertices of P chronologically listed as they occur along P. Recall that $\mathbf{B}=\left\{B\left(x_{1}\right), \ldots, B\left(x_{m}\right)\right\}$ are the bags of the decomposition and the size of each bag is at most $p w(G)+1$.

Now we are going to define a permutation $S V$ of $V(G)$ for which we will show that $m w_{S V}(G) \leq p w(G)+1$, which will imply the theorem because, by definition $m w(G) \leq m w_{S V}(G)$.

For $u \in V(G)$, let $f(u)$ be the smallest number i such that $u \in B_{x_{i}}$. Let $S V$ is an arbitrary permutation of $V(G)$ such that $u<_{S V} v$ whenever $f(u)<f(v)$. It is not hard to see that such an order indeed exists. For instance, $S V$ can be created as follows. Arbitrary order the vertices of $B\left(x_{1}\right)$. For each $1<i \leq$ n, suppose that the vertices $B\left(x_{1}\right) \cup \cdots \cup B\left(x_{i-1}\right)$ have been already ordered and let $S V^{\prime}$ be the corresponding permutation. Then create a permuation of $B\left(x_{1}\right) \cup \cdots \cup B\left(x_{i}\right)$ by arbitrary ordering the vertices of $B_{x_{i}} \backslash S V^{\prime}$ and appending them to the end of $S V^{\prime}$.

We are going to show that for each $1 \leq i<n, B\left(x_{f\left(v_{i}\right)}\right)$ is a vertex cover of G_{i} that is for each $\{u, v\} \in E\left(G_{i}\right)$ either $u \in B\left(x_{f\left(v_{i}\right)}\right)$ or $u \in B\left(x_{f\left(v_{i}\right)}\right)$. Observe that this will imply the desired statement that $m w_{S V}(G) \leq p w(G)+1$. Indeed, by definition, there is $1 \leq i<n$ such that $m w_{S V}(G)=\tau\left(G_{i}\right)$. Combining with the claim we are going to prove, we will have

$$
\begin{equation*}
m w_{S V}(G)=\tau\left(G_{i}\right) \leq B\left(x_{f\left(v_{i}\right)}\right) \leq p w(G)+1 \tag{4}
\end{equation*}
$$

the first and the second inequalities follow from the definitions of τ and pathwidth, respectively.

Pick $1 \leq i<n$ and let $\{u, v\} \in E\left(G_{i}\right)$. Assume w.l.o.g. that $u \in V_{i}$ and $v \in \neg V_{i}$. Then, by definition of $S V, f(u) \leq f\left(v_{i}\right)$ and $f(v) \geq f\left(v_{i}\right)$. If the equality occurs regarding any of them, say $f(u)=f\left(v_{i}\right)$ then, by definition of function $f, u \in B\left(x_{f(u)}\right)=B\left(x_{f\left(v_{i}\right)}\right)$. Thus it remains to consider the case where $f(u)<f\left(v_{i}\right)$ and $f(v)>f\left(v_{i}\right)$.

By the containment property of the path decomposition, there is j such that $\{u, v\} \subseteq B\left(x_{j}\right)$. By definition of $f(v), f(v) \leq j$ and hence $f\left(v_{i}\right)<j$. To preserve the connectedness property, u must occur in all bags $B\left(x_{r}\right)$ for $f(u) \leq r \leq j$. In particular, since $f(u)<f\left(v_{i}\right)$ and $f\left(v_{i}\right)<j, u \in B\left(x_{f\left(v_{i}\right)}\right)$, as required.

Next we are going to show that $p w(G) \leq 2 * m w(G)$. For this we need the following definition.

Definition 1 Let $S V$ be a permutation of $V(G)$. For each $G_{i}, 1 \leq i<n$, let $V C_{i}$ be a smallest $V C$ of G_{i}. The sets $V C_{1}, \ldots, V C_{n-1}$ are called settled w.r.t. $S V$ if for each $1 \leq i<n-1, V C_{i} \cap \neg V_{i} \subseteq V C_{i+1}$

The following lemma is proved in Section 5.1.
Lemma 4 For each permutation $S V$ of $V(G)$ there are $V C_{1}, \ldots, V C_{n-1}$ that are settled w.r.t. SV.

Now we are ready for the theorem.
Theorem 7 For any graph $G, p w(G) \leq 2 m w(G)$.
Proof. Let $S V=\left(v_{1}, \ldots, v_{n}\right)$ be a permutation of $V(G)$ such that $m w_{S V}(G)=$ $m w(G)$. Let $V C_{1}, \ldots, V C_{n-1}$ be the smallest VCs of G_{1}, \ldots, G_{n-1}, respectively, that are settled w.r.t. $S V$.

Our candidate for path decomposition of width $2 m w(G)$ is a pair (P, \mathbf{B}) where P is a path x_{1}, \ldots, x_{n} and \mathbf{B} is a set of bags $B\left(x_{1}\right), \ldots, B\left(x_{n}\right)$ defined as follows.

- $B\left(x_{1}\right)=V C_{1} \cup\left\{v_{1}\right\}$.
- For $1<i<n, B\left(x_{i}\right)=V C_{i-1} \cup V C_{i} \cup\left\{v_{i}\right\}$.
- $B\left(x_{n}\right)=V C_{n-1} \cup\left\{v_{n}\right\}$.

In the rest of the proof we demonstrate that (P, \mathbf{B}) is indeed a path decomposition of G having width at most $2 m w(G)$. This amounts to proving the following statements.

- (P, \mathbf{B}) satisfies the union property. Indeed, by construction, for $1 \leq i \leq n$, $v_{i} \in B\left(x_{i}\right)$.
- (P, \mathbf{B}) satisfies the containment property. Indeed, let $\left\{v_{i}, v_{j}\right\} \in E(G)$ and assume w.l.o.g. that $i<j$. This means that $\left\{v_{i}, v_{j}\right\}$ is an edge of each of G_{i}, \ldots, G_{j-1} and hence each of $V C_{i}, \ldots, V C_{j-1}$ has a non-empty intersection with $\left\{v_{i}, v_{j}\right\}$.

Assume that $v_{j} \in V C_{i}$. Then, by construction, $\left\{v_{i}, v_{j}\right\} \in B\left(x_{i}\right)$, satisfying the containment property. Assume next that $v_{i} \in V C_{j-1}$. Then, by construction, $\left\{v_{i}, v_{j}\right\} \in B\left(x_{j}\right)$, satisfying the containment property. If none of the above assumptions hold then $v_{i} \in V C_{i}$ and $v_{j} \in V C_{j-1}$. It follows that there is $i \leq j^{\prime}<j-1$ such that $v_{i} \in V C_{j^{\prime}}$ and $v_{j} \in V C_{j^{\prime}+1}$. Then by construction, $\left\{v_{i}, v_{j}\right\} \in B\left(x_{j^{\prime}+1}\right)$, satisfying the containment property.

- (P, \mathbf{B}) satisfies the connectedness property. Assume by contradiction that the connectedness property is violated. That is, there is a vertex u and $i, j>i+1$ such that $u \in B\left(x_{i}\right), u \notin B\left(x_{i+1}\right)$, and $u \in B\left(X_{j}\right)$. We assume that j is smallest possible subject to this property, that is, $u \notin B\left(x_{j-1}\right)$.
Since $u \notin B\left(x_{i+1}\right), u \notin V C_{i}$. That is $u \in B\left(X_{i}\right) \backslash V C_{i} \subseteq V C_{i-1} \cup\left\{v_{i}\right\}$.
It follows that $u \in V_{i}$. Indeed, if $u=v_{i}$, this follows by definition of V_{i}. Otherwise, notice that since $V C_{1}, \ldots, V C_{n}$ are settled, $V C_{i-1} \cap \neg V_{i} \subseteq$ $V C_{i}$. As we know that $u \notin V C_{i}$, we conclude that $u \in V C_{i-1} \backslash \neg V_{i}=$ $V C_{i-1} \cap V_{i}$
As $u \notin V C_{j-1}, N_{G_{j-1}}(u) \subseteq V C_{j-1}$. By Definition 1, $N_{G_{j-1}}(u) \cap \neg V_{j} \subseteq$ $V C_{j}$. We claim that $N_{G_{j}}(u) \subseteq N_{G_{j-1}}(u) \cap \neg V_{j}$. This claim will imply that $N_{G_{j}}(u) \subseteq V C_{j}$ and hence $u \notin V C_{j}$ by the minimality of $V C_{j}$ (as all the neighbours of u are already there). This is a contradiction to our assumption, confirming correctness of the connectedness property. It thus remains to prove the claim.

Let $v \in N_{G_{j}}(u)$. As $i<j$ and $u \in V_{i}, u \in V_{j}$ and hence $v \in \neg V_{j}$. Consequently, $v \in \neg V_{j-1}$. As $i<j-1, u \in V_{j-1}$. Thus $\{u, v\}$ is an edge of G with one end in V_{j-1}, the other in $\neg V_{j-1}$. Hence $\{u, v\}$ is an edge of G_{j-1}, that is $v \in N_{G_{j-1}}(u)$ confirming the claim and the connectedness property as specified in the previous paragraph.

- The width of (P, \mathbf{B}) is at most $2 m w(G)$. That is, we have to show that for each $1 \leq i \leq n,\left|B\left(x_{i}\right)\right| \leq 2 m w(G)+1$. By definition, $\left|V C_{i}\right|=\tau\left(G_{i}\right)$ for $1 \leq i<n$. According to $(\sqrt{3})) \tau\left(G_{i}\right) \leq m w_{S V}(G)$. Thus, in our case, $\left|V C_{i}\right|=\tau\left(G_{i}\right) \leq m w(G)$. It follows that for $1<i<n,\left|B\left(x_{i}\right)\right| \leq$ $\left|V C_{i-1}\right|+\left|V C_{i}\right|+1 \leq 2 m w(G)+1$. Clearly, the same upper bound applies to $B\left(x_{1}\right)$ and $B\left(x_{n}\right)$.

5.1 Proof of Lemma 4

Let $G=(U, V, E)$ be a bipartite graph with set of vertices $U \cup V$ and the set of edges E, all having one end in U the other end in V. In order to prove Lemma 4. we need the following three auxiliary statements.

Proposition 1 Let $V C^{\prime}$ be a smallest $V C$ of a $G=(U, V, E)$. Let $X \subseteq V C^{\prime}$. Let $V C^{\prime \prime}$ be a smallest $V C$ of $G \backslash X$. Then $V C^{\prime \prime} \cup X$ is a smallest $V C$ of G.

Proof. $V C^{\prime} \backslash X$ is a VC of $G \backslash X$. Indeed, none of the edges covered $G \backslash X$ are covered by X and hence they are covered by $V C^{\prime} \backslash X$.

If we assume that $V C^{\prime \prime} \cup X$ is not a smallest VC of G then $\left|V C^{\prime}\right|<\left|V C^{\prime \prime} \cup X\right|$. That is, $\left|V C^{\prime} \backslash X\right|+|X|=\left|V C^{\prime}\right|<\left|V C^{\prime \prime} \cup X\right|=\left|V C^{\prime \prime}\right|+|X|$, from where we conclude that $\left|V C^{\prime} \backslash X\right|<\left|V C^{\prime \prime}\right|$. That is, $V C^{\prime} \backslash X$ is a VC of $G \backslash X$ smaller than $V C^{\prime \prime}$ in contradiction to the definition of $V C^{\prime \prime}$.

Lemma 5 Let $G=(U, V, E)$ be a bipartite graph and let $X \subseteq V$ be such that there is $V C_{1}$, a smallest $V C$ of G, such that $X \subseteq V C_{1}$. Let $Y \subseteq V$. Then $G \backslash Y$ has a smallest VC being a superset of $X \backslash Y$.

Proof. Assume that the lemma is not true. Further on, assume that Y is a largest possible subset of V for which the lemma does not hold.

Let us represent $V C_{1}$ as $V C_{1}^{\prime} \cup V C_{1}^{\prime \prime}$ where $V C_{1}^{\prime}$ consists of all vertices of $V C_{1}$ incident to the edges of $G \backslash Y$ and $V C_{1}^{\prime \prime}$ consists of all vertices incident to edges of $G[U \cup Y]$. Denote $V C_{1}^{\prime} \cap V C_{1}^{\prime \prime}$ by $P R$. Observe that both $V C_{1}^{\prime}$ and $V C_{1}^{\prime \prime}$ are VCs of $G \backslash Y$ and $G[U \cup Y]$, respectively. Indeed, each edge e of, say $G \backslash Y$ is covered by $V C$ but it can be covered only by a vertex of $V C$ incident to it and this vertex belongs to $V C_{1}^{\prime}$ by definition. Note also that $P R \subseteq U$. Indeed, an edge of $G \backslash Y$ and and edge of $G[U \cup Y]$ cannot have a joint end that belongs to V.

Let $V C_{1}^{*}$ be a smallest VC of $G \backslash Y$. Observe that $P R \backslash V C_{1}^{*} \neq \emptyset$. Indeed, assume the opposite, that is we assume that $P R \subseteq V C_{1}^{*}$. Note that $V C_{1}^{*} \cup V C_{1}^{\prime \prime}$ is a VC of G as each edge of G is an edge of either $G \backslash Y$ or of $G[U \cup Y]$. Note further that since $P R \subseteq V C_{1}^{*}, V C_{1}^{*} \cup V C_{1}^{\prime \prime}=V C_{1}^{*} \cup\left(V C_{1}^{\prime \prime} \backslash P R\right)$. Now, as $V C_{1}$ is a smallest VC of G by definition, $\left|V C_{1}^{\prime}\right|+\left|V C_{1}^{\prime \prime} \backslash P R\right|=\left|V C_{1}\right| \leq$ $\left|V C_{1}^{*} \cup\left(V C_{1}^{\prime \prime} \backslash P R\right)\right| \leq\left|V C_{1}^{*}\right|+\left|V C_{1}^{\prime \prime} \backslash P R\right|$ from where we conclude that $\left|V C_{1}^{\prime}\right| \leq\left|V C_{1}^{*}\right|$ and hence $V C_{1}^{\prime}$ is also a smallest VC of $G \backslash Y$. However, this is a contradiction because $X \backslash Y \subseteq V C_{1}^{\prime}$. Thus we have confirmed that $P R \backslash V C_{1}^{*} \neq \emptyset$.

Let $Y^{\prime}=N_{G \backslash Y}\left(P R \backslash V C_{1}^{*}\right)$. Note that Y^{\prime} is not empty as by definition of $P R$ is element of it is incident to an edge of $G \backslash Y$. Furthermore, as $P R \subseteq U$, $Y^{\prime} \subseteq V$ and disjoint with Y by definition. That is $\left|Y \cup Y^{\prime}\right|>|Y|$. By maximality of Y, there is a smallest VC $V C_{2}$ of $G \backslash\left(Y \cup Y^{\prime}\right)$ that includes $X \backslash\left(Y \cup Y^{\prime}\right)$ as a subset. As elements of Y^{\prime} incident to edges of $G \backslash Y$ whose other ends are not contained in $V C_{1}^{*}, Y^{\prime} \subseteq V C_{1}^{*}$. Thus by Proposition 1, $V C_{2} \cup Y^{\prime}$ is a smallest VC of $G \backslash Y$. However, $(X \backslash Y)=\left((X \backslash Y) \backslash Y^{\prime}\right) \cup\left((X \backslash Y) \cap Y^{\prime}\right) \subseteq V C_{2} \cup Y^{\prime}$. providing contradiction to our initial assumption and completing the proof.

Lemma 6 Let $G=(U, V, E)$ be a bipartite graph. Let $Y \subseteq V$ and let $X \subseteq U$ be such that X is a subset of a smallest $V C$ of $G \backslash Y$. Then X is a subset of a smallest $V C$ of G.

Proof. Let $V C_{1}$ be a smallest VC of G. If $X \subseteq V C_{1}$, we are done. Otherwise, we will show that there is another smallest VC of G including X as a subset.

Given $G, V C_{1}$, and Y, let $V C_{1}^{\prime}, V C_{1}^{\prime \prime}, P R$ be defined as in Lemma 5 .

Observe that $E\left(G \backslash V C_{1}^{\prime \prime}\right)=E((G \backslash Y) \backslash P R)$. Indeed, if $e \in E\left(G \backslash V C_{1}^{\prime \prime}\right)$ then $e \in E(G \backslash Y)$ (recall from the proof of Lemma 5 that $V C_{1}^{\prime \prime}$ covers all the edges of $G[U \cup Y]$. Moreover, since $P R \subseteq V C_{1}^{\prime \prime}, e \in E((G \backslash Y) \backslash P R)$. Conversely, suppose that $e \in E((G \backslash Y) \backslash P R)$. Then e is not covered by any vertex of $V C_{1}^{\prime \prime}$ (as all the vertices of $V C_{1}^{\prime \prime}$ covering edges of $G \backslash Y$ belong to $P R$). Hence $e \in G \backslash V C_{1}^{\prime \prime}$.

Recall that $P R \subseteq U$. Since $G \backslash Y$ has a smallest VC including X, it follows from Lemma 5 (applied to $G \backslash Y$ with playing the role of G and Y playing the role of U for the substitution into the statement of Lemma 5 that $(G \backslash Y) \backslash P R$ has a smallest VC $V C_{2}$ including $X \backslash P R$. Employing the previous paragraph we observe that $V C_{2}$ is also a smallest VC of $G \backslash V C_{1}^{\prime \prime}$. By Proposition $1, V C_{2} \cup V C_{1}^{\prime \prime}$ is a smallest VC of G including X because $X=(X \backslash P R) \cup P R \subseteq V C_{2} \cup V C_{1}^{\prime \prime}$ as required.

Proof of Lemma 4. Let $V C_{1}$ be an arbitrary smallest VC of G_{1}. For $1 \leq i<n$, having constructed $V C_{i}$, we construct $V C_{i+1}$

First we observe that $G_{i} \backslash v_{i+1}=G_{i+1} \backslash v_{i+1}$. By Theorem 5. $G_{i} \backslash v_{i+1}$ has a smallest VC including $\left(V C_{i} \cap \neg V_{i}\right) \backslash\left\{v_{i+1}\right\}=V C_{i} \cap \neg V_{i+1}$. Next, by Theorem 6, G_{i+1} has a smallest VC including $V C_{i} \cap \neg V_{i+1}$. Set $V C_{i+1}$ to be such a smallest VC. This construction guarantees the required property for all i.

References

[1] Fardid M. Ablayev and Kamil R. Khadiev. Extension of the hierarchy for k-obdds of small width. Russian Mathematics, 57(3):46-50, 2013.
[2] Hans L. Bodlaender and Rolf H. Möhring. The pathwidth and treewidth of cographs. SIAM J. Discrete Math., 6(2):181-188, 1993.
[3] Beate Bollig, Martin Sauerhoff, Detlef Sieling, and Ingo Wegener. Hierarchy theorems for k obdds and k ibdds. Theor. Comput. Sci., 205(1-2):45-60, 1998.
[4] Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On lower bounds for read-k-times branching programs. Computational Complexity, 3:1-18, 1993.
[5] Simone Bova, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky. Expander cnfs have exponential DNNF size. CoRR, abs/1411.1995, 2014.
[6] Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases. In IJCAI, pages 819-826, 2011.
[7] Andrea Ferrara, Guoqiang Pan, and Moshe Y. Vardi. Treewidth in verification: Local vs. global. In LPAR, pages 489-503, 2005.
[8] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer-Verlag, 2012.
[9] Kamil Khadiev. Width hierarchy for $\$ \mathrm{k} \$$-obdd of small width. Electronic Colloquium on Computational Complexity (ECCC), 22:48, 2015.
[10] Matthias Krause. Lower bounds for depth-restricted branching programs. Inf. Comput., 91(1):1-14, 1991.
[11] Igor Razgon. No small nondeterministic read-once branching programs for cnfs of bounded treewidth. In IPEC, pages 319-331, 2014.
[12] Igor Razgon. On OBDDs for CNFs of bounded treewidth. In Principles of Knowledge Representation and Reasoning(KR), 2014.
[13] Martin Vatshelle. New width parameters of graphs. PhD thesis, Department of Informatics, University of Bergen, 2012.
[14] Ingo Wegener. Branching Programs and Binary Decision Diagrams. SIAM, 2000.

