
Downloaded from:

Usage Guidelines:
Please refer to usage guidelines at contact lib-eprints@bbk.ac.uk. or alternatively
Title: Individual differences in rhythmic skills: links with neural consistency and linguistic ability

Authors: Adam Tierney¹²⁶⁻⁷, Travis White-Schwoch¹²⁶, Jessica MacLean¹²⁶, Nina Kraus¹⁶†

Affiliations

¹Auditory Neuroscience Laboratory, ²Department of Communication Sciences, ³Institute for Neuroscience, ⁴Department of Neurobiology and Physiology, ⁵Department of Otolaryngology, ⁶Northwestern University, Evanston, Illinois USA, ⁷Present address: Birkbeck, University of London, London, UK

†Corresponding author
Nina Kraus, Ph.D.
Northwestern University
2240 Campus Drive
Evanston IL, 60208
USA
Email: nkraus@northwestern.edu
Phone: 847-491-3181
Fax: 847-491-2523
Abstract

Durational patterns provide cues to linguistic structure, and so variations in rhythm skills may have consequences for language development. Understanding individual differences in rhythm skills, therefore, could help explain variability in language ability across the population. We investigated the neural foundations of rhythmic proficiency and its relation to language skills in young adults. We hypothesized that rhythmic abilities can be characterized by at least two constructs, which are tied to independent language abilities and neural profiles. Specifically, we hypothesized that rhythm skills that require integration of information across time rely upon the consistency of slow, low-frequency auditory processing, which we measured using the evoked cortical response. On the other hand, we hypothesized that rhythm skills that require fine temporal precision rely upon the consistency of fast, higher-frequency auditory processing, which we measured using the frequency following response. Performance on rhythm tests aligned with two constructs: rhythm sequencing and synchronization. Rhythm sequencing and synchronization were linked to the consistency of slow cortical and fast frequency-following responses, respectively. Furthermore, while rhythm sequencing ability was linked to verbal memory, reading, and nonverbal auditory temporal processing, synchronization ability was linked only to nonverbal auditory temporal processing. Thus, rhythm perception at different time scales reflects distinct abilities, which rely on distinct auditory neural resources. In young adults slow rhythmic processing makes the more extensive contribution to language skill.

Keywords: Rhythm, language, auditory
1. Introduction

Rhythms pervade our auditory environment. Whether the steady pulse of waves on a beach, the accelerating staccato of approaching footsteps, or the characteristic tempo that distinguishes one animal’s call from another, these patterns in time convey vital acoustic cues. Rhythm also plays important—and strikingly similar—roles in speech and music. In both domains, for example, rhythm cues the location of structural boundaries (Scott, 1982; Krumhansl & Jusczyk, 1990; Yang, Shen, Li, & Yang, 2014), as the ends of phrases are marked by lengthened durations and longer pauses (Wightman, Shattuck-Hufnagel, Ostendorf, & Price, 1992; Penel & Drake, 2004). Both domains also use lengthened durations to mark elements as stronger or weaker, directing attention to important points in the signal; in speech, lengthened durations indicate stressed syllables (Liberman & Prince, 1977) and facilitate speech intelligibility (Bradlow, Kraus, & Hayes, 2003), while in music, lengthened durations are associated with stronger metrical positions (Lerdahl & Jackendoff, 1985).

Given the central role rhythm plays in speech and music, one might expect rhythmic competence to be widespread. Surprisingly, however, people vary widely in their rhythmic proficiency. Moreover, certain rhythm skills seem to be dissociable: severe congenital disruption of synchronization ability can co-occur with preserved ability to discriminate rhythms, and vice-versa (Sowinski & Dalla Bella, 2013; Launay, Grube, & Stewart, 2013; Palmer, Lidji, & Peretz, 2015). Impaired synchronization to the beat of music can also co-exist with preserved synchronization to a metronome (Phillips-Silver et al., 2011). Finally, difficulty reproducing rhythmic sequences can co-occur with preserved synchronization ability, and vice-versa (Tierney & Kraus, 2015a). These lines of evidence motivate a concept of rhythm as a constellation of distinct (albeit potentially intercorrelated) skills rather than a single competence.

The existence of dissociable rhythmic skills suggests that the neural networks subserving certain rhythm skills may also be dissociable. Precise synchronization requires the detection and correction of small auditory-motor asynchronies (on the order of less than 10 ms). This auditory-motor error correction may depend upon the connection between the auditory midbrain, which precisely represents temporal information on a rapid time scale (Liu, Palmer, & Wallace, 2006; Warrier, Nicol, Abrams, & Kraus, 2011), and the cerebellum, which is responsible for updating motor timing based on sensory feedback (Perrett, Ruiz, & Mauk, 1993). Supporting this idea, inter-trial phase consistency in the fast frequency-following response (FFR), which in part reflects auditory midbrain processing (Chandrasekaran & Kraus, 2010; Warrier et al. 2011; Bitdelman, 2015), is linked to the variability of synchronization (Tierney & Kraus, 2013a) and the ability to adapt to perturbations while synchronizing (Tierney & Kraus, 2016).

Perception of entire rhythm sequences, on the other hand, requires temporal processing on a slower time scale (> 0.5 s), which may rely more upon tracking of slower amplitude modulations within auditory cortex and transmission of this information to frontal regions responsible for motor planning and temporal prediction (Patel & Iversen, 2014). Variability in slower, low-frequency cortical processing, therefore, may interfere with rhythm sequencing but not synchronization. Although we draw lines along a fast vs. slow and subcortical vs. cortical dichotomy, we view auditory processing as the product of a distributed, but integrated, network of cortical, subcortical, and cochlear circuits (Kraus & White-Schwoch, 2015). A hypothesis derived from this framework is that system-wide pathways specialize for faster and slower auditory processing, and that in humans the FFR reflects faster processing whereas the cortical evoked response to sound reflects slower processing.

Due to the similar roles rhythm plays in speech and music, deficits in the perception of non-verbal rhythms may bear on language skills. Mounting evidence suggests that rhythmic deficits are tied to language impairment: abnormally poor reading and phonological awareness have been linked to difficulties with rhythm skills as diverse as synchronization (Thomson, Fryer, Maltby, & Goswami,
2.2 Rhythm tests

The rhythm battery was designed to encompass a range of non-verbal rhythm skills, spanning faster and slower time scales. All stimuli were constructed using custom Matlab (The Mathworks, Inc., Natick, MA) programs. The synchronization task used a 99-ms snare drum stimulus, while all other tests used a 150-ms conga drum stimulus (both stimuli were acquired from freesound.org). Participants completed six rhythm tests in which they listened to stimuli through headphones and drummed along on a conga drum using their dominant hand. A drum trigger,
pressed against the underside of the conga drum, recorded the drum head vibrations resulting from each drum hit. The drum trigger output was combined with a copy of the stimulus track being presented to participants as the two channels of a stereo input to a computer running the sound recording program Audacity (The Audacity Team). Thus, the relationship between the timing of the sound events and the timing of the drum hits was recorded in real time.

Data from all rhythm tasks were analyzed in Matlab. For each test, the drumming and stimulus data were converted to sequences of onset times. To convert continuous amplitude data to discrete onsets, an amplitude threshold and refractory period were set. A time point was marked as a drum hit if, at that time point, 1) the amplitude of the hit exceeded the amplitude threshold and 2) the time between the last recorded drum hit and the current time point exceeded the refractory period. Thus, the refractory period ensured that adjacent time points exceeding the amplitude threshold (for example, from vibration of the drum head following an especially hard hit) were not interpreted as multiple drum hits. Participants varied in the exact manner in which they struck the drum, and so the amplitude thresholds and refractory periods were set manually for each participant. For example, if a hit fell below the amplitude threshold and so was not marked, the amplitude threshold would be lowered. Similarly, if two hits were separated by a length of time below the refractory period and so the second hit was not marked, the refractory period would be shortened. Drum hit onsets as marked by the program were visually compared to the raw amplitude data to ensure that each drum hit was marked only once and to ensure that background noise was not marked. These stimulus and response drum hit sequences were then further analyzed using different methods for each test to produce summary scores, as described below.

Six drumming tasks were presented: synchronization, tempo adaptation, timing adaptation, beat synchronization, drumming to sequences, and sequence memory. (See Figure 1 for a schematic displaying a typical stimulus and ideal response for each task.) Each test consisted of multiple conditions, some more difficult than others, to avoid ceiling and floor effects. Performance on these conditions was averaged to limit the number of variables included in the modelling analysis, given the limitations posed by the number of participants we were able to test.

2.2.1 Synchronization

This test provided a measure of participants’ ability to maintain a steady beat while synchronizing to an isochronous stimulus at multiple rates. Participants were asked to drum along with a snare drum sound such that their drum hits occurred at the same time as the sounds they heard. Six trials were presented. During each trial, the stimulus was presented forty times with a constant inter-onset interval (IOI); the end of the trial was indicated with a beep. Two trials were presented at each of three different IOIs: 333, 500, and 667 ms. Data for the first twenty sound presentations were not analyzed to give participants time to internalize the metronome tempo and begin synchronizing. For the last twenty sound presentations Synchronization Variability was calculated as the standard deviation of intervals between drum hits divided by the mean interval between drum hits for that condition averaged across all six trials.

2.2.2 Tempo adaptation

This test provided a measure of participants’ ability to rapidly adjust to a change in tempo (speeding up or slowing down) while synchronizing. Participants drummed along with a conga drum sound that was presented at a steady rate. This rate then changed in tempo and the participants were asked to rapidly switch the tempo of their drumming to match this change. Fifty-five trials were presented to participants. Each trial consisted of between 11 and 15 presentations of the conga drum sound with a constant inter-onset interval of 500 ms, immediately followed by four more presentations with a new inter-onset interval. Five trials were presented at each of eleven intervals: 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, and 550 ms. Pseudo-randomization of interval presentation ensured that the direction and magnitude of the tempo shift was
unpredictable. Tempo Adaptation was calculated as the absolute value of the difference between each of the last two intervals produced by the participant and the new stimulus IOI. These two values were then averaged to form an adaptation score for that trial. For example, if the target IOI was 520 ms and the last two intervals produced by the participant were 510 and 540 ms, the participant’s adaptation score for that trial would be 15 ms. Finally, performance was averaged across the five trials for each target IOI.

2.2.3 Timing adaptation

This test provided a measure of participants’ ability to rapidly adjust to an occasional temporal perturbation while synchronizing. Participants drummed along with a conga sound that was presented at a steady rate. Occasionally a single inter-onset-interval was either lengthened or shortened. Participants were asked to stay on the beat as much as possible despite these occasional timing shifts such that their drum hits occurred at the same time as the stimulus onsets. Four trials were presented. During each trial conga sounds were presented 169 times with a constant IOI of 500 ms, but occasionally one of these intervals was shortened or lengthened. During each trial 16 shifts occurred, each of which was separated from the next by at least eight isochronous 500-ms IOIs. Four trials were presented. During the first two trials, shifts were 50 ms in magnitude; during the last two trials shifts were 10 ms in magnitude. Timing Adaptation was calculated as the standard deviation of the offset between drum hits and stimulus onsets for the six hits following each shift.

2.2.4 Beat synchronization

This test provided a measure of participants’ ability to steadily drum to the beat of a rhythmic sequence. First, participants heard nine repetitions of a conga drum sound presented at a constant IOI of 800 ms. Immediately following these sounds they heard a four-measure sequence (Povel & Essens, 1985) with an underlying inter-beat interval of 800 ms repeated eight times. Participants were asked to begin drumming to the drum sound, and then continue drumming at this rate once the sequence started, matching their drumming up to the beat of the sequence. Each sequence consisted of the same set of inter-onset intervals arranged in different orders: five 200 ms, two 400 ms, one 600 ms, and one 800 ms (i.e., equivalent to quarter, half, dotted-half, and whole notes). Each sequence was four measures in duration. A total of four trials were presented: two that Povel and Essens (1985) characterized as “strongly metrical” and two that were deemed “weakly metrical”. Weakly metrical sequences, compared to strongly metrical sequences, contained fewer drum hits on the first and third beats of each measure. Beat Synchronization Variability was calculated as the standard deviation of intervals between drum hits divided by the mean interval between drum hits for that trial averaged across all four trials.

2.2.5 Drumming to sequences

This test provided a measure of participants’ ability to rapidly perceive, reproduce, and synchronize with a rhythmic sequence. Participants were asked to drum along to conga-drum sequences such that each drum hit they heard was matched by a drum hit they produced. Four trials were presented. In each trial, a four-measure sequence taken from Povel and Essens (1985) was repeated ten times. Participants were told to listen to the sequence and begin drumming along as soon as they had a good idea of what the sequence was. A total of four sequences were presented, two “strongly metrical” and two “weakly metrical”. Drumming to Sequences Accuracy was calculated by dividing each sequence into sixteen segments, each of which could contain either a rest or a drum hit. For each segment, the analysis determined whether the participant correctly produced either a rest or a drum hit in a 200-ms window centered on either the sound onset of the time point or, in the case of a silence in the stimulus pattern, on the time point when a sound would have occurred. The score for each trial, therefore, consisted of the number of correctly performed hits or rests divided by the total number of analyzed segments. For example, if one measure was [0 0 0 1] and the participant’s drumming was [0 0 1 1], where a zero indicates a rest and a 1 indicates a drum hit,
the participant would receive a score of 0.75 for this section. This procedure produced a measure of the ability to perceive and reproduce rhythmic sequences that was relatively insensitive to the ability to align movements precisely in time to a stimulus (i.e., to synchronize). Analysis was begun on the second repetition of the sequence and continued for the remainder of the trial; thus, the more quickly the participant was able to learn the sequence, the better they performed on the test.

2.2.6 Sequence memory

This test provided a measure of participants’ ability to remember metrical sequences. During each trial a four-measure sequence (Povel & Essens, 1985) was repeated three times, followed by a pause equal in length to a full repetition of the sequence. Participants were asked to listen to the three repetitions without drumming, then drum out the sequence during the pause, producing the sequence exactly when it would have occurred had it repeated a fourth time. A total of thirty trials were presented, fifteen “strongly metrical” and fifteen “weakly metrical”. Sequence Memory Accuracy was calculated analogously to the accuracy calculation for the drumming along to sequences test: the drum sequence produced during the pause was compared to the target drum sequence to calculate proportion correct.

2.3 Language and cognitive tests

Phonological skills measured included Phonological Awareness and Rapid Naming. Phonological Awareness is the explicit knowledge of, and ability to manipulate, the speech sounds that make up one’s native language. Phonological Awareness was measured using tests of Elision, in which participants are asked to remove a single phoneme from a word and speak the resulting word, and Blending Words, in which participants hear a series of isolated phonemes and are asked to put these together to form a word. Rapid Naming is the ability to quickly recite an array of familiar items. Rapid Naming was measured using tests of Rapid Letter Naming and Rapid Digit Naming, in which participants see lists of either letters or digits and are asked to speak them aloud as rapidly as possible. All tests of Phonological Skills were taken from the Comprehensive Test of Phonological Processing (CTOPP; Wagner, Torgesen, & Rashotte, 1999).

Reading skills measured included Word Reading and Nonword Reading. Nonword Reading refers to the ability to read aloud a list of increasingly lengthy phonotactically-legal nonsense words. Word Reading consists of the ability to read aloud a list of increasingly-lengthy English words. Word and Nonword Reading were measured using the Woodcock Johnson III Test of Achievement (Woodcock, McGrew, & Mather, 2001) subtests Letter-Word ID and Word Attack, respectively. For display purposes (see Figure 2), a reading composite was formed by converting Word and Nonword Reading scores to z-scores and then averaging performance across the two tests.

Memory skills measured included Short-term Memory and Verbal Working Memory. Short-term Memory is the ability to keep speech sounds in a short-term store. Short-term Memory was measured using tests of Nonword Repetition, in which participants hear phonotactically-legal nonsense words spoken aloud and are asked to repeat them back, and Digits Forward, in which participants hear lists of numbers and are asked to repeat them back. Verbal Working Memory is the ability to take in auditory verbal information and mentally manipulate it before repeating the information back. Working Memory was measured using tests of Auditory Working Memory, in which participants hear a mixed sequence of numbers and objects and are asked to repeat them back by repeating first the numbers and then the objects in the order in which they were presented, and Digits Reversed, in which participants hear sequences of digits and are asked to repeat them in reverse order. Phonological Memory was measured using the CTOPP (Wagner et al., 1999), while Working Memory was measured using the Woodcock Johnson III Test of Cognitive Ability (Woodcock et al., 2001).

2.4 Perceptual tests
Auditory Temporal Resolution was measured using a Backward Masking test. Backward Masking tests evaluate the ability to detect a faint tone, despite the presence of masking noise which immediately follows the tone. Backward Masking was measured using the IHR Multicentre Study of Auditory Processing (IMAP) battery (Barry, Ferguson, & Moore, 2010). Participants were shown, on a laptop computer, three cartoon characters. Three sounds were played in sequence, and each sound presentation was accompanied by one of the cartoon characters opening its mouth. Participants were asked to indicate which of the three sounds was different from the other two by pressing one of three buttons on a response box. The spatial layout of the buttons (left, right, and center) corresponded to the location of the characters on the screen. All three stimuli consisted of 300-ms bandpass noise bursts with 1000 Hz center frequency, 800 Hz width, and a fixed spectrum level of 30 dB. One of the three stimuli also contained a target stimulus, a 20-ms 1000 Hz pure tone with a 10 ms cosine ramp. Two conditions were presented. In the no-gap condition, the noise burst was presented immediately after the tone ended. In the gap condition, a 50 ms gap was presented between the offset of the tone and the onset of the noise. The intensity of the tone relative to the noise was varied via a one-up, two-down adaptive staircase procedure to determine the signal-to-noise threshold at which participants were able to reliably detect the target tone. Lower thresholds indicate better ability to detect the tones despite the presence of the masking noise. A composite score was created by averaging thresholds across the gap and no-gap conditions.

2.5 Electrophysiology

Participants underwent an electrophysiological testing battery to evaluate their neural coding of sound.

2.5.1 Stimulus

The stimulus used to evoke electrophysiological responses to sound was a Klatt-synthesized 170-ms /da/ (20 kHz sampling rate) consisting of a 5-ms onset burst, a 45-ms formant transition period, and a 120-ms steady-state period. The fundamental frequency stayed steady throughout the stimulus at 100 Hz. During the formant transition the first formant increased from 400 to 720 Hz, the second formant decreased from 1700 to 1240 Hz, and the third formant decreased from 2580 to 2500 Hz. The fourth, fifth, and sixth formants stayed steady throughout the stimulus at 3300, 3750, and 4900 Hz, respectively. The stimulus was presented using Neuroscan Stim2 (Compumedics) monaurally at alternating polarities to the right ear through ER-3 insert earphones (Etymotic) at 80 dB SPL. To elicit FFRs stimuli were presented with an inter-onset-interval of 251 ms, while to elicit cortical evoked responses stimuli were presented with an inter-onset interval of 1006 ms. During both cortical and FFR recordings stimuli were presented in two conditions: in a quiet condition they were presented without any competing sound, while in a noise condition they were presented simultaneously with background babble from six talkers (three male, three female) at a +10 dB signal-to-noise ratio. See Smiljanić and Bradlow (2005) for more information on the acoustics of the background babble.

2.5.2 Recording

During recording of FFRs, continuous electrophysiological data was recorded using Neuroscan Acquire 4.3 (Compumedics) at 20000 Hz using a Synamp2 system (Compumedics) with a montage of three Ag-AgCl electrodes, with forehead as ground, the right earlobe as reference, and Cz as the active electrode. Electrode impedances were kept below 5 kΩ. Recordings were monitored online for artifacts (> +/- 35 µV) and 6000 artifact-free epochs were collected. Data were processed in Matlab (The Mathworks, Inc., Natick MA) using custom scripts. Recordings were bandpass filtered from 70 to 2000 Hz (12 dB/octave rolloff) using a Butterworth filter. Next, recordings were epoched from 40 ms before to 190 ms after the presentation of each stimulus. Epochs were baseline-corrected and epochs with amplitudes exceeding +/- 35 µV were rejected as artifact.
During cortical recording electrophysiological data were collected using Neuroscan Acquire 4.3 at 500 Hz using a Synamp2 system with a 31-channel tin cap referenced to the earlobes. Electrodes were placed above the left pupil and outer canthus of the left eye to capture eye movements. Electrode impedances were kept below 10 kΩ. Recordings were monitored online for large artifacts (±100 µV) and 400 artifact-free epochs were collected. Data were processed in Matlab using EEGLAB (Delorme and Makeig 2004) and ERPLAB (Lopez-Calderon & Luck, 2014). Recordings were bandpass filtered from 1 to 35 Hz (24 dB/octave rolloff) using a Butterworth filter. Next, recordings were epoched from 100 ms before to 500 ms after the presentation of each stimulus. Epochs were baseline-corrected and epochs with amplitudes exceeding ±100 µV, eye blinks, eye movements, or other artifacts were automatically detected and rejected as artifact.

2.5.3 Analysis: consistency of the electrophysiological responses

Inter-trial FFR consistency was calculated in the following manner. First, 3000 of the 6000 total epochs were randomly selected and averaged. The remaining 3000 epochs were then also averaged, and the two resulting sub-average waveforms were correlated. A higher correlation between waveforms indicates more similar sub-averages, and therefore greater inter-trial response consistency. This procedure was repeated 300 times, each time with a different random sampling, to ensure that the result reflected consistency across all trials. Finally, the resulting 300 response consistency scores were averaged to form a global measure of subcortical response consistency. Prior to statistical analysis response consistency scores were Fisher transformed. Response consistency scores for the quiet and noise presentation conditions were combined to form an FFR consistency score.

The passive cortical response to sound consists of four main components: P1, N1, P2, and N2. A cross-electrode average was computed and on it the latency of each peak was marked by an automated algorithm in which a window with a size defined on a component-by-component basis (P1 40 ms, N1 20 ms, P2 10 ms, N2 40 ms) moved through time regions appropriate for each component (P1 40-100 ms, N1 70-170 ms, P2 140-180 ms, N2 180-250 ms). The largest maximum (for P1 and P2) or minimum (for N1 and N2) found within this window was then defined as the latency of the component. These latencies were then manually checked by a trained peak-picker simultaneously viewing the average across all channels, the waveforms for each individual channel, and the global field power. Those participants without an identifiable peak were assigned a peak latency equivalent to the population mean. Because P2 in the noise response did not have an identifiable peak in the majority of subjects (33), this component was eliminated from analysis.

An automated procedure was used to select the set of channels used to analyse each component. First, for each channel the difference between the maximum and the minimum value was calculated within a 40-ms window centered on the peak latency (which was defined as the mean of the manually picked latencies across all subjects). A given channel was included in the channel set for a particular component if this difference was at least 40% of the greatest difference across all channels. For example, if the max-min difference was greatest with a value of 0.5 at Cz, but was only 0.1 at Pz and 0.3 at Fz, only Cz and Fz would be included in analysis. Visual inspection of waveform topographies confirmed that this algorithm successfully picked out the channels where each component was most prominent.

This procedure picked out the following channels sets for each component. For the Quiet condition, P1 was measured across F3, FZ, F4, FC3, FCZ, FC4, FT8, C3, CZ, C4, CP3, CPZ, CP4, and PZ; N1 was measured across FP1, FPZ, FP2, F7, F3, FZ, F4, F8, FT7, FC3, FCZ, FC4, T3, C3, CZ, F4, TP7, CP3, CPZ, CP4, T5, P3, PZ, and P4; P2 was measured across FP1, FPZ, FP2, F3, FZ, F4, FC3, FCZ, FC4, T3, C3, CZ, C4, TP7, CP3, CPZ, CP4, P3, and PZ; and N2 was measured across FP1, FPZ, FP2, F7, F3, F2, F4, F8, FC3, FCZ, FC4, C3, CZ, and CPZ. For the Noise condition, P1 was measured across FP1, FPZ, FP2, F7, F3, FZ, FT7, FC3, FCZ, FC4, T3, C3, CZ, C4, TP7, CP3, CPZ, and CP4; and N1 was measured across FP1, FPZ,
FP2, F3, FZ, F4, FT7, FC3, FCZ, FC4, C3, C4, TP7, CP3, CPZ, and T5; and N2 was measured across FP1, FPZ, FP2, F7, F3, FZ, F4, F8, FT7, FC3, FCZ, FC4, FT8, T3, C3, C4, T4, CP3, CPZ, CP4, TP8, P3, and PZ.

Inter-trial cortical consistency was calculated using a bootstrapping method introduced by Fitzroy et al. (2015). This procedure provides a global measure of the inter-trial consistency of the passive cortical response. First, continuous data were averaged across the appropriate channel set for each component (see last paragraph). Second, 150 epochs out of the pool of artifact-free epochs were randomly selected. Next, these epochs were divided into five groups of thirty epochs, each of which was averaged to form five subaverages. For each time point in a window surrounding each response component (using the component-specific windows listed above), the standard deviation of the amplitude across the five subaverages was calculated; these variability measure were then averaged across the entire time window, giving a score for each component. This procedure, therefore, creates a measure of how stable a given response component is across trials. This procedure was then repeated 1000 times, with each repetition using a different random sampling to create the five subaverages, and the resulting scores were averaged. Next, because we did not have a specific hypothesis about the relationship between rhythmic skill and the consistency of individual components, scores for all of the components for each condition were averaged. Finally, scores were averaged across the quiet and noise conditions to form a global composite measure of cortical consistency.

Because subcortical consistency is calculated by correlating subaverages, while cortical consistency is calculated by examining variability across subaverages, a larger subcortical score indicates a more consistent response, while a smaller cortical score indicates a more consistent response. To facilitate direct visual comparison of the relationship between rhythm skills and subcortical and cortical consistency, therefore, the inverse of the z-transformed cortical scores is plotted in Figure 3. To increase the transparency of the results the sign of correlations with the cortical metric has also been flipped in Table 4 and the results section.

2.6 Statistical methods

Several variables were non-normally distributed and different transformations were employed as needed to normalize the data prior to analysis. Synchronization variability, timing adaptation, and beat synchronization variability were log-transformed. Drumming to sequences accuracy and sequence memory accuracy were arcsine-transformed. A cubic transformation was applied to the phonological awareness scores (i.e. x^3, to reduce leftward skew). These transformations resulted in these variables being normally distributed (p > 0.05 according to the Jarque-Bara test). All other variables were normally distributed without transformation (p > 0.05). Variables were then transformed to z-scores and inverted (where necessary) such that larger scores always indicated better performance.

Skipped Pearson’s correlations (Pernet et al. 2013) were used to investigate relationships between scores across the six rhythm tests. For all correlations the decision as to whether to reject the null hypothesis was based on 99.75% confidence intervals, which are supplied for each correlation in Tables 1 and 3-5. A generalized least squares factor analysis with varimax rotation was then used to uncover latent variables reflecting shared variance across rhythm measures, and factor scores were calculated using the least squares regression approach, as implemented in SPSS (SPSS Inc., Chicago, IL). This procedure produced two factors (see results). Forty-nine of the sixty-four participants underwent an additional battery of electrophysiological and behavioral tests; in these participants, rhythm factor scores were correlated with performance on language and cognitive tests as well as measures of auditory neural consistency.

3. Results
3.1 Relationships among rhythm tests

Pearson’s correlations revealed that the synchronization, tempo adaptation, and timing adaptation tests were all correlated with one another ($r > 0.45$) but not with either the sequence memory or drumming to sequences tests ($r < 0.3$). The sequence memory and drumming to sequences tests were also correlated ($r = 0.79$). Performance on the beat synchronization test significantly correlated with performance all rhythm tests except sequence memory ($r > 0.3$). See Table 1 for r-values for correlations between all rhythm tests.

3.2 Factor analysis

Factor analysis revealed that performance across all six rhythm tests was best captured by two factors, which accounted for 71% of the cumulative variance across the rhythm data set. The KMO index was 0.697 and Bartlett’s Test of Sphericity returned a significant result (Chi-Square = 133.9, $p < 0.001$). All further factors had eigenvalues of less than 1, and the slope of the scree plot decreased dramatically between the second and third factors; therefore, we limited subsequent analysis and interpretation to the first two factors. Factor loadings are displayed in Table 2; here, we will highlight variables with eigenvalues greater than 0.4 for each factor. Factor 1 primarily comprised, in descending order of loading strength, timing adaptation, synchronization, beat synchronization, and tempo adaptation. This factor appears to reflect synchronization skill and will be referred to as the Synchronization Factor. Factor 2 primarily comprised drumming to sequences, sequence memory, and beat synchronization. As this factor primarily indicates rhythm sequence perception and production, we will refer to it as the Sequencing Factor. For subsequent correlational analyses, the composite scores generated by the factor analysis are used rather than the individual rhythm tests that comprised them. For each factor, larger scores indicate better performance.

3.2 Rhythm sequencing correlates with linguistic and cognitive skills

Participants with stronger rhythm sequence skills (as reflected by higher Sequencing scores) performed significantly better on tests of Short-term Memory ($r = 0.57$) and Reading ($r = 0.47$). Participants with stronger Synchronization skills, on the other hand, performed significantly better only on Backward Masking ($r = 0.42$). Follow-up analysis using the Fisher z-transform confirmed that Short-term Memory was significantly more correlated with rhythm sequencing than with synchronization ($z = 2.62$, $p = 0.0087$), as were Reading ($z = 3.18$, $p = 0.0015$) and Backward Masking ($z = 3.18$, $p = 0.0015$). See Table 3 for r-values for all correlations between rhythm factors and cognitive skills. See Figure 2 for an illustration of relationships between the rhythm factors and reading, phonological memory, and backward masking.

3.3 Synchronization and rhythm sequencing correlate with auditory-neural consistency

Participants who were better at synchronizing, as reflected by higher Synchronization Factor scores, also had frequency following responses that were more consistent from trial to trial ($r = 0.43$). However, there was no significant relationship between synchronization ability and cortical response consistency. Conversely, participants who were better at perceiving and remembering rhythms, as reflected by higher Sequencing Factor scores, had cortical responses that were more consistent across trials ($r = 0.43$). However, there was no relationship between Sequencing ability and frequency following response consistency. Follow-up analysis using the Fisher z-transform revealed that cortical consistency was more correlated with rhythm sequencing than with synchronization ($z = 2.90$, $p = 0.0038$), but that there was only a trend for subcortical consistency to be more strongly correlated with synchronization than with rhythm sequencing ($z = 1.78$, $p = 0.075$). See Table 4 for r-values for all correlations between rhythm and neural consistency. See Figure 3 for an illustration of relationships between the rhythm factors and neural consistency.

3.4 Auditory-neural consistency does not correlate with linguistic and cognitive skills
There were no relationships between either subcortical or cortical neural consistency and tests of linguistic and cognitive skills \((r < 0.35)\). See Table 5 for \(r\)-values for all correlations between language tests and neural measures.

4. Discussion

4.1 Overall summary

We presented participants with tests covering a spectrum of rhythm perception and performance, and used factor analysis to derive latent variables corresponding to distinct clusters of rhythmic skill. We extracted two factors: a Sequencing Factor, which reflected the ability to perceive and reproduce rhythmic sequences, and a Synchronization Factor, which reflected the ability to consistently tap in time to stimuli, a process that relies upon auditory-motor timing integration. Sequencing performance was linked to reading ability, verbal memory, and nonverbal auditory temporal processing. In contrast, synchronization was only linked to nonverbal auditory temporal processing. Sequencing was tied to the consistency of the slow cortical response to sound, while synchronization was tied to the consistency of the fast frequency following response to sound.

4.2 Language correlates of rhythm skill

Previous work from our laboratory has shown that synchronization ability and rhythm sequencing are dissociable, such that participants can display striking difficulties with one of these skills but be unimpaired on the other (Tierney & Kraus 2015a). It is an open question, however, whether synchronization or rhythm sequencing impairments reflect broader modality-general timing abilities with consequences for language skills. To address this question we compared synchronization and rhythm sequencing ability with cognitive, perceptual, and literacy skills.

Participants with higher Synchronization Factor scores had better backward masking thresholds, indicating fine auditory temporal resolution. This is consistent with the idea that synchronization relies upon the ability to precisely track the timing of auditory events (Krause, Pollok, & Schnitzler, 2010). Synchronization and backward masking abilities have been independently linked to phonological skills in pre-schoolers, school-aged children and early adolescents (Wright et al., 1997; Griffiths, Hill, Bailey, & Snowling, 2003; Thomson & Goswami, 2008; Corriveau & Goswami, 2009; Tierney & Kraus, 2013b; Woodruff Carr et al., 2014). These relationships may be driven by auditory temporal acuity, which is important for perceiving word and syllable boundaries and discriminating speech sounds (Tierney & Kraus, 2014). However, unlike previous studies, and contrary to our predictions, we did not find a relationship between synchronization abilities and language skills. This is despite the relationship between synchronization ability and backward masking, as well as between synchronization and FFR consistency, both measures which have been linked to reading in previous work (Griffiths et al., 2003; Hornickel & Kraus, 2013).

This discrepancy may be due to the age of the participants (mean = 18 years), who were on the cusp of leaving adolescence and entering adulthood. By age 18 these participants have likely mastered phonological skills, and reading ability may depend more heavily on their memory for and perception of temporal patterns. Indeed, participants with higher Rhythm Sequence Factor scores were more proficient on a number of language and cognitive measures, including auditory working memory, word reading, and non-word reading. This finding replicates reports of a link between rhythm sequence perception and both reading (Atterbury, 1985; McGivern et al., 1991; Douglas & Willatts, 1994; Overy, 2000, 2003; Forgeard et al., 2008; Dellatolas et al., 2009; Strait et al., 2011; González-Trujillo et al., 2012; Flaugnacco et al., 2014) and verbal memory (Saito, 2001). Further research (longitudinal and cross-sectional) is needed to understand how links between rhythm and language skills change with age. A caveat is that all of our participants were normal readers; the link
between synchronization and phonological skills may be preserved in young adults with reading impairment (Thomson et al., 2006).

4.3 Neural correlates of rhythmic skill

Error correction during synchronization requires precise, rapid integration of auditory event timing and motor output. Timing shift adaptation can take place within 100 ms of a stimulus shift (Repp, 2011) and can be initiated to subliminal shifts as small as 1.5 ms (Repp, 2000; Madison & Merker, 2004). Synchronization, therefore, may require a high degree of temporal precision in auditory neural processing. Supporting this idea, participants with variable synchronization demonstrate greater trial-to-trial variability in the frequency-following response to speech (Tierney & Kraus, 2013a; Woodruff Carr et al., 2016), which reflects processing within the auditory midbrain (Warrier et al., 2011; Bidelman, 2015). Prior work from our laboratory has shown that synchronization ability is related to high-frequency but not low-frequency inter-trial phase locking (Tierney and Kraus 2016). However, in that study low-frequency inter-trial phase-locking was assessed in the response to a speech sound presented at a fast rate (4 Hz) with neural data collected from a single electrode, a setup that is not ideal for investigating the passive cortical response (as the later components cannot be clearly detected).

Here, by collecting cortical data with a 32-channel cap and 1 Hz stimulus presentation rate, we confirm that the Synchronization Factor relates to the trial-by-trial consistency of the FFR to speech but that the variability of the cortical response to sound is largely unrelated to synchronization skill. This finding suggests that low-frequency cortical consistency may be less important for synchronization than high-frequency subcortical consistency. However, it should be noted that in the current study cortical data was collected passively, with participants ignoring the sounds and watching a subtitled movie. It is possible, therefore, that the consistency of cortical function when a sound stream is attended may be more closely tied to synchronization ability, especially given that performing a rhythmic task such as synchronization can enhance phase-locking to rhythmic information (Nozaradan et al. 2016a).

In contrast, we found that the variability of the slow evoked cortical response to sound related to rhythm sequence processing, such that participants with more consistent responses performed better when drumming along to and remembering rhythms. However, the consistency of the faster frequency-following response to sound did not relate to rhythm sequencing. These findings suggest that both synchronization and rhythm sequence perception may rely upon temporally precise auditory neural processing, but on different time scales: at ~10 ms and below for synchronization and ~100 ms and up for rhythm sequence perception. Further support for this idea comes from studies showing that perception of metrical rhythms is linked to phase-locking of low-frequency cortical oscillations to rhythmic structure (Nozaradan, Peretz, Missal, & Mouraux, 2011; Nozaradan et al., 2012; Tierney & Kraus, 2015b) and that the ability to synchronize to the beat of metrical rhythms (which requires integration of rhythmic information across time) is linked to the strength of low-frequency cortical phase-locking (Nozaradan et al. 2016b).

Previous work has reported a relationship between subcortical consistency and reading ability in elementary school children (Hornickel and Kraus 2013). However, we found no significant relationship between subcortical consistency and literacy skills in the adolescents tested here. As suggested above, participants in young adulthood may have already mastered phonological skills, and thus the temporal precision of the auditory system may be a less important bottleneck for language skills at this age. However, we also find no relationship between cortical consistency and literacy skills, despite its link to rhythm sequencing ability. The neural foundations of the link between rhythm sequencing and language skills, therefore, remain an important topic for future study. One possibility is that both rely on links between auditory and motor processing (Patel and Iversen 2014, Steinbrink et al. 2012).
4.5 Translational implications

The links reported here between rhythm sequencing and language skills join a growing body of work suggesting shared foundations for these two seemingly disparate sets of skills. The perception of rhythmic sequences has also been linked to individual differences in grammar (Gordon et al. 2015) and phonological skills (Flaugnacco et al. 2014), and experience with multiple languages is linked to enhanced perception of musical rhythms (Roncaglia-Denissen et al. 2016). These findings have two main translational implications. First, recent work has suggested that musical training emphasizing rhythm perception is particularly effective in boosting language skills such as phonological processing and reading (Flaugnacco et al. 2015). The close link we find between rhythm memory and verbal memory suggests that musical training which incorporates the memorization of rhythms could benefit memory for verbal material as well. Moreover, our finding that synchronization skills and language skills do not relate in participants on the cusp of adulthood suggests that people with language problems in late adolescence and early adulthood may respond better to rhythm training that emphasizes rhythm sequence processing rather than training that emphasizes synchronization. Second, rhythmic priming may provide benefits for language skills such as phonological processing (Cason and Schon 2012) and grammaticality judgments (Bedoin 2016). Rhythmic priming could potentially aid the encoding of verbal material into memory as well.

Acknowledgements

The authors are grateful to Trent Nicol and Jessica Slater for their helpful comments on an earlier version of the manuscript. This work was supported by the National Science Foundation (grant number BCS-1430400), the Mathers Foundation, the National Association of Music Merchants, and the Knowles Hearing Center, Northwestern University.

References

Tierney, A., & Kraus, N. (2013a). The ability to move to a beat is linked to the consistency of neural responses to sound. *Journal of Neuroscience, 33*, 14981-14988.

Figure 1. Schematics displaying typical stimuli and ideal responses for each rhythm test. For the timing adaptation and tempo adaptation tests, the size of the largest shifts has been doubled for display purposes.
Figure 2. Scatterplots displaying relationships between rhythm skills and performance on language and cognitive tests. Data are in z-scores. Reading data are a composite of Nonword Reading and Word Reading scores.
Figure 3. Scatterplots displaying relationships between rhythm skills and auditory neural consistency. Data are in z-scores.
Table 1. Correlations between rhythm measures. * indicates rejection of the null hypothesis, based on 99.75% confidence intervals (displayed inside parentheses).

<table>
<thead>
<tr>
<th></th>
<th>Synch.</th>
<th>Tempo adaptation</th>
<th>Timing adaptation</th>
<th>Beat synch.</th>
<th>Sequence memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tempo adaptation</td>
<td>0.56 *</td>
<td>(0.23, 0.79)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Timing adaptation</td>
<td>0.60 *</td>
<td>(0.35, 0.79)</td>
<td>0.48 *</td>
<td>(0.16, 0.72)</td>
<td></td>
</tr>
<tr>
<td>Beat synch.</td>
<td>0.34 *</td>
<td>(0.02, 0.60)</td>
<td>0.41 *</td>
<td>(0.02, 0.71)</td>
<td>0.59 *</td>
</tr>
<tr>
<td>Sequence memory</td>
<td>0.11</td>
<td>(-0.24, 0.45)</td>
<td>0.25</td>
<td>(-0.14, 0.57)</td>
<td>0.26</td>
</tr>
<tr>
<td>Drumming to sequences</td>
<td>0.16</td>
<td>(-0.19, 0.49)</td>
<td>0.04</td>
<td>(-0.27, 0.38)</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Table 2. Factor loadings for all rhythm measures. Boldface indicates loadings of greater than 0.3.

<table>
<thead>
<tr>
<th></th>
<th>Sequencing Factor</th>
<th>Synchronization Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synchronization</td>
<td>0.71</td>
<td>0.03</td>
</tr>
<tr>
<td>Tempo adaptation</td>
<td>0.60</td>
<td>0.07</td>
</tr>
<tr>
<td>Timing adaptation</td>
<td>0.81</td>
<td>0.15</td>
</tr>
<tr>
<td>Beat synchronization</td>
<td>0.60</td>
<td>0.44</td>
</tr>
<tr>
<td>Sequence memory</td>
<td>0.16</td>
<td>0.72</td>
</tr>
<tr>
<td>Drumming to sequences</td>
<td>0.05</td>
<td>0.99</td>
</tr>
</tbody>
</table>
Table 3. r-values for Pearson’s correlations between rhythm factors and performance on language and cognitive tests. Positive values indicate that better rhythm performance was linked to better language performance. * indicates rejection of the null hypothesis, based on 99.75% confidence intervals (displayed inside parentheses).

<table>
<thead>
<tr>
<th></th>
<th>Sequencing Factor</th>
<th>Synchronization Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbal memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Working Memory</td>
<td>0.27 (-0.19, 0.65)</td>
<td>0.11 (-0.31, 0.52)</td>
</tr>
<tr>
<td>Short-term Memory</td>
<td>0.57 (0.23, 0.82)</td>
<td>0.10 (-0.37, 0.49)</td>
</tr>
<tr>
<td>Reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading composite</td>
<td>0.47 (0.11, 0.72) *</td>
<td>-0.05 (-0.45, 0.33)</td>
</tr>
<tr>
<td>Phonological skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid Naming</td>
<td>0.06 (-0.36, 0.49)</td>
<td>0.05 (-0.38, 0.46)</td>
</tr>
<tr>
<td>Phonological Awareness</td>
<td>0.02 (-0.45, 0.51)</td>
<td>0.10 (-0.33, 0.49)</td>
</tr>
<tr>
<td>Auditory temporal resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backward Masking</td>
<td>-0.22 (-0.58, 0.35)</td>
<td>0.42 (0.02, 0.70) *</td>
</tr>
</tbody>
</table>

Table 4. r-values for Pearson’s correlations between rhythm factors and auditory neural consistency. Positive values indicate that better rhythm performance was linked to more consistent brain responses. * indicates rejection of the null hypothesis, based on 99.75% confidence intervals (displayed inside parentheses).

<table>
<thead>
<tr>
<th></th>
<th>Sequencing Factor</th>
<th>Synchronization Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency following response consistency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.08 (-0.30, 0.43)</td>
<td>0.43 (0.05, 0.69)</td>
</tr>
<tr>
<td>Cortical consistency</td>
<td>0.43 (0.12, 0.70)</td>
<td>-0.16 (-0.59, 0.24)</td>
</tr>
<tr>
<td></td>
<td>Cortical consistency</td>
<td>Frequency following response consistency</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Verbal memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbal Working Memory</td>
<td>0.20 (-0.33, 0.61)</td>
<td>-0.15 (-0.55, 0.33)</td>
</tr>
<tr>
<td>Short-term Memory</td>
<td>0.33 (-0.19, 0.68)</td>
<td>-0.14 (-0.47, 0.28)</td>
</tr>
<tr>
<td>Reading</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reading composite</td>
<td>0.20 (-0.25, 0.59)</td>
<td>0.06 (-0.32, 0.41)</td>
</tr>
<tr>
<td>Phonological skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rapid Naming</td>
<td>-0.09 (-0.51, 0.36)</td>
<td>-0.07 (-0.43, 0.33)</td>
</tr>
<tr>
<td>Phonological Awareness</td>
<td>-0.10 (-0.56, 0.39)</td>
<td>-0.14 (-0.51, 0.24)</td>
</tr>
<tr>
<td>Auditory temporal resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backward Masking</td>
<td>-0.03 (-0.43, 0.30)</td>
<td>-0.28 (-0.64, 0.07)</td>
</tr>
</tbody>
</table>

Table 5. r-values for Pearson’s correlations between auditory neural consistency and performance on language and cognitive tests. Positive values indicate that more consistent neural responses were linked to better language performance. * indicates rejection of the null hypothesis, based on 99.75% confidence intervals (displayed inside parentheses).